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The financial health of an oil refinery greatly depends on its refining margin or the difference between the prices
of its refined products (typically, gasoline and heating oil) and the cost of crude oil. The refinery may hedge
against the downside risk of unfavorable price movements using crude oil, gasoline, and heating oil futures.
This paper examines the use of a vine copula approach to estimate multiproduct hedge ratios that minimize
the downside risk of the refinery. The advantage of the vine copula approach is that it allows us to capture impor-
tant characteristics of petroleum price changes, including skewness and fat-tailedness in the marginal distribu-
tions of individual price change series as well as heterogeneous (tail) dependence patterns between different
pairs of price changes. The out-of-sample hedging effectiveness of two popular classes of vine copula models –
canonical (C-) and drawable (D-) vine copula models – are evaluated and compared with that of the widely
used nonparametric method and three standard multivariate copula models. The empirical results reveal that
the D-vine copula model is a good and safe choice in managing the downside risk of the refinery.
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1. Introduction

A typical oil refinery purchases crude oil and sells refined products
(e.g., gasoline and heating oil). Its refining or profit margin is then relat-
ed to the spread between the prices of refined products and the price of
crude oil. Thus, the refinery faces downside risk in both crude oil and re-
finedproductmarkets. As can be seen from Fig. 1, since late 2005, a large
decline in the refining margin (due to the simultaneous adverse move-
ments in the petroleum prices) has appeared to be quite common. The
risk of losses because of unfavorable petroleum pricemovements clear-
ly signifies the importance of hedging the joint downside risk of input
and output prices. Accordingly, the goal of this paper is to develop a
multiproduct futures hedging model that minimizes the downside risk
of the refinery.1

Solving for the minimum-downside risk hedge ratios requires the
estimation of the entire joint distribution of spot and futures price
n).
tures contracts to hedge expo-
crude oil, gasoline, and heating
ompany's exposures to adverse
g oil spot markets. In contrast,
edge a spot position in a partic-
movements. For single-product hedging, the standard practice is to
rely on a nonparametric method – in particular, the empirical distribu-
tion or historical simulation method (Lien and Tse, 2000; Demirer and
Lien, 2003; Harris and Shen, 2006). This approach is very flexible and
could be easily extended to the case of multiproduct hedging. However,
it often produces inaccurate estimates of extreme quantiles due to its
heavy dependence on historical data (McNeil and Frey, 2000; Pritsker,
2006; Cao et al., 2010). Recently, Barbi and Romagnoli (2014) propose
a standard bivariate Archimedean copula model for estimating
downside-risk hedge ratios in a single-product setting. They show that
their proposed method produces greater downside risk reductions
than the nonparametric approach. The superior performance is likely
due to the model's ability to capture important characteristics of asset
returns, including skewness and fat-tailedness in the distributions of in-
dividual asset returns as well as their nonlinear and asymmetric depen-
dence relationship. These characteristics are also found in crude oil and
refined product markets (Hammoudeh et al., 2003; Grégoire et al.,
2008; Chang et al., 2010; Ji and Fan, 2011; Serra and Gil, 2012; Aloui
et al., 2014).

While hedgingmodels that incorporate these characteristics (in par-
ticular, the nonlinear and asymmetric dependence relationship be-
tween asset returns) lead to better hedging outcomes, they have been
limited to the case of single-asset hedging. This is because, when dealing
with more than two random variables (i.e., when hedging more than
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3 The standard Clayton copula model is a commonly used Archimedean copula model

Fig. 1.Weekly crude oil spot prices, gasoline spot prices, heating oil spot prices, and 3:2:1
refining margin (unhedged). Notes: The 3:2:1 refining margin approximates the
profitability of a typical U.S. refinery which is able to convert 3 barrels of crude oil to 2
barrels of gasoline and 1 barrel of heating oil.
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one asset), standardmultivariate copulas are lessflexible as they restrict
the degree of tail dependence (or comovements during extrememarket
conditions) between all pairs of variables to be identical. For example,
suppose a standard multivariate Archimedean copula is used to model
the dependence structure of crude oil, gasoline, and heating oil returns.
This means that the degree of tail dependence between crude oil and
gasoline returns is assumed to be the same as that between crude oil
and heating oil returns and also the same as that between gasoline
and heating oil returns. This is clearly too restrictive. Instead of relying
on the standard multivariate copulas, one could model the dependence
relationship of multiple variables using more advanced multivariate
copulas (known as “vine copulas”).

The vine copula model, initially introduced by Joe (1996) and first
estimated by Kurowicka and Cooke (2006), is a relatively new class of
multivariate copula models. Similar to the standard multivariate copula
models (e.g., the standard Gaussian, Student's t, and Archimedean cop-
ulamodels), the vine copulamodel is able to account for both skewness
and fat-tailedness in the univariate marginal distributions. This is be-
cause themodel allows us to separate themodeling of themarginal dis-
tributions from the dependence structure that links these marginal
distributions to form a joint distribution. However, while the standard
copulamodels require all pairs of variables to have the same tail depen-
dence patterns, the vine copulamodel permits different tail dependence
specifications for different pairs of variables (Czado, 2010; Brechmann
and Schepsmeier, 2013). Accordingly, this presents an important oppor-
tunity for developing a newmultiproduct hedgingmodel that is able to
capture the potentially complex (nonlinear, asymmetric, and heteroge-
neous) dependence patterns among multiple petroleum markets. As
such, we propose to combine a vine copula model with Monte Carlo
simulation to construct the joint distribution of spot and futures price
changes.2

In particular, the proposed hedging model builds the joint distribu-
tion of multiple variables using an empirical distribution function for
the marginal distributions and two different classes of vine copulas –
the canonical (C-) and drawable (D-) vine copulas (Kurowicka and
Cooke, 2005) – for the dependence structure. The C– and D-vine copula
models are estimated using a sequential maximum likelihood procedure
proposed by Aas et al. (2009), and the joint distribution is generated
usingMonte Carlo simulation. The optimal hedge ratios are then derived
through a numerical optimizationmethod for four alternative downside-
2 Following Haigh and Holt (2002) and Alexander et al. (2013), our hedging analysis is
based on the price changes. The reasons for why the price changes should be used instead
of the log returns or percentage returns are discussed in Alexander et al. (2013).
risk hedging objectives: the minimization of Semivariance (SV), Lower
Partial Moment (LPM), Value at Risk (VaR), and Expected Shortfall (ES)
of the refinery's hedged margin. The usefulness of the proposed model
is evaluated through an extensive out-of-sample hedging exercise. Its
performance is also comparedwith that of thewidely used nonparamet-
ric method and three standard multivariate copula models (namely, the
standard Gaussian, Student's t, and Clayton copula models).3

This paper contributes to the literature by estimating multiproduct
hedge ratios for oil refineries in a downside-risk framework. Previous
studies in this area have mainly focused on deriving either minimum-
variance or mean-variance hedge ratios.4 However, it is well known
that the variance is not a proper risk measure when asset returns are
non-normal because businesses and investors are only concerned with
downside risks but not upside risks (Lien and Tse, 1998; Unser, 2000;
Veld and Veld-Merkoulova, 2008). Despite the awareness of the non-
normality of asset returns, studies on downside risk hedging in a multi-
product setting are still scarce.5 One of the few studies is Power and
Vedenov (2010) who estimate the minimum-LPM hedge ratios for a
feedlot operator (whose profit depends on the prices of corn, feeder cat-
tle, and fed cattle) and compare them with the minimum-variance
hedge ratios. Another is Awudu et al. (2016) who consider a hedging
problem of a corn-based ethanol producer and derive the mean-VaR
hedge ratios based on two distributional specifications: multivariate
normal and Gaussian copula distributions. The other two studies are
Chen et al. (2016) and Liu et al. (2017); the former derives mean-VaR
hedge ratios for grain processors using standard multivariate copulas,
whereas the later estimates minimum-LPM hedge ratios for oil refiner-
ies. This paper also develops a multiproduct hedging model in a
downside-risk framework. Similar to Liu et al. (2017), we focus on the
oil refining industry. However, we consider four (not just one) alterna-
tivemeasures of downside risk. This allows us to examine the sensitivity
of the results vis-à-vis the downside riskmeasures used. In addition, un-
like other studies, this paper analyzes the usefulness of the proposed
model through an extensive out-of-sample hedging exercise. The out-
of-sample performance of different hedging objectives for the best
performing hedging model is also evaluated using various hedging ef-
fectiveness measures. Moreover, while the vine copula methodology
has been applied to study the dependence structures of financial and
assetmarkets (Allen et al., 2013; Zhang, 2014; Zimmer, 2015), to forecast
VaR and ES of financial portfolios (Weiß and Supper, 2013; Brechmann
et al., 2014; Zhang et al., 2014), and to analyze asset allocation problems
(Low et al., 2013; Riccetti, 2013; Bekiros et al., 2015), this is the first
study to examine the use of vine copula approach in the context of hedg-
ing downside risk. Our findings would benefit oil refineries (as well as
other multiproduct hedgers), and provide a richer understanding of
the usefulness of vine copulas in energy risk management.

The remainder of this paper is organized as follows. Section 2 de-
scribes amethodology. Section 3 presents data and preliminary analysis.
Section 4 reports and discusses the empirical results. Section 5 con-
cludes the paper.
2. Methodology

2.1. Oil Refinery's hedging problem

In the empirical analysis, the stylized problemof a typical oil refinery
whose profit depends on the refiningmargin is considered.We focus on
a 3:2:1 refiningmargin,which approximates the profitability of a typical
due to its ability to capture lower tail dependence among variables.
4 See, for example, Haigh andHolt (2002), Ji and Fan (2011), andAlexander et al. (2013)

for previous studies on multiproduct hedging of an oil refinery.
5 Non-normality of petroleum prices and returns are documented inmany studies such

as Hammoudeh et al. (2003), Chang et al. (2010), Ji and Fan (2011).



6 We refer the reader to Joe (1997) andNelsen (2006) for details on construction, prop-
erties, and applications of copulas.
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U.S. refinery that converts 3 barrels of crude oil to 2 barrels of gasoline
and 1 barrel of heating oil. The refinery may hedge its exposures to
downside risk in the three petroleum markets using crude oil, gasoline
and heating oil futures.

Following Haigh and Holt (2002), we assume that the refinery takes
futures positions in period t−1 (long crude oil futures, and short gaso-
line and heating oil futures) and liquidates all futures positions in period
t (when the purchase of crude oil and the sales of refined products
occur). Accordingly, the refinery's hedged margin (or profit per barrel)
at time t is:

πt bð Þ ¼ −SCt þ 2
3
SGt þ 1

3
SHt þ bC FCt −FCt−1

� �
þ 2
3
bG FGt−1−FGt

� �

þ 1
3
bH FHt−1−FHt

� �
ð1Þ

where superscripts and subscripts C, G and H refer to crude oil, gasoline
and heating oil, respectively; St and Ft denote spot and futures prices at
time t, respectively; and b={bC,bG,bH} are hedge ratios determined at
time t−1. For simplicity, we assume that other costs are deterministic
and thus do not affect hedging decisions. Prices at time t−1 are
known at time t, whereas prices at time t are random (stochastic)
variables.

The hedged margin in Eq. (1) can be rewritten in terms of spot and
futures price changes:

πt bð Þ ¼ −ΔSCt þ 2
3
ΔSGt þ 1

3
ΔSHt þ bCΔFCt −

2
3
bGΔFGt −

1
3
bHΔFHt

þ SCSt−1 ð2Þ

where ΔSt=St−St−1 denotes the changes in spot prices; ΔFt=Ft−
Ft−1 denotes the changes in futures prices; and SCSt−1 ¼ −SCt−1 þ 2

3 S
G
t−1 þ

1
3 S

H
t−1. The last term in Eq. (2), St−1

CS , is known at the time the hedge is
initiated, and hence does not cause a variation in the refiner's profit
margin at time t. Therefore, similar to Alexander et al. (2013), we
focus on hedging the risky portion of the hedged margin at time t, de-
noted by:

yt bð Þ ¼ −ΔSCt þ 2
3
ΔSGt þ 1

3
ΔSHt þ bCΔFCt −

2
3
bGΔFGt −

1
3
bHΔFHt ð3Þ

where yt(b)=πt(b)−St−1
CS . In Alexander et al. (2013), yt(b) is known as

the hedged (portfolio) profits and losses (P&Ls).
The refinery's objective is then to select the optimal hedge ratios b∗

that minimize the downside risk of the hedged P&Ls. Mathematically,

b� ¼ arg min
b

Risk yt bð Þð Þ ð4Þ

where Risk(yt(b)) is the measure of downside risk defined on yt(b). In
this study, we consider four standard measures of downside risk: the
SV, LPM, VaR, and ES, which we describe in more detail in the next
section.

2.2. Downside risk measures

The first downside-risk measure considered is the Semivariance
(SV). The SV, introduced in Roy (1952), measures the variability of
P&Ls that fall below the target level. It is defined as:

SV ¼
Z c

−∞
c−ytð Þ2dF ytð Þ ð5Þ

where c is the target P&L; yt is the random P&L; and F is the distribu-
tion function of yt. As the basic goal of hedging is to avoid loss (i.e., yt
being less than zero), we select the target P&L equal to zero (that is,
c=0).
The second measure is the nth-order lower partial moment (LPMn).
The LPMn, proposed by Fishburn (1977), is a generalization of the SV,
and is defined as:

LPMn ¼
Z c

−∞
c−ytð ÞndF ytð Þ ð6Þ

where c is the target P&L; nN0 is the level of hedger's risk tolerance; yt is
the random P&L, and F is the distribution function of yt. Fishburn (1977)
shows that 0bnb1 reflects risk-seeking behavior, n=1 captures risk-
neutral behavior, and nN1 corresponds to risk-averse behavior. For
the similar reason as above, we assume c=0. In addition, we consider
n=3 to focus on a risk-averse hedger.

The third measure is Value-at-Risk (VaR). The VaR measures the
largest potential loss over a certain period of time (for this study, over
one week) for a particular confidence level (p). More generally, VaR at
the confidence level p is given by:

VaRp ¼ −F−1 1−pð Þ ð7Þ

where F is the distribution of yt. In this study, the VaR is calculated for
three different confidence levels: p=0.90, 0.95 and 0.99.

The forth riskmeasure is Expected Shortfall (ES). Itmeasures the ex-
pected loss given that losses exceed the VaR. The ES at the confidence
level p is given as:

ESp ¼ −E ytjyt ≤−VaRp
� � ð8Þ

Similar to the VaR, the ES is calculated for p= 0.90, 0.95 and 0.99.

2.3. Empirical procedure

Solving for the minimum-SV, minimum-LPM, minimum-VaR, and
minimum-ES hedge ratios is technically very demanding. This is be-
cause the calculation of SV, LPM, VaR, and ES depends on the entire
joint distribution of the six random variables in Eq. (3). In this study,
we use a multivariate copula approach to model the joint distribution
of random variables.

The copula approach has been widely used in a variety of empirical
work to model joint distributions of random variables.6 The models
are essentially based on the Sklar's theorem (Sklar, 1959), which states
that any n-dimensional multivariate distribution can be decomposed
into n individual marginal distributions and a copula that describes
the dependence structure. More formally,

F x1; x2…; xnð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ;…; Fn xnð Þð Þ ð9Þ

where F is a joint distribution of x1 ,x2 ,… ,xnwithmarginal distributions
Fi=Fi(xi) for i=1,2,… ,n, and C : [0,1]n→[0,1] is a copula function. Sup-
pose that Fi and C are differentiable. Then, the joint density function is
defined as:

f x1; x2…; xnð Þ ¼ f 1 x1ð Þ f 2 x2ð Þ⋯ f n xnð Þ c F1 x1ð Þ; F2 x2ð Þ;…; Fn xnð Þð Þ½ � ð10Þ

where fi= fi(xi) is the (unconditional) density of Fi and c is the density of
the copula.

The most important practical implication of the decompositions in
Eqs. (9) and (10) is that, to construct a joint distribution, we can sepa-
rate the modeling of the n marginal distributions from the modeling
of the dependence structure. For the marginal distributions, they can
be modeled parametrically or nonparametrically. Given a rich variety
of univariatemarginal distributions available, features such as skewness
and fat-tailedness in eachmarginal distribution of pricemovements can
be captured easily. As for the choice of copula families or dependence



7 We refer the reader to Bedford and Cooke (2001), Kurowicka and Cooke (2005), and
Aas et al. (2009) for details of these vine copulas.
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structures, a natural starting point might be any standard Archimedean
copulas (typically, a standard Clayton copula) as they allow us to cap-
ture nonlinear and asymmetric dependence between random variables.
However, the standard Archimedean copulas use only one or two pa-
rameters to describe the dependence structure among the n random
variables and thus may not be able to adequately capture the depen-
dence structure when n≥3. For instance, if a standard Clayton copula
is used to model the dependence structure of the six random variables
in Eq. (3), all possible pairs of random variables are assumed to have
the same degree of comovements during both normal and extreme
market conditions. This is very restrictive.

As a result, a common approach to building a joint distribution of
more than two variables is to restrict attention to the elliptical copulas
such as standard Gaussian and Student's t copulas. This is because, at
least, standard Gaussian and Student's t copulas permit different pairs
of variables to have different degree of comovements during normal
market conditions. Nevertheless, they still restrict the tail dependence
parameters (i.e., the degree of comovements during extreme market
conditions) between all pairs of variables to be identical. In addition, un-
like standard Archimedean copulas, they assume a symmetric tail de-
pendence structure. That is, they require the degree of comovements
during extreme market upturns to be the same as that during extreme
market downturns.

We could, however, go beyond these standard multivariate copulas
by using a vine copula approach, which is a more advanced and flexible
alternative method of modeling the dependence structure (Joe, 1996;
Bedford and Cooke, 2001; Aas et al., 2009). The key advantage of this ap-
proach over the standard copula approach is that it allows different
pairs of variables to have heterogeneous dependence patterns during
both normal and extreme market conditions. It can also account for
nonlinearity and asymmetry in the dependence structure of each pair
of variables. Therefore, a potentially complex (nonlinear, asymmetric,
and heterogeneous) dependence relationship amongmultiple variables
can be modeled.

Technically, a vine copula is a multivariate copula that is generated
via a cascade of standard (conditional) bivariate copulas (called pair-
copulas) and marginal distribution functions. In other words, the vine
copula, which describes the dependence among multiple variables, is
constructed by mixing a group of different standard bivariate copulas
with each bivariate copula characterizing the dependence pattern of
each pair of variables. The idea of the vine copula construction (also
known as the pair-copula construction) can be easily illustrated using
a three-dimensional case. Without loss of generality, the multivariate
density of x1, x2 and x3 can be represented as a product of unconditional
and conditional densities:

f x1; x2; x3ð Þ ¼ f 1 x1ð Þ f 2j1 x2jx1ð Þ f 3j1;2 x3jx1; x2ð Þ ð11Þ

where fi ∣j ,k= fi ∣j ,k(xi |xj,xk). Using the Sklar's theorem in (10), the first
conditional density in (11) can be written as:

f 2j1 x2jx1ð Þ ¼ f x1; x2ð Þ
f 1 x1ð Þ ¼ c1;2 F1 x1ð Þ; F2 x2ð Þð Þ f 2 x2ð Þ ð12Þ

where c1,2 is a copula function linking x1 and x2. In a similarmanner, the
second conditional density can be written as:

f 3j1;2 x3jx1; x2ð Þ ¼ f 2;3j1 x2; x3jx1ð Þ
f 2j1 x2jx1ð Þ

¼ c2;3j1 F2j1 x2jx1ð Þ; F3j1 x3jx1ð Þ� �
f 3j1 x3jx1ð Þ

ð13Þ

where f3∣1(x3|x1)=c1,3(F1(x1),F3(x3))f3(x3). Accordingly, the joint den-
sity function in (11) can be decomposed further as

f x1; x2; x3ð Þ ¼ f 1 f 2 f 3c1;2 F1; F2ð Þc1;3 F1; F3ð Þc2;3j1 F2j1; F3j1
� � ð14Þ
with the conditional distribution functions Fi∣j(xi |xj) defined as:

F xjvð Þ ¼ ∂Cx;v j jv− j
F xjv− j
� �

; F vjjv− j
� �� �

∂F vjjv− j
� � ð15Þ

where Cx ,vj ∣v−j
is a conditional bivariate copula and v−j is the vector v

with the component vj removed (Joe, 1997). That is, the joint density
function can be expressed in terms of individual marginal distributions
and a group of bivariate copulas – collectively referred to as a vine copu-
la. Because each of the bivariate copulas (two of them are unconditional,
c1,2(F1,F2) and c1,3(F1,F3), and one is conditional on x1, c2,3∣1(F2∣1,F3∣1))
that collectively forms a vine copula does not have to come from the
same copula family, the vine copula approach allows for different types
of the dependence patterns for each pair of variables. This provides an
enormous flexibility in modeling high-dimensional dependence struc-
ture and could possibly lead to better hedging outcomes.

The decomposition in Eq. (14) is not unique. More specifically,
f(x1,x2,x3) can also be represented as f1f2f3c1,3c2,3c1,2 ∣3 or as
f1f2f3c1,2c2,3c1,3∣2. Consequently, a difficulty lies in selecting a vine cop-
ula structure – the specification indicating which pair-copulas are con-
ditional on which other variables – from a large number of possible
vine copula constructions. In this study,we consider twopopular classes
of vine copula structures: canonical (C-) and drawable (D-) vine struc-
tures (Kurowicka and Cooke, 2005). In essence, the C- and D-vine cop-
ula structures for n variables (x1,x2,…,xn) can be represented
graphically as a sequence of (n−1) connected trees or vine trees
(T1 ,T2 ,… ,Tn−1).7 Fig. 2 (upper panel) represents a C-vine copula struc-
ture for six variables. In every tree of theC-vine copula structure, there is
one variable that is connected to all the other variables. More specifical-
ly, tree T1 indicates that the dependence patterns between x1 and all the
other variables (x2 ,x3 ,x4 ,x5) are modeled by unconditional pair-
copulas. Tree T2 indicates that the dependence patterns between x2
and all other variables (except x1) are modeled by conditional pair-
copulas with x1 as a conditioning variable. Tree T3 indicates that the de-
pendence patterns between x3 and all the other variables (except x1 and
x2) aremodeled by conditional pair-copulaswith x1 and x2 as condition-
ing variables, and so on. Accordingly, the joint density function associat-
ed with the six-dimensional C-vine copula structure is given by:

f x1; x2;…; x6ð Þ
¼ f 1 f 2 f 3 f 4 f 5 f 6c1;2c1;3c1;4c1;5c1;6c2;3j1c2;4j1c2;5j1c2;6j1c3;4j1;2c3;5j1;2c3;6j1;2
c4;5j1;2;3c4;6j1;2;3c5;6j1;2;3;4

ð16Þ

Fig. 2 (lower panel) represents a D-vine copula structure for six var-
iables. In every tree of the D-vine copula structure, each variable is con-
nected to at most two other variables. Specifically, tree T1 indicates that
the dependence patterns between any adjacent variables (x1 and x2; x2
and x3; x3 and x4; x4 and x5; and x5 and x6) aremodeled by unconditional
pair-copulas. Tree T2 suggests modeling the dependence pattern be-
tween x1 and x3 conditional on x2, x2 and x4 conditional on x3, and so
on. In the samemanner, the dependence pattern between any two var-
iables xi and xj in the remaining trees is modeled conditional on the var-
iables that lie between the variables xi and xj in tree T1 as conditioning
variables. For example, the dependence pattern between x1 and x4 is
modeled conditional on x2 and x3 (refer to T3). Accordingly, the joint
density function associated with the six-dimensional D-vine copula is
given by:

f x1; x2;…; x6ð Þ
¼ f 1 f 2 f 3 f 4 f 5 f 6c1;2c2;3c3;4c4;5c5;6c1;3j2c2;4j3c3;5j4c4;6j5c1;4j2;3c2;5j3;4c3;6j4;5
c1;5j2;3;4c2;6j3;4;5c1;6j2;3;4;5 ð17Þ



Fig. 2. Six-dimensional C- (upper panel) and D-vine (lower panel) copula structures.

497K. Sukcharoen, D.J. Leatham / Energy Economics 66 (2017) 493–507
The procedure for fitting a joint distribution function using the C- or
D-vine copula can be briefly summarized in four steps. Thefirst step is to
model the marginal distributions. For each price change series, we esti-
mate its marginal distribution using an empirical distribution function
and then transform the price change series into copula data (that is, a
standard uniform variable).8 The second step is to select an order of
the variables for the C- or D-vine copula structures. For theC-vine copula
8 It should be noted that themarginal distribution could also be estimated using a para-
metric estimation method. In this study, each marginal distribution is estimated
nonparametrically in order to allow for the univariate asymmetry as well as to avoid the
possible misspecification of parametric distributions (Charpentier et al., 2007). Similar to
Bouyé and Salmon (2009), Power and Vedenov (2010), and Barbi and Romagnoli
(2014), the marginal distributions are estimated using the unfiltered data. Other studies
first apply a GARCH filter to the original data and then model the dependence structure
of the filtered series (see, for example, Hsu et al., 2008; Lee, 2009; Sukcharoen et al.,
2015 for studies on copula-based hedge ratios). An advantage of using the unfiltered data
is that it allowsus to avoid thefirst-stage estimation errors– the errors in the estimation of
conditional mean and variancemodels, which could lead to the copula approach being in-
ferior to the nonparametric approach that constructs the distribution functions of random
variables directly from the unfiltered data.
structure, we follow Czado et al. (2012) and select the variable that has
the highest degree of association with all the other variables as the first
variable. Thedegree of association ismeasured by summing the absolute
values of pairwise Kendall's tau coefficients Θτ

i =∑j=1,i≠ j
n ∣τi ,j ∣ for each

variable i. The variable that has the highest degree of association with
the remainder of the variables is then selected as the second variables,
and so on. For the D-vine copula structure, we follow Dißmann et al.
(2013) and order the variables such that the sum of the absolute values
of pairwise Kendall's tau coefficients Θτ=∑i=1

n−1 ∣τi ,i+1 ∣ is maximized.
The third step is to choose a bivariate copula for each pair-copula. This
study uses a sequential estimation approach proposed by Aas et al.
(2009) with the Akaike Information Criterion (AIC) as a selection crite-
rion. We consider 31 different parametric bivariate copulas.9 Then, the
9 This is the maximal list of the R package: CDVine (Brechmann and Schepsmeier,
2013). The 31 bivariate copulas include Gaussian, Student's t, Clayton, Gumbel, Frank,
Joe, BB1 (Clayton-Gumbel), BB6 (Joe-Gumbel), BB7 (Joe-Clayton), BB8 (Joe-Frank) copulas
and the rotated versions (90, 180 and 270 degrees) of Clayton, Gumbel, Joe, BB1, BB6, BB7,
and BB8 copulas.



Table 1
Summary statistics and correlation analysis on weekly changes in spot and futures prices.

ΔSC ΔSG ΔSH ΔFC ΔFG ΔFH

Panel A: Summary statistics
Mean 0.0123 0.0221 0.0141 −0.0045 0.1284 0.0196
Min −14.5600 −44.3184 −14.7756 −14.4100 −13.8600 −14.7840
Max 14.1300 57.4560 18.7320 14.0800 28.9380 18.0180
SD 2.3879 3.6183 2.8382 2.3060 2.9175 2.6700
Skew −0.1879 1.2066 0.0824 −0.3204 0.4437 −0.0134
Ex. Kurt. 5.1967 57.0524 6.0686 5.4245 8.3822 5.6270
J-B 1718.5* 206,140.0* 2332.6* 1888.6* 4495.1* 2004.2*
ADF −27.2498* −29.1573* −28.1465* −25.9375* −26.6913* −26.7788*

Panel B: Correlation matrix
ΔSC 1.0000 0.5849 0.7700 0.9775 0.7338 0.8315
ΔSG 1.0000 0.6066 0.5995 0.8822 0.6443
ΔSH 1.0000 0.7871 0.7210 0.9483
ΔFC 1.0000 0.7496 0.8527
ΔFG 1.0000 0.7819
ΔFH 1.0000

Notes: Summary statistics (Panel A) and correlationmatrix (Panel B) are presented for the
weekly changes in the spot and futures prices for the period January 7, 1987 to December
30, 2015. The total number of observations is 1513 for each price change series. ΔSC, ΔSG,
ΔSH,ΔFC,ΔFG andΔFH denote the changes in crude oil spot, gasoline spot, heating oil spot,
crude oil futures, gasoline futures, and heating oil futures prices, respectively. SD, Skew,
and Ex. Kurt. represent sample standard deviation, skewness, and kurtosis, respectively.
J-B is the Jarque-Bera test statistic, where * denotes the rejection of the null hypothesis
of normality at the 1% significance level. ADF is the Augmented Dickey-Fuller test statistic,
where * denotes the rejection of the null hypothesis that the respective price change series
follows a unit root process at the 1% significance level.
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final step is to estimate all copula parameters. The estimation is done se-
quentially starting from the first vine tree, where themaximum pseudo
likelihood method described in Genest et al. (1995) is employed.

After obtaining all necessary parameters, we compute the four
downside risk measures using a Monte Carlo simulation method.
More specifically, the estimated vine copula densities are used
to generate 10,000 draws of the six standard uniform variables,
{u1 , s,u2 , s,…,u6 , s}s=1

10,000. For each variable i, these draws are converted
to draws from the joint distribution of price changes using its inverse dis-
tribution function of the price change series. These simulated spot and fu-
tures price changes are then used to compute the refiner's hedged P&Ls in
Eq. (3). For each hedging objective, the optimal hedge ratios are then de-
rived by solving the minimization problems in Eq. (4) numerically using
the Nelder-Mead direct search method (Nelder and Mead, 1965).

This study examines the usefulness of the C- and D-vine copula
models in dealing with the downside risk in the refining industry
based on their hedging effectiveness. For each hedging objective, the
hedging effectiveness is measured as a percentage reduction in the
downside risk of the hedged P&Ls relative to that of the unhedged
P&Ls10:

HE ¼ 1−
Risk yt b�ð Þð Þ
Risk yt 0ð Þð Þ

� 	
� 100 ð18Þ

where yt(b∗) is the hedged P&L, yt(0) is the unhedged P&L, and Risk(·) is
SV, LPM, VaR, or ES, depending on the hedging objective. We also com-
pare the hedging effectiveness of the vine copula models to that of the
nonparametric method and three standardmultivariate copula models:
namely, the standard Gaussian, Student's t, and Clayton copula
models.11

3. Data and preliminary analysis

We use weekly Wednesday closing spot and futures prices for West
Texas Intermediate (WTI) crude oil, unleaded gasoline, and number 2
heating oil. In the rare caseswhereWednesday prices aremissing, Tues-
day prices are taken instead.12 All prices are obtained from the
Datastream database, and converted into dollars per barrel. The price
data span from December 31, 1986 to December 30, 2015, from which
a sample ofweekly changes in spot and futures prices are constructed.13

To calculate the changes in the futures prices, the closing prices for the
nearest-to-expiration futures contracts are used with the rollover oc-
curring on Wednesday a week before the expiry of the contract.14 At
10 This is a variant of the measure of hedging effectiveness proposed by Ederington
(1979).
11 The nonparametric method adopted here is similar to the nonparametric approach by
Harlow (1991), Rockafellar and Uryasev (2002), and Lien and Tse (2000). This approach is
also known as the historical simulation method or the empirical distribution method.
12 In the extremely rare cases where both Wednesday and Tuesday prices are missing,
Monday prices are taken instead.
13 Prices during the period of abnormalmarket conditions caused by Hurricane Katrina –
from August 29, 2005 to September 9, 2005 – are removed from the estimation of optimal
hedge ratios (but not from the evaluation of hedging effectiveness). During this period, the
gasoline spot (futures) price increased by 57.46 (28.94) dollars per barrel in the first week
and decreased by 44.32 (9.79) dollars per barrel in the secondweek. Given the abnormally
large difference between the gasoline spot and futures price movements, including these
data points in the estimation of optimal hedge ratios causes the optimal hedge ratio for
gasoline to be negative (recommending a speculative position in the gasoline futuresmar-
ket – longing gasoline futures instead of shorting) regardless of the hedging model used.
Because these abnormal price discrepancies between gasoline spot and futures markets
were only temporary and the possibility of a Katrina-like event occurring in the near fu-
ture is extremely low, taking a speculative position in the gasoline futures market in the
following weeks would result in a huge loss. Therefore, excluding these data points when
estimating optimal hedge ratios is justifiable. Note that Alexander et al. (2013) also re-
move these data points from the estimation of hedge ratios.
14 Carchano and Pardo (2009) show that the choice of rollover date to construct the
changes in the futures price series is not relevant. Also, the problem of thinmarket trading
is of limited importance because for the commodities under consideration trading con-
tinues in high volumes right up to the futures expiration dates.
the rollover date, care has been taken to ensure that the changes in fu-
tures prices are calculated using the same futures contract. Altogether,
this results in a total of 1513 weekly observations for the changes in
spot and futures prices.

Table 1 reports summary statistics (Panel A) and correlation matrix
(Panel B) for the weekly changes in the spot and futures prices for the
entire sample period. For each price change series, the mean is very
small relative to its standard deviation. The changes in spot and futures
prices of refined products (both gasoline and heating oil) are more vol-
atile than those of rawmaterial (crude oil), and for each commodity the
price changes in the spot market is more volatile than the futures mar-
ket. All price change series are slightly skewed and exhibit high excess
kurtosis, suggesting that the price changes are not normally distributed.
The significant Jarque-Bera test statistics for all the price change series
confirm that the changes in spot and futures prices do not follow a nor-
mal distribution. The Augmented Dicky-Fuller (ADF) tests suggest that
all the price change series are stationary. The correlation coefficients
of at least 0.58 for all series pairs indicate that, more than half of the
time, all the price series move in the same direction. The price changes
in the spot and its corresponding futures markets are highly correlated
(the correlation coefficients exceed 0.88) indicating that, in general,
they have the same change trend.

Turning to the core of our empirical analysis, we evaluate the differ-
ent hedging methods based on their out-of-sample hedging effective-
ness. In the out-of-sample analysis, the following rolling window
approach is followed.15 First, we estimate the minimum-SV, minimum-
LPM, minimum-VaR, and minimum-ES hedge ratios using the first 261
weekly observations. That is, our estimation window is approximately
5 years.16 Next, the estimated optimal hedge ratios are used to construct
the hedged P&Ls for the following 130 weeks (i.e., 2.5 years) for each
hedging objective. Then, the estimation window is moved forward by
15 Conlon and Cotter (2012, 2013) and Barbi and Romagnoli (2014) adopt a similar ap-
proach in their out-of-sample analyses. This rollingwindow approach allows us to account
for the time variation in the distribution of price changes as well as to test the model's
hedging effectiveness over a number of test windows.
16 Alexander et al. (2013) and Barbi and Romagnoli (2014) also use a 5-year rolling win-
dow approach. Studies regarding the optimal length of themovingwindow formultiprod-
uct hedging are still needed.



Table 2
Average log-likelihood (LLH), Akaike Information Criterion (AIC), and Bayesian Informa-
tion Criterion (BIC), and number of parameters for the multivariate copula models.

LLH AIC BIC Number of parameters

SGC 1169.54 −2307.99 −2254.52 15
SSC 1316.85 −2600.68 −2543.64 16
SCC 618.61 −1234.78 −1231.21 1
C-vine 1356.41 −2666.33 −2585.45 23
D-vine 1373.63 −2700.73 −2619.70 23

Notes: Each model is estimated using a rolling window approach with a window of ap-
proximately 5 years or 261 weeks. The total number of estimation windows is 1123 win-
dows. SGC is the standard Gaussian copula model. SSC is the standard Student's t copula
model. SCC is the standard Clayton copula model. C-vine is the canonical vine copula
model. D-vine is the drawable vine copula model.
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1 week, where the optimal hedge ratios and associated out-of-sample
hedged P&Ls – the hedged P&Ls for the following 130 weeks – are
recalculated.17 This approach produces 1123 out-of-sample test win-
dows. Finally,within each testwindow, the out-of-sample hedging effec-
tiveness for each hedging objective is computed for all the hedging
models. Themean andmedian hedging effectiveness are then calculated
across the 1123 test windows.18

4. Empirical results

This section first presents evidence on the fit of the three standard
multivariate copulamodels – the standard Gaussian copula (SGC), stan-
dard Student's t copula (SSC), and standard Clayton copula (SCC)
models – and the two vine copula models – the C- and D-vine copula
models. The section then proceeds to present our empirical findings
for optimal crude oil, gasoline, and heating oil hedge ratios obtained
using different hedging models (including the nonparametric (NP),
SGC, SSC, SCC, C-vine copula and D-vine copula models). Then, compar-
isons of out-of-sample hedging effectiveness are made across different
hedgingmodels and hedging objectives. Finally, the out-of-sample per-
formance of different hedging objectives for the best performing hedg-
ing model is assessed using various measures of hedging effectiveness.

4.1. Model fit

Table 2 provides some evidence on the fit of the five multivariate
copula models: the SGC, SSC, SCC, C-vine copula, and D-vine copula
models.19 On average, the D-vine copula model yields the highest log-
likelihood and lowest values of the AIC and Bayesian Information Crite-
rion (BIC), whereas the SCC model provides the worst fit to the data.20

The results are very consistent across all the 1123 estimationwindows.21

The average number of parameters for each copula model is also
listed in Table 2. The SCC model has only one parameter to characterize
the overall dependence structure of the six random variables. It is very
likely that this parameter restriction is a reason for the poor fit of the
SCC model. The SGC model uses 15 pairwise correlation coefficients to
capture the dependence structure of the random variables. However,
it assumes no tail dependence, and could therefore underestimate the
joint probability of extreme movements in all the petroleum prices. In
addition to the 15 pairwise correlation coefficients, the SSC model
adds one more parameter (a degree of freedom parameter) to charac-
terize the tail dependence for all pairs of the random variables. Howev-
er, using only one parameter to describe the overall tail dependence
may be over-simplistic when dealing with more than two variables.
These parameter restrictions are likely reasons for the superior fit of
the vine copula models over the standard multivariate copula models.

Comparing between the two vine copula models, the superiority of
the D-vine copula model may be explained by the difference in the
way that the two models decompose the joint density function (specif-
ically, the difference in the structure of the first tree). Referring to Fig. 2
(upper panel) and Eq. (16), thefirst tree of theC-vine copulamodel uses
17 Here, both the marginal distributions and dependence structure (i.e., the copula pa-
rameters) are re-estimated every week using the updated estimation window. Barbi and
Romagnoli (2014) also re-estimate the marginal distributions each time the estimation
window is moved forward. However, they assume that the dependence structure does
not change frequently and only re-estimate the dependence structure periodically (every
5 years). We believe that our approach is more appropriate because the degree of depen-
dence between the changes in spot and futures prices does vary over time.
18 All computations were performed using R (version 3.2.2).
19 For each copulamodel, the empirical distribution is used in the estimation of themar-
ginal distributions of price changes.
20 It should be noted that the AIC and BIC statistics are less reliable when non-nested
models are compared. Nevertheless, the main purpose of this study is not to select the
best-fit copula model, but to compare the alternative copula models in term of out-of-
sample hedging effectiveness.
21 Detailed results for each rolling window are available upon request.
only one variable to link with the other five variables through different
unconditional bivariate copulas. As a result, the first tree of the C-vine
copula model captures the high dependence between the spot and its
corresponding futures price changes in only one petroleum market.
On the other hand, the first tree of the D-vine copula model permits a
direct link between the spot and its corresponding futures price changes
for all petroleum markets (see Fig. 2 (lower panel) and Eq. (17)). In
other words, the variables in the first tree of the D-vine copula model
for each estimation window can be ordered such that the spot and its
corresponding futures variables are next (or linked) to each other. For
example, the structure St

H−Ft
H−Ft

C−St
C−Ft

G−St
G is selected for the

first tree of the D-vine copula for our first estimation window. This fea-
ture is not allowed by the C-vine copulamodel andmay be a reasonwhy
the D-vine copula model better fits the data than the C-vine copula
model.
4.2. Minimum-downside risk hedge ratios

Table 3 reports the average minimum-SV, minimum-LPM,
minimum-VaR, and minimum-ES hedge ratios (as well as their respec-
tive standard deviations) generated using different hedgingmodels. On
average, most hedging models (except the SCC model) recommend the
hedge ratios of fairly similar magnitude for all hedging objectives. De-
pending on the hedging models and objectives, the average crude oil,
gasoline, and heating oil hedge ratios are between 0.8 and 1.3. On the
other hand, the SCC model yields the optimal gasoline and heating oil
hedge ratios fairly close to 0 (no hedge), and the optimal crude oil
hedge ratios slightly smaller than 0 (recommending a speculative posi-
tion in the crude oil futures market – shorting crude oil futures instead
of longing). The huge difference between the hedge ratios generated
from the SCC model and the other copula models is due to the fact
that the SCCmodel uses only one parameter to capture the dependence
patterns across all the six markets.

Examining the standard deviations of the optimal hedge ratios, the
heating oil hedge ratios are found to be much more volatile than the
crude oil and gasoline hedge ratios. This corresponds to the relatively
high level of excess kurtosis in the heating oil price changes, implying
that the extreme price changes are observed more often in the heating
oil market than in the other two markets. Thus, the optimal tail risk-
minimizing hedge ratios for heating oil are more sensitive to the ex-
treme price changes. In addition, theNPmethod generates themost vol-
atile hedge ratios for all the three petroleum commodities (except for
the case of minimum-SV hedge ratio for gasoline). This may be because
the NP approach is very sensitive to new information from the data (es-
pecially when only 261 observations are used in the estimation of the
nonparametric or empirical distribution). Further, the minimum-VaR
andminimum-ES hedge ratios at the 99% confidence level are generally
more dispersed than the other hedging objectives, which may be ex-
plained by the greater level of difficulty in estimating the extreme tails
of the true distribution of the hedged P&Ls.



Table 4
Out-of-sample hedging effectiveness of different hedging models and hedging objectives.

Model Hedging objective

SV LPM VaR reduction (%) ES reduction (%)

Reduction (%) Reduction (%)) 90% 95% 99% 90% 95% 99%

NP 58.59 (61.91) 65.53 (72.66) 34.87 (35.08) 37.56 (37.90) 31.34 (32.70) 36.88 (38.84) 34.00 (35.29) 24.59 (22.61)
SGC 60.02 (61.69) 68.22 (76.34) 41.61 (41.67) 40.30 (40.90) 32.77 (36.98) 36.83 (36.81) 33.91 (34.52) 27.19 (29.91)
SSC 60.66 (63.36) 69.29 (76.07) 41.33 (41.35) 41.14 (41.93) 33.23 (37.07) 37.36 (37.64) 34.77 (36.21) 28.53 (30.36)
SCC −3.95 (1.59) −6.04 (1.63) −4.01 (−2.42) 1.36 (1.58) −0.98 (−0.07) −0.35 (0.09) −0.46 (−0.31) −4.71 (−2.07)
C-vine 60.44 (63.87) 69.43 (75.46) 40.01 (39.97) 41.12 (42.66) 33.62 (35.14) 37.30 (38.57) 34.96 (35.67) 28.40 (30.76)
D-vine 61.04 (64.39) 70.32 (76.66) 39.87 (39.69) 42.42 (43.51) 35.73 (37.02) 38.14 (39.07) 36.08 (36.99) 30.52 (30.01)

Notes: The table reports the mean (median) out-of-sample hedging effectiveness for different hedging methods and hedging objectives. The mean and median hedging effectiveness are
calculated across 1123 out-of-sample test windows. The best performing hedging method for each hedging objective is highlighted in bold type. NP is the nonparametric method. SGC is
the standardGaussian copulamodel. SSC is the standard Student's t copulamodel. SCC is the standard Clayton copulamodel. C-vine is the canonical vine copulamodel. D-vine is the draw-
able vine copula model. SV denotes Semivariance; LPM denotes Lower Partial Moment; VaR denotes Value at Risk; and ES denotes Expected Shortfall.

Table 3
Average optimal hedge ratios (with standard deviations in parentheses) of different hedging models and hedging objectives.

Model Hedging objective

Semivariance Lower partial Value at risk (VaR) Expected shortfall (ES)

(SV) Moment (LPM) 90% 95% 99% 90% 95% 99%

Panel A: Crude oil hedge ratio
NP 1.149 (0.225) 1.202 (0.251) 0.909 (0.253) 0.994 (0.300) 1.156 (0.433) 1.206 (0.219) 1.249 (0.300) 1.254 (0.408)
SGC 1.023 (0.133) 0.998 (0.159) 1.092 (0.118) 1.053 (0.127) 0.950 (0.186) 1.031 (0.131) 1.006 (0.152) 0.955 (0.223)
SSC 1.038 (0.093) 1.006 (0.114) 1.095 (0.112) 1.063 (0.112) 0.949 (0.187) 1.044 (0.092) 1.022 (0.101) 0.981 (0.141)
SCC −0.097 (0.067) −0.100 (0.079) −0.071 (0.057) −0.099 (0.067) −0.059 (0.143) −0.093 (0.055) −0.094 (0.074) −0.131 (0.126)
C-vine 1.078 (0.148) 1.047 (0.172) 1.105 (0.177) 1.094 (0.167) 1.012 (0.255) 1.086 (0.167) 1.069 (0.181) 1.005 (0.228)
D-vine 1.087 (0.113) 1.063 (0.128) 1.109 (0.157) 1.099 (0.145) 1.042 (0.219) 1.093 (0.134) 1.082 (0.138) 1.044 (0.184)

Panel B: Gasoline hedge ratio
NP 1.155 (0.100) 1.190 (0.125) 0.970 (0.171) 1.112 (0.283) 1.054 (0.340) 1.171 (0.172) 1.196 (0.164) 1.231 (0.222)
SGC 1.077 (0.087) 1.078 (0.086) 1.063 (0.094) 1.055 (0.116) 1.054 (0.097) 1.052 (0.096) 1.049 (0.102) 1.067 (0.101)
SSC 1.106 (0.078) 1.092 (0.085) 1.088 (0.096) 1.090 (0.105) 1.083 (0.117) 1.081 (0.084) 1.081 (0.086) 1.061 (0.094)
SCC 0.053 (0.064) 0.053 (0.080) 0.020 (0.075) 0.052 (0.077) −0.005 (0.181) 0.037 (0.075) 0.030 (0.106) −0.011 (0.167)
C-vine 1.094 (0.100) 1.063 (0.105) 1.085 (0.130) 1.103 (0.117) 1.043 (0.128) 1.078 (0.108) 1.063 (0.110) 0.970 (0.150)
D-vine 1.138 (0.108) 1.131 (0.117) 1.116 (0.131) 1.140 (0.124) 1.135 (0.145) 1.126 (0.118) 1.124 (0.120) 1.085 (0.165)

Panel C: Heating oil hedge ratio
NP 1.053 (0.585) 1.022 (0.738) 0.856 (0.601) 0.803 (0.650) 1.265 (0.815) 1.185 (0.549) 1.185 (0.651) 0.896 (1.023)
SGC 1.024 (0.301) 1.031 (0.340) 1.063 (0.264) 1.010 (0.332) 0.975 (0.405) 1.067 (0.300) 1.054 (0.327) 1.038 (0.430)
SSC 1.010 (0.249) 1.025 (0.293) 1.035 (0.247) 0.999 (0.275) 0.863 (0.418) 1.040 (0.239) 1.037 (0.253) 1.069 (0.336)
SCC 0.254 (0.141) 0.243 (0.152) 0.318 (0.181) 0.210 (0.161) 0.263 (0.259) 0.253 (0.138) 0.231 (0.139) 0.170 (0.173)
C-vine 1.156 (0.326) 1.216 (0.387) 1.081 (0.320) 1.095 (0.355) 1.152 (0.496) 1.188 (0.339) 1.224 (0.367) 1.339 (0.472)
D-vine 1.086 (0.244) 1.046 (0.298) 1.093 (0.302) 1.050 (0.295) 0.947 (0.439) 1.097 (0.265) 1.082 (0.286) 0.994 (0.393)

Notes: The optimal hedge ratios for different hedging objectives are estimated using a rollingwindow approachwith awindowof approximately 5 years or 261weeks. The total number of
estimation windows is 1123 windows. NP is the nonparametric method. SGC is the standard Gaussian copula model. SSC is the standard Student's t copula model. SCC is the standard
Clayton copula model. C-vine is the canonical vine copula model. D-vine is the drawable vine copula model.
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4.3. Out-of-sample hedging effectiveness

Table 4 presents the out-of-sample hedging effectiveness of the
minimum-SV, minimum-LPM, minimum-VaR, and minimum-ES objec-
tives for the six hedging models – the NP, SGC, SSC, SCC, C-vine copula,
and D-vine copula models. For each hedging objective and model, the
table gives the mean and median percentage reductions in the respec-
tive downside risk of the hedged P&Ls relative to the unhedged P&Ls.
Themean andmedian values are calculated across the 1123 out-of-sam-
ple test windows. The best performing hedgingmodel for each hedging
objective is highlighted in bold type. Also, a paired t-test is performed to
test the null hypothesis of equal out-of-sample hedging effectiveness
between two hedging models.22 The test results are reported in
Tables A.1–A.4 in the Appendix.

4.3.1. Minimum-SV objective
Considering first the minimum-SV objective, all models (except the

SCCmodel) produce, on average, at least 58% SV reductions. The D-vine
22 The test statistics are calculated using heteroskedasticity and autocorrelation consis-
tent (HAC) standard errors.
copula model is the most effective model, with a mean (median) SV re-
duction of 61.04% (64.39%). The SCC model performs extremely poorly
with themean SV reduction of−3.95% (i.e., increasing risk) andmedian
SV reduction of 1.59%. Recall from Table 3, the SCC model recommends
the gasoline and heating oil hedge ratios fairly close to 0, and thus fails
to protect against adverse price movements in the gasoline and heating
oil markets. In addition, it supports a speculative position in the crude
oil futures market (i.e., the crude oil hedge ratios being b0), which
could end up adding more risk to the unhedged position. In particular,
this disappointing performance may be explained by the very poor fit
of the SCC model (see Table 2).

Comparingwith thewidely usedNPmethod, theD-vine copulamodel
leads to a larger mean (median) SV reduction of about 2.45% (2.48%)
points. It is evident from Fig. 3 (upper panel) that the D-vine copula
model is superior to the NPmethod formost out-of-sample test windows
(more specifically, about 66.61% of the cases). The paired t-test results
also confirm that the mean hedging effectiveness of the D-vine copula
model is significantly higher than that of the NP method (see Table A.1).
The maximum improvement of the D-vine copula model over the NP
model is 26.48% points for theMarch-2007-to-September-2009 test win-
dow, which covers the period of extreme fluctuations in crude oil prices.



Fig. 3. Out-of-sample hedging effectiveness: percentage reductions in Semivariance (upper panel) and Lower Partial Moment (lower panel).
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In fact, the D-vine copulamodel performsmuch better than the NPmeth-
od for most test windows covering the years 2007 to 2010. On the other
hand, the greatest improvement of theNPmethod over the D-vine copula
model is only 8.99% points for the October-2001-to-April-2004 test win-
dow. Nevertheless, this suggests that the NP method may outperform
the D-vine copula model when prices are relatively stable.

The D-vine copula model also produces better outcomes than the
other copula models both in mean and median terms. The D-vine copula
model clearly outperforms the SCC model. The mean (median) improve-
ment of the D-vine copula model over the SGC, SSC and C-vine copula
models ranges between 0.38% (0.52%) point and 1.02% (2.70%) points.23
23 Results for each out-of-sample test window are not reported here but available upon
request.
Overall, under the minimum-SV framework, the D-vine copula model is
on average able to significantly improve upon all the other models (see
Table A.1). However, except for the case of the SCC model, the mean
and median improvement offered by the D-vine copula model is only
moderate. This is not totally unexpected because these models recom-
mend the hedge ratios of fairly similar magnitude (see Table 3).

4.3.2. Minimum-LPM objective
We next consider the minimum-LPM objective. Similar to the

minimum-SV objective, the D-vine copula model performs better than
the other models both in mean and median terms (Table 4). Also,
Table A.2 shows that the D-vine copula model has a significantly higher
mean out-of-sample hedging effectiveness than all the other models. In
particular, the D-vine copula model leads to a mean (median) LPM



24 This is known as basis risk– risk that the changes in the futures prices deviate from the
changes in the spot prices.
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reduction of 70.32% (76.66%). Again, the SCCmodel performs the worst
with the mean (median) hedging effectiveness of −6.04% (1.63%),
confirming that using only one parameter is not enough to capture
the dependence structure of the six-dimensional data.

Comparing with the NPmethod, the D-vine copula model leads to a
4.79% (4.00%) point increase in the mean (median) LPM reduction.
Fig. 3 (lower panel) shows that the D-vine copula model offers higher
levels of LPM reductions for most out-of-sample test windows. More
specifically, the D-vine copula model produces greater LPM reductions
than the NP method about 71.68% of the cases, with the maximum im-
provement of 59.89% points for the March-2002-to-August-2002 test
window. It is also worth mentioning that the greatest improvement of
the NP method over the D-vine copula model is only about 11.58%
points. Besides, the NP method yields negative LPM reductions during
the test windows November-2002-to-April-2005 to March-2003-to-
September-2005 (a total of 19 out-of-sample test windows). Neverthe-
less, the mean (median) LPM improvement of the D-vine copula model
over the SGC, SSC andC-vine copulamodels is quitemodest, ranging be-
tween 0.89% (0.32%) and 2.10% (1.20%) points.

4.3.3. Minimum-VaR objective
For theminimum-VaR objective, all hedgingmodels (except the SCC

model) provide a VaR reduction of at least 30% both in mean andmedi-
an terms (Table 4). Focusing on the mean hedging effectiveness, the D-
vine copula model performs significantly better than all the other
models at the 95% and 99% confidence levels (see Table A.3).When con-
sidering the median hedging effectiveness, the D-vine copula model
performs the best only at the 95% confidence level. As expected, the
SCC model performs the worst at all confidence levels. The hedging ef-
fectiveness of all hedging models, except the SCC model, is found to be
lowest at the 99% confidence level, indicating that it is hard to hedge
against a very extreme risk. In addition, as can be seen from Fig. 4, the
hedging effectiveness for the minimum-VaR objective is relatively
more volatile than for other hedging objectives. This is likely because
VaR optimization is inherently more difficult than SV, LPM, and ES opti-
mization (Gaivoronski and Pflug, 2004).

At the 90% confidence level, themean andmedian reductions of VaR
are greatest for the SGC model with a mean reduction of 41.61% and a
median reduction of 41.67%. In particular, the SGC model leads to a
higher mean (median) VaR reduction of 1.74% (1.98%) points relative
to the D-vine copulamodel. At the 90% confidence level, the D-vine cop-
ula model also performs worse than the SSC and C-vine copula models.
However, it is still able to improve upon the NP method with a larger
mean (median) VaR reduction of about 5.00% (4.61%) points. It is evi-
dent from Fig. 4 (upper panel) that the D-vine copula model results in
positive VaR reductions across all test windows, and clearly outper-
forms the NP method for most test windows. Panel A of Table A.3 also
confirms that the D-vine copula model has, on average, a significantly
higher out-of-sample hedging effectiveness than the NP method.

At the 95% confidence level, the D-vine copula model yields a mean
(median) VaR reduction of 42.42% (43.51%), which is about 4.86%
(5.61%) points higher than the NPmethod. Fig. 4 (middle panel) reveals
that the D-vine copula model always yields positive VaR reduction, and
that it offers significant improvements over the NP method in many
out-of-sample test windows. Comparing with the SGC, SSC and C-vine
copula models, the D-vine copula model leads to a larger mean (medi-
an) VaR reduction of at least 1.28% (0.85%) points.

At the 99% confidence level, the best performing hedging model in
term of a mean VaR reduction is the D-vine copula model. On average,
it offers a VaR reduction of 35.73%. The SSCmodel performs only slightly
better than the D-vine copula model in term of a median VaR reduction
(37.07% for the SSC model versus 37.02% for the D-vine copula model).
Fig. 4 (lower panel) reveals that the hedging effectiveness of the D-vine
copula model fluctuates greatly, and that the D-vine copula model
yields negative VaR reductions for a few out-of-sample windows. Nev-
ertheless, just as for the 90% and 95% confidence levels, the D-vine
copulamodel still performs better than the NPmethodwith an increase
in the mean (median) VaR reduction of 4.39% (4.32%) points. In addi-
tion, the negative VaR reductions are found in 35 test windows for the
NP method but in only 7 test windows for the D-vine copula model.
While statistically significant, the mean VaR improvement of the D-
vine copula model over the SGC, SSC and C-vine copula models is
quite modest, ranging between 2.11% and 2.96% points. However, we
find that the SGC, SSC and C-vine copula models produce negative VaR
reductions (i.e., increase the VaR of the unhedged position) at least 6
timesmore often than theD-vine copulamodel. Thus, theD-vine copula
model is a safer choice for hedging theVaRof the refinery than the other
models.

4.3.4. Minimum-ES objective
As can be seen from Table 4, in term of ES reduction, the hedging ef-

fectiveness of all hedging models is found to be largest at the lowest
confidence (90% confidence level) and smallest at the largest confidence
level (99% confidence level). In other words, the hedging effectiveness
decreases as the confidence level increases. This indicates a greater dif-
ficulty in hedging a more extreme (tail) risk. Focusing on the mean
hedging effectiveness, the D-vine copula model leads to the greatest
ES reductions at all confidence levels. The paired t-test results in
Table A.4 also suggest that the hedging effectiveness of the D-vine cop-
ula model is, on average, significantly higher than that of the other
hedging models at all confidence levels. When we consider the median
hedging effectiveness, the D-vine copula model performs the best for
the 90% and 95% confidence levels, but not the 99% confidence level
forwhich the SSCmodel is preferred. As before, the SCCmodel performs
extremely poorly at all confidence levels.

As can be seen from Fig. 5, the D-vine copula model generally pro-
vides good hedging effectiveness at all the confidence levels. The
mean (median) ES reductions offered by the D-vine copula model are
38.14% (39.07%), 36.08% (36.99), and 30.52% (30.01%) for the 90%,
95%, and 99% confidence levels, respectively (Table 4). Unlike at the
90% and 95% confidence levels, it is evident from Fig. 5 (lower panel)
that the D-vine copula model produces negative reductions in ES at
the 99% confidence level for several out-of-sample test windows
(more specifically, for a total of 29 test windows).

To find a possible reason for the occasional poor performance of the
D-vine copula model, we investigate these 29 out-of-sample test win-
dows more closely. Given the rolling window approach, these 29 test
windows actually correspond to two periods of bad performance:
(1) during the test windows (October-2002-to-March-2005) to
(March-2003-to-September-2005) and (2) during the test windows
(May-2013-to-October-2015) to (July-2013-to-December-2015). For
the first period, the negative reductions in ES at the 99% confidence
level are due to an additional loss to the unhedged P&Ls on March 30,
2005 (when the unhedged P&L has already fallen by 4.26 dollars per
barrel). The extra loss on March 30, 2005 is particularly as a result of
(1) the gasoline futures price moving in the opposite directions from
the gasoline spot price, and (2) the heating oil futures price advancing
more than the heating oil spot price.24 For the second period, the nega-
tive ES reductions (at the 99% confidence level) occurs particularly be-
cause of a large magnitude of basis risk in the gasoline market on
October 21, 2015, when the gasoline spot and futures prices move in
the opposite directions. These two events suggest that the ability to
hedge the extreme downside risk could decline considerably when
the unhedged refining margin falls at the same time that the refining
margin based on futures prices rises (presuming no speculation posi-
tions). In addition, it is worth noting that hedging may also increase
the extreme tail risk if the refining margin based on futures prices
rises (declines) more (less) than an increase (a decrease) in the un-
hedged refining margin. In other words, the occasional poor



Fig. 4. Out-of-sample hedging effectiveness: percentage reductions in Value at Risk at the 90% (upper panel), 95% (middle panel), and 99% (lower panel) confidence levels.
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performance of the D-vine copula model is likely explained by a sizable
basis risk.

Despite its occasional poor performance, comparing with the NP
method, the D-vine copula model yields larger mean (median) ES
reductions of about 1.26% (0.23%), 2.08% (1.70%), and 5.93% (7.40%)
points for the 90%, 95%, and 99% confidence levels, respectively. As ex-
pected, the D-vine copula model offers a larger improvement over the
NP method as the confidence level becomes larger. This is because the



Fig. 5. Out-of-sample hedging effectiveness: percentage reductions in Expected Shortfall at the 90% (upper panel), 95% (middle panel), and 99% (lower panel) confidence levels.
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NP method is based on the empirical distribution of the price changes
and is therefore likely to provide poor estimates of the very extreme
quantiles of the distribution (Pritsker, 2006). It is also evident from
Fig. 5 that the D-vine copula model outperforms the NP method for
most out-of-sample test windows at all confidence levels. In addition,
the NP method produces negative ES reduction at the 99% confidence
level much more often than the D-vine copula model (128 versus 29
test windows).
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TheD-vine copulamodel is also preferred to the SGC, SSC, and C-vine
copula models at all confidence levels, except at the 99% confidence
level when the median hedging effectiveness is considered. In this
case, the SSC model produces a slightly greater reduction in the ES of
about 0.35%point. Overall, themeanES improvement of theD-vine cop-
ulamodel over thesemodels is quitemodest (though statistically signif-
icant). Nevertheless, these models produce poor hedging performance
much more often than the D-vine copula model. Specifically, at the
99% confidence level, the negative ES reductions are found in 95, 52,
and 43 testwindows for the SGC, SSC, and C-vine copulamodels, respec-
tively. Given this result, the D-vine copula model seems to be a better
and safer choice than the other hedging models in managing the ES of
the refinery.

4.4. Out-of-sample hedging performance of different hedging objectives
across various measures of hedging effectiveness

Given the range of alternative minimum-downside risk hedging ob-
jectives available to refineries, it would be interesting to examine their
performance across various measures of hedging effectiveness. In this
section, we evaluate the out-of-sample hedging effectiveness of the dif-
ferent hedging objectives – minimum-SV, minimum-LPM, minimum-
VaR (90%, 95%, and 99%), and minimum-ES (90%, 95%, and 99%) –
using a variety of downside risk measures, including SV, LPM, VaR
(90%, 95%, and 99%), and ES (90%, 95%, and 99%). Table 5 presents the
mean hedging performance of the eight hedging objectives across the
eight hedging effectiveness measures for the case of D-vine copula
model, which is the best performing hedgingmodel. The mean hedging
effectiveness is calculated across the 1123 out-of-sample test windows.
For each measure of hedging effectiveness, rankings of the eight hedg-
ing objectives are provided in the parentheses next to themeanhedging
effectiveness. The best performing hedging objective for each hedging
effectiveness measure is also highlighted in bold type.

Considering first the SV hedging effectiveness, 58%–61% of the SV of
the unhedged position is removed for all hedging objectives. As expect-
ed, theminimum-SV objective performs best in term of reducing the SV
of the unhedged P&Ls. In particular, it offers a mean SV reduction of
61.04%. The next-best hedging objective is the minimum-ES (90%) ob-
jective with the SV hedging effectiveness of 60.77%. It is worth noting
that the two worst hedging objectives in this case are the minimum-
VaR (99%) and minimum-ES (99%) objectives.

For the LPM hedging effectiveness, all hedging objectives can re-
move at least 68% of the LPM of the unhedged P&Ls. Unlike the previous
case, we find that theminimum-LPM objective does not lead to greatest
mean reduction of LPM out-of-sample. Instead, the best and the next-
best hedging objectives are the minimum-ES (95%) and minimum-SV
objectives. This is not totally unexpected because the hedge ratios for
each hedging objective are derived using the in-sample data while the
hedging effectiveness is calculated based on the out-of-sample data.
Table 5
Out-of-sample hedging performance of the different hedging objectives across various hedging

Hedging effectiveness Hedging objective

Min-SV Min-LPM Min-VaR (90%) Min-VaR

SV reduction 61.04% (1) 60.73% (3) 60.04% (6) 60.66% (
LPM reduction 70.45% (2) 70.32% (4) 69.40% (6) 70.14% (
VaR (90%) reduction 39.76% (2) 38.54% (6) 39.87% (1) 39.53% (
VaR (95%) reduction 42.72% (1) 41.99% (4) 41.95% (5) 42.42% (
VaR (99%) reduction 36.55% (4) 36.01% (6) 36.57% (3) 36.51% (
ES (90%) reduction 38.32% (1) 37.81% (6) 37.83% (5) 38.03% (
ES (95%) reduction 36.29% (1) 35.88% (6) 35.93% (5) 36.13% (
ES (99%) reduction 31.13% (5) 30.66% (7) 31.66% (1) 31.43% (

Notes: The table reports the mean out-of-sample hedging performance of the eight hedging o
calculated across 1123 out-of-sample test windows. The D-vine copula model is used to gener
each hedging effectiveness measure, rankings of the eight hedging objectives are reported in th
tive for each hedging effectiveness measure is also highlighted in bold type.
Nevertheless, similar to the case of the SV hedging effectiveness, we
find that the minimum-VaR (99%) and minimum-ES (99%) objectives
are the worst performing hedging objectives from the point of view of
LPM reduction.

We next consider the VaR hedging effectiveness of the different
hedging objectives. Depending on both hedging objectives and confi-
dence levels, the VaR reduction ranges between 35% and 43%. At the
90% confidence level, we find that the minimum-VaR (90%) objective
provides the greatest VaR (90%) reduction, followed by the minimum-
SV objective. At the 95% confidence level, the two most effective hedg-
ing objectives are the minimum-SV and minimum-VaR (95%) objec-
tives. At the 99% confidence level, the best and next-best hedging
objectives are the minimum-ES (90%) and minimum-ES (95%) objec-
tives. We also find that the minimum-VaR (99%) and minimum-ES
(99%) objectives perform worst in reducing the VaR of the unhedged
position at all confidence levels studied.

Finally, we examine the ES hedging effectiveness for each of the
hedging objectives. Again, depending on hedging objectives and confi-
dence levels, the ES reduction achieved by the various hedging objec-
tives ranges between 30% and 38%. For both ES (90%) and ES (95%)
hedging effectiveness, we find that the minimum-SV objective offers
the greatest ES reduction, followedby theminimum-ES (90%) objective.
Also, at both confidence levels, theminimum-VaR (99%) andminimum-
ES (99%) objectives perform worst in reducing the ES of the unhedged
P&Ls. For the ES (99%) objective, the best and next-best hedging objec-
tives are the minimum-VaR (90%) and minimum-ES (90%) objectives,
whereas the worst performing hedging objectives are the minimum-
LPM and minimum-ES (99%) objectives.

Comparing the different hedging objectives across the various hedg-
ing effectivenessmeasures, theminimum-SV objective is found to be ei-
ther the best or the next-best hedging objectives across the majority of
hedging effectiveness. In addition, except for the case of the VaR (90%)
hedging effectiveness, we find that the minimum-SV objective is able
to reduce the downside risk by at least the same amount as the associ-
ated minimum-downside risk objective. For example, the minimum-
SV objective is found to perform better than the minimum-LPM objec-
tive in reducing the LPM of the hedged position (70.45% versus 70.32%
LPM reduction). These findings suggest that, regardless of themeasures
of downside risk the refineries wishing to reduce, the minimum-SV ob-
jective seems to be the best choice among the range of alternative hedg-
ing objectives available to them. Further, the minimum-VaR (99%) and
minimum-ES (99%) objectives are found to perform relatively poorer
than the other hedging objectives across themeasures of hedging effec-
tiveness considered. The relatively poor hedging performance is likely
explained by the relatively small amount of data available for calculat-
ing the minimum-VaR (99%) and minimum-ES (99%) hedge ratios.
These results suggest that, when choosing the hedging objectives, it is
necessary for the refineries to account for the fact that the minimum-
VaR and minimum-ES hedge ratios at the high confidence level (99%)
effectiveness measures (D-vine copula model).

(95%) Min-VaR (99%) Min-ES (90%) Min-ES (95%) Min-ES (99%)

4) 58.69% (7) 60.77% (2) 60.65% (5) 58.63% (8)
5) 69.21% (7) 70.36% (3) 70.58% (1) 68.99% (8)
4) 36.18% (8) 39.53% (3) 38.73% (5) 36.40% (7)
2) 39.95% (7) 42.29% (3) 41.83% (6) 39.57% (8)
5) 35.73% (7) 36.79% (1) 36.72% (2) 35.22% (8)
3) 36.30% (7) 38.14% (2) 37.84% (4) 36.15% (8)
3) 34.77% (7) 36.25% (2) 36.08% (4) 34.67% (8)
3) 31.04% (6) 31.50% (2) 31.43% (4) 30.52% (8)

bjectives across eight hedging effectiveness measures. The mean hedging effectiveness is
ate the minimum-SV, minimum-LPM, minimum-VaR, and minimum-ES hedge ratios. For
e parentheses next to themean hedging effectiveness. The best performing hedging objec-
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are associatedwith higher uncertainty and thereforemore likely to per-
form worse than the other minimum-downside risk hedge ratios.

5. Conclusion

Oil refineries face the risk of losses that are associated with an in-
crease in input prices (crude oil prices), a decrease in output prices (gas-
oline and/or heating oil prices), or a combination of both. In other
words, they are exposed to downside price risk in multiple petroleum
markets (including crude oil, gasoline and heating oil markets). The re-
fineries may hedge against the risks of adverse input and output price
movements using crude oil, gasoline, and heating oil futures. This
paper proposes a multiproduct futures hedging model that minimizes
the downside risk of the oil refineries, measured by Semivariance
(SV), Lower Partial Moment (LPM), Value at Risk (VaR), or Expected
Shortfall (ES). This is of special interest for the refineries that are partic-
ularly concerned about the negative impacts of unfavorable pricemove-
ments in multiple petroleummarkets.

The empirical analysis is based on a stylized problem of a typical U.S.
oil refinery that converts 3 barrels of crude oil to 2 barrels of gasoline
and 1 barrel of heating oil. The proposed hedging model constructs a
joint distribution of six variables (spot and futures price changes in
crude oil, gasoline, and heating oil markets) using a vine copula meth-
odology, and determines the minimum-downside risk hedge ratios
using aMonte Carlo optimization technique. The vine copulamethodol-
ogy, which is a relatively new class of multivariate copula approaches, is
chosen because it allows us to capture important characteristics of pe-
troleum price changes, including skewness and fat-tailedness in the
marginal distributions of individual price change series as well as het-
erogeneous (tail) dependence patterns between different pairs of
price changes. In this paper, two popular classes of vine copulas– the ca-
nonical (C-) and drawable (D-) vine copulas – are considered in the
modeling of the dependence structure in petroleum spot and futures
markets.We evaluate the suitability of the C– andD-vine copulamodels
by examining their hedging effectiveness over 1123 out-of-sample test
windows. In addition,we compare the out-of-sample hedging effective-
ness of the vine copulamodels to that of several common alternative ap-
proaches, including the nonparametric (NP), standard Gaussian copula
(SGC), standard Student's t (SSC), and standard Clayton copula (SCC)
models.

The main findings are as follows. First, on average we find that both
C– and D-vine copula models are able to effectively reduce the down-
side risk of the refinery, and that the D-vine copula model provides bet-
ter out-of-sample hedging effectiveness than the C-vine copula model.
The results are consistent across all the hedging objectives considered
(namely, the minimum-SV, minimum-LPM, minimum-VaR, and
minimum-ES objectives). The superiority of the D-vine copula model
may be explained by its ability to directly capture the high dependence
between the spot and its corresponding futures price changes in all pe-
troleum markets, which is a feature that is not allowed by the C-vine
copula model. Depending on the hedging objective, themean (median)
downside risk reductions offered by the D-vine copula model between
30.52% (30.01%) to 70.32% (76.66%). Second, for the minimum-VaR
(99% confidence level) and minimum-ES (99% confidence level) objec-
tives, the D-vine copula model yields negative downside risk reduction
(that is, increases downside risk of the unhedged position) for few out-
of-sample testwindows (more specifically, for b30 out of 1123 testwin-
dows).We find that the occasional poor performance of the D-vine cop-
ula model is likely due to a sizable basis risk (or the risk that futures
prices do not move in line with the underlying spot prices). However,
the D-vine copula model produces poor hedging performance much
less often than the other alternative hedging models.

Third, the D-vine copulamodel is on average preferred to thewidely
used NP method regardless of which hedging objective is considered.
The superiority of the D-vine copula model over the NP method is gen-
erally seen across numerous out-of-sample test windows, which signals
the relevance of explicit modeling of the extreme price dependence. Fi-
nally, the D-vine copula model on average leads to greater downside-
risk reductions than the SGC, SSC, SCC, and C-vine copulamodels. As ex-
pected, the improvement over the SCC model, which uses only one pa-
rameter to capture the dependence structure of six variables, is
enormous. However, the improvement over the SGC, SSC, and C-vine
copula models is quite modest. Nevertheless, we find that thesemodels
(as well as the NP method) produce poor hedging performance for a
much greater number of out-of-sample test windows than the D-vine
copula model. Given these results, the D-vine copula model seems to
be a good and safe hedging model for the refinery that wants to mini-
mize its downside risk. Moreover, comparing the performance of the
different hedging objectives across the various hedging effectiveness,
we find that the minimum-SV objective is the best choice among the
range of alternative hedging objectives available to the refineries.

As indicated above, our analysis might be especially useful for petro-
leum (as well as non-petroleum) producers who seek to reduce the
risks of adverse price movements in input and output markets. In addi-
tion, thefindings reported in this paper provide additional evidence that
there is a benefit frommodeling the joint distribution (more specifical-
ly, the dependence structure) more realistically.
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