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Abstract

This paper studies the volatility-of-volatility (VVIX) term structure. We find
that the slope of the VVIX, defined as VVIX’ second principal component,
predicts excess returns of S&P500 and VIX straddles. Its informational con-
tent is incremental to the VIX term structure and the variance risk premium.
Thus, vol-of-vol risk matters even for stock index options. A model-based ap-
proximation for the VVIX shows that the main drivers of its term structure are
continuous vol-of-vol and jump risk. Their contributions vary systematically
with the state of the economy. When the latest major crises hit, continuous
vol-of-vol took the lion’s share over all maturities.
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1 Introduction

Volatility is a key determinant for financial pricing models and expected returns. By

the introduction of derivatives on the volatility index VIX, stock market uncertainty

became a publicly tradable asset for all market participants.1 The high liquidity of

VIX options over a large range of strike prices makes it feasible to study volatil-

ity in more detail. This paper investigates the term structure of model-free implied

volatility-of-volatility (VVIX), which captures the expected risk-neutral variation

of the VIX. First, we document that the slope of the VVIX term structure, not its

level, is a significant risk factor for index stock and volatility option returns. This risk

factor coexists next to the slope of the VIX and the variance risk premium (VRP).

Second, we find the slope of the VVIX to capture volatility-of-volatility (vol-of-vol)

risk better than the level, because the latter is too sticky at the peak of market

turmoil. Third, we analyze two possible drivers of the VVIX term structure: jumps

and continuous vol-of-vol risk. A newly developed decomposition based on a full

market model shows that both components contribute differently to the term struc-

ture, depending on market conditions. In calm times, the slope of the term structure

is mainly driven by jump expectations, whereas continuous vol-of-vol expectations

are the driving force in times of distress.

We start with an empirical analysis of the VVIX term structure, which we cal-

culate from VIX option prices, ranging from September 2007 to August 2014. In over

95 percent of this sample, the VVIX term structure was downward sloping, meaning

that, in risk neutral terms, market participants expected the vol-of-vol to decrease.2

1VIX futures where introduced by the CBOE in 2004, VIX options followed two years later.

By now, the trading volume of VIX options makes up to more than 60% of the trading volume of

standard and weekly S&P500 options.
2This behavior is opposite to the behavior of the VIX and VRP term structure. Ait-Sahalia,

Karaman, and Mancini (2015) amongst others show that the term structure of the VIX and VRP

is upward sloping.
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To describe the informational content of the term structure, we look at the first and

second principal component which we define as LevelV V IX and SlopeV V IX , respec-

tively. Our results show that the VVIX term structure carries different information

compared to the VIX and the variance risk premium (VRP). For all maturities, the

VVIX term structure is rather independent of the VIX term structure and the VRP.

To examine whether the level and slope of the VVIX also represent distinct risk

factors, we conduct predictive regressions for volatility products, which are mainly

exposed to volatility and vol-of-vol risk. More specifically, we study the predictive

power for daily returns of VIX and S&P500 straddles. Our predictive regressions

show that SlopeVVIX forecasts these straddle returns with a positive sign and that

this predictive power is incremental to the VRP and to SlopeVIX. This means that

investors demand a premium for changes of expected vol-of-vol even on the stock

option level.

While SlopeVVIX has predictive power, LevelVVIX has none. We reason this

finding by the level’s behavior at times of high market volatility. After the VIX

peaks, LevelVVIX remains at high levels, which we refer to as stickiness. In contrast

the slope decreases quickly. This drives the wedge between the predictive power of

both variables.

To shed light on the drivers behind the term structure, we rely on a jump-

diffusion model, where the variance of stock returns (V ) is exposed to jumps with

time-varying intensity and diffusive vol-of-vol (q) risk. To estimate the model’s pa-

rameters we choose to calibrate directly to the VVIX term structure, which we derive

from the underlying VIX option prices on a weekly frequency. Afterwards, we pro-

vide a new approximation method to express the VVIX2 and its term structure as a

linear function of higher moments of the model’s state variables. This approximation

is similar to the affine representation of the VIX2 in affine models and allows us to

understand the different risk factors embedded in the VVIX.
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Consistent with the empirical analysis and the literature, our affine represen-

tation of the VVIX2 shows that current diffusive stock market volatility has almost

no impact on the VVIX. Overall the VVIX is mainly driven by expected continuous

vol-of-vol risk, which accounts on average for more than 55% at the short-end of the

VVIX term structure and for almost 40% at the long-end. Variance jump risk makes

an average contribution of 29% at the short end and 26% at the long end of the

term structure. As a third constituent we find a time-dependent component AVVIX,

which is basically a constant plus a residual term that arises due to non-linear inter-

dependencies of V and q. It accounts for 10% at the short-end, and roughly 25% at

the long-end of the VVIX term structure. In sum, these three factors make up 95%

of the term structure. Their relative and absolute contribution vary systematically

over time, depending on the state of the economy. We identify the instantaneous

variance-of-variance to variance (q/V) ratio as a well-suited measure to describe the

economy’s state.

Empirically, as well as in our model, VVIX is approximately a linear function

of q/V, where the impact of q/V decreases in maturity. In case of a very low q/V-

ratio, the term structure of the VVIX is mainly driven by variance jump expectations

and AVVIX. When q/V increases, continuous vol-of-vol risk gains importance quickly

and makes up the major part of the VVIX across all maturities. At market turmoil,

i.e. in case of a high q/V-ratio, jump risk looses its impact on the slope of the

term structure and turns into a level component. As also AVVIX becomes negligible,

continuous vol-of-vol remains as the driving force behind the slope. Looking at the

time periods around the three VIX peaks of 2008, 2010 and 2011 confirms this

finding. At these times, the decomposition shows that SlopeVVIX captures a change

in the risk-composition of volatility risks from jump to continuous vol-of-vol risk.

This implies that as soon as a crisis hits, volatility uncertainty takes over from jump

expectations in relative terms. Since diffusive vol-of-vol risk is furthermore almost

equally important at the short- and long-end of the term structure at the peak of
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the crises, we conclude that investors expected volatility to remain highly uncertain

for a long time.

There are already numerous studies on the term structure of volatility risk.3

Closest to our work is Johnson (2016). He concentrates on the VIX term structure

and shows that its slope predicts returns of a wide class of volatility derivatives,

such as VIX futures and S&P500 straddles. Our empirical investigation confirms

his results and extends them to vol-of-vol. While the VVIX term structure has,

to the best of our knowledge, not yet been investigated, the VVIX for 30 days of

maturity (VVIX30D) and its associated risk premium has been addressed by Huang

and Shaliastovich (2014), Park (2015), Hollstein and Prokopczuk (2017) and Kaeck

(2017). The work of Huang and Shaliastovich (2014) reveals that vol-of-vol measured

by the VVIX is related to a negative risk premium since it significantly predicts

delta hedged VIX option returns. While they show that the VVIX30D is highly

independent from the VIX30D, we document that this independence also holds for

longer maturities. Park (2015) proposes a tail risk interpretation for the VVIX30D,

since it forecasts adjusted delta hedged option returns of VIX and S&P500 options.

Comparing different model-free variance measures, he concludes that the predictive

power stems from the continuously integrated vol-of-vol. Hollstein and Prokopczuk

(2017) show that volatility-of-volatility risk is priced in the cross-section of stocks

with a significant negative risk premium. The analysis of Kaeck (2017) shows that

the variance-of-variance risk premium is distinct from the VRP and significantly

3See for example Amengual (2008), Ait-Sahalia, Karaman, and Mancini (2015) and Luo and

Zhang (2012). The term structure of the VIX has been analyzed e.g. by Luo and Zhang (2012) who

show that the term structure is upward sloping and that it has predictive power for future realized

volatilities. Amengual (2008) studies and tests models for the term structure of the variance risk

premium. He shows that the VIX term structure is upward sloping. Ait-Sahalia, Karaman, and

Mancini (2015) document a mostly upward sloping term structure of the VRP and conduct a model

based analysis of the premiums. Throughout our paper, we define the VRP in terms of Q−P. Thus,

for consistency the results are stated here in terms of an on average positive VRP.
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negative, even after adjusting for several risk factors. Our model-based treatment

of the term structure allows for a more detailed exploration of its drivers. To do so,

we exploit the prices of VIX options, underlying the VVIX term structure. In the

domain of VIX derivative pricing, seminal works are Sepp (2008a,b), Mencia and

Sentana (2013) and Bardgett, Gourier, and Leippold (2016) amongst others.4 For

our purposes, we rely on a stochastic vol-of-vol model and augment it with variance

jumps. The subsequent methodology to approximate the VVIX in a linear fashion

is novel to the literature and is also applicable to other model setups.5

The remainder of the paper is structured as follows. The subsequent chapter

explains the concept of model-free risk-neutral expectations of realized volatilities,

our data set and the construction of the VVIX term structure. In chapter 2 we

conduct predictive regressions for daily straddle returns. In chapter 3 we introduce

the model and derive and test our affine VVIX2 approximation. Chapter 4 contains

our results for the risk factors of the VVIX term structure. Chapter 5 concludes.

2 VIX Futures, the VVIX and its Term Structure

2.1 VIX, VIX Options and the VVIX

The volatility index VIX provides a model-free measure of market participants’

risk-neutral expectation of market return volatility. It thereby provides a valuable

indicator of market uncertainty and has drawn the attention of researchers, practi-

tioners and private investors alike. For a maturity of τ = 30
365

, the Chicago Board

4Bardgett, Gourier, and Leippold (2016) do not account explicitly for a stochastic vol-of-vol,

but estimate a model that incorporates a central tendency factor, using VIX and S&P500 option

data. Mencia and Sentana (2013) test several models for VIX options, but do not look at the VVIX.
5We only know of Lin (2007), who gives an approximation for VIX futures by using the method

of Brockhaus and D. (2000) and Bates (2006), which relies on 2nd order Taylor approximations.
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Options Exchange (CBOE) computes the VIX index from the entire strike range of

out-of-the-money (OTM) S&P500 options via

VIXτ
t = 100

√√√√2

τ

∑
i

∆Ki

K2
i

erτ Ot(Ki, t+ τ)− 1

τ

(
Ft+τt

KATM

− 1

)2

. (1)

Ot are the prices of OTM options with strike prices Ki and ∆Ki = Ki+1−Ki−1

2
is

the interval between strike prices. Ft+τt is the forward price, and KATM denotes the

highest strike price below the forward price of the S&P500. While the last term of

Equation (1) is a correction term for the fact that usually no option is directly at

the money, the first term under the square root builds upon the seminal work of

Demeterfi, Derman, Kamal, and Zou (1999), Britten-Jones and Neuberger (2000),

Carr and Madan (1998) and Jiang and Tian (2005). They show that the model-free

implied variance (mfVar) equals the price of a portfolio of OTM options with a

continuous and infinite strike range, given by

mfVarτt =
2erτ

τ

[∫ F t+τt

0

1

K2
Pt(K, t+ τ)dK +

∫ ∞
F t+τt

1

K2
Ct(K, t+ τ)dK

]
, (2)

where Pt, and Ct are put and call option prices, respectively. Comparing Equation

(2) and the first term under the square-root in Equation (1), the CBOE’s VIX

is clearly subject to approximation errors: The discrete and limited range of option

prices leads to the well-known discretization and truncation error, which we account

for explicitly in our empirical analysis.6,

Since February 24 2006, European style options are traded on the CBOE VIX

index. The availability of various strike prices and the trading volume of VIX options

increased steadily after their introduction, illustrated by Figure 1. Especially short-

term OTM call options arouse a great deal of interest of market participants. The

high availability and liquidity of VIX options allows us to go one step further in terms

of studying the implied variance of the VIX itself. Using the CBOE’s methodology

6For a discussion of approximation errors of the VIX see for example Jiang and Tian (2007).
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in Equation (1) for different maturities τ of VIX options gives us the VVIX term

structure (VVIXτ ), which serves us as a measure for implied volatility-of-volatility

(vol-of-vol) over different time horizons.

Although the VIX and VVIX term structures are available to the public via

CBOE’s website, we choose to construct the indices ourselves in order to ensure

consistency between the empirical analysis and the later model estimation.7 As such,

we use S&P500 options and VIX options in order to build the VIX and VVIX for

30, 60, 90, 120 and 150 days to maturity. Figure 1 shows a limited strike range

and low liquidity in the early days of VIX option trading, especially for maturities

above 120 days. For this reason we discard the first one and a half years of data and

consider the time period from September 1, 2007 to August 29, 2014. This gives us a

data set of seven years, including the financial crisis and the peaks of the European

sovereign debt crisis. Daily settlement bid-ask prices of S&P500 and VIX options are

obtained from Option Metrics. We further use VIX futures quotes from the CBOE.

The risk-free rate follows from constant maturity bill yields, which are taken from

the Federal Reserve’s website.

In line with the methodology of the CBOE for the calculation of the VIX, we

filter out all options with zero bids.8 To reduce the discretization error, we then

interpolate the implied volatility surface of VIX options on a finer grid of strike

prices via a smoothed cubic spline.9 Hereby, we force the spline to remain within

the bid-ask spread. This procedure is similar to the methodology described e.g. in

Carr and Wu (2009) and Jiang and Tian (2005). In contrast to the latter, we do

not interpolate only across strikes for the VVIX term structure, but also across

7The CBOE publishes the term structure of the VVIX on http://www.cboe.com/publish/

vvixtimeseries/vixvixtermstructure.xls.
8See CBOE (2009).
9We choose ∆K = 1 (in annual volatility points). We find no significant difference in the VVIX

term structure for an even finer grid of strike prices. The difference in strike prices is on average

roughly 2.5 for all maturities in the data.
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maturities. Thereby, we do not straddle the time to maturity of interest in our

VVIX construction.10 We also refrain from extrapolating above the highest available

maturity, because it could result in negative implied volatilities. As such, we discard

40 days in our sample period, where no maturity is available for VIX options of at

least 150 days. This leaves us with 1721 days of data availability. We then apply

Formula (1) to the VIX options, where we neglect the adjustment term, since it

becomes negligibly small due to the interpolation in the strike dimension.11

The correlation of our VVIX30D with the VVIX values reported by the CBOE

is 98.7%, implying that our data processing works satisfactorily well.12 We investi-

gate the empirical descriptives and the predictive power of the VVIX and its term

structure in the subsequent chapters. We start by looking at single maturities for

VVIXτ first and then summarize the term structure by its principle components.

2.2 VVIX Term Structure Descriptives

The VVIX for 30, 90 and 150 days to maturity is plotted in Figure 2, statistical

descriptives are provided in Table 1.13 While the VIX term structure is upward

sloping on most days, the VVIX term structure is downward sloping in nearly all

cases. This is expected since the volatility of VIX futures prices (the underlying

of the VVIX) is decreasing in their time to maturity.14 The standard deviation of

10This is especially beneficial for our later estimation, since it lowers the computational burden.
11We construct the VIX term structure in the same fashion.
12The difference between our measure and the CBOE’s is not systematic, e.g. not driven by high

levels of the VVIX. The quality of the fit to the data is nearly unchanged if we do not interpolate

across maturities, but straddle the required maturity. As a robustness check, we also apply the

methodology of Bakshi, Kapadia, and Madan (2003) to our data, but find no significant changes

in the informational content.
13In the plot, we neglect 60 and 120 days of maturity for illustrative purposes.
14See for example, Amengual (2008), Luo and Zhu (2010), Luo and Zhang (2012), Huskaj and

Nossman (2013) and Ait-Sahalia, Karaman, and Mancini (2015).
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VVIX30D is much higher than for longer maturities. Further, we observe an increasing

persistence, measured by first order autocorrelations. Also, while the VVIX30D is

positively skewed, the distribution of the model-free vol-of-vol for 60 days becomes

rather symmetric. For maturities from 90 to 150 days we even observe a slightly

left-skewed and platykurtic distribution.

Spikes in the VVIX30D relate to financial and economical meaningful events.

For example, the response to the downgrade of the US’ credit rating on August 8,

2011 is reflected in a value of the VVIX30D of 143.92. This value is comparable to

the spike of 138.49 in the course of the sub-prime crisis on October 27, 2008, when

the U.S. Treasury refunded 22 banks with 38 billion dollars in a second round of

recapitalization.15 Furthermore, on May 20 and May 21, 2010, we not only observe

a comparable level of the VVIX30D, but also the highest levels across all maturities.

This reflects the high uncertainty about the proceedings of the crisis of Greece.

Noteworthy, the different levels of the VIX suggests that market uncertainty during

the turmoils of the European sovereign debt and fiscal cliff crises were not as severe

as in the financial crisis of 2008. However, the VVIX shows that uncertainty about

volatility was equally high across all three events. This already indicates that both

measures carry different information about volatility risks.

In general, for different maturities the VVIX reacts differently to financial and

economic conditions. This can be seen from the correlations of log-changes across

the term structure and by the correlations between the changes in the term structure

and changes of the S&P500 in Table 1. The correlations of changes across the term

structure are strictly decreasing for all maturities and can become quite low (0.55),

showing that different parts of the term structure carry different pieces of informa-

tion. As the VIX, the VVIX is negatively correlated to innovations in the S&P500.

For 30 to 150 days of maturity the correlation ranges from -0.53 to -0.39. Further,

15For a detailed time-line of events in the financial crisis see https://www.stlouisfed.org/

financial-crisis/full-timeline.
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the table reports that the correlations between innovations in VIX and VVIX are al-

ways quite low, ranging from 0.46 to 0.35. All in all, the statistics of the VVIX term

structure indicate that different maturities of the model-free implied vol-of-vol carry

different economic information, independently of the VIX term structure. Thus, dis-

tinct maturities of the VVIX may provide valuable information for researchers and

market participants.

Instead of looking at single maturities, we henceforth summarize the VVIX

term structure by its principle components. Table 2 shows the resulting PCA com-

ponents. In line with other studies like Cochrane and Piazzesi (2005), Johnson (2016)

and Ait-Sahalia, Karaman, and Mancini (2015), the results in Table 2 allow us to

interpret the first (PC1) and second (PC2) principle component as level and slope,

respectively.16 The level and slope component describe already 98.5% of the variation

in the term structure. In comparison to the aforementioned studies, this is slightly

less compared to the level and slope component of the term structure for the VIX

or for variance swaps.17 Still, like the other studies on implied return variances, we

find that the first two components are the main drivers of the VVIX term structure.

While the first two panels of Figure 2 show that the level has a similar trajectory

as the VVIX30D, the bottom panel shows that the slope of the VVIX is distinct. It

is quite erratic and peaks at times of market turmoil.

16Note that the principle component is normalized to a zero mean. In robustness checks we obtain

highly similar results if we use the average of VVIXτ on day t instead of the level component and

define the slope as the difference of the short- and long-end of the term structure divided by the

mean of VVIXτ
t .

17In Ait-Sahalia, Karaman, and Mancini (2015), PC1 and PC2 explain 99.9% of the variation

in the variance swap term structure, Johnson (2016) attributes 99.36% of the variation of the VIX

term structure to the level and slope component. For the yield curve Cochrane and Piazzesi (2005)

find that the level and slope factor explain 99.94% of its variation.
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2.3 Predictive Regressions

Johnson (2016) finds that the slope of the VIX term structure conveys information

for future returns, while the level of the VIX does not. As such, he attributes predic-

tive power to the VIX slope for variance investments. Motivated by his findings and

the documented differences between the VIX and VVIX term structure, we analyze

the informational content of the level and slope component of the VVIX term struc-

ture via predictive regressions. It is well known that delta neutral straddles can be

used as efficient hedges against volatility risk, but up to now little is known about

the impact of volatility-of-volatility on these products.18 To study the economic im-

portance of volatility-of-volatility we analyze the predictive power of the level and

slope of the VVIX for these straddles. Our goal is to investigate which part of the

term structure proxies vol-of-vol risk and in how far it is a risk factor. Therefore, we

look at daily excess returns of S&P500 and VIX straddles, because these products

are mainly exposed to volatility risks. In particular, S&P500 straddles are subject

to volatility and volatility-of-volatility risks, whereas VIX straddles are exposed to

volatility-of-volatility risks only.

The daily straddle returns are calculated as the return of a strategy that holds

an at-the-money straddle with a maturity τ for exactly one day

rStraddle,raw
t+1 ≡

T2−τ
T2−T1 Straddlet+1(T1) + τ−T1

T2−T1 Straddlet+1(T2)
T2−τ
T2−T1 Straddlet(T1) + τ−T1

T2−T1 Straddlet(T2)
− 1, (3)

where Straddlet(T ) is the price of an at-the-money delta-neutral straddle at time t,

which matures at t+T . We calculate the returns as explained in Coval and Shumway

(2001) using end of day prices at t and t + 1. We look at S&P500 straddles with

maturities of 1, 2, 3, 6, 9 and 12 months and at VIX straddles with maturities of

1, 2, 3, 4 and 5 months. We approximate maturity τ by linear interpolation between

18See for example Fan, Gupta, and Ritchken (2003), Brenner, Ou, and Zhang (2006), and Ni,

Pan, and Poteshman (2008).

11



the two nearest traded maturities T1 ≤ τ ≤ T2.19

In Table 3 we document the median and the first four moments of the daily

straddle excess returns rStraddle
t+1 = rStraddle,raw

t+1 − rft , where rft is the short rate on day

t. In line with Coval and Shumway (2001) the returns for S&P500 straddles are all

negative. The mean returns increase from −0.50% for one month to maturity to

−0.02% for twelve months to maturity. This implies that market participants are

willing to pay an insurance premium, which becomes smaller for longer maturities.

Our estimates are highly similar to the findings of Johnson (2016), whose sample

already starts in 1996. In comparison, our estimates of the mean and standard

deviation are only slightly higher. As expected for hedge products, the skewness of

all straddle excess returns is positive and the kurtosis is well above 3. VIX straddle

returns are characterized by similar, but higher mean values. Thus, investors pay

a lower, but still negative premium for VIX straddles. However, VIX straddles are

exposed to a higher standard deviation and kurtosis.

In our main analysis we regress the one-day ahead straddle excess returns

rStraddle
t+1 on a vector Xt of predictive variables. We control for possible autocorrelation

effects by including the time t straddle excess return rStraddle
t . As such, the predictive

regressions take the form

rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, (4)

where the predictive variables Xt are normalized by their standard deviation to ob-

tain comparable beta estimates. We concentrate on the one-day horizon to maximize

the number of observations in our short sample period and to remain comparable

to the results in Johnson (2016). Still, we find that our results hold up to three

weeks for S&P500 and one week for VIX straddles as well as for lagged predictors.20

19Note that we do not use the artificial option data set described in Section 2.1, but real end-

of-day option prices to compute the straddle returns.
20See Tables O.1 to O.4 in the online appendix.
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Xt contains VVIX30D, SlopeVVIX, which is the second PCA component of the VVIX

term structure, SlopeVIX, which is defined as the second PCA component of the VIX

term structure, the VIX30D and the VRP.21 Noteworthy, our results are insensitive

to whether we choose (V)VIX30D or the first principle component as the level com-

ponent of the term structure. Table 4 reports the descriptives of our predictors. To

rule out problems of multicollinearity, it also shows the historical correlations of the

predictive variables, which are rather small.

At first, we analyze VIX straddles. Since they are mainly exposed to vol-of-

vol risk, VIX straddle returns allow to test if and which part of the VVIX term

structure captures vol-of-vol risk. Table 5 shows the results of our regressions for

daily VIX straddle returns. We find that excess returns of one-month VIX straddles

are hard to predict since none of our variables has predictive power. In contrast,

daily straddle returns with maturities between 2 and 5 months can be predicted

by SlopeVVIX with t-statistics well above 3. The sign of SlopeVVIX is positive. Also

the VRP is highly significant for straddles with maturities of more than one month

with a negative sign. The level of the VVIX (VVIX30D) has no predictive power,

as well as the level of the VIX (VIX30D). Likewise, the slope of volatility, SlopeVIX,

has no forecasting power. The missing predictive power of the VIX term structure

is not surprising since the straddles are (approximately) delta-neutral with respect

to the VIX futures price. In sum, we find that SlopeVVIX and the VRP predict daily

returns of VIX straddle for two to five months to maturity with adjusted R2s ranging

21The VRP is calculated as the difference between the risk-neutral and the physi-

cal expectation of the variation of the stock index over the next 30 days, VRPt ≡

12
(
EQ
t

∫ 30D

0
(d lnSt+u)2du− EP

t

∫ 30D

0
(d lnSt+u)2du

)
= VIX2

t −EP
t RVt+30D. We assume that RVt is

a martingale, i.e. EP
t RVt+30D = RVt = 12

∑21
j=1

∑
i(rt−j,i)

2, and rt−j,i are the ith five-minute log-

returns at day t−j. We obtain the sum of squared realized five-minutes returns from Oxford-Man’s

database, which can be found under http://realized.oxford-man.ox.ac.uk. Our methodology

for the VRP estimation is consistent with Bollerslev, Tauchen, and Zhou (2009) and Carr and Wu

(2009) among others.
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from 1.77% to 4.20%. According to the magnitude of the regressors, SlopeVVIX is

more important for short maturities, while the VRP is more important for straddles

with 4 and 5 months to maturity. Overall, the regression of VIX straddle returns

shows that the slope and not the level of the term structure captures time-varying

vol-of-vol risk.

We now test whether vol-of-vol risk is also priced in S&P500 straddles and

thereby has an influence on stock options in general. Table 6 reports the results of

predictive regressions for S&P500 straddle returns for all maturities. As for the VIX

straddles we find that adjusted R2s are fairly low with values in the range of 1.35% to

3.94%. Also, neither of both levels, VIX30D and VVIX30D, has any predictive power.

In comparison to the VIX straddle returns, we find that the slope of the VIX is now

a significant predictor for all maturities at the 5%-significance level. This confirms

the results in Johnson (2016), who documents that the VIX term structure is priced

in S&P500 straddles. Interestingly, the slope of the VVIX keeps its predictive power

also for S&P500 straddles at the 1% level. We even find that it predicts returns at

the very short end of maturity. The magnitude of the standardized regressors and t-

statistics of SlopeVVIX are highest amongst all predictors for all maturities. The only

exception is the lagged return. The better performance of SlopeVVIX suggests that

vol-of-vol risk is at least as important as volatility risk itself. In all regressions, the

coefficient of SlopeVIX is negative and increases with time to maturity. This means

that expected returns of short-term straddles decrease most if the slope of the VIX

increases. The coefficient of SlopeVVIX is positive and decreases in the straddles’

time to maturity. Therefore, a steeper SlopeVVIX predicts higher expected returns

for S&P500 straddles.

In order to assess the importance of the different risk factors and to rule out

that our results are driven by multicollinearity, we also run restricted regressions.

The main results are consistent for all straddles. For the sake of brevity, we therefore
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only present the results for daily returns of SPX and VIX straddle returns with a

maturity of two months in Table 7.22 Regressions (1)-(5) are univariate regressions

for each of the predictors, including the lagged return to control for autocorrelation.

Compared to the full regression in Tables 5 and 6 the sign and significance do

not change. Regressing the straddle returns solely on the slope of the VVIX in (2)

gives adjusted R2-values of roughly 1.4% and 0.73% for VIX and SPX straddles,

respectively. This is already a big share of the full regression results, where we find

1.8% and 1.4%. Adding the level of the VVIX term structure does not change R2

values in regressions (6). Similar, the level and slope of the VIX do not add any

predictive power for VIX straddles in regression (8). The results are different for

S&P500 straddles. There we find that the explanatory power of the VVIX and VIX

slope in regression (2) and (3) almost add up to the R2 of the full model and remain

significant in (7), where we include both variables. This stresses that the slopes of

the VIX and VVIX term structure proxy distinct risk-factors, whose informational

contents are incremental to each other.

All in all, our analysis shows that the slope of the VVIX term structure, not

its level, proxies vol-of-vol risk. Our results for VIX straddles indicate that vol-of-

vol risk is quite different from volatility risk, since only the slope of the VVIX has

predictive power. The results on S&P500 straddles give further evidence for this

claim, since both slopes have predictive power on their own and their explanatory

powers almost add up in terms of R2 if both variables are included.

22We choose straddles of two months to maturity, because one month VIX straddle returns are

hard to predict as outlined above. Restricted regressions for all maturities can be found in the

online appendix in Tables O.5 to O.13.
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2.4 Trading Signals from the (V)VIX Term Structure

The predictive regressions in the previous section yield highly significant predictors,

but rather low R2 values. For this reason we further study the economic importance

of our results. We test a daily long/short S&P500 straddle investment strategy.

For each day we calculate SlopeVVIX
t and SlopeVIX

t using only information from the

beginning of our sample until day t.23 This means that we calculate the slopes on

date t only based on the data sets {(V)VIXτ
s}s≤t up to time t. The analysis thereby

does not suffer from a look-ahead bias, but is rather an out-of-sample strategy,

which only uses past information. The question is at which times the VIX and

VVIX term structure signal a sufficient increase in volatility risk, which leads to a

positive straddle premium.

We analyze two strategies which both short the S&P500 straddle as a default

action to earn the negative risk premium, documented in Table 3. Motivated by the

coefficient’s sign in the predictive regressions, the first strategy goes long if SlopeVVIX
t

is above its 75% percentile and the second strategy goes long if SlopeVIX
t is below

its 25% percentile.24 Figure 3 shows logarithms of the resulting return paths for

S&P500 straddles with maturities of one and twelve months versus the short only

strategies. Grey areas mark times where the strategies go long in straddles. Using

the signal from the VVIX term structure results in significant excess returns for both

maturities. Furthermore, the trading signal of the VVIX term structure is evenly

spread over time. When the signal from the VIX is used, the long/short strategy

performs worse than the short only strategy for one month straddles and outperforms

only weakly for longer maturities. Additionally, the times of going long are clustered

around the financial crisis and the years after 2012. This shows that the VVIX term

23The burn-in phase is one month (September ’07).
24We tested a similar strategy with the VRP as the trading signal, where we go long if the VRP

is below its 25% percentile. Figure O.1 in our online appendix shows that the resulting strategy is

comparable to the VIX term structure.
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structure is a more suitable and more homogeneous indicator for economic crises

than the VIX term structure, since it indicates states of financial distress more

reliably.25 The superiority of the vol-of-vol signal is evident from annualized Sharpe

Ratios as well. For straddles of one (twelve) month the short/long strategy based on

SlopeVVIX has an annual Sharpe Ratio of 1.50 (1.09). The short/long strategy based

on SlopeVIX results in much lower ratios of 0.98 (0.51) for the shortest (longest)

maturity.26

We conduct a similar analysis for two month VIX straddles. The strategy goes

long the straddle if SlopeVVIX (VRP) is in its highest (lowest) quantile and short

otherwise. Figure 4 documents the cumulative log-returns of these strategies. Both

strategies lead to economic sizable excess returns and annualized Sharpe Ratios of

0.91 (0.78) for the VVIX (VRP) strategy. In comparison, a simple short-only strategy

yielded a Sharpe Ratio of 0.61. As the VVIX term structure, the VRP indicates to

go long in times of high financial distress, like the financial crisis, European dept

crisis and the Fiscal Cliff crisis. However, similar to the trading signals of SlopeVIX

for S&P Straddles, signals from the VRP cluster after 2013. Thus, in contrast to the

signals of SlopeVVIX, VRP signals are not evenly spread across time.

In sum, our trading strategies document that the slope of the VVIX term

structure not only proxies a significant risk factor in a statistical sense. It shows

that vol-of-vol risk is important for stock and volatility options in economic terms,

too.

25See for example the peaks of the European sovereign debt crisis in 2010 and the American

Fiscal Cliff in late 2011.
26The short only strategy has Sharpe ratios of 1.26 and 0.26 for maturities of one and twelve

months. For comparison, going long the S&P500 would have resulted in a Sharpe Ratio of 0.24.

We also conducted the analysis without the longest end of maturity (V)VIX150D. The occurrence

of signals does not change heavily, leading to similar strategy returns. The short-term straddles

perform slightly better, the long-term straddles slightly worse.
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3 VVIX Decomposition

Our empirical analysis shows that the term structure of volatility-of-volatility mat-

ters for future returns on volatility-sensitive assets. The slope of the VVIX is a

highly significant predictor for excess returns of S&P500 straddles and VIX strad-

dles. Importantly, it has additional explanatory power compared to other established

variance risk measures, especially the slope of the VIX and the VRP. Moreover, the

slope of the VVIX seems to be more informative about excess returns than the slope

of the VIX. This suggests that options on the stock market index do not only depend

on the risk neutral expectation of future changes in the volatility level, but also on

its expected variation.

This raises two fundamental questions: First, why does the slope of the VVIX

contain valuable information, while the level does not? Second, what does a steeper

slope of the VVIX term structure imply economically? To shed some light on the

drivers behind the dynamics of the VVIX term structure and its predictive power,

we study two possible sources of vol-of-vol risk, continuous volatility-of-volatility

and discontinuous variance jumps. Our setting provides an environment to study

the VVIX consistent with VIX derivatives.

3.1 Model Setup

In our empirical section we show, consistent with Huang and Shaliastovich (2014),

that the dynamics of the VVIX30D and the VIX30D are almost independent to each

other. More importantly, our results show that this feature holds for longer maturi-

ties, too. We thus use a model that features explicitly a stochastic vol-of-vol process.

Following Duffie, Pan, and Singleton (2000), we focus on an affine model to describe

the dynamics of the log stock price st, the variance Vt and the volatility-of-volatility
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qt under the risk-neutral measure Q:

dst = rdt+ σS
√
VtdW

S
t (5)

dVt = κV (V̄ − Vt)dt+ σV
√
qtdW

V
t + ZV dNt (6)

dqt = κq(q̄ − qt)dt+ σq
√
qtdW

q
t , (7)

where κV , κq, and σV , σq ∈ R+ are the mean-reversion speeds and the diffusive

volatilities, respectively.27 We fix the mean-reversion levels V̄ and q̄ at 1. r ∈ R is

the risk-free rate and W S,W V ,W q are Wiener processes with correlation matrix
(dW S

t )2 dW S
t dW

V
t dW S

t dW
q
t

dW S
t dW

V
t (dW V

t )2 dW V
t dW

q
t

dW S
t dW

q
t dW V

t dW
q
t (dW q

t )2

 =


1 0 0

0 1 ρV q

0 ρV q 1

 dt. (8)

We are primarily interested in analyzing the VVIX and its term structure. We

therefore abstract from the leverage effect and from jumps in the stock price, since

this would require a joint treatment of variance and equity derivatives, which is

not the focus of this paper. We thus restrict ourselves to a stochastic variance Vt

of the stock price, which has itself a stochastic volatility qt. Both Vt and qt are

mean reverting. While qt is purely diffusive, Vt exhibits jumps with time-varying

intensity. Nt is a compound Poisson process with intensity λV1 Vt for λV1 > 0, and the

random jump-size ZV has an exponential distribution Exp(µV ) with mean jump-

size µV .28 We choose a time-varying jump intensity to capture jump clustering in

volatilities, which is documented by Eraker, Johannes, and Polson (2003), Daal,

27Since we aim to explain the second moment of the VIX distribution, we refrain from other

state-variables, as for example a stochastic central tendency either in V or q, which would improve

the general fit, but which would also facilitate the estimation a lot. For our purposes, the estimation

results show that the model captures the VVIX term structure already quite well.
28We choose to couple the jump intensity to the variance level Vt and thus remain in the standard

setting of the option pricing literature. Further, we refrain from a constant intensity, because it

would lower the volatility of the VIX.
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Naka, and Yu (2007) and Zang, Ni, Huang, and Wu (2017). In addition, Branger,

Kraftschik, and Völkert (2016) show that a model with stochastic jump intensity

fits VIX option prices better than a model with a constant jump intensity, and

thus also fits the VVIX better.29 We summarize the structural model parameters

κV , κq, σV , σq, ρV q, µV and λV1 in Θ. Further, Y contains the state-variables V and q.

A well-known result for the affine model-class is that the squared (VIXτ
t )

2 is

an affine function of the state variable V . In our model the VIXτ
t is thus given by

VIXτ
t =

√
AVIX(Θ, τ) +BVIX(Θ, τ)Vt , with (9)

AVIX(Θ, τ) =
V̄ κV

κV − µV λV1

(
σ2
S −BVIX(Θ, τ)

)
BVIX(Θ, τ) =

1

τ
σ2
S

1− e−(κV −µV λV1 )τ

κV − µV λV1
.

The underlying of the VVIX is not the VIX, but its log futures price. Thus, the

calculation of the VVIX in the model is two-fold troublesome. First, the VIX futures

price is the expectation of Equation (9). Second, due to the square root, an exact

closed-form affine solution for the VIX futures price, and thus for the VVIX, does

not exist. A further obstacle is that the level of the model-implied VIX is clearly

independent of the vol-of-vol q.30 This makes the estimation of the vol-of-vol state-

variable much more involved. We address these problems by first calculating the VIX

option prices which then give the VVIX term structure. Specifically, we estimate the

model in the next section by computing the model’s VIX option prices first, and

aggregate them to the model-implied VVIX by Equation (1) afterwards. In this way,

we can also replicate the truncation and discretization error of the empirical VVIX.

29Branger, Kraftschik, and Völkert (2016) further show that exponentially distributed jumps

suffice to describe the dynamics of VIX options and that gamma distributed jumps do not enhance

the model’s performance.
30The vol-of-vol matters, however, for the dynamics of the VIX and thus for the pricing of VIX

derivatives and the VVIX.
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3.2 Model Estimation

To estimate our model, we use weekly data of the VVIX term structure and the

underlying VIX option and future prices. In order to minimize the number of holidays

in our sample we choose Wednesday data. If, however, no data is available for a

specific week, we rely on the next available datapoint.31 This leaves us with 365

observations for the estimation. Using these datapoints, we estimate the structural

model parameters Θ by minimizing the sum of squared errors in the model’s term

structure of the VVIX (VVIX
M,τj
ti (Θ, Yi))

2 and in the underlying VIX futures prices

(F
M,ti+τj
ti ).32 We look at the relative squared pricing errors in order to give each

observation comparable weight in the loss function, which is given by

relSE = min
Θ,Y

1

2

N∑
i=1

J=5∑
j=1


(

VVIX
M,τj
ti (Θ, Yi)

)2

−
(
VVIX

τj
ti

)2(
VVIX

τj
ti

)2 × 100


2

/(5N)

...+

[
F

M,ti+τj
ti (Θ, Yi)− F

ti+τj
ti

F
ti+τj
ti

× 100

]2

/(5N). (10)

The loss function (10) can also be understood as the relative squared error (relSE).

A nice feature of this loss function is that the square root of (10), the relative

root mean squared error (relRMSE), represents the mean percentage error. As this

performance measure is also applicable for the first and second part of (10), as

well as for each maturity, it provides an intuitive and consistent evaluation of the

model’s fit to different maturities. Adding the VIX futures prices to the loss function

is of special importance, since the model not only needs to describe the VVIX term

structure, but also has to be consistent with the prices of the underlying. The VIX

31This can either be due to a holiday or because we discard days which would require to ex-

trapolate above the longest time to maturity. In 18 out of 21 cases, the next available date is a

Thursday.
32We take the squared VVIX to circumvent problems of imaginary solutions in the optimization.
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futures price arises endogenously from the model, which is pivotal for our purposes,

since it sets the integration bounds in Equation (2) by defining OTM options.33

We estimate the model’s parameters and the state variables in a two step

procedure, which is similar to the methodology in Bates (2000), Huang and Wu

(2004) and Christoffersen, Heston, and Jacobs (2009) among others. In both steps,

we use the pricing methodology of Branger, Kraftschik, and Völkert (2016) to obtain

the model’s VIX futures and option prices underlying the VVIX term structure.

Using the VIX option prices we then calculate VVIX
M,τj
ti by Equation (1).34 Note

that we compute the same option prices as those enter the empirical VVIX term

structure. We thereby remain consistent with the data, since we deliberately replicate

the truncation and discretization error discussed in Section 2.1.

In the first step of our estimation routine, we choose the structural parameters

Θ by the differential evolution algorithm of Wang, Zixing, and Zhang (2011), given

the state-variables Y . The second step of our optimization routine, the estimation of

the state-variables, is much more involved. At each day ti, we optimize over Yi with

a gradient-based solver, again by minimizing Equation (10), given a parameter set

Θ. This optimization problem is, however, possibly ill-posed, meaning that multiple

local minima might exist for different combinations of the state variables. This is

especially the case if the correlation between q and V becomes very high. To obtain

stable and economically sensible results, we proceed as follows. Given the parameter

set Θ, we use the empirical level of the VIX30D at day t and invert Equation (9) to

get an initial value Vt,ini

Vt,ini =

(
VIX30D

t

)2 − AVIX(Θ, 30/365)

BVIX(Θ, 30/365)
. (11)

33The error of the futures price is further comparable to the penalty term in Andersen, Fusari,

and Todorov (2015), which ensures that the estimate of the local variance cannot diverge heavily

from economically reasonable values.
34As for the empirical VVIX term structure, we neglect the adjustment term, since it becomes

negligible due to our fine grid of strike prices.
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We then fix Vt,ini to get an initial value of qt,ini, by optimizing the loss function (10)

only with respect to q. Afterwards we jointly estimate V and q, using the previously

obtained values as initials to the solver. We iterate the complete estimation routine

until no further improvement of the loss function can be achieved. We further apply

this optimization procedure multiple times to the data with different starting values

for Θ and always obtain identical solutions for the structural parameters and the

state vector Y . We thus conclude that our optimization routine works satisfactory

well and reliably.

Figure 5 illustrates the quality of the model to describe the data. It shows

that the model fits the VVIX term structure and the VIX futures prices quite well.

The relative root mean squared errors are reported in Table 8. The relRMSE ranges

between 2.63 and 5.16 for the VVIX term structure and between 2.01 and 6.54 for

the VIX futures. Interpreted as mean percentage errors, these values are fairly low.

The upper panel of Table 8 reports parameter estimates Θ and their standard

errors. The latter are very narrow, showing that our estimates are very precise, due

to the broad cross-section of derivative prices we use in the estimation routine.

3.3 VVIX Approximation

To analyze the VVIX by decomposing it into different risk factors, a proper closed-

form representation is needed. In the stochastic volatility-of-volatility market model,

which we introduced in Section 3.1, such a closed form representation does not exist.

In this chapter we will first explain the basics of a methodology to come up with an

affine approximation for the VVIX for different times to maturity. Afterwards we

employ the described method to our model setting and validate its accuracy via a

simulation exercise.
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3.3.1 The Approximation – A Brief Introduction

In this section, we explain the steps which are necessary to approximate the VVIX

term structure in closed form only briefly. Details are provided in Appendix A. The

VVIXτ
t at time t for some maturity τ is the square root of the annualized estimated

log variation of the VIX futures price with maturity in t + τ over the horizon t to

t+ τ . Therefore,

(VVIXτ
t )

2 = 1002 1

τ
EQ
t

[∫ t+τ

t

(d ln Ft+τs )2

]
, (12)

where Q is the risk-neutral measure and Ft+τs is the VIX futures price at time s with

maturity at time t+ τ defined as

Ft+τs = EQ
s

[
VIX30D

t+τ

]
. (13)

In general affine asset pricing models it holds that

VIXτ
t =

√
AVIX(Θ, τ) +BVIX(Θ, τ)′Yt, (14)

for AVIX(Θ, τ) ∈ R, BVIX(Θ, τ) ∈ Rn and some vector of state variables Yt ∈ Rn.

The square root, together with its expectation in (13) and the logarithm in (12),

causes serious problems when it comes to calculating VVIXτ
t and its dynamics. We

employ a two step approximation method to overcome these problems. First, we

approximate the square root (14) using a second order Taylor approximation which

enables us to calculate the futures price (13) in closed form. In the second step, we

approximate the log-dynamics (12) using Itô’s lemma. Our overall approximation

then gives us

(VVIXτ
t )

2 ≈ AVVIX(Θ, τ, yt) +BVVIX(Θ, τ, yt)
′Ỹt, (15)

where Ỹ = [V 3, V 2q, V 2, q2, V q, V, q]′. The expression for the VVIX2 has a similar

structure as for the VIX2 in Equation (14). However, there are two important dif-

ferences. First, (15) is an affine function of some (new) state variables Ỹt, i.e. the
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(old) state variables q, V , their product and some higher cross-moments. Second, it

also depends on a set of parameters yt ∈ R3, which arise from the Taylor approx-

imation of the square-root in Equation (14). Since we aim at a high accuracy, we

recalibrate y at each day t. So in contrast to AVIX in Equation (9), AVVIX(Θ, τ, yt)

is time-varying. As we show in Appendix A.7, it can be understood as a constant

plus a residual component that arises due to non-linear terms of V −1
t and qt. The

latter are not captured explicitly by our approximation method and cannot be in-

corporated in a way that allows for a closed-form solution. So we do not decompose

AVVIX(Θ, τ, yt) any further. Appendix A.7 also demonstrates that AVVIX(Θ, τ, yt)

can alternatively be interpreted as a different approximation for the VVIX, which

ignores higher dimensions of the state variables and is thus less accurate than our

approach. In this sense, AVVIX(Θ, τ, yt) allows us to evaluate the need to account for

higher moments. For reasons of readability, we henceforth abbreviate AVVIX(Θ, τ, yt)

and BVVIX(Θ, τ, yt) with AVVIX and BVVIX, respectively.

Our representation enables us to decompose the VVIX term structure into the

contributions of state variables Ỹ . After further sorting for different parameters, we

can then differentiate between the loadings on jump risk and diffusive risk.

3.3.2 Accuracy of the VVIX Approximation

To test whether the resulting approximation for the VVIX and its term structure

works with desired accuracy, we assess its performance for each Wednesday from

09/01/2007 to 08/31/2014. Doing so, it is important to consider again the trunca-

tion and discretization error of the empirical VVIX term structure. In the model

estimation, we account for these errors explicitly by relying on the VIX options the

VVIX computation is based on. In contrast, the approximation is based on a contin-

uous and unlimited strike range. Thus, when plugging our parameter estimates into

the approximation, the resulting VVIX will differ from its empirical counterpart.
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We thus compare the approximation with a simulated VVIX (VVIXτ,sim), which

does not rely on the VIX option prices, but is obtained via Monte Carlo simula-

tion. Specifically, we simulate the futures’ price paths at each day t and compute its

expected variation. We provide details in Appendix A.6.

The resulting relative errors of the approximation for the VVIX term structure

are defined as

ετVVIX ≡

√
AVVIX +BVVIX′Ỹt

VVIXτ,sim
t

− 1.

Table 9 gives the mean relative errors and standard deviations for maturities ranging

from one month to five months. The simulation exercise shows that the approxima-

tion is quite accurate since the mean pricing error never exceeds 2.12% in absolute

terms. We find a mean error of 0.77% for the shortest maturity of one month. For

longer maturities the error increases only slightly and reaches 2.12% for five months.

The standard deviations are slightly increasing from 1.23% for one month to matu-

rity to 2.29% for five months. Overall, we conclude that the approximation is rather

stable for different maturities and works especially in crisis periods.35

3.4 Average Loadings of the VVIX Term Structure

The approximation we propose in Equation (15) enables us to gain further insights

about the drivers of the VVIX and its term structure. This can simply be done

by decomposing BVVIX into its diffusive and jump parts, which we mark by the

superscripts c and j, respectively

BVVIX = BVVIX,c +BVVIX,j. (16)

We do the sorting by distinguishing between terms which depend on the model’s

jump parameters µV and λV1 (BVVIX,j
t ) and those which do not (BVVIX,c

t ). This leads

35The relative error over time is plotted in the online appendix, Figure O.2.
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to the following decomposition of the VVIX2

(VVIXτ
t )

2 = AVVIX +BVVIX,c′Ỹt +BVVIX,j′Ỹt︸ ︷︷ ︸
JumpRiskτt

. (17)

Expectations of purely diffusive risks are captured by the vector BVVIX,c multiplied

by the vector of state variables Ỹt. The average variance jump expectation over

period t to t+ τ is captured in JumpRiskτt and is calculated as BVVIX,j′Ỹt.
36

In the following, we look at the composition of the VVIX term structure more

closely. We define the contribution of a factor X at time t as

W τ
t (X) ≡ BVVIX,c

X Xt (18)

and the contribution of the jump factor and of the lower bound at time t as

W τ
t (Jump) ≡ JumpRiskτt and W τ

t (AVVIX) ≡ AVVIX. (19)

Further, we define the relative weight of a risk factor as

ωτt (•) ≡ W τ
t (•)

(VVIXτ
t )

2
. (20)

Over the time-span from 09/2007 to 08/2014 we find that the main drivers

are the diffusive volatility-of-volatility component qt, jump risk and AVVIX. These

factors together explain on average over 95% of the VVIXτ for each maturity τ . In

the following, we will therefore only concentrate on the three aforementioned factors.

The average relative weights of the VVIXτ s’ most important risk factors are

displayed in Figure 6. It reveals an almost linear relationship between the relative

36One could (falsely) suspect that the JumpRiskτt stems only from BVVIX,j′Vt, since the intensity

of the jump process Nt is given by λV1 Vt. Importantly, this is only the local jump intensity of Vt.

For the computation of the VIX futures price, and thus for the VVIX, the dynamics of the jump

intensity matter. As a result, JumpRiskτt does not only depend on Vt. Details are given in Appendix

A.1.
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weight of the factors and maturity τ . The impact of continuous vol-of-vol qt decreases

in τ from roughly 55% to 40%. As a result VVIX30D depends mainly on continuous

volatility-of-volatility risk. Volatility jump risk is the second most important factor,

which, on average, decreases only slightly in τ and accounts for around 26%-29%

across all maturities. Finally, AVVIX gains importance in maturity since its relative

contribution rises from less than 10% to over 29%. These low values show that it is

important to account for higher dimensions in the approximation for all maturities.

3.5 The Variance-of-Variance to Variance Ratio

The contribution of continuous vol-of-vol, jump risk and AVVIX depends on the

economic condition and thus varies over time. In our model we capture variance risk

by the variance-of-variance (q) and variance (V ). The top panel of Figure 7 shows

the model-implied VVIX30D for different pairs of our state variables. The impact of

q clearly depends on the level of V . For low values of V the VVIX increases in q,

whereas for high values of V vol-of-vol has almost no impact.37 As we will show, the

term structure can be well described by the ratio of our state variables, namely the

q/V-ratio. To look at the ratio is rather natural from another point of view as well.

A given variance (q) can only be interpreted correctly if it is put in relation to the

current level (V ).

In the middle panel of Figure 7 we confirm the strong link between our model

implied q/V-ratio and the empirical VVIXτ s. The plot scatters the VVIX for the

longest and shortest maturity on the ratio. In general we find an almost linear

37To get an intuition for the dependence of the VVIX on V and q, remember that by Ito’s Lemma

(VVIXτ
t )

2
=

1

τ
EQ
t

[∫ t+τ

t

(d ln Ft+τs )2
]
≈ 1

τ

EQ
t

[∫ t+τ
t

(dFt+τs )2
]

(
Ft+τt

)2 .

Note that Ft+τt is highly dependent on Vt, whereas its expected variation in the nominator is mainly

driven by q. See Appendix A.1.
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relationship between q/V and the VVIX across all maturities. The effect of the

ratio is by a factor of more than two stronger for the short end, compared to the

long end of the term structure. This systematic impact of the q/V-ratio on different

maturities of the VVIX provides a convenient way to describe the term structure.

The bottom panel of Figure 7 shows the q/V-ratio over time.38 The ratio

behaves countercyclically. Prior to periods of distress, the ratio was below its mean

and spiked up to 80% if a crisis hit. In calm times, the variance-of-variance was less

than 40% of the variance level and even dropped below 20% in 2014.

4 Dynamics of the VVIX Term Structure

4.1 Drivers of the Term Structure: Why looking at the Slope?

In the previous chapter we have shown that the q/V-ratio is an adequate measure

to study the VVIX term structure systematically. Figure 8 displays three different

quantities for continuous vol-of-vol, variance jumps and AVVIX, as a function of the

q/V-ratio: The left and middle column give the absolute and relative contributions

for the shortest and longest maturity. The right column gives each component’s

contribution to the slope of the term structure, normalized by the local level of the

term structure.39

For very low realizations of the q/V-ratio, continuous vol-of-vol risk is rather

low in relative and absolute terms. In these states of the economy, the jump factor

and AVVIX basically determine VVIXτ . The relative and absolute weights of jumps

decrease in maturity, whereas the impact of AVVIX increases. For the slope contri-

38In the plot we scale the q/V -ratio by σ2
Sσ

2
V , which is necessary to obtain empirically plausible

values, since we fix the mean-reversion levels V̄ and q̄ in the model estimation.

39We compute the slope contribution by
(
W 30D
t (X) − W 150D

t (X)
)
/VVIXM

t . The definition is

motivated from the approximation for the second principle component in Section 2.2.
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butions shown in the right panels, the positive effect of jumps and negative effects

of AVVIX offset each other, which gives a flat slope if q/V is low.

If q/V increases, the relative contribution of AVVIX deteriorates quickly from

50% (70%) at the short- (long) end of maturity to 10% (20%). The negative contri-

bution to the slope goes to zero and vanishes for large values of q/V. We observe a

similar pattern for the jump contributions: The relative weights decrease from 45%

(30%) at the short- (long) end of maturity to 15% (10%). The absolute jump contri-

bution to the long- and short-end of the term structure is at first roughly stable. For

very high q/V-ratios, however, the absolute jump contributions converge. As such,

variance jump expectations contribute to the slope if q/V is low. In contrast, if q/V

is high, jumps contribute to the level. This is also reflected in the slope contributions

of jumps in the right panel. In comparison to the slope contribution of AVVIX, the

convergence to almost zero is slower.

The plot for the relative weights of q shows that as soon as q/V increases, the

relative importance of continuous vol-of-vol risk rises rapidly from nearly 0% to more

than 60% at the short- and long end of maturity. Starting from zero, the absolute

contributions grow rapidly as well. This increase is stronger for the short end than for

the long-end. The widening spread of short- and long-term contributions transfers

into an increase of q’s contribution to the slope. Consequently, q does not contribute

to the slope at very calm states of the market, but gains importance quickly for

medium and large of q/V. At and above the average value of the q/V-ratio, it is the

main driver of the slope.

Altogether, our analysis shows that the slope of the VVIX is strongly connected

to the state of the economy, measured by the q/V-ratio. In calm times (low q/V)

jump expectations drive the slope whereas in times of distress (high q/V) the slope

is driven by innovations in q.
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4.2 Why not looking at the Level?

The preceding section shows that a steeper (i.e. more negative) slope coincides with

larger diffusive vol-of-vol risk. In addition, our predictive regression analysis shows

that SlopeVVIX conveys forward looking information. To give an economic intuition

for the predictive power of the slope of the VVIX term structure, we now look

at the time-periods around the three biggest crises in our data sample.40 This is

when SlopeVVIX was highly informative to investors, since it predicted an increase

in volatility-of-volatility as shown by the demonstrated returns of our out-of-sample

investment strategy in Section 2.4.

Figure 9 refers to the times around the financial crisis of 2008 (left panels), the

European Sovereign Debt Crisis (middle panels) and the Fiscal Cliff Crisis (right

panels). In each plot the time span starts one month in advance of the first trading

signal from SlopeVVIX that preceded each crisis. This point in time is marked by the

first vertical line. The second vertical solid line marks the day when the VVIX30D

peaked, and we consider the subsequent trading month. The first three panels show

the short- and long-end of VVIXτ as well as its level and slope. Importantly, the

dashed horizontal line in the level and slope plots are the time-dependent 75%

percentile. For the slope panels this line refers to our trading signal in Section 2.4.41

The lower three panels contain the relative contributions of vol-of-vol risk, jump risk

and AVVIX
t to the short- and long-end to the term structure.

The panels for each of the three periods of market stress show basically the

same patterns. With the beginning of market turmoil, the level and slope of the

VVIX term structure both increase over their 75% percentile. For the financial crisis

of 2008, the slope hits its critical value a little earlier than the level, but basically the

40To infer the state-variables at these times, we apply our weekly estimates to daily data.
41Note that we calculate the level and slope by a rolling-window approach as for our trading

strategy in Section 2.4 to preserve the out-of-sample character of the analysis.
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level and slope of the VVIX term structure co-move at the crises’ beginning. Thus,

the level of the term structure also provides valuable information to investors, but

only in advance of the crisis. The difference between the level and slope shows at and

after the peak of market turmoil, marked by the second solid line. While the slope

decreases quickly afterwards and falls below its 75% percentile, the level of the VVIX

remains at high levels and does not fall below its critical threshold. For a long-short

strategy, this tells investors to keep a long position in volatility. But after the peak,

vol-of-vol declines, which implies negative daily straddle returns. This drives the

wedge between the informational power of level and slope. The preceding gains from

trading volatility due to the level signal are annihilated by staying long too long.

Stated differently, the level of the term structure is too sticky after market turmoil.42

In contrast, the slope reaches its highest values before the VVIX30D peaks. Its quick

decline under its critical quantile prevents that recent trading gains evaporate in the

aftermath of the crises’ high.

Finally, the risk-(de)composition plots in the lower three rows of Figure 9 give

an economic intuition for the information conveyed by the behavior of SlopeVVIX. For

all weights, the panels show a transition phase in the risk composition of the term

structure from jump risk to continuous vol-of-vol risk. The shifts start roughly at

the first trading signal (left vertical line), and finalize when slope leaves its highest

quintile (right vertical line).43 Afterwards, weights are rather persistent and only

start very slowly to revert back to former levels. This coincides with the stickiness

of the term structure’s level.

Figure 9 shows further that during the shift, the relative jump weights are

42As a robustness test, we also tried other quantiles for the signal, which softens the stickiness.

Then positive returns at the beginning of the crisis are not realized, similar to the short-only

strategy. This would leave the level of the term structure as a non-informative signal for investors.
43A slight exception is the financial crisis in 2008, but this crisis is not as well matched by our

model as the other two.

32



almost indistinguishable for all VVIXτ . In 2008 (2010 and 2011), the relative jump

contribution drops from 40% (30%) to approximately 20%. In contrast, the diffusive

vol-of-vol risk is highly distinct at the long- and short-end of the term structure

before the crises. In the progression of the shift, the relative short- and long-term

weights of q converge and the diffusive part of vol-of-vol risk rises to more than 60%

across the whole term structure. Taking both risk components together, this means

that the crises were expected (or at least priced) by market participants: When

jump expectations indeed realized, diffusive vol-of-vol risk took over, meaning that

volatility became highly uncertain. The similar composition of the short- and long-

end of the term structure implies that investors expected this not to change soon.

5 Conclusion

This paper provides a thorough analysis of the term structure of the model-free im-

plied volatility-of-volatility (VVIXτ ). First, we document that the slope of VVIXτ ,

not its level, is a significant proxy for vol-of-vol risk. Regressions show that a steep-

ening slope of the VVIX predicts daily straddle returns on the S&P500 and VIX

with a positive sign. Most importantly, the informational content of VVIX’s slope

is distinct and incremental to the VRP as well as to the slope of the VIX. This

shows that vol-of-vol risk is an important risk factor not only for VIX options, but

for stock index options as well. We demonstrate that a simple out-of-sample trading

strategy, which is based on VVIXτ performs much better than a trading strategy

that relies on the VIX term structure or the VRP.

To answer the question which part of vol-of-vol risk is captured by the slope

of the VVIX, continuous vol-of-vol risk or jump risk, we set up a full market model

which features both types of risk. We then develop a new, higher order approxima-

tion method to express the model-implied VVIX as an affine function of the state
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variables. This helps us to decompose the VVIX term structure in an intuitive way.

We find that the contributions of continuous vol-of-vol and jump risk to the slope

vary systematically with the state of the economy, which we capture by the variance-

of-variance to variance ratio (q/V). The q/V-ratio is countercyclical. If its value is

low, i.e. in calm market states, mainly jump expectations and a constant (plus a

residual term) determine the VVIX across all maturities. As their contributions to

the slope offset each other, the resulting VVIX term structure is flat. In times of

market turmoil (high q/V-ratio), the slope of the term structure is steep and mainly

driven by continuous vol-of-vol risk.

Finally, we study the three biggest market downturns of the last decade. Our

results show that the slope of the VVIX captures a transition phase for the com-

position of aggregate vol-of-vol risk. Preceding the crises, jump risk was highly im-

portant. When the crises surged, jump expectations played a lesser role in a relative

sense and volatility uncertainty took over as the main driver of the VVIX. For the

three crises, our findings suggest that market participants expected volatility to

remain highly uncertain for a long time.
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A Mathematical Appendix

A.1 The VVIX Approximation in more Detail

To approximate the square root in Equation (14), we approximate the VIX dynamics
by employing the Babylon method of second order.44 The approximation gives for
some a > 0

√
a ≈ 1

4
y0 +

1

4y0

a+
y0a

y2
0 + a

, (A.1)

where y0 is an initial guess for the square root of a. We simplify y0a
y20+a

, using a Taylor-

approximation around a0 of second order to obtain a more affine structure, which is
given by

√
a ≈ fa0,y(a) ≡1

4
y0 +

1

4y1

a+
a0y0

y2
0 + a0

+
y3

1

(y2
1 + a0)2

(a− a0)− y3
2

(y2
2 + a0)3

(a− a0)2, (A.2)

where the y1 and y2 may be different from y0. Since all variables are estimated later
on, the variability in the yi is introduced for a higher degree of flexibility in the
later calibration procedure. In Appendix A.2 we then show that the approximated
futures price Ft+τs is given in affine form by

Ft+τs = EQ
s VIXt+τ ≈ βfut

V V (τ(s))V 2
s + βfut

V (τ(s))Vs + βfut
q (τ(s))qs + αfut(τ(s)) (A.3)

and that its quadratic variation has the form

Et
∫ t+τ

t

(
dFt+τs

)2
= A〈fut〉(Θ, τ, y, a0) +B〈fut〉(Θ, τ, y, a0)′Ỹt, (A.4)

where A〈fut〉(Θ, τ, y, a0) ∈ R and B〈fut〉(Θ, τ, y, a0) ∈ Rm are depending on a0 ∈ R
and y ≡ (y0, y1, y2) ∈ R3. If we use the above approximation together with45

∫ t

0

(d lnXs)
2 ≈ 1̂

X2
t

∫ t

0

(dXs)
2, (A.5)

44For historical background and derivation see for example Fowler and Robson (1998).
45The approximation can be directly deduced using Itô’s lemma

d lnXt =
1

Xt
dXt −

1

2

1

X2
t

(dXt)
2,

which leads to (d lnXt)
2 = 1

X2
t

(dXt)
2.
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we can calculate the square of VVIXτ
t in closed-form and obtain

(VVIXτ
t )

2 ≈ AVVIX(Θ, τ, y, a0) +BVVIX(Θ, τ, y, a0)′Ỹt, (A.6)

≡ 1̂

(Ft+τt )2
A〈fut〉(Θ, τ, y, a0) +

1̂

(Ft+τt )2
B〈fut〉(Θ, τ, y, a0)′Ỹt.

where AVVIX(Θ, τ, y, a0) ∈ R and BVVIX(Θ, τ, y, a0) ∈ Rm are depending on a0 ∈ R
and y ≡ (y0, y1, y2) ∈ R3. Since we fix a0 at 1 in the calibration in Appendix A.3,
we drop a0 in the main text.

A.2 Calculation of the Expected Quadratic Variation of the
Approximated VIX Futures Price

First, we show that the approximated VIX futures price is given by

Ft+τs = EQ
s VIX30D

t+τ ≈ βfut
V V (τ(s))V 2

s + βfut
V (τ(s))Vs + βfut

q (τ(s))qs + αfut(τ(s)). (A.7)

We calculate the coefficients using (A.2) and
(
VIX30D

t

)2
= AVIX +BVIXVt

VIX30D
t =

√(
VIX30D

t

)2 ≈ fa0,y(
(
VIX30D

t

)2
) =

1

4y0

+
a0y0

y2
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+
y3

1

y2
1 + a0

(AVIX − a0)

− y3
2

(y3
2 + a0)3

(AVIX − a0)2 +
1

4y1

AVIX

+
( y3

1

(y2
1 + a0)2

+
1

4y1

− y3
2

(y3
2 + a0)3

2(AVIX − a0)
)
BV IXVt

− y3
2

(y3
2 + a0)3

(BVIX)2V 2
t ,

where we write AVIX = AVIX(Θ, 30D) and BVIX = BVIX(Θ, 30D) for brevity. Hence

VIX30D
t ≈ βVIX

V V V
2
t + βVIX

V Vt + αVIX.

Below we show that one can write

EQ
0 V

2
t = βV VV V (t)V 2

0 + βV VV (t)V0 + βV Vq (t)q0 + αV V (t),

EQ
0 Vt = βVV (t)V0 + αV (t),

EQ
0 qt = βqq (t)q0 + αq(t),
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for appropriate βV VV V (t), βV VV (t), βVV (t), βqq (t), α
V V (t), αV (t), αq(t) ∈ R. Therefore we

define

βfut
V V (τ(s)) ≡ βVIX

V V β
V V
V V (τ(s)),

βfut
V (τ(s)) ≡ βVIX

V V β
V V
V (τ(s)) + βVIX

V βVV (τ(s)),

βfut
q (τ(s)) ≡ βVIX

V V β
V V
q (τ(s))),

αfut(τ(s)) ≡ βVIX
V V (αV V (τ(s)) + αq(τ(s))) + βVIX

V αV (τ(s)) + αVIX,

where τ(s) ≡ t + τ − s is the time to maturity of the future Ft+τs . From Equation
(A.7) follows for the quadratic variation of the approximated futures price

EQ
t
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t

(dFt+τs )2 =

∫ t+τ

t

EQ
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Here we can swap the expectations with the integrals since (dFt+τs )2 > 0. Further,
Itô gives

dβfut
V V (τ(s))V 2

s =
d

dt
βfut
V V (τ(s))V 2

s dt+ βfut
V V (τ(s))dV 2

s + . . . dt
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V (τ(s))dVs + . . . dt

dβfut
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q (τ(s))qsdt+ βfut

q (τ(s))dqs + . . . dt.
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Hence, since the . . . dt terms are of finite variation we get

EQ
t

∫ t+τ

t

(dFt+τs )2 =

∫ t+τ

t
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t (dV 2
s )2 (A.8)
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In the following ODEs we calculate the expected values E0Xt relative to the starting
time t0 = 0 to ease up notations. However, they can be canonically translated to
other starting times by choosing appropriate starting values for V and q. The ODE
of the expected quadratic variation of dVt can be derived directly from its SDE as

EQ
0 (dVt)

2 = [σ2
VE

Q
0 qt + 2µ2

V λ
V
1 E

Q
0 Vt]dt,

since EQ
0 Z

2
V = 2µ2

V and (dNt)
2 = dNt. The SDE of V 2

t can be written by using Itô
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= [2VtκV (V̄ − Vt) + σ2
V qt]dt+ σV Vt

√
qtdW

V
t + (2VtZV + Z2

V )dNt. (A.9)
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which leads to the following ODE
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In addition, (A.9) in combination with the SDE of Vt yields the ODE
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Further
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and

EQ
0 dqtdV

2
t = 2ρσqσVEQ

0 Vtqtdt.

To solve the ODEs in closed form we have to compute the higher moments of V and
q. This can be done iteratively by starting to solve the ODEs for the first moments,
using Itô in combination with the variation of constants method. It holds
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where we can solve the integrals analytically by plugging in the solutions for the
lower moments. To calculate the expected value of q2
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which gives
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Using the product rule for semi-martingales for the cross-moment EQ
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that
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t = 3Vt(κV (V̄ − Vt)dt+ σV

√
qtdW

V
t ) + 3σ3

V Vtqtdt+ (3V 2
t ZV + 3Vt + Z2

V + Z3
V )dNt,

hence

dEQ
0 dV

3
t

dt
= (−3κV + 3µV λ

V
1 )︸ ︷︷ ︸

≡aV 3

EQ
0 V

3
t + (3κV V̄ + 3σ2

V + 6µ2
V λ

V
1 )︸ ︷︷ ︸

≡ϕV 3:V 2

EQ
0 V

2
t

+ 6λV1 µ
3
V︸ ︷︷ ︸

≡ϕV 3:V

EQ
0 Vt

and therefore

EQ
0 V

3
t = V 3

0 e
aV 3 t + e−aV 3 t

∫ t

0

e−aV 3s(ϕV 3:V 2EQ
0 V

2
s + ϕV 3:VEQ

0 Vs)ds.

For the cross moment EQ
0 V

2
t qt we derive the following SDE first by using the results

for V 2
t and the product rule

dV 2
t qt = qt(2VtκV (V̄ − Vt)dt+ 2σV Vt

√
qtdW

V
t + σ2

V qtdt)

+ V 2
t (κq(q̄ − qt)dt+ σq

√
qtdW

q
t )

+ 2ρvqσV σqVtqtdt

+ (2VtqtZV + qtZ
2
V )dNV

t .
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Thus

dEQ
0 dV

2qt
dt

= (−κq − 2κV + 4µV λ
V
1 )︸ ︷︷ ︸

≡aV 2q

EQ
0 V

2
t qt + κq q̄︸︷︷︸

≡ϕV 2q:V 2

EQ
0 V

2
t + σ2

V︸︷︷︸
≡ϕV 2q:q2

EQ
0 q

2
t

+ (2κV V̄ + 4µ2
V λ

V
1 + 2ρvqσV σq)︸ ︷︷ ︸

≡ϕV 2q:V q

EQ
0 Vtqt,

which induces

EQ
0 V

2
t qt = V 2

0 q0e
aV 2qt

+ eaV 2qt

∫ t

0

e−aV 2qs(ϕV 2q:V 2EQ
0 V

2
s + ϕV 2q:q2EQ

0 q
2
s + ϕV 2q:V qEQ

0 Vsqs)ds.

Now, by iteration every moment can be calculated in closed form. Afterwards, the
same can be done for the integrals of the quadratic variation of the futures price in
(A.8).

A.3 Calibration of the VVIX Approximation

To estimate a proper parameter set {a0, y} for the VVIXτ
t approximation in (A.2) for

a certain day t, we choose to calibrate the dynamics of the approximated VIX given
by (fa0,y(A

VIX + BVIX′Yt+s))s to the dynamics of the model-implied VIX given by
Equation (14) over the time interval 0 to T . The idea is that the VIX index dynamics
proxy the VIX futures dynamics and if the approximated VIX dynamics equals those
of the model-implied VIX, the induced dynamics of the approximated VIX futures
should be close to the model’s VIX futures dynamics. As a result, the approximated
VVIX, which is essentially the quadratic variation of the approximated futures price,
should closely match the exact VVIX.

During the calibration we estimate the parameter set {a0, y} in a two step
procedure. In the first step we simulate for date t the VIX up to time t+T using its
known representation from Equation (14) and then minimize the expected squared
difference in variation by solving

arg min
{y1,y2}

Et
∫ T

0

(∫ t

0

(df1,y(A
VIX +BVIX′Yu))

2 − (dVIXu)
2 du

)2

, (A.10)

where we assume y0, a0 = 1.46 Since y0 cannot be identified by this procedure we
minimize in a second step the expected level difference

arg min
y0

Et
∫ T

0

(f1,y(A
VIX +BVIX′Ys)− VIXs)

2. (A.11)

46This is no limitation since y0 only effects the level of the approximation. Furthermore, the
influence of a0 can be offset by the yi’s.
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In Section 3.3.2 we show that the approximation works quite accurate, which
may seem quite surprising on first glance because the calibration procedure only
takes the first two moments into account. In appendix A.4 we explain the mathe-
matical intuition of our calibration approach, which bases on a theorem on stochastic
processes. There, we also try to shed some light on the resulting performance of our
approximation. In the subsequent chapter, we show further that our approach yields
not only a sufficient good result for the approximated VIX, but also for VVIX term
structure.

A.4 Mathematical Foundation of our Calibration Procedure
from Appendix A.3

For notational ease define for a process Xt its quadratic variation as 〈X•〉t ≡∫ t
0
(dXs)

2ds. The following theorem was first proven by Rebolledo (1980) in more
generality and under some assumptions which are satisfied in our setting.

Theorem 1 (Functional Central Limit Theorem for Local Martingales)
Suppose for each n ≥ 0, M (n) are local martingales on [0, T ] and M = M0 +

∫
σdWt

for some σ ≥ 0 and Wiener-Process W such that

lim
n→∞

E[ sup
0≤s≤T

(〈M (n)
• 〉s − 〈M (n)

• 〉s−)2] = 0,

lim
n→∞

E[ sup
0≤s≤T

(〈M (n)
• 〉s − 〈M•〉s)2] = 0 (A.12)

and

lim
n→∞

E[ sup
0≤s≤T

(M (n)
s −Ms)

2] = 0. (A.13)

Then it holds

M (n) →
n→∞

d M,

where →
n→∞

d indicates convergence in distribution. Therefore the limit distribution of

M (n) equals the one of M .

The interpretation of the theorem is as follows: If the variation of the approx-
imated process M (n) and its mean is sufficient close to the real process M over the
whole time interval, the distributional behavior and hence its overall dynamics is
very close to the real one as well. The theorem’s requirements (A.12) and (A.13)
are directly targeted by the first (A.10) and second (A.11) step of our calibration
procedure if we set M (n) = fa0,y(A

VIX +BVIX′Y ) and M = VIX30D. Considering the
above very strong result for a diffusive setting, it is not surprising that numerical
results support the validity of our method in a jump diffusion environment and leads
to small errors for the moments even above second order as documented in Table 9.
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A.5 Implementation of our Calibration Procedure from Sec-
tion A.3

For the calibration we first simulate the state variables M times from time t to time
t+T . For the first step we minimize the squared difference of the expected variation
paths

arg min
y1,y2

1

M

M∑
k=1

N∑
i=2

( i−1∑
j=1

(∆f1,y(A
VIX +BVIX′V

(k)
tj ))2 − (∆VIX(V

(k)
tj ))2

)2

,

where 0 = t1 < · · · < tN = T , ∆Xl ≡ Xl+1 −Xl and V
(k)
tj is the simulated volatility

at time tj in k-th simulation. The model’s state variables are simulated efficiently
using advanced simulation schemes: To simulate qt we use the QE algorithm pro-
posed in Andersen (2008) and for the discretization of Vt we use a modification of
the scheme proposed by Broadie and Kaya (2006). We find that such advanced simu-
lation schemes are necessary to simulate the model with desired accuracy, especially
the higher moments of the state variables.
For the second step we minimize the squared difference of the expected paths

arg min
y0

1

M

M∑
k=1

N∑
i=1

(
fa0,y(A

VIX +BVIXV
(k)
ti )− VIX(V

(k)
ti )
)2

,

to estimate y0.

A.6 Simulation of the VVIX Term Structure and Calcula-
tion of the Relative Error ετVVIX

For each day t of our sample we simulate the model from Section 3.1 for T =
5 months starting from the respective state variables qt and Vt. Afterwards we cal-
ibrate the approximated VIX futures dynamics using the minimization procedure
described in Appendix (A.3). Then we simulate the exact VVIXτ

t term structure for
τ = 1, 2, 3, 4, 5 months as given in (12) using Monte Carlo simulation techniques
which rely on the result from Barndorff-Nielsen and Shephard (2004)

EQ
t

∫ t+T

t

(dXs)
2ds = EQ

t lim
N→∞

N∑
j=1

(Xti −Xti+1
)2,

for t ≤ ti ≤ t+T and lim
N→∞

|ti− ti+1| = 0. Therefore, the exact VVIX term structure

can be simulated as(
VVIXτ

t

)2

=
1

M

M∑
k=1

N∑
i=1

(ln Ft+τ
ti,Xk

ti

− ln Ft+τ
ti+1,Xk

ti+1

)2, (A.14)
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where M is the number of simulated model paths, Xk
ti

the vector of state variables for
the k-th path at time ti and Ft+τ

ti,Xk
ti

is the VIX futures price at time ti and maturity

in t + τ with respect to the state Xk
ti

. The futures price is calculated using Fourier
transformation methods which rely on techniques explained in Chen and Joslin
(2012) and Duffie, Pan, and Singleton (2000). Details can be found in the appendix
of Branger, Kraftschik, and Völkert (2016). To calculate the log approximation (A.6)
we simulate in addition(

RVFut,τ
t

)2

=
1

M

M∑
k=1

N∑
i=1

(Ft+τ
ti,Xk

ti

− Ft+τ
ti+1,Xk

ti+1

)2, (A.15)

and estimate 1̂
(Ft+τt )2

as the ratio of (A.14) and (A.15).

A.7 Reasoning the Time-Varying Property of AVVIX

The higher-order approximation for the VVIX in dependence of the state vector
Ỹt = [V 3, V 2q, V 2, q2, V q, V, q]′, which we use throughout the paper is

(VVIXτ
t )

2 ≈ AVVIX(Θ, τ, yt) + BVVIX(Θ, τ, yt)
′Ỹt.

Thus, the intercept AVVIX(Θ, τ, yt) is time depending and not constant. This finding
can be reasoned by an alternative and more simple approximation, which we conduct
in the following. In what follows we denote the log-approximation by c. It holds

(VVIXτ
t )

2 =
1

τ

[
Et
∫ τ

0

(
d ln Ft+τs

)2
]

=
c

τ
Et
[∫ τ

0

(
dEs

[
VIX30D

t+τ

])2
]

=
c

τ
Et
[∫ τ

0

(
dEs

[√
AVIX +BVIXVt+τ

])2
]

≈ c

τ
Et

[∫ τ

0

(
dEs

[
BVIX

2
√
AVIX +BVIXVt

Vt+τ

])2
]
,

where we use a first-order Taylor approximation for the square root around Vt. Thus,
further simplifications yield

(VVIXτ
t )

2 =
c

4τ

BVIX

AVIX +BVIXVt
Et
[∫ τ

0

σ2
V

[
βqq (τ(s))qs + αq(τ(s))

]
ds

]
=

c

4τ

BVIXσ2
V

(
Bq
q (τ)qt + Aqq(τ)

)
AVIX +BVIXVt

, (A.16)

≡ γqt + η

AVIX +BVIXVt
,
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where we use Et
[∫ τ

0
βqq (τ(s))qs + αq(τ(s))ds

]
= Bq

q (τ)qt+A
q
q(τ) for which we provide

a proof in Appendix A.2. In addition, since both approximation methods cannot be
mapped onto each other directly by simple mathematical manipulations, we regress

AVVIX(Θ, τ, yt) = α + γ
qt

AVIX +BVIXVt

+ η
1

AVIX +BVIXVt
+ εt.

The regression yields an average adj. R2 of 99.5% across all maturities τ and highly
significant, positive estimates for γ and η, as predicted by Equation (A.16). There-
fore, the intercept AVVIX(Θ, τ, yt) corresponds to the resulting VVIX approximation
if we would approximate the square root by a first order Taylor series and would
forgo higher dimensions. More importantly, the regression results indicate that our
higher order approximation from Equation (15) basically adds correction terms to
the above (most simple) approximation. These higher order terms are especially im-
portant during market turmoil, e.g. high VVIX and VIX values. During these times,
AVVIX(Θ, τ, yt) takes very low values and the main risk contribution to the VVIX
term structure stems mainly from jump risk as well as continuous vol-of-vol risk (q)
and not from the intercept, as we show in Section 4.1.
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Descriptives of the Daily VVIX Term Structure

Maturity 30 60 90 120 150

Mean 84.76 74.14 66.75 61.42 57.57
Median 83.21 74.27 67.01 61.6 57.79
Min 57.56 52.24 46.99 45.41 40.85
Max 145.44 105.23 90.88 83.33 78.27
Std. 12.92 9.43 7.89 6.77 5.84
Skewness 0.78 0.23 -0.03 -0.11 -0.24
Kurtosis 4.05 2.75 2.5 2.61 2.76
AC(1) 0.9357 0.9715 0.9827 0.9858 0.9856
Corr(ln ∆VVIXτ ) 1 0.85 0.74 0.67 0.55

1 0.86 0.76 0.63
1 0.85 0.69

1 0.77
1

Corr(ln ∆VVIXτ , ln ∆S&P500) -0.5295 -0.5285 -0.5138 -0.4816 -0.3937
Corr(ln ∆VVIXτ , ln ∆VIX30D) 0.45 0.41 0.40 0.38 0.36

. . . 0.46 0.45 0.42 0.42 0.39

. . . 0.43 0.44 0.41 0.40 0.37

. . . 0.40 0.42 0.39 0.38 0.35
Corr(ln ∆VVIXτ , ln ∆VIX150D) 0.40 0.42 0.37 0.38 0.36

Table 1: The table shows descriptives of the VVIX term structure for 30 to 150 days.
The sample period is from 09/01/2007 to 08/31/2014. We discard days which would
require an extrapolation above 150 days of maturity.

Principle Component Analysis

”Level” ”Slope”
PC1 PC2 PC3 PC4 PC5

VVIX30D 0.42 0.75 0.45 -0.23 0.08
VVIX60D 0.46 0.27 -0.52 0.59 -0.32
VVIX90D 0.46 -0.15 -0.47 -0.36 0.64
VVIX120D 0.45 -0.36 0.05 -0.49 -0.65
VVIX150D 0.45 -0.46 0.55 0.48 0.25
% of var. 91.99 6.50 1.15 0.27 0.10

Table 2: The table shows the coefficients defining each principle component of the
VVIX term structure from 09/01/2007 to 08/31/2014 and gives the percentage of
the term structure’s variance, explained by each principle component.
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Descriptives of Daily S&P500 Excess Straddle Returns

Mat. in Month 1 2 3 6 9 12
Mean -0.0050∗∗∗ -0.0027∗∗∗ -0.0017∗∗∗ -0.0008∗ -0.0004 -0.0002
Median -0.0165∗∗∗ -0.0075∗∗∗ -0.0049∗∗∗ -0.0025∗∗∗ -0.0017∗∗∗ -0.0012∗∗∗

Standard dev. 0.0631 0.0347 0.0262 0.0172 0.0139 0.0123
Skewness 2.1789 1.8384 1.6529 1.3299 1.0784 1.0071
Kurtosis 11.3973 10.2178 9.7731 8.7196 7.5532 7.4879

Descriptives of Daily VIX Straddle Excess Returns

Mat. in Month 1 2 3 4 5
Mean -0.0037∗∗∗ -0.0014 -0.0003 -0.0005 -0.0007
Median -0.0189∗∗∗ -0.0073∗∗∗ -0.0046∗∗∗ -0.0031∗∗∗ -0.0027∗∗∗

Standard dev. 0.0774 0.0366 0.0275 0.0227 0.0196
Skewness 6.1137 1.3043 2.1203 1.1821 1.4392
Kurtosis 89.0006 17.4381 18.8963 12.2675 12.6745

Table 3: The table shows descriptives for daily S&P500 and VIX straddle returns
from 09/01/2007 to 08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the
90, 95, and 99% confidence level.

Correlations of different variance risk measures

VVIX30D SlopeVVIX VIX30D SlopeVIX VRP
Mean 84.7446 0.0000 22.0885 0.0000 0.0227
Median 83.2143 -0.0844 19.1540 0.0205 0.0178
Std. 12.9183 0.5965 10.4155 0.3636 0.0288
Skewness 0.7795 0.6891 2.0613 -3.6213 -0.0993
Kurtosis 4.0458 3.5675 8.2700 26.2873 31.3218

VVIX30D 1
SlopeVVIX 0.4330 1
VIX30D 0.4246 0.3389 1
SlopeVIX -0.1392 -0.2317 -0.1823 1
VRP 0.1727 0.1158 0.4273 0.2429 1

Table 4: The table shows correlations for our different risk measures. Correlations
of the VVIX30D, SlopeVVIX, VIX30D, SlopeVIX and VRP are calculated using daily
data from 09/01/2007 to 08/31/2014.
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Multivariate Regressions for Daily VIX Straddle Excess Returns

Maturity 1 2 3 4 5
Intercept 0.0093

(0.6463)
0.0055
(0.8553)

0.0040
(0.7549)

0.0024
(0.4909)

−0.0007
(−0.134)

VVIX30D −0.0015
(−0.6538)

−0.0010
(−0.9749)

−0.0007
(−0.8698)

−0.0004
(−0.4721)

0.0002
(0.2377)

SlopeVVIX 0.0004
(0.1820)

0.0042∗∗∗
(4.0745)

0.0040∗∗∗
(4.7742)

0.0032∗∗∗
(3.9569)

0.0031∗∗∗
(3.3867)

SlopeVIX −0.0013
(−0.6061)

0.0014
(1.3822)

0.0002
(0.2739)

−0.0002
(−0.3188)

0.0000
(−0.0138)

VIX30D −0.0007
(−0.2674)

0.0010
(0.9356)

0.0014
(1.4401)

0.0016
(1.4872)

0.0015
(1.1097)

VRP −0.0020
(−0.878)

−0.0033∗∗∗
(−3.0819)

−0.0030∗∗∗
(−3.2245)

−0.0043∗∗∗
(−5.0307)

−0.0057∗∗∗
(−4.0646)

rStraddle
t −0.0025

(−1.2315)
−0.0033∗∗∗

(−3.5293)
−0.0017∗∗

(−2.2274)
0.0010
(1.4474)

0.0003
(0.4239)

adj. R2 -0.0003 0.0177 0.0225 0.0420 0.0258

Table 5: Regression: rStraddle
t+1 = α+β′1Xt+β2rStraddle

t +εt+1, where rStraddle
t+1 is the daily

excess return of a straddle on the VIX with maturities of 1, 2, 3, 4 and 5 months from
end of day t to end of day t+ 1. Xt is a standardized vector of explanatory variables
observed at the end of day t. VVIX30D is the implied volatility-of-volatility index,
SlopeVVIX is the second PCA component of the VVIX term structure, SlopeVIX is
the second PCA component of the VIX term structure, VIX30D is the volatility
index and the variance risk premium (VRP) is calculated as the differential of the
risk-neutral and the physical expectation of the variation of the stock index over
the next 30 days. For the regressions we use daily data samples from 09/01/2007
to 08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99%
confidence level. The t-statistics are stated in parentheses.
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Multivariate Regressions for Daily S&P500 Straddle Excess Returns

Maturity 1 2 3 6 9 12
Intercept −0.0053

(−0.4764)
0.0008
(0.1288)

0.0016
(0.3540)

0.0013
(0.4370)

0.0012
(0.4828)

0.0005
(0.2435)

VVIX30D −0.0003
(−0.1883)

−0.0007
(−0.7390)

−0.0007
(−0.9210)

−0.0004
(−0.8884)

−0.0003
(−0.8782)

−0.0002
(−0.4871)

SlopeVVIX 0.0069∗∗∗
(3.9135)

0.0029∗∗∗
(3.0148)

0.0021∗∗∗
(2.9604)

0.0014∗∗∗
(2.9754)

0.0010∗∗∗
(2.7216)

0.0008∗∗
(2.4518)

SlopeVIX −0.0034∗∗
(−2.0377)

−0.0020∗∗
(−2.2210)

−0.0016∗∗
(−2.2493)

−0.0009∗∗
(−2.0705)

−0.0008∗∗
(−2.0904)

−0.0007∗∗
(−2.0290)

VIX30D 0.0019
(1.0078)

0.0012
(1.1780)

0.0011
(1.4040)

0.0008
(1.6368)

0.0006
(1.5673)

0.0004
(1.1765)

VRP −0.0027
(−1.5087)

−0.0020∗∗
(−1.9698)

−0.0016∗∗
(−2.1458)

−0.0013∗∗∗
(−2.6356)

−0.0008∗∗
(−2.1558)

−0.0006∗
(−1.8576)

rStraddle
t −0.0083∗∗∗

(−5.1729)
−0.0014
(−1.5705)

0.0000
(0.0593)

0.0014∗∗∗
(3.3413)

0.0019∗∗∗
(5.4792)

0.0019∗∗∗
(6.4074)

adj. R2 0.0268 0.0135 0.0144 0.0258 0.0357 0.0394

Table 6: Regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of a straddle on

the S&P500 with maturities of 1, 2, 3, 6, 9 and 12 months from end of day t to end of day t + 1. Xt is a standardized
vector of explanatory variables observed at the end of day t and which are defined as in Table 5. ∗,∗∗ and ∗∗∗ indicate
statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in parentheses.
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Restricted Regressions for Daily VIX Straddle Excess Returns with Maturity of Two Months

Panel A (1) (2) (3) (4) (5) (6) (7) (8)

Intercept −0.0041
(−0.6764)

−0.0014∗
(−1.6500)

−0.0014
(−1.5966)

−0.0022
(−1.0618)

0.0005
(0.4302)

0.0059
(0.9059)

−0.0014∗
(−1.6509)

0.0058
(0.8929)

VVIX30D 0.0004
(0.4485)

−0.0011
(−1.1392)

−0.0009
(−0.9043)

SlopeVVIX 0.0037∗∗∗
(3.9624)

0.0041∗∗∗
(4.0985)

0.0037∗∗∗
(3.9386)

0.0042∗∗∗
(4.1037)

SlopeVIX −0.0005
(−0.5428)

0.0003
(0.3418)

0.0003
(0.2718)

VIX30D 0.0004
(0.4383)

−0.0005
(−0.5039)

VRP −0.0024∗∗∗
(−2.6261)

rStraddle
t −0.0029∗∗∗

(−3.2279)
−0.0040∗∗∗

(−4.3694)
−0.0029∗∗∗

(−3.2538)
−0.0029∗∗∗

(−3.2495)
−0.0024∗∗∗

(−2.6453)
−0.0039∗∗∗

(−4.1832)
−0.0040∗∗∗

(−4.3669)
−0.0039∗∗∗

(−4.1944)

adj. R2 0.0049 0.0137 0.0050 0.0049 0.0087 0.0139 0.0132 0.0129

Restricted Regressions for Daily S&P500 Straddle Excess Returns with Maturity of Two Months

Panel B (1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0052

(−1.2331)
−0.0017∗∗∗

(−2.7405)
−0.0017∗∗∗

(−2.7162)
−0.0040∗∗∗

(−2.6393)
−0.0004
(−0.5265)

0.0014
(0.2992)

−0.0017∗∗∗
(−2.7678)

0.0018
(0.3975)

VVIX30D 0.0005
(0.8496)

−0.0005
(−0.6772)

−0.0007
(−0.8934)

SlopeVVIX 0.0024∗∗∗
(3.7421)

0.0026∗∗∗
(3.7055)

0.0020∗∗∗
(2.9945)

0.0021∗∗∗
(2.9505)

SlopeVIX −0.0025∗∗∗
(−4.0306)

−0.0021∗∗∗
(−3.3468)

−0.0021∗∗∗
(−3.2969)

VIX30D 0.0011∗
(1.6824)

0.0003
(0.4919)

VRP −0.0015∗∗
(−2.4139)

rStraddle
t 0.0005

(0.7520)
0.0000
(−0.0622)

0.0002
(0.3315)

0.0004
(0.6812)

0.0009
(1.3500)

0.0000
(0.0152)

−0.0003
(−0.3866)

−0.0002
(−0.3130)

adj. R2 -0.0002 0.0073 0.0086 0.0001 0.0027 0.0070 0.0130 0.0124

Table 7: Rolling regression: rStraddle
t+1 = α + β1Xt + β2rStraddle

t + εt, where rStraddle
t+1 is the daily return of a straddle on

the VIX (S&P500) with a maturity of two (one) months in panel A (B). Xt is a standardized vector of explanatory
variables, which are calculated as for Table 5.
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Parameter Estimates

σS κV σV µV λ1 κq σq ρV q
Estimate 0.3849 0.2988 0.8944 2.7428 0.1868 1.7828 9.9141 0.9477
Std. Err. 0.0005 0.0046 0.0038 0.1608 0.0105 0.0161 0.1415 0.0020

rel.RMSE: VVIX Term Structure

VVIX30D VVIX60D VVIX90D VVIX120D VVIX150D

5.1597 2.6271 2.7383 2.8950 3.5418

rel.RMSE: VIX Futures

F30D F60D F90D F120D F150D

6.5362 2.5791 2.0094 3.0781 4.6155

Table 8: The upper panel of the table shows the estimates of the structural model
parameter estimates and their standard errors. Standard errors are estimated by the
Outer-Product of the Gradient approach. The lower panels report the relative root
mean squared pricing errors (rel.RMSE) of the model’s VVIX term structure and of
the VIX futures prices.
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Relative Pricing Errors of the VVIX approximation

1 Month 2 Month 3 Month 4 Month 5 Month
mean(ετVVIX) 0.0077 -0.0059 0.0122 0.0188 0.0212
std(ετVVIX) 0.0123 0.0092 0.0141 0.0189 0.0229

Table 9: The table reports the accuracy for the closed form approximation of the
VVIX term structure. To calculate the mean and standard deviation of the relative
errors ετVVIX we run 180,000 simulations for each Wednesday from 09/01/2007 to
08/31/2014.
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Figure 1: The figure displays the moving monthly averages of available OTM VIX
options (left panels) and their trading volume (right panels) for different maturities
and moneyness ranges. Moneyness is defined as the strike price divided by the VIX
futures price. The grey vertical line marks the beginning of our data set period.

57



2008 2009 2010 2011 2012 2013 2014

V
V

IX
τ

50

100

150

30D 90D 150D

2008 2009 2010 2011 2012 2013 2014

L
ev

el
V

V
IX

 (
PC

1)

-5

0

5

2008 2009 2010 2011 2012 2013 2014

Sl
op

eV
V

IX
 (

PC
2)

-1

0

1

2

Figure 2: The figure depicts the VVIX for a maturity of 30, 90 and 150 days in the
upper panel. The first and second principal component of the VVIX term structure,
which we attribute to its level and slope, are shown in the middle and lower panel,
respectively. Both components are normalized to a zero mean.
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Figure 3: The figure shows logarithms of return paths for different S&P500 con-
stant maturity straddle strategies. The left (right) panels show strategies which use
a signal from the VVIX (VIX) term structure. In the top panels we plot strate-
gies for one month straddles and in the bottom panel we plot strategies for twelve
month straddles. The baseline strategy is going short in the straddles. If SlopeVVIX

t

(SlopeVIX
t ) is in the highest (lowest) historic 75% quantile on day t, the strategy

goes long straddles, which is marked by grey areas. The portfolios are adjusted on
a daily basis and the second PCA components, and quantiles are calculated using
only information until day t. The burn-in phase is one month (September ’07) and
trading costs are omitted.
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Figure 4: The figure shows logarithms of return paths for different two month con-
stant maturity VIX straddle strategies. The panels show strategies which use a signal
from SlopeVVIX and the VRP. The baseline strategy is going short in the straddles.
If the SlopeVVIX (VRP) is in the highest (lowest) historic 75% quantile on day t,
the strategy goes long straddles, which is marked by grey areas. The portfolios are
adjusted on a daily basis and the quantile is calculated using only information un-
til day t. The burn-in phase is one month (September ’07) and trading costs are
omitted.
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Figure 5: The figure shows the empirical and model-implied values of the VVIX
term structure (top solid lines) and of the VIX futures prices (lower dashed lines).
The plots for 60 and 120 days of maturity are omitted to save space.
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2
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shows AVVIX. The relative contribution (ωτt ) is shown in the left panels, absolute
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each factor’s contribution to the slope, defined by (W 30D
t (X)−W 150D
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The vertical lines indicate the mean of our estimated q/V-ratio.
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Figure 9: The figure depicts the VVIX for the longest and shortest maturity,
LevelVVIX, SlopeVVIX and the relative contribution of the vol-of-vol risk (q), jump
risk and AVVIX around crisis dates. In each plot the first vertical (solid) line marks
the date where SlopeVVIX is the first time in its 75% quantile and does not leave
it until the crises’ peak. The second vertical (dashed) lines mark the date when
SlopeVVIX was steepest. The third vertical (solid) lines mark the day where the
VVIX30D peaked. The horizontal dashed lines in the SlopeVVIX plots depict the trig-
gering bound for the trading signal of Figure 3.
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O Online Appendix

O.1 Additional Tables

Multivariat Regressions for Weekly S&P500 Straddle Excess Returns

Maturity 1 Month 2 Months 3 Months 6 Months 9 Months 12 Months

Return Period betaSlopeVVIX

1 Week 0.0045
(2.2855)

0.0025
(2.2607)

0.0019
(2.2677)

0.0014
(2.1876)

0.0010
(1.9360)

0.0008
(1.7275)

2 Weeks 0.0043
(2.0612)

0.0022
(1.9083)

0.0018
(2.0920)

0.0014
(2.0725)

0.0011
(1.9092)

0.0009
(1.7336)

3 Weeks 0.0040
(1.9320)

0.0021
(1.8351)

0.0017
(1.9427)

0.0014
(2.1169)

0.0011
(1.9156)

0.0009
(1.7711)

adj. R2

1 Week 0.0069 0.0096 0.0106 0.0141 0.0130 0.0112
2 Weeks 0.0078 0.0085 0.0108 0.0151 0.0148 0.0125
3 Weeks 0.0097 0.0101 0.0112 0.0155 0.0151 0.0126

Table O.1: Regression: rStraddle
t+1 = α+ β′Xt + εt+1, where rStraddle

t+1 is the excess return
over one to three weeks of a delta-neutral S&P500 straddle with SPX option maturi-
ties of 1, 2, 3, 6, 9 and 12 months. Xt is a standardized vector of explanatory variables
observed at the end of day t and which are defined as in Table 5. Newey-West robust
t-statistics are stated in parentheses.
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Multivariat Regressions for Daily VIX Straddle Excess Returns

Maturity 1 Month 2 Months 3 Months 4 Months 5 Months

Return Period betaSlopeVVIX

2 Days 0.0103
(0.2174)

0.0099
(2.5502)

0.0102
(2.8334)

0.0090
(2.7316)

0.0083
(1.6341)

3 Days 0.0148
(0.3657)

0.0129
(2.1520)

0.0136
(2.7565)

0.0111
(2.1222)

0.0100
(1.3731)

4 Days 0.0230
(0.7888)

0.0164
(2.8275)

0.0175
(2.7229)

0.0146
(2.0803)

0.0104
(0.9653)

5 Days 0.0012
(0.4984)

0.0031
(1.9608)

0.0036
(2.1857)

0.0032
(2.6891)

0.0021
(2.0501)

adj. R2

2 Days 0.0012 0.0208 0.0320 0.0638 0.0674
3 Days 0.0034 0.0266 0.0426 0.0529 0.0534
4 Days 0.0044 0.0299 0.0511 0.0715 0.0745
5 Days 0.0050 0.0371 0.0696 0.0902 0.0892

Table O.2: Regression: rStraddle
t+1 = α+ β′Xt + εt+1, where rStraddle

t+1 is the excess return
over one to five days of a delta-neutral VIX straddle with VIX option maturities of
1 till 5 months. Xt is a standardized vector of explanatory variables observed at the
end of day t and which are defined as in Table 5. Newey-West robust t-statistics are
stated in parentheses.
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Multivariat Regressions for Daily S&P500 Straddle Excess Returns

Maturity 1 Month 2 Months 3 Months 6 Months 9 Months 12 Months

Lag betaSlopeVVIX

2 Days 0.0052
(2.9172)

0.0026
(2.7378)

0.0019
(2.6076)

0.0013
(2.7874)

0.0010
(2.5714)

0.0008
(2.4307)

3 Days 0.0045
(2.5468)

0.0025
(2.6099)

0.0019
(2.5737)

0.0014
(2.8738)

0.0010
(2.6851)

0.0008
(2.4508)

adj. R2

2 Days 0.0126 0.0125 0.0149 0.0230 0.0273 0.0263
3 Days 0.0071 0.0096 0.0110 0.0141 0.0136 0.0114

Table O.3: Regression: rStraddle
t+lag = α + β′Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the

daily excess return of a straddle on the S&P500 with maturities of 1, 2, 3, 6, 9 and
12 months from end of day t + lagged days to end of day t + lagged days + 1. Xt

is a standardized vector of explanatory variables observed at the end of day t and
which are defined as in Table 5. The t-statistics are stated in parentheses.

Multivariat Regressions for Daily VIX Straddle Excess Returns

Maturity 1 Month 2 Months 3 Months 4 Months 5 Months

Lag betaSlopeVVIX

2 Days 0.0012
(0.5164)

0.0031
(2.9519)

0.0033
(3.8773)

0.0023
(2.7316)

0.0083
(1.6341)

3 Days 0.0008
(0.3437)

0.0015
(2.9124)

0.0032
(3.7593)

0.0027
(3.4209)

0.0013
(1.3731)

adj. R2

2 Days -0.0019 0.0056 0.0132 0.0344 0.0287
3 Days -0.0021 0.0042 0.0113 0.0433 0.0373

Table O.4: Regression: rStraddle
t+lag = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the

daily excess return of a straddle on the VIX with maturities of 1, 2, 3, 4 and 5 months
from end of day t+lagged days to end of day t+lagged days+1. Xt is a standardized
vector of explanatory variables observed at the end of day t and which are defined
as in Table 5. t-statistics are stated in parentheses.
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Restricted Regressions for Daily S&P500 Straddle Excess Returns with Maturity of One Month

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0264∗∗

(−2.5565)
−0.0056∗∗∗

(−3.6805)
−0.0056∗∗∗

(−3.6732)
−0.0127∗∗∗

(−3.4532)
−0.0036∗

(−1.8299)
−0.0062
(−0.558)

−0.0056∗∗∗
(−3.7141)

−0.0052
(−0.4668)

VVIX 0.0032∗∗
(2.0447)

0.0001
(0.0615)

−0.0003
(−0.1572)

SlopeVVIX 0.0078∗∗∗
(4.9477)

0.0077∗∗∗
(4.499)

0.0069∗∗∗
(4.3237)

0.0068∗∗∗
(3.8796)

SlopeVIX −0.0057∗∗∗
(−3.7176)

−0.0044∗∗∗
(−2.8421)

−0.0043∗∗∗
(−2.7802)

VIX 0.0033∗∗
(2.1474)

0.0007
(0.3917)

VRP −0.0024
(−1.5053)

rStraddle
t −0.0070∗∗∗

(−4.5205)
−0.0083∗∗∗

(−5.3345)
−0.0071∗∗∗

(−4.6533)
−0.0068∗∗∗

(−4.4605)
−0.0060∗∗∗

(−3.8584)
−0.0083∗∗∗

(−5.3115)
−0.0087∗∗∗

(−5.5519)
−0.0087∗∗∗

(−5.5262)

adj. R2 0.01150 0.0231 0.0170 0.0117 0.0104 0.0225 0.0271 0.0261

Table O.5: Rolling regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of a

straddle on the S&P500 with a maturity of one month from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX30D is the implied volatility-of-volatility index, SlopeVVIX

is the second PCA component of the VVIX term structure, SlopeVIX is the second PCA component of the VIX
term structure, VIX30D is the volatility index and the variance risk premia (VRP) is calculated as the differential
of the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du−EP
t

∫ 30D

0
(d lnSt+u)

2du = VIX30D
t −RVt, where RVt =

∑21
j=1

∑
i(rt−j,i)

2 and rt−j,i are the
ith five-minute log-returns at day t− j. For the regressions we use daily data samples from 09/01/2007 to 08/31/2014.
∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in
parentheses.
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Multivariat Regressions for Daily S&P500 Straddle Excess Returns with Maturity of Three Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0052

(−1.2331)
−0.0017∗∗∗

(−2.7405)
−0.0017∗∗∗

(−2.7162)
−0.0040∗∗∗

(−2.6393)
−0.0004
(−0.5265)

0.0014
(0.2992)

−0.0017∗∗∗
(−2.7678)

0.0018
(0.3975)

VVIX30D 0.0005
(0.8496)

−0.0005
(−0.6772)

−0.0007
(−0.8934)

SlopeVVIX 0.0024∗∗∗
(3.7421)

0.0026∗∗∗
(3.7055)

0.002∗∗∗
(2.9945)

0.0021∗∗∗
(2.9505)

SlopeVIX −0.0025∗∗∗
(−4.0306)

−0.0021∗∗∗
(−3.3468)

−0.0021∗∗∗
(−3.2969)

VIX30D 0.0011∗
(1.6824)

0.0003
(0.4919)

VRP −0.0015∗∗
(−2.4139)

rStraddle
t 0.0005

(0.7520)
0.0000
(−0.0622)

0.0002
(0.3315)

0.0004
(0.6812)

0.0009
(1.35)

0.0000
(0.0152)

−0.0003
(−0.3866)

−0.0002
(−0.3130)

adj. R2 -0.0002 0.0073 0.0086 0.0010 0.0027 0.0070 0.0130 0.0124

Table O.6: Rolling regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of a

straddle on the S&P500 with a maturity of three months from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX30D is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, SlopeVIX is the second PCA component of the VIX term
structure, VIX30D is the volatility index and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du − EP
t

∫ 30D

0
(d lnSt+u)

2du = VIX30D
t − RVt, where RVt =

∑21
j=1

∑
i(rt−j,i)

2 and rt−j,i
are the ith five-minute log-returns at day t − j. For the regressions we use daily data samples from 09/01/2007 to
08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are
stated in parentheses.
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Multivariat Regressions for Excess Daily S&P500 Straddle Returns with Maturity of Six Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0031

(−1.1335)
−0.0007∗

(−1.7076)
−0.0007∗

(−1.6907)
−0.0022∗∗

(−2.2519)
0.0002
(0.4635)

0.0012
(0.4005)

−0.0007∗
(−1.7239)

0.0015
(0.5016)

VVIX30D 0.0004
(0.8987)

−0.0003
(−0.6378)

−0.0004
(−0.8632)

SlopeVVIX 0.0016∗∗∗
(3.7616)

0.0017∗∗∗
(3.7065)

0.0013∗∗∗
(3.0068)

0.0014∗∗∗
(2.9444)

SlopeVIX −0.0017∗∗∗
(−4.0283)

−0.0014∗∗∗
(−3.3334)

−0.0014∗∗∗
(−3.2810)

VIX30D 0.0007∗
(1.7165)

0.0002
(0.5103)

VRP −0.0011∗∗∗
(−2.7691)

rStraddle
t 0.0017∗∗∗

(4.0775)
0.0014∗∗∗

(3.2691)
0.0015∗∗∗

(3.7449)
0.0017∗∗∗

(4.0420)
0.0019∗∗∗

(4.7251)
0.0014∗∗∗

(3.3199)
0.0012∗∗∗

(2.9589)
0.0013∗∗∗

(3.0021)

adj. R2 0.0100 0.0175 0.0187 0.0112 0.0139 0.0172 0.0231 0.0225

Table O.7: Rolling regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of a

straddle on the S&P500 with a maturity of six months from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX30D is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, SlopeVIX is the second PCA component of the VIX term
structure, VIX30D is the volatility index and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du − EP
t

∫ 30D

0
(d lnSt+u)

2du = VIX30D
t − RVt, where RVt =

∑21
j=1

∑
i(rt−j,i)

2 and rt−j,i
are the ith five-minute log-returns at day t − j. For the regressions we use daily data samples from 09/01/2007 to
08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are
stated in parentheses.
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Multivariat Regressions for Daily S&P500 Straddle Excess Returns with Maturity of Nine Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0022

(−0.9988)
−0.0003
(−1.0073)

−0.0003
(−0.9982)

−0.0016∗∗
(−2.0446)

0.0003
(0.6290)

0.0011
(0.4439)

−0.0003
(−1.0148)

0.0013
(0.5479)

VVIX30D 0.0003
(0.8630)

−0.0002
(−0.5859)

−0.0003
(−0.8676)

SlopeVVIX 0.0012∗∗∗
(3.5054)

0.0013∗∗∗
(3.4463)

0.0009∗∗∗
(2.7690)

0.0010∗∗∗
(2.6801)

SlopeVIX −0.0013∗∗∗
(−3.8257)

−0.0011∗∗∗
(−3.1635)

−0.0010∗∗∗
(−3.0943)

VIX30D 0.0006∗
(1.7980)

0.0002
(0.6745)

VRP −0.0007∗∗
(−2.2135)

rStraddle
t 0.0021∗∗∗

(6.2319)
0.0019∗∗∗

(5.5362)
0.0020∗∗∗

(5.9919)
0.0020∗∗∗

(6.1930)
0.0022∗∗∗

(6.7399)
0.0019∗∗∗

(5.5661)
0.0018∗∗∗

(5.2771)
0.0018∗∗∗

(5.2914)

adj. R2 0.0230 0.0293 0.0306 0.0243 0.0253 0.0290 0.0343 0.0337

Table O.8: Rolling regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of

a straddle on the S&P500 with a maturity of one year from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX30D is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, SlopeVIX is the second PCA component of the VIX term
structure, VIX30D is the volatility index and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du − EP
t

∫ 30D

0
(d lnSt+u)

2du = VIX30D
t − RVt, where RVt =

∑21
j=1

∑
i(rt−j,i)

2 and rt−j,i
are the ith five-minute log-returns at day t − j. For the regressions we use daily data samples from 09/01/2007 to
08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are
stated in parentheses.
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Multivariat Regressions for Daily S&P500 Straddle Excess Returns with Maturity of One Year

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0022

(−1.1199)
−0.0002
(−0.5315)

−0.0002
(−0.5267)

−0.0011
(−1.6327)

0.0003
(0.8268)

0.0004
(0.2073)

−0.0002
(−0.5336)

0.0007
(0.3067)

VVIX30D 0.0003
(1.0543)

−0.0001
(−0.2820)

−0.0002
(−0.4836)

SlopeVVIX 0.0010∗∗∗
(3.2583)

0.0010∗∗∗
(3.0941)

0.0008∗∗
(2.5539)

0.0008∗∗
(2.4065)

SlopeVIX −0.0010∗∗∗
(−3.5783)

−0.0009∗∗∗
(−2.9502)

−0.0009∗∗∗
(−2.9019)

VIX30D 0.0005
(1.5569)

0.0001
(0.3858)

VRP −0.0006∗∗
(−1.9643)

rStraddle
t 0.0021∗∗∗

(7.0514)
0.0019∗∗∗

(6.5110)
0.0020∗∗∗

(6.9325)
0.0021∗∗∗

(7.1183)
0.0022∗∗∗

(7.5140)
0.0019∗∗∗

(6.5030)
0.0019∗∗∗

(6.3059)
0.0019∗∗∗

(6.2992)

adj. R2 0.0295 0.0348 0.0359 0.0303 0.0310 0.0342 0.0390 0.0380

Table O.9: Rolling regression: rStraddle
t+1 = α + β′1Xt + β2rStraddle

t + εt+1, where rStraddle
t+1 is the daily excess return of

a straddle on the S&P500 with a maturity of one year from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX30D is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, SlopeVIX is the second PCA component of the VIX term
structure, VIX30D is the volatility index and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du − EP
t

∫ 30D

0
(d lnSt+u)

2du = VIX30D
t − RVt, where RVt =

∑21
j=1

∑
i(rt−j,i)

2 and rt−j,i
are the ith five-minute log-returns at day t − j. For the regressions we use daily data samples from 09/01/2007 to
08/31/2014. ∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are
stated in parentheses.
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Restricted Regressions for Daily VIX Straddle Excess Returns with Maturity of One Month

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept 0.0080

(0.6003)
−0.0037∗

(−1.9115)
−0.0037∗

(−1.9270)
0.0001
(0.0219)

−0.0014
(−0.5764)

0.0093
(0.6469)

−0.0037∗
(−1.9221)

0.0095
(0.6585)

VVIX30D −0.0018
(−0.8889)

−0.0020
(−0.9121)

−0.0014
(−0.6250)

SlopeVVIX −0.0003
(−0.1268)

0.0005
(0.2418)

−0.0007
(−0.3237)

0.0004
(0.1911)

SlopeVIX −0.0016
(−0.8287)

−0.0017
(−0.8804)

−0.0020
(−1.0271)

VIX30D −0.0018
(−0.9215)

−0.0017
(−0.7838)

VRP −0.0028
(−1.4787)

rStraddle
t −0.0026

(−1.3191)
−0.0030
(−1.4633)

−0.0031
(−1.6016)

−0.0029
(−1.4795)

−0.0026
(−1.3218)

−0.0027
(−1.3406)

−0.0030
(−1.4715)

−0.0028
(−1.3924)

adj. R2 0.0007 0.0003 0.0007 0.0008 0.0016 0.0002 0.0001 -0.0002

Table O.10: Rolling regression: rStraddle
t+1 = α + β1Xt + β2rStraddle

t + εt, where rStraddle
t+1 is the is the daily return of

a straddle on the VIX with a maturity of one month from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, VIX is CBOE’s volatility index, SlopeVVX is the second
PCA component of the VIX term structure and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du− EP
t

∫ 30D

0
(d lnSt+u)

2du = VIXt − RVt, where RVt =
∑21

j=1

∑
i(rt−j,i)

2 and rt−j,i are the
ith five-minute log-returns at day t− j. For the regressions we use daily data samples from 09/01/2007 to 08/31/2014.
∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in
parentheses.
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Restricted Regressions for Daily VIX Straddle Excess Returns with Maturity of Three Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0068

(−1.4221)
−0.0003
(−0.4164)

−0.0004
(−0.5266)

−0.0032∗
(−1.865)

0.0011
(1.2336)

0.0045
(0.8536)

−0.0003
(−0.4192)

0.0042
(0.8009)

VVIX30D 0.0010
(1.3595)

−0.0007
(−0.9169)

−0.0007
(−0.8251)

SlopeVVIX 0.0039∗∗∗
(5.272)

0.0042∗∗∗
(5.1723)

0.0037∗∗∗
(4.9862)

0.0040∗∗∗
(4.7677)

SlopeVIX −0.0014∗
(−1.8965)

−0.0007
(−0.8517)

−0.0006
(−0.7826)

VIX30D 0.0014∗
(1.8066)

0.0000
(0.0428)

VRP −0.0020∗∗
(−2.4651)

rStraddle
t −0.0012∗

(−1.6798)
−0.0023∗∗∗

(−3.1029)
−0.0011
(−1.5663)

−0.0012∗
(−1.649)

−0.0005
(−0.7178)

−0.0022∗∗∗
(−2.9338)

−0.0023∗∗∗
(−3.1369)

−0.0022∗∗∗
(−2.9695)

adj. R2 0.0011 0.0175 0.0022 0.0020 0.0038 0.0174 0.0174 0.0166

Table O.11: Rolling regression: rStraddle
t+1 = α + β1Xt + β2rStraddle

t + εt, where rStraddle
t+1 is the is the daily return of a

straddle on the VIX with a maturity of three months from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, VIX is CBOE’s volatility index, SlopeVVX is the second
PCA component of the VIX term structure and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du− EP
t

∫ 30D

0
(d lnSt+u)

2du = VIXt − RVt, where RVt =
∑21

j=1

∑
i(rt−j,i)

2 and rt−j,i are the
ith five-minute log-returns at day t− j. For the regressions we use daily data samples from 09/01/2007 to 08/31/2014.
∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in
parentheses.
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Restricted Regressions for Daily VIX Straddle Excess Returns with Maturity of Four Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0085∗∗

(−1.9781)
0.0000
(0.034)

−0.0002
(−0.2613)

−0.0038∗∗
(−2.4469)

0.0021∗∗
(2.5768)

0.0021
(0.4216)

0.0000
(−0.0779)

0.0012
(0.2374)

VVIX30D 0.0013∗∗
(1.9796)

−0.0003
(−0.4207)

0.0000
(−0.0088)

SlopeVVIX 0.0031∗∗∗
(4.7219)

0.0032∗∗∗
(4.2993)

0.0029∗∗∗
(4.3479)

0.0031∗∗∗
(3.8622)

SlopeVIX −0.002∗∗∗
(−2.9659)

−0.0016∗∗
(−2.3347)

−0.0017∗∗
(−2.3786)

VIX30D 0.0019∗∗∗
(2.6155)

−0.0006
(−0.6023)

VRP −0.0031∗∗∗
(−4.1871)

rStraddle
t 0.0011

(1.5985)
0.0005
(0.7243)

0.0011∗
(1.7514)

0.0011∗
(1.7029)

0.0021∗∗∗
(3.2693)

0.0005
(0.7911)

0.0002
(0.3751)

0.0003
(0.3805)

adj. R2 0.0062 0.0207 0.0101 0.0085 0.0170 0.0201 0.0243 0.0230

Table O.12: Rolling regression: rStraddle
t+1 = α + β1Xt + β2rStraddle

t + εt, where rStraddle
t+1 is the is the daily return of

a straddle on the VIX with a maturity of four months from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, VIX is CBOE’s volatility index, SlopeVVX is the second
PCA component of the VIX term structure and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du− EP
t

∫ 30D

0
(d lnSt+u)

2du = VIXt − RVt, where RVt =
∑21

j=1

∑
i(rt−j,i)

2 and rt−j,i are the
ith five-minute log-returns at day t− j. For the regressions we use daily data samples from 09/01/2007 to 08/31/2014.
∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in
parentheses.
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Restricted Regressions for Daily VIX Straddle Excess Returns with Maturity of Five Months

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept −0.0075∗

(−1.7595)
−0.0005
(−0.8687)

−0.0007
(−1.1398)

−0.0030∗
(−1.7536)

0.0007
(0.7616)

0.0018
(0.3534)

−0.0005
(−0.8866)

0.0025
(0.4556)

VVIX30D 0.0010
(1.6166)

−0.0003
(−0.4629)

−0.0001
(−0.1216)

SlopeVVIX 0.0024∗∗∗
(3.7191)

0.0026∗∗∗
(3.3755)

0.0024∗∗∗
(3.6478)

0.0030∗∗∗
(3.2817)

SlopeVIX −0.0009
(−0.7851)

−0.0004
(−0.3341)

−0.0001
(−0.1208)

VIX30D 0.0013
(1.4563)

−0.0013
(−1.0849)

VRP −0.0021∗
(−1.9601)

rStraddle
t 0.0000

(−0.0473)
−0.0004
(−0.7031)

0.0002
(0.4076)

0.0001
(0.1400)

0.0008
(1.2348)

−0.0004
(−0.5999)

−0.0005
(−0.7346)

−0.0004
(−0.6012)

adj. R2 0.0009 0.0121 -0.0011 0.0004 0.0021 0.0113 0.0112 0.0105

Table O.13: Rolling regression: rStraddle
t+1 = α + β1Xt + β2rStraddle

t + εt, where rStraddle
t+1 is the is the daily return of

a straddle on the VIX with a maturity of five months from end of day t to end of day t + 1. Xt is a vector of
explanatory variables observed at the end of day t. VVIX is the implied volatility-of-volatility index, SlopeVVIX is
the second PCA component of the VVIX term structure, VIX is CBOE’s volatility index, SlopeVVX is the second
PCA component of the VIX term structure and the variance risk premium (VRP) is calculated as the differential of
the risk-neutral and the physical expectation of the variation of the stock index over the next 30 days. We define
VRPt ≡ EQ

t

∫ 30D

0
(d lnSt+u)

2du− EP
t

∫ 30D

0
(d lnSt+u)

2du = VIXt − RVt, where RVt =
∑21

j=1

∑
i(rt−j,i)

2 and rt−j,i are the
ith five-minute log-returns at day t− j. For the regressions we use daily data samples from 09/01/2007 to 08/31/2014.
∗,∗∗ and ∗∗∗ indicate statistical significance at the 90, 95, and 99% confidence level. The t-statistics are stated in
parentheses.
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O.2 Additional Figures

Signals from VRP
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Figure O.1: The figure shows logarithms of return paths for different S&P500 con-
stant maturity straddle strategies. The panels show strategies which use a signal
from the VRP. In the top panels we plot strategies for one month straddles and
in the bottom panel we plot strategies for twelve month straddles. The baseline
strategy is going short in the straddles. If the VRP is in the lowest historic 75%
quantile on day t, the strategy goes long straddles, which is marked by grey areas.
The portfolios are adjusted on a daily basis and the quantile is calculated using
only information until day t. The burn-in phase is one month (September ’07) and
trading costs are omitted.
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Figure O.2: The figure displays the relative errors εVVIXτ

t ≡√
AVVIX(Θ,τ)+BVVIX(Θ,τ)′Ỹt

VVIXτt
− 1 of the VVIX approximation for the maturities

τ = 1, 2, 3, 4, 5 months.
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