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Highlights 
1. A novel technique is proposed to identify the lead-lag relationship between time-series. 

2. Comparisons along statistical-significance and forecast-ability, show its superiority over 

other state-of-the-art models 

3. Aligned Correlation measure is proposed, which satisfies most of the metric properties. 

4. The technique is used to study the FX market, as the covid-19 epidemic unfolds. 

 

 

 

 

 

 

 

 

 



Abstract 
The lead-lag relationship plays a vital role in financial markets. It is the phenomenon where a 

certain price-series lags behind and partially replicates the movement of leading time-series. 

The present research proposes a new technique which helps better identify the lead-lag 

relationship empirically. Apart from better identifying the lead-lag path, the technique also 

gives a measure for adjudging closeness between financial time-series. Also, the proposed 

measure is closely related to correlation, and it uses Dynamic Programming technique for 

finding the optimal lead-lag path. Further, it retains most of the properties of a metric, so 

much so, it is termed as ‘loose metric’. Tests are performed on Synthetic Time Series (STS) 

with known lead-lag relationship and comparisons are done with other state-of-the-art models 

on the basis of significance and forecastability. The proposed technique gives the best results 

in both the tests. It finds paths which are all statistically significant, and its forecasts are 

closest to the target values. Then, we use the measure to study the topology evolution of the 

Foreign Exchange market, as the COVID-19 pandemic unfolds. Here, we study the FX 

currency prices of 29 prominent countries of the world. It is observed that as the crises 

unfold, all the currencies become strongly interlinked to each other. Also, USA Dollar starts 

playing even more central role in the FX market. Finally, we mention several other 

application areas of the proposed technique for designing intelligent systems.  

 

1. Introduction 

Information plays a critical role in our lives, specifically in financial markets. In financial 

markets, any accurate information regarding future trends is very financially rewarding. It is 

sometimes observed that some stock pairs may not have high Pearson correlation coefficient 

between them, but they are highly correlated at certain lead-lag. Also, it is found that prices 

of certain financial commodities are following the trends of some other commodity. This 

phenomenon where a certain time-series replicates the movements of a leading time-series 

partially at a specific time lag is called lead-lag relationship [1]. The present paper proposes 

an empirical technique which better identifies the time-varying lead-lag relationship between 

two time-series. 

The rest of the paper is organized as follows. We first give a broad literature review of the 

lead-lag relationship. Then, we describe the proposed methodology to determine the lead-lag 

relationship. Then we test this technique to find a known lead-lag relationship in synthetic 



time-series empirically. Finally, we use this methodology to decipher existing patterns or 

connections between financial time-series in the FX market.  

 

 

2. Literature Review 

It may seem intuitive that any information like a lead-lag relationship which can be 

utilized for trend discovery should be immediately utilized for making financially profitable 

transactions. This is not always the case due to factors like delay in information transmission 

or information arrival. This phenomenon is most phenomenally visible in the time-series of 

spot and options prices of the same underlying stock or commodity. Here sometimes, it is 

observed that the options-price series leads the spot-price series [2], which maybe because it 

is faster to quickly assimilate any new information regarding the future trend into the option 

price-series as compared to spot price-series. The lead-lag relationship can also be observed 

in the spot and futures prices of a commodity. The lead-lag relationship in KOSPI200 spot 

market, its futures market, and its options market are empirically examined and commented 

upon in the study done by Lee et al. [2]. Tian et al. [3] investigate Taiwan financial markets 

and find that index-future-prices during non-cash trading-period leads the cash-market during 

its opening-period. Moews et al. [4] develop an intelligent system to better predict future 

movements in financial time-series using lagged-correlations with other time-series. Hui et al. 

[5] find the existence of a time-dependent lead-lag relationship between prices and volume in 

mini Taiwan exchange futures.   

The phenomenon of lead-lag relationship is also observed in the price-series of a commodity 

being traded at different exchanges. Here, High-Frequency-Trading (HFT) is performed by 

traders to quickly dissipate any price inconsistencies between two exchanges, while earning 

huge profits through it. High-Frequency Data in the financial market is gathered at irregular 

intervals, which makes it challenging to decipher the lead-lag relationship between two 

different stocks or markets. Thus, an estimator is proposed in [6], which better estimated the 

cross-covariance by avoiding imputation and using all available transaction. In the study 

conducted by Robert et al. [7], certain properties of the covariance matrix of increments of 

two Gaussian processes, partially correlated at some time –lag, is studied. 



 It may not always be possible to utilize lead-lag information profitably. Still, a lead-lag 

relationship between two time-series may be indicative of casualty or strong-connection 

between the two time-series.  

 

Thermal Optimal Path (TOP), first proposed by Zhou and Sornette[8], has been used in the 

past for obtaining a continuously time-varying lead-lag path between two financial 

instruments. [8]–[11] are some of the papers which utilise TOP in their analysis of the 

financial markets. The TOP method has been picked up from physics literature, and it uses 

Euclidean distance for comparison at the most basic or micro-level. The present measure uses 

correlation-based distance at micro-level. Correlation distance is more suitable for financial 

data as it may indicate causality between the two time-series. Further, TOP does not 

explicitly provide any measure to quantify the strength of the relationship between the two 

financial time-series.  

Another distance measure of significance for any general time-series data is the Dynamic 

Time Warping (DTW) measure [12], [13]. DTW is generally considered as the best distance 

measure for time series mining tasks across virtually all domains [14]. DTW measure is 

especially of advantage in speech recognition [15] where it can decipher the sounds of 

different words, even when different parts of the word have different elongations. Jin et al. 

[10] used DTW measure to analyse the network structure of the Foreign Exchange market.  

Zhu et al. [16] tried to reduce the time complexity of the DTW measure by approximating its 

value. In work by Silva et al. [14] the effects of relaxing various constraints on the DTW 

distance measures are studied.  

TOP has been one of the most prominent methodologies for empirically finding the lead-lag 

path. The present methodology shows superior results than TOP. TOP may be considered as a 

more theoretically evolved version of DTW, as it also uses Dynamic Programming for 

computation purposes. 

The present methodology also improves upon DTW by subtly combining the properties of 

DTW measure and correlation measure. The proposed Aligned Correlation (AC) can more 

accurately determine the lead-lag relationship between time-series.  

 



3. Proposed Measure 

Empirically determination of the best lead-lag path (exact solution) between two time-series 

requires exponential order of time, as explained in the next section. This is an NP-Hard 

problem, and Dynamic Programming (DP) is used to obtain an approximate solution in much 

lesser time. DP is generally used for solving other NP-Hard problems also [17].  

The present AC measure takes motivation from the DCCT measure, described in [18]. The 

AC measure does not require to choose between one of the values of a free parameter ‘p’, as 

required in the DCCT measure. Further, the present work provides an in-depth theoretical 

discussion on the metric properties of the AC measure. It also provides more elaborate testing 

and comparisons, as compared to the work [18]. Though the DCCT measure is used for 

profitable pairs trading, the AC measure has been used to study the Foreign Exchange 

market.  

Now, we describe the proposed AC measure in detail. Let xt , yt ( t ∈ 1,2,…,n) be two time-

series of normalised prices of two stocks. Then the AC’s computation requires the use of an 

alignment path.  

Alignment path is a sequence P = (P1 , P2, …Pl… , PL) with Pl = (pl , ql) ∈  [1: 𝑛]2  for 𝑙 ∈

[1: 𝐿] satisfying the following conditions: 

(i) Boundary Condition: Given a parameter psi, (say 100), then 𝑝1 ≤ 𝑝𝑠𝑖 ,     𝑞1 ≤

𝑝𝑠𝑖,  𝑝𝐿  ≥ 𝑛 − 𝑝𝑠𝑖 and 𝑞𝐿  ≥ 𝑛 − 𝑝𝑠𝑖 . 

(ii) Monotonicity Condition: 𝑝1  ≤  𝑝2  ≤ ⋯  ≤  𝑝𝐿 and 𝑞1  ≤  𝑞2  ≤ ⋯  ≤  𝑞𝐿. 

(iii) Step size Condition: 𝑃𝑙+1 − 𝑃𝑙  ∈  {(1,0), (0,1), (1,1)} for 𝑙 ∈ [1: 𝐿 − 1]. 

 

The parameter name ‘psi’ (which stands for ‘Post Suffix Invariant’), has been inspired by 

[14] where they introduced this parameter to relax the boundary condition in DTW. The 

alignment path is computed using ‘Dynamic programming’ techniques as done in DTW 

measure [14].  

The AC measure uses the above definition in its construction. Let us denote the computation 

of the alignment path by step 1. 

 



Step 1: Computation of Alignment path  

As mentioned earlier, let xt , yt ( t ∈ 1,2,…,n) be two time-series of normalised prices of two 

stocks. Let rxt , ryt ( t ∈ 1,2,…,n) denote the consequent return time-series. 

Let 𝐶𝑅(𝑝𝑖, 𝑞𝑖 , 𝑝), a function over the sequence Pl = (pl ,ql), be defined as follows: 

𝑟𝑥𝑝𝑗 = 𝑥𝑝𝑗+1 − 𝑥𝑝𝑗 

𝑟𝑦𝑞𝑗 = 𝑦𝑞𝑗+1 − 𝑦𝑞𝑗 

𝐶𝑅(𝑝𝑖, 𝑞𝑖, 𝑝) =  2 × (1 − 
∑ (𝑟𝑥𝑝𝑖+𝑗

)(𝑟𝑦𝑞𝑖+𝑗
)

𝑝
𝑗=−𝑝

√∑ (𝑟𝑥𝑝𝑖+𝑗
)2

𝑝
𝑗=−𝑝 √∑ (𝑟𝑦𝑞𝑖+𝑗

)2
𝑝
𝑗=−𝑝

) , 

Here, ‘p’ is the window size parameter, which denotes the length of the window. The time-

series are appended with ⌊
𝑝

2
⌋ zeroes at both the ends, so that the above expression can be 

calculated. In the present research, we use three values of parameter ‘p’ i.e., 25, 51 and 101. 

Then, we find an alignment path P = (P1, P2, …Pl… , PL) which minimises the function 

∑ 𝐶𝑅(𝑝𝑖, 𝑞𝑖 , 𝑝)
𝐿
𝑖=1  given the path-constraints as mentioned earlier. This is done through 

Dynamic Programming techniques as used in DTW measure. This optimization is done in 

two steps: 

1) First, the optimal paths are calculated for each value of the parameter p ( i.e., 25, 51 

and 101), which is given by: 

PATH(p)  =  arg −min
(𝑝𝑖,𝑞𝑖), 𝑖=1…𝐿

∑𝐶𝑅(𝑝𝑖, 𝑞𝑖 , 𝑝)

𝐿

𝑖=1

 

 

This is achieved by the DTW algorithm where Euclidean distance is replaced by CR metric, 

which is also the Euclidean distance between two normalized vectors. 

2) Then among these paths, we finally pick the path P = {(𝑝𝑖, 𝑞𝑖),  𝑖 = 1…𝐿}, which 

minimises the following expression: 

2 ×

(

 1 −
∑ (𝑟𝑥𝑝𝑖)(𝑟𝑦𝑞𝑖)
𝐿
𝑖=1

√∑ (𝑟𝑥𝑝𝑖)
2𝐿

𝑖=1
√∑ (𝑟𝑦𝑞𝑖)

2𝐿
𝑖=1 )

  



Step 2: Computation of AC measure  

Finally, the AC measure is the correlation-distance along the alignment path, which is 

calculated as follows: 

AC = 𝑃𝑎𝑡ℎ 𝑃
(𝑝𝑖,𝑞𝑖), 𝑖=1…𝐿

√ 2 ×

(

 1 −
∑ (𝑟𝑥𝑝𝑖)(𝑟𝑦𝑞𝑖)
𝐿
𝑖=1

√∑ (𝑟𝑥𝑝𝑖)
2𝐿

𝑖=1
√∑ (𝑟𝑦𝑞𝑖)

2𝐿
𝑖=1 )

 , 

where, P is the chosen alignment path (pi, qi).  

In the present experiments, the parameter ‘psi’ has been kept equal to the parameter ‘p’ just 

for simplicity. 

Here √2(1 − 𝜌) has been chosen as it transforms correlation measure (𝜌) into Euclidean 

distance metric between two time-series with unit variance and zero-mean. 

 

4. Elaboration of the AC measure 

Francisco et al. [19] showed through their work that, in statistical significance, DTW measure 

satisfies the Triangular Inequality (TI). They reached this conclusion by testing over 15 

million triplets for TI, which arose from speech data of 800 time-series. AC measure can also 

be termed as a ‘loose metric’ as done in [19]. This is because the AC measure is same as the 

Euclidean distance between normalized time-series along the wrapping path, i.e., DTW 

measure. Here, the normalizing variance is slightly different from the variance of the original 

time-series. The slight difference is due to repetition and rare removal of a few terms in the 

whole time-series. In fact, the AC measure is not equal to the Euclidean metric only because 

of different alignment of the series along the time. The path obtained here is a valid wrapping 

path from start to end. It is not the absolute optimal path which minimizes E.D., but it 

additionally maximises correlation along the path. Many modifications of DTW measure 

have proposed to put additional constraints on the DTW measure. This measure may also be 

considered as a measure which puts some additional constraints over DTW measure. 

4.1 Construction details of the AC measure 

It is crucial that CR should be a metric. If we replace it with another measure, we need to 

make sure that it is a metric. Also, we cannot compare the final ∑ 𝐶𝑅(𝑝𝑖, 𝑞𝑖, 𝑝)
𝐿
𝑖=1  values for 



different parameter ‘p’ values. This value ∑ 𝐶𝑅(𝑝𝑖, 𝑞𝑖, 𝑝)
𝐿
𝑖=1   can be re-arranged to denote the 

sum of squares of differences between certain normalized segments of the two time-series. 

This expression is dependent on the parameter ‘p’, and it can not be used for comparison 

across different ‘p’ values. Thus, instead, we minimize the correlation metric over the aligned 

path.  

4.2 Time Complexity 

The number of feasible paths grows exponentially with the length of the time-series. The 

number of feasible paths can be bijectively mapped to the number of paths from top left to 

bottom right corner in a grid where only right and bottom moves are allowed. The number of 

such paths is (2𝑛
𝑛
) which is greater than 2𝑛. Thus, it requires an exponential order of time to 

find the exact solution. Here, DP can be used to find an approximate solution quickly. 

The proposed AC measure has the same order of time complexity as the DTW measure when 

seen in terms of the length of the time series. Though, the AC measure has a higher constant 

term, which increases with the increase in the number of window-sizes (parameter ‘p’) used 

for finding the alignment path.  

 

5. Synthetic Time-Series Experiments 

Zhou and Sornette [8] while first introducing Thermal Optimal Path (TOP) [8] method for 

application in economics, justified its usage with two comparative experiments on synthetic 

time series data. Here, we will do very similar experiments to determine the superiority of the 

AC measure path over other models. Another experiment to test self-consistency of TOP 

results has been conducted earlier several times, like in  [9]–[11]. This test will also be 

performed to determine the validity of the proposed AC technique.  

Suppose we have a synthetic time series with a time-varying lead-lag relationship. Then these 

methods should be able to detect this path, even in the presence of noise experimentally. This 

experiment is based on the experiments in [8].  

In general, the synthetic time-series are of the form: 

𝑌(𝑡1) = 𝑎𝑋(𝑡1 − 𝑥(𝑡1)) + 𝜂, 

where 𝑋(𝑡1) is generated through the following process: 



𝑋(𝑡2) = 𝑏𝑋(𝑡2 − 1) + 𝜉, 

here, the noise-terms 𝜂 and 𝜉 will be explained shortly. Now, given the two time-series 

𝑌(𝑡1) & 𝑋(𝑡2) for some finite length, our aim is to empirically determine the lead-lag 

structure, i.e., 𝑥(𝑡1). 

In the present experiments, we use four different synthetic time series (STS) in two different 

sets of experiments.  

5.1 Significance Test 

We use STS-1 and STS-2 for testing the significance of lead-lag paths obtained through 

different algorithms. This test has been earlier employed in [9]–[11], for testing the 

significance of TOP. The underlying logic of this test is that, if the lead-lag path (x(t)) is 

significant, then these two synchronized time series, i.e., X(t – x(t)) and Y(t) should exhibit a 

strong linear dependence. It leads to the following regression. 

𝑌(𝑡) = 𝑐 + 𝑎𝑋(𝑡 −〈𝑥(𝑡)〉) + 𝜀(𝑡), 

In the above equation, the coefficient ‘a’ should be significantly different from ‘zero’ for 

statistically significant dependence. Next we give detail of STS-1. 

Synthetic Time Series 1 

The  STS-1 is as follows:  

𝑌(𝑖) =

{
  
 

  
 
0.8𝑋(𝑖) + 𝜂,                         1 ⩽ 𝑖 ⩽ 50,

0.8𝑋(𝑖 − 5) + 𝜂,            50 ⩽ 𝑖 ⩽ 100,

0.8𝑋(𝑖 − 10) + 𝜂,          101 ⩽ 𝑖 ⩽ 150,

0.8𝑋(𝑖 + 10) + 𝜂,          151 ⩽ 𝑖 ⩽ 200,

0.8𝑋(𝑖 + 5) + 𝜂,             201 ⩽ 𝑖 ⩽ 250,

0.8𝑋(𝑖) + 𝜂,                    251 ⩽ 𝑖 ⩽ 300,

 

where X(t) is itself a stochastic process given by: 

𝑋(𝑡1) = 𝑏𝑋(𝑡1 − 1) + 𝜉, 

where b < 1 and the noise ξ ∼ N(0, σξ) is serially uncorrelated. The factor f = ση/σξ quantifies 

the amount of noise degrading the causal relationship between X(t1) and Y(t2). A small f 

corresponds to a strong causal relationship. A large f implies that Y(t2) is mostly noise and 

becomes unrelated to X(t1) in the limit f → ∞. Specifically,   

Var[𝑋] = 𝜎𝜉
2 (1 − 𝑏2)⁄  



and 

Var[𝑌] = 𝑎2 Var[𝑋] + 𝜎𝜂
2 = 𝜎𝜉

2(
𝑎2

1 − 𝑏2
+ 𝑓2) = 𝜎𝜉

2(
𝑎2 Var[𝑋]

𝜎𝜉
2 + 𝑓2). 

All the STS are similar processes with different parameter values. 

In our simulations, we generate X and Y of first STS with parameters a = 0.8, b = 0.7, and f = 

0.5.  

TOP has a free variable ‘Temperature’ which needs to be fixed before finding the path. In 

work by [11], it is proposed that the temperature value of 2 is generally optimal, and this 

finding is asserted again in [20]. Here we perform the experiments with the temperature 

values of 2, 1, 0.5 and 0.2. In the case of AC measure, we use with the following 3 values of 

parameter ‘p’: 25, 51 and 101, as described earlier.  

 

Figure-1 The Lead-lag Paths: The empirically determined path x(t) against actual 

theoretical path by different techniques on STS-1. The path obtained by the AC method is 

visually more closer to the actual path than other models. 



 

As seen in Figure 1, the AC method is able to perfectly identify the lead-lag structure (x(t)) 

during the periods when (x(t)) remains temporarily unchanged. It only sometimes fails to 

capture the path during periods of transitions or jumps. Whereas TOP shows poor 

performance than AC during both the periods of transitions or no-transitions of x(t). DTW 

measure has shown visibly better performance than TOP but poor performance than AC. The 

same phenomenon is observed in Figures 2,3 and 4. 

Next is the examination of the empirically obtained lead-lag structure on the basis of the self-

consistency test. We perform this test analogously, as described in  [11]. We implement this 

test in moving windows of size 100, which move forward one-time-step from beginning to 

end of the time series. Thus, we obtain (300 – 100 + 1) such windows over the time series of 

length 300. Within each window, the two-time-series are synchronized (or not synchronized 

in the case of ‘Unsynched Path’), for estimating the significance of the coefficient ‘a’. Table 

1 gives the results for this experiment. Here, we observe that among the 201 windows with 

AC-synchronised time-series, all 201 windows have statistically significant coefficient ‘a’, at 

a confidence level of 97.5%. In contrast, for 201 overlapping non-synchronised windows, 

there are only 61 windows that pass the significant test. When, we observe the mean value of 

‘a’ among windows, where it has a statistically significant non-zero value, we find that the 

AC’s values are close to the actual ‘a’ values of 0.8, with smaller standard deviation. This 

indicates the superiority of the AC path over other measures. The model ‘Actual Path’ 

denotes the hypothetical model which finds the correct lead-lag path as designed in the STS. 

Again, we repeat this experiment on STS-2 and again find that AC has given the best results 

as seen in Table 2. 

 

 

 

 

 



  Model 

No. of Windows 

Significant 

Mean a 

value 

Standard Deviation 

of  a values 

0 AC 201 0.803827 0.094601 

1 TOP, T=2 103 0.473242 0.135063 

2 TOP, T=1 111 0.480127 0.141182 

3 TOP, T=0.5 102 0.505073 0.119492 

4 TOP, T=0.2 84 0.523594 0.159355 

5 DTW 201 0.636396 0.119881 

6 Actual path 201 0.885287 0.055361 

7 Unsynched Path 61 0.474695 0.100916 

 Table-1 Self-Consistency Test Results: The above table presents the results of the self-

consistency test for STS 1. The column ‘No. of significant windows’ gives the number of 

windows out of 201, which have a statistically significant non-zero value of the regression 

coefficient ‘a’, with a confidence of 97.5%. The columns “Mean value of ‘a’ ” & “Standard 

Deviation of ‘a’ ” gives the mean and standard deviation of ‘a’, among windows which have 

statistically significant non-zero ‘a’ value.   

Synthetic Time Series 2 

STS-2 is as follows: 

𝑌(𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 
0.8𝑋(𝑖) + 𝜂,                               1 ⩽ 𝑖 ⩽ 25,

0.8𝑋(𝑖 − 5) + 𝜂,                   26 ⩽ 𝑖 ⩽ 50,

0.8𝑋(𝑖 − 10) + 𝜂,               51 ⩽ 𝑖 ⩽ 75,

0.8𝑋(𝑖 − 15) + 𝜂,               76 ⩽ 𝑖 ⩽ 100,

0.8𝑋(𝑖 − 10) + 𝜂,               101 ⩽ 𝑖 ⩽ 125,

0.8𝑋(𝑖 − 5) + 𝜂,               126 ⩽ 𝑖 ⩽ 150,

0.8𝑋(𝑖 + 5) + 𝜂,               151 ⩽ 𝑖 ⩽ 175,

0.8𝑋(𝑖 + 10) + 𝜂,               176 ⩽ 𝑖 ⩽ 200,

0.8𝑋(𝑖 + 15) + 𝜂,              201 ⩽ 𝑖 ⩽ 225,

0.8𝑋(𝑖 + 10) + 𝜂,              226 ⩽ 𝑖 ⩽ 250,

0.8𝑋(𝑖 + 5) + 𝜂,              251 ⩽ 𝑖 ⩽ 275,

0.8𝑋(𝑖) + 𝜂,                       276 ⩽ 𝑖 ⩽ 300,

 

where, 



𝑋(𝑡1) = 𝑏𝑋(𝑡1 − 1) + 𝜉, 

we generate X and Y of size 300 with parameters a = 0.8, b = 0.7, and f = 0.5. 

 

 

 

Figure-2 The Lead-lag Paths: The empirically determined path x(t) against actual 

theoretical path by different techniques on STS-2. The path obtained by the AC method is 

visually more closer to the actual path than other models. 

 

 

 

 



  Model 

No. of Windows 

Significant 

Mean a 

value 

Standard Deviation 

of  a values 

0 AC 201 0.663167 0.07755 

1 TOP, T=2 125 0.570674 0.166254 

2 TOP, T=1 124 0.466022 0.34534 

3 TOP, T=0.5 131 0.565193 0.169246 

4 TOP, T=0.2 147 0.519374 0.152837 

5 DTW 201 0.570275 0.107279 

6 Actual path 201 0.959388 0.025072 

7 Unsynched Path 75 -0.206854 0.157856 

 Table-2 Self-Consistency Test Results: The above table presents the results of the self-

consistency test for STS 2. The column ‘No. of significant windows’ gives the number of 

windows out of 201, which have a statistically significant non-zero value of the regression 

coefficient ‘a’, with a confidence of 97.5%. The columns “Mean value of ‘a’ ” & “Standard 

Deviation of ‘a’ ” gives the mean and standard deviation of ‘a’, among windows which have 

statistically significant non-zero ‘a’ value.   

 

5.2 Forecastability Test 

Next, we do experiments as done in [8], to test the forecastability of the lead-lag structure. 

Here, we consider the synthetic time series where X(t) leads Y(t) in general, and thus values 

of X(t) can be used for predicting future values of Y(t). We use STS-3 and STS-4 for this test. 

This test examines the ability to obtain correct forecasts through the lead-lag path found by 

different algorithms empirically. Next, we give details of the STS used in this test. 

Synthetic Time Series 3 

The STS-3 is as follows: 



𝑌(𝑖) =

{
  
 

  
 
0.8𝑋(𝑖) + 𝜂,                         1 ⩽ 𝑖 ⩽ 50,

0.8𝑋(𝑖 − 5) + 𝜂,            50 ⩽ 𝑖 ⩽ 100,

0.8𝑋(𝑖 − 10) + 𝜂,          101 ⩽ 𝑖 ⩽ 150,

0.8𝑋(𝑖 − 15) + 𝜂,          151 ⩽ 𝑖 ⩽ 200,

0.8𝑋(𝑖 − 10) + 𝜂,             201 ⩽ 𝑖 ⩽ 250,

0.8𝑋(𝑖 − 5) + 𝜂,             251 ⩽ 𝑖 ⩽ 300,

 

where X(t) and 𝜉 are as described earlier. 

𝑋(𝑡1) = 𝑏𝑋(𝑡1 − 1) + 𝜉, 

we generate X and Y of size 300 with parameters a = 0.8, b = 0.7, and f = 0.5. 

We use the present values of X(t) to forecast the future values of Y(t). That is, at each time 

instance ‘i’, we perform a prediction of Y(i+1), at the time ‘i+1’, which is unknown at the 

time ‘i’. We first calculate the instantaneous lead-lag time τ(i) = max{[x(i)], 0} using the 

lead-lag structure x(i) determined using any of the methods. Here the operator [.], represents 

the integral part of the number. Now, we obtain the prediction for Y(i+1) as 

�̂�(𝑖 + 1) = 0.8𝑋(𝑖 + 1 − 𝜏(𝑖)) 

In this prediction set-up, we assume that we know the underlying model and the only 

challenge is to calibrate the lag.  

The predicted values �̂�(𝑖 + 1) are compared to actual values Y(i+1), using Mean Absolute 

Deviation (MAD) error. MAD is indicative of the maximum loss that will be obtained by 

financially ‘betting’ on the predicted �̂�(𝑖 + 1) values.  

 



 

Figure-3 The Lead-lag Paths:  The empirically determined path x(t) against actual 

theoretical path by different techniques on STS-3.  

 

  Model MAD 

1 AC 0.387261 

2 TOP, T=2 0.581824 

3 TOP, T=1 0.584978 

4 TOP, T=0.5 0.58857 

5 TOP, T=0.2 0.581142 

6 DTW 0.456977 

7 Actual path 0.349477 

Table 3: MAD error of the predicted values for different models in STS 3. 



Synthetic Time Series 4 

STS-4 is as follows: 

𝑌(𝑖) =

{
 
 
 
 
 
 

 
 
 
 
 
 
0.8𝑋(𝑖) + 𝜂,                               1 ⩽ 𝑖 ⩽ 25,

0.8𝑋(𝑖 − 5) + 𝜂,                   26 ⩽ 𝑖 ⩽ 50,

0.8𝑋(𝑖 − 10) + 𝜂,               51 ⩽ 𝑖 ⩽ 75,

0.8𝑋(𝑖 − 15) + 𝜂,               76 ⩽ 𝑖 ⩽ 100,

0.8𝑋(𝑖 − 20) + 𝜂,               101 ⩽ 𝑖 ⩽ 125,

0.8𝑋(𝑖 − 25) + 𝜂,               126 ⩽ 𝑖 ⩽ 150,

0.8𝑋(𝑖 − 30) + 𝜂,               151 ⩽ 𝑖 ⩽ 175,

0.8𝑋(𝑖 − 25) + 𝜂,               176 ⩽ 𝑖 ⩽ 200,

0.8𝑋(𝑖 − 20) + 𝜂,              201 ⩽ 𝑖 ⩽ 225,

0.8𝑋(𝑖 − 15) + 𝜂,              226 ⩽ 𝑖 ⩽ 250,

0.8𝑋(𝑖 − 10) + 𝜂,              251 ⩽ 𝑖 ⩽ 275,

0.8𝑋(𝑖 − 5) + 𝜂,               276 ⩽ 𝑖 ⩽ 300,

 

𝑋(𝑡1) = 𝑏𝑋(𝑡1 − 1) + 𝜉, 

we generate X and Y of size 300 with parameters a = 0.8, b = 0.7, and f = 0.5. 

 

Figure-4 The Lead-lag Paths:  The empirically determined path x(t) against actual 

theoretical path by different techniques on STS-4.  



 

  Model MAD 

1 AC 0.566154 

2 TOP, T=2 0.835862 

3 TOP, T=1 0.74202 

4 TOP, T=0.5 0.674671 

5 TOP, T=0.2 0.655157 

6 DTW 0.694811 

7 Actual path 0.358571 

Table 4: MAD error of the predicted values for different models on STS 4. 

 

Table 3 and 4 give the MAD error of the predictions �̂�(𝑖 + 1) against actual values Y(i+1) for 

the different models. We observe that in general, the performance of the AC method is the 

best except the hypothetical ‘Actual Path’ model. Thus, though TOP gives better results than 

a classic-correlation approach, as described in [8], but it performs poorly when compared 

with the AC approach. Also, DTW measure shows poor performance when compared with 

AC measure. 

6. Network-evolution in Foreign Exchange 

The present section uses the AC measure to analyse the network evolution of foreign 

exchange currency as the COVID-19 outbreak unfolds. 

Recently, several speculations have been raised regarding the status of the USA dollar (USD) 

as the world’s reserve currency. USD is soon losing its dominance as the world’s reserve 

currency. Many experts are of the view that USD may be replaced by a bucket comprising of 

RUB, CNY, EUR, oil-backed OPEC currencies etc. Also, due to the recent outbreak of 

COVID-19 in China, which has first and foremost severely affected the Chinese Stock 

market, one is tempted to study the topology of correlation networks among major currencies 

and topology evolution of Foreign Exchange (FX) market.  



Topology network analysis through Minimum Spanning Tree (MST) was first introduced in 

[21], to study the stock prices in financial markets. Jang et al. [22] used topology network 

analysis to efficiently illustrate the structural and market properties of the financial market. 

This tool has also been used for financial markets of different regions of the world [23]–[26]. 

The topology network analysis of the FX market is done in [27], where FX prices of 28 

currencies for a period of 12 years from 1990-2002 is analysed. They conclude that USD is 

the most leading currency in the world. Naylor et al. [28], also used this tool in the FX market 

and used NZD and USD as numeraries. They found that South-East Asian currencies strongly 

grouped together during the South-East Asian crisis period. In most of the past such analysis 

of network evolution, the correlation has been chosen as the preferred metric.  

Jin et al. [13] used DTW-measure for doing such analysis of foreign exchange data. DTW 

measure aligns the two time-series along time, so it can also be used in cases where the two 

time-series are not of the same length. Also, it is costly and difficult to obtain foreign 

exchange currency prices of many countries for a long duration, due to different operating 

hours of exchanges in different countries. DTW measure can be used even if the time-series 

contain several missing values, without any further data pre-processing step to remove or 

approximate the missing values. Thus, the DTW measure provides a good alternative to 

correlation measure as well-argued in [13]. The proposed AC measure also has all these 

advantages over correlation measure. Further, the AC measure is able to better incorporate 

the lead-lag relationship effect into its value than DTW measure. It chooses the path along 

which the correlation is maximum while incorporating any information regarding the lead-lag 

relationship. As described in [29], [30], the lead-lag relationship may be existing in the 

foreign exchange market too, so its effect should not be ignored entirely. The proposed AC 

measure, as we shall see later in the discussion section, mostly chooses the zero-lag path for 

most of the major currencies, and any deviation is very small. Thus, the proposed  AC 

measure maintains the interpretability of correlation measure while incorporating the effect of 

any lead-lag relationship. 

 

6.1 Data Description 

The data consists of foreign exchange currency prices of 29 prominent countries of the world 

against NZD (see Table 5). The data was sourced from Thomson Reuters Eikon platform. We 

choose NZD as the numeraire as it was preferred in [13], [28]. 



S.No. Currency 

Information 

Symbol 

1 UAE Dinar AED 

2 Australian Dollar AUD 

3 Brazilian Real BRL 

4 BurunFr BIF 

5 Canadian Dollar CAD 

6 CongoFr CDF 

7 SwissFr CHF 

8 JpYen JPY 

9 Euro EUR 

10 GBPound GBP 

11 New Zealand  USD 

12 IndiaRp INR 

13 KuwaitDn KWD 

14 KenyaSh KES 

15 SriLankaRp LKR 

16 MynmarKt MMK 

17 MauritiusRp MUR 

18 NigeriaNa NGN 

19 OmanRl OMR 

20 PakistRp PKR 

21 ChinaY CNY 

22 RussiaRub RUB 

23 Sing$ SGD 

24 ThaiBaht THB 

25 TurkLira TRY 

26 CFAFranc XAF 

27 SARand ZAR 

28 KoreaWon KRW 

29 UgandaSh UGX 

Table 5: 29 prominent currencies used in the analysis of FX market. 

 



The data which is at a frequency of 10-minute, starts at (17-12-2019 16:50) and ends at (16-

03-2020 21:00).  The time-points which had missing values for any of the currency were 

dropped from the whole data-set. This data-set can be divided into two parts based on the on-

set of the effect of the covid-19 pandemic on the Chinese stock market. The date 03-02-2020 

marks the start of the second data-set as on this date, Chinese stocks prices fell drastically, 

which lead to wiping off around 400 billion USD from the Chinese stock market. Thus, the 

first part of the data is from (17-12-2019 16:50) to (23-01-2020 21:10), while the second part 

of the data-set is from (03-02-2020 16:40) to (16-03-2020 21:00).   

 

6.2 Methodology 

The AC measure has been used for constructing the Minimum Spanning Tree (MST). MST 

requires the distance measure to be a metric, i.e.; it should satisfy the triangular inequality. As 

discussed earlier, the proposed AC is a loose-metric. The alignment path in the proposed 

measure causes the final distance measure to be slightly different from the Euclidean metric 

(see Section 4 ), which is not generally sufficient enough to violate the triangular inequality. 

The triangular inequality is more likely to be violated if all the three points lie near to a 

straight line. This is highly unlikely as the time-series are very high-dimensional points, and 

further, they have been normalized to lie on the unit circle, during the calculation of the 

loose-metric. Further, empirically we verify that all the triplets in the two distance matrices, 

corresponding to two parts of the data, satisfy the triangular inequality. Hence, as done 

similarly earlier [13], MST based network approach can still be used for the analysis. 

 

6.3 Evaluation Criteria 

Here, we describe the measures used for evaluating the MST, to study the FX market. We 

will be using four measures which are as follows. 

1) Mean dissimilarity measure 

It is defined as  

 

𝐿MDM =
2

𝑁(𝑁 − 1)
∑  

𝑁−1

𝑖=1

∑ 𝐷𝑖𝑗

𝑁

𝑗=𝑖+1

, 

 



where D is the NxN dissimilarity matrix, and N is the total number of currencies i.e., 29. 

The present paper calls the proposed AC measure as a dissimilarity measure as opposed 

to the term similarity measure (see [13]) as it increases with the increase in 

farness/dissimilarity between the two objects.  

 

 

2) Normalised Tree Length 

It is given by 

 

𝐿NTL =
1

𝑁 − 1
∑  

𝐷𝑖𝑗∈𝛩

𝐷𝑖𝑗, 

 

where 𝛩 is the set of edges and it contains the edges present in the MST. 

This measure has also been used in [22], to evaluate the MST. 

 

3) Characterised Path Length 

It is given by 

𝐿CPL =
1

𝑁(𝑁 − 1)
∑  

𝑖,𝑗:𝑖≠𝑗

𝑙𝑖𝑗, 

where 𝑙𝑖𝑗 is the sum of the weights in the shortest path from node i to node j. 

This measure gives the average minimum path distance between any two nodes in the 

MST [31]. 

 

4) Non-Leaf Nodes 

It is defined as the number of non-leaf nodes present in the graph. This measure helps 

to judge the loose degree of MST.  

 

 

 

 



6.4 Results  

Figure-5 Network 1 corresponding to data-set 1: The topological network of FX market 

during the pre-crisis period:  

 

 

 

 

 

 



Figure-6 Network-2 corresponding to data-set 2: The topological network of FX market 

during the crisis period: 

 

 

 

 

 

 



Figures 5 and 6 show the topological network of the FX market during the pre-crisis and the 

crisis period, respectively. In network 1, three clusters can be seen. The cluster centred 

around USD is the most prominent one. Another smaller cluster can be seen around the 

Singapore Dollar (SGD). SGD is closely linked with USD and is also attached to other major 

currencies like EUR, CNY, RUB, and INR. This point towards the importance of SGD. In 

earlier studies too [13], SGD has been pointed to be one of the central currencies in the 

world’s FX market. The third cluster is centred around Indian Rupee (INR). The cluster 

contains regional Asian currencies like INR, PKR and TRY.  The third cluster points towards 

the emergence of INR as another currency of regional importance. India is one of the fastest-

growing major economies in the world. The democratic regime in India has been slowly but 

steadily liberalizing the economy, which has eased the free flow of goods and services in the 

region.  

As the COVID-19 economic crises began unfolding in China, we see that USD again takes 

the central role in the FX currencies network of the world. The major currencies like CNY 

and INR, which were earlier linked to USD through SGD, now attach themselves directly to 

USD. A tiny cluster can be seen centred around Swiss Franc (CHF) consisting of major 

currencies like Euro (EUR), Japanese Yen (JPY) and Australian Dollar (AUD). CHF and 

EUR remain closely linked in both the networks.  

 

 

MST Evaluation Measure Network 1 Network 2 

Mean Dissimilarity Measure 0.962972 0.888494 

Normalised Tree Length 0.710805 0.575337 

Characterised Path Length 2.107511 1.805699 

Non-leaf Nodes 10 13 

 Table 6: Evaluation measures for the two topological networks. 

 

As observed earlier too [13], the mean dissimilarity measure decreases during the crisis (see 

Table 6). Essentially the same phenomenon is captured by the two other measures, i.e., NTL 

and CPL. This denotes that during the crises period, all currencies come closer and start 

fluctuating synchronously. That is, the movements in the leading currencies are quickly 

transferred to all the rest of the currencies.   



S.No. 
x-axis  

company 
y-axis  

company 

Align-Corr  
Loose 
Metric 

Aligned  
Correlation  

Correlation 
Lag=0 

Average 
Lead/lag 

Non-
zero 
 ratio 

1 USD LKR 0.249 0.969 0.969 0.000 0.000 

2 USD OMR 0.271 0.963 0.963 0.000 0.000 

3 SGD USD 0.356 0.937 0.937 0.000 0.000 

4 USD KWD 0.415 0.914 0.914 0.000 0.000 

5 USD NGN 0.462 0.893 0.893 0.000 0.000 

6 USD BIF 0.506 0.872 0.872 0.000 0.000 

7 INR SGD 0.554 0.846 0.846 0.000 0.000 

8 CNY SGD 0.565 0.841 0.829 1.392 0.083 

9 USD JPY 0.568 0.839 0.815 0.047 0.047 

10 CHF EUR 0.612 0.813 0.813 0.000 0.000 

11 USD CAD 0.649 0.789 0.759 0.166 0.087 

12 THB USD 0.671 0.775 0.617 0.002 0.089 

13 INR KRW 0.672 0.774 0.753 0.156 0.136 

14 AUD USD 0.694 0.759 0.733 -0.070 0.139 

15 SGD EUR 0.701 0.755 0.744 -0.028 0.032 

16 USD KES 0.767 0.706 0.706 0.000 0.000 

17 INR UGX 0.788 0.689 0.687 -0.034 0.034 

18 TRY INR 0.824 0.660 0.619 -0.266 0.192 

19 RUB SGD 0.836 0.650 0.601 -0.256 0.160 

20 INR PKR 0.846 0.642 0.604 0.687 0.190 

21 MMK BIF 0.883 0.610 0.465 3.151 0.260 

22 CNY MUR 0.883 0.610 0.428 -0.955 0.401 

23 CDF AUD 0.899 0.596 0.398 -0.680 0.394 

24 GBP MMK 0.923 0.576 0.501 -1.962 0.186 

25 ZAR USD 0.994 0.507 0.492 -0.100 0.100 

26 BRL ZAR 1.089 0.407 0.312 -7.301 0.388 

27 MMK AED 1.094 0.403 0.261 0.200 0.230 

28 KRW XAF 1.132 0.359 0.096 2.621 0.744 

Table 7(a) 

 

 

 

 

 

 



S.No. 
x-axis  

company 
y-axis  

company 

Align-Corr  
Loose 
Metric 

Aligned  
Correlation  

Correlation 
Lag=0 

Average 
Lead/lag 

Non-
zero  
ratio 

1 USD OMR 0.167 0.986 0.986 0.000 0.000 

2 USD LKR 0.197 0.981 0.981 0.000 0.000 

3 KWD USD 0.258 0.967 0.967 0.000 0.000 

4 NGN USD 0.294 0.957 0.957 0.000 0.000 

5 CHF EUR 0.311 0.952 0.952 0.000 0.000 

6 BIF USD 0.356 0.937 0.937 0.000 0.000 

7 UGX USD 0.357 0.936 0.936 0.000 0.000 

8 USD AUD 0.389 0.924 0.924 0.000 0.000 

9 USD KES 0.395 0.922 0.922 0.000 0.000 

10 INR USD 0.447 0.900 0.900 0.000 0.000 

11 SGD USD 0.496 0.877 0.877 0.000 0.000 

12 USD CDF 0.510 0.870 0.869 0.035 0.035 

13 USD CNY 0.518 0.866 0.866 0.000 0.000 

14 THB SGD 0.527 0.861 0.841 0.447 0.115 

15 JPY CHF 0.557 0.845 0.835 0.075 0.038 

16 AUD CHF 0.620 0.808 0.788 -0.281 0.070 

17 USD CAD 0.655 0.786 0.786 0.000 0.000 

18 TRY UGX 0.656 0.785 0.782 0.000 0.000 

19 LKR GBP 0.662 0.781 0.741 0.065 0.085 

20 THB KRW 0.670 0.775 0.758 -0.177 0.142 

21 USD MMK 0.693 0.760 0.731 -0.008 0.075 

22 CAD PKR 0.763 0.709 0.685 0.470 0.249 

23 ZAR RUB 0.780 0.696 0.694 0.069 0.069 

24 RUB CAD 0.803 0.678 0.451 -6.133 0.308 

25 KWD MUR 0.806 0.675 0.613 0.275 0.227 

26 BRL ZAR 0.942 0.556 0.502 1.192 0.553 

27 XAF EUR 1.137 0.357 0.249 -25.594 0.816 

28 AED CDF 1.145 0.345 0.132 -18.321 0.837 

Table 7(b) 

Table-7(a)(b) Numerical Results: Table 7(a) abd 7(b) give certain numerical values 

corresponding to topological networks of data 1 and data 2, respectively. ‘Align-Corr Loose 

Metric’ gives the value of Aligned correlation loose metric or the aligned correlation 

measure. Aligned correlation gives the correlation along the aligned path. This value can be 

similarly interpreted as we interpret the correlation measure. Notice that its value is always 

greater than the value of correlation measure, as was designed in the proposed technique. 

‘Average Lead/lag’ is the average value of lead-lag along the aligned path. ‘Non-zero ratio’ is 

the ratio of points along the lead-lag path which are different from zero to the total points of 

the lead-lag path. 



 

As seen in Table 7, the optimal lead-lag path is mostly equal to zero. This is clearly observed 

in pairs with the lowest distance measure. The lead-lag path sometimes deviates from zero, 

but the deviations are minor and very rare. In the last few pairs, though the lead-lag path is 

different from zero, but the correlation values are close to zero. This supports the previous 

study [30] that it is hard for any significant lead-lag relationship to exist at a frequency of 1 

minute or lower in FX markets. But still, the proposed measure takes care of minor 

corrections, which may have inadvertently arisen into the market prices due to reasons like 

delay in information-transmission or human-errors.  

 

 

7. Discussion 
There exist several studies that can be used for further extending the analysis of correlation-

based topological networks. These studies try to overcome the drawback of MST, i.e., loss of 

information. These studies include [32]–[35], which create graphs which retain more 

information in them than MST. Since all these techniques employ correlation coefficient, thus 

there is a possibility of extending the present research in the direction of these techniques. 

Other possible areas, where this research may be useful is in the analysis of tick by tick data 

like in [36]. Tick by tick data needs to be aligned in time, which is done by the proposed 

measure. Specifically, in the FX market, where there is a vast difference in the liquidity and 

volumes of different currencies, this time alignment becomes very important. Also, the lead-

lag relationship exists substantially in tick-by-tick data. Thus, it will be interesting to see how 

this research extends on tick-by-tick data. 

The proposed technique can also be used in the analysis of the lead-lag relationship of certain 

other important time-series like done in [10], [11], [20]. The proposed technique, which helps 

identify the lead-lag relationship, may be extended to help in profitable pairs-trading like 

successfully accomplished in [37], [38]. It can be used for improving systems which use lead-

lag information to achieve better forecasts like [39], [40]. 

DP is a good tool to solve computationally demanding problems [17]. DP based algorithms 

are embedded in the chips of computers for computation purposes [41]. Thus, much effort has 

been put in to reduce the time-complexity of this algorithm further, and now an algorithm is 



available, which can crudely approximate DTW measure in linear time [42]. The present 

research can be extended to incorporate these studies. 

 

 

8. Conclusion 
DTW and correlation are two of the most frequently used measures in Temporal data-mining 

literature, and the proposed measure combines them effectively to achieve better task-

oriented results. The proposed technique better identifies the lead-lag relationship existing 

between two time-series. The technique is compared to other models on synthetic time-series 

data, based on significance and forecast-ability. In terms of significance, the AC measure 

always finds a statistically-significant path in all the synthetic time-series. In terms of 

forecast-ability, the forecasts obtained through the proposed technique are closest to the 

target values. Then we use this technique to explore the topology evolution of 29 prominent 

FX currencies, as the COVID-19 epidemic unfolds itself. It is observed that after the 

beginning of the pandemic, USA Dollar assumes a more central position in the world FX 

market. All the currencies become more closely inter-linked on an average during the crisis 

period. 
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