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1. Introduction

It is challenging to accurately model the relationship between a set of se-
curities, yet it is the nucleus of every trading strategy involving more than one 
security. Prominent examples are trading strategies based on statistical arbitrage. 
An extensively studied form of statistical arbitrage is pairs trading, which has 
been introduced to the scientific community by the seminal paper of Gatev et al. 
(2006). The underlying idea is to identify two stocks with a historically strong co-
movement in prices. Next, the price difference between the two stocks, referred 
to as the spread, is tracked. If the spread diverges, i.e., crosses a pre-defined 
threshold level, the winner is sold short and the loser is bought. If the historical 
relationship holds, convergence occurs and results in a profit. The key require-
ment for the strategy to be successful is the presence of exploitable mean-reverting 
patterns in the spread. A variety of methods have been proposed to model the 
potential mean-reversion embedded in the spread, ranging from model-free dis-

tance methods, to cointegration techniques to complex time series approaches1. 
A sample of important contributions are Vidyamurthy (2004), Do and Faff (2012), 
Caldeira and Moura (2013), Rad et al. (2016), Liu et al. (2017) and Clegg and 
Krauss (2018). Krauss (2017) provides an overview about the pairs trading streams 
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 1 The distance-approach utilizes simple distance metrics to assess the degree of co-movement of 
stock pairs. The cointegration approach assumes that all shocks to the spread are solely transient 
and model the spread as a pure mean-reverting process (Engle and Granger 1987). Most of the 
studies applying the time series approach uses stochastic differential equations underlying different 
mean-reverting processes to model the spread.
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in the literature  – mostly utilizing daily data. In the last years, intraday statistical 
arbitrage attracts scientific interest on an increasing level.

Next, we briefly review selected high-frequency pairs trading applications. 
Using U.K. FTSE 100 data for 2007, sampled on 60 minutes, Bowen et al. (2010) 
report significant excess returns of up to 19.80 percent per annum applying 
a distance-based pairs selection rule. The authors point out that returns are very 
sensitive to transaction costs and a waiting rule of one period to account for bid-

ask spread. Miao (2014) uses a distance metric and cointegration tests to detect 

pairs suitable for a pairs trading application on 5 minute bins for 177 selected 
U.S. stocks between 2012 and 2013. The author finds annual returns of up to 
56.85 percent. Focusing on 5 minute bins for U.S. oil stocks (2008, 2013–2015), 
Liu et al. (2017) achieve annual returns of 187.80 percent applying stochastic 
differential equations to model the spread’s mean-reversion. Recently, Stübinger 
and Endres (2018) apply a mean- reverting jump diffusion model to S&P oil 
stocks using minute-by-minute data from 1998 to 2015, reporting annual returns 
of 60.61 percent. In addition, the authors find supporting evidence for the exis-

tence of jumps in the high-frequency data. Using the same data set as Stübinger 

and Endres (2018), but without restricting themselves to oil companies, Stübin-
ger and Bredthauer (2017) achieve returns of up to 50.50 percent per year with 
simple distance metrics. Mikkelsen and Kjærland (2018) apply the distance and 
cointegration approach to 100 stocks of the commodity dominated Oslo Stock 
Exhange from January 2012 to March 2016. For the cointegration approach the 
authors report annualized returns of 25.1 percent, wheareas for the distance ap-
proach the best specification yields annualized excess returns of 17.8 percent. 
Other noticeable studies are Dunis et al. (2010), Kim (2011), Kishore (2012), 
Bowen and Hutchinson (2016) and Endres and Stübinger (2017).

Recently, Rende et al. (2019) propose the persistence-based decomposition 
model (PBD), as one that adapts well to noisy high-frequency data. The PBD 
model decomposes the spread of two time series into three components, captur-
ing different levels of shock persistence, namely infinite, finite and no persistence. 
Thereby, the infinite persistence component is a random walk, the finite persis-
tence component is modeled as a stationary AR(1) process and the no persistence 
component is pure noise. To evaluate the model in terms of goodness of fit and 
predictive power, Rende et al. (2019) apply the model to S&P 500 minute-by-
minute data, starting from January 1998 and ending in November 2016. Compared 
to suitable benchmark models the PBD model provides the best fit for the spread 
between two stocks in 35.38 percent according to the BIC (Schwarz 1978). The 
author find that the model is superior in light of directional accuracy and RMSE 
compared to the partial cointegration (PCI) model (Clegg and Krauss 2018), an 
AR(1) model and a naive approach. The predictive edge of the PBD model is 
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based on the model’s ability to exploit mean-reverting patterns in the presence of 
noise  – the same mechanism underlying a successful pairs trading strategy. Thus, 

from a trading perspective the finite persistent stationary AR(1) component reflects 
potentially tradable mean-reversion, whereas the non-persistent component cap-
tures non-tradable mean- reversion. With the exception of Bowen et al. (2010), 
Bowen and Hutchinson (2016) and Liu et al. (2017) the baseline in the current 
high-frequency pairs trading literature is to execute trades without an execution 

gap. Leaving out an execution gap leads to delay-zero alpha (Kakushadze 2016) 
returns which cannot be realized in practice: As high-frequency data are subject 
to microstructure noise. Aït-Sahalia and Yu (2009), backtesting without waiting 
rules is exposed to trading the bid-ask bounce. Second, due to signal processing 

it is not possible to generate the signal and execute the order simultaneously.
In total, we make three contributions to the current high-frequency pairs 

trading literature: First, we put the PBD model to test in a large scale pairs trad-

ing application on the same data set as in Rende et al. (2019), using a rigorous 
backtesting framework. As benchmarks, we choose the PCI model and a buy-and-

-hold strategy. Second, to gain a better understanding of the model mechanics, 

we analyze the performance over time, the exposure to common risk factors and 
compare parameter and industry profiles for all pairs and the most profitable 
pairs. Third, we quantify the impact of execution limitations on high-frequency 
pairs trading returns by relaxing the limitations of our backtesting framework.

Our findings are as follows: First, backtesting the PBD model on S&P 500 
minute-by-minute data yields a statistically significant and economically meaning-
ful average annual return after costs of 9.16 percent compared to 14.41 percent 
for the PCI model and 4.38 percent for a buy-and-hold strategy. Thereby, the 
backtesting engine relies on the following trading costs and execution limitations: 

(i) We assume trading costs of 0.20 percent per full turn per pair (Avellaneda and 
Lee 2010). (ii) We implement an execution gap of one period (entry and exit) to 
account for bid-ask spread (Gatev et al. 2006). (iii) An annual short-selling fee of 
1 percent p.a. is charged (Do and Faff 2012). (iv) If for one of the stocks forming 
a pair, the volume at the time of execution is zero (open and closing trigger), we 

delay the execution of the order to the next period where volume is larger than 

zero for both stocks. The PBD model is superior in terms of distributional charac-
teristics, risk measures as well as risk and return measures. Second, an evaluation 
of the strategy’s development over time shows that it performs exceptionally well 
in bear markets, such as the financial crisis, due to the good performance of the 
short-leg. To the best of our knowledge, this manuscript is the first pairs trading 
study documenting the latter fact for the U.S. market on minute-by-minute data. 
The strategy is mostly robust to common sources of systematic risk. For the most 
profitable pairs the share of industries typically associated with a similar business 
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model is high. Thus, industry affiliation is an important return driver. Furthermore, 
the most profitable pairs exhibit strong pronounced mean-reverting patterns and 
simultaneously less pronounced permanent effects. Third, relaxing execution 
limitations drastically increases returns and affects all risk and returns measures 
in a favorable way. If order execution is not restricted, we find annual returns 
after costs of 138.6 percent for the PBD model, indicating that delay-zero alpha 
(high-frequency) returns are upward biased with respect to practical feasibility.

The paper is organized as follows. In section 2, we describe data and software. 
In section 3, we outline the PCI and the PBD model. In section 4, we provide 
an in-depth explanation of our backtesting procedure. In section 5, backtesting 
results and the impact of execution limitations on returns are presented. Finally, 
section 6 provides some concluding remarks.

2. Data and software

2.1. Data and pre-pocessing

Following Krauss et al. (2017), backtesting is performed on S&P 500 index 
constituents. Due to its market efficiency, high liquidity2 and intensive academic, 
analyst and investor coverage the S&P 500 serves as the litmus test for every 
trading strategy. In order to eliminate survivor bias we proceed in line with 
Krauss et al. (2017) and download month end constituents lists for the S&P 500 
from Thomson Reuters Datastream, ranging from January 1998 until November 
2016. First, the monthly constituents list are transferred into a matrix, covering 
in a binary fashion if a stock is an index member or not. Second, for every stock 
having ever been a S&P 500 constituent, minute-by-minute close price informa-
tion as well as trading volume data are downloaded from QuantQuote starting 
in 1998 and ending in November 2016 (QuantQuote 2016). Prices are adjusted 
for splits, dividends and special corporate events, e.g., symbol changes, mergers 
and acquisitions (QuantQuote 2012). To deal with missing prices, we forward fill 
close prices between the first and the last available price for every stock. Missing 
volume information is filled with zeros. In accordance with U.S. trading hours, 
we solely consider price and volume information between 9.30 AM and 16.00 PM.

In addition, the industry classification according to the Global Industry 
Classification Standard (GICS) is downloaded for every constituent during the 
considered time frame. Every stock is matched with its industry.

 2 The S&P 500 covers around 80 percent of the available U.S. market capitalization (S&P 500 Dow 
Jones Indices, 2015)
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2.2. Software

Our high-frequency (HF) trading backtester is written in R (R Development 
Core Team 2018). Risk and return metrics, such as the Sharpe ratio (Sharpe 1994), 
are calculated using the implementations in the R package PerformanceAnalytics. 
Those metrics need proper time series objects as provided by the package xts. To 

store and access the data in HDF5 containers and access them we use the package 
rhdf5 (The HDF Group 2010). Data manipulation such as slicing and merging has 
been done in the data.table framework. We use R’s base implementation parallel 

for parallel processing. A full overview of the R packages, their authors and the 
purpose is provided in Table 1.

Table 1

R packages involved in the backtester

Name Author Purpose

xts Ryan and Ulrich (2018) Converting time series objects

Performance 
Analytics

Peterson and Carl (2018) Risk and return metrics

rhdf5 Fischer and Pau (2017)
Reading and writing HDF5 
container

partialCI Clegg et al. (2018) Fitting a PCI model

parallel R Development Core Team (2018) Parallel processing

data.table Dowle and Srinivasan (2018) Data handing

FKF Luethi et al. (2018) Fast Kalman filter estimation

tictoc Izrailev (2014)
Runtime calculation and bench-
marking

compiler R Development Core Team (2018)
Pre-compile functions 
to improve run time

3. The models

Next, we will briefly describe the models our pairs trading strategies build 

up on: First, our baseline is the partial cointegration model of Clegg and Krauss 
(2018). Second, the persistence-based decomposition model contributed by 
Rende et al. (2019).
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3.1. The partial cointegration model

Compared to classic cointegration (Engle and Granger 1987) partial cointegra-
tion accounts for transient and permanent effects. Especially in financial applica-
tions, the assumption that the spread between two securities is solely driven by 
short-term deviations from a long-run equilibrium is too restrictive. To overcome 

this limitation, the model incorporates idiosyncratic shocks to the spread time 
series. Examples for such shocks can be a successful management, technological 
advantages as well as analyst upgrades (Clegg and Krauss 2018). In the partial 
cointegration framework two securities are connected by a partially autoregressive 
(PAR  – see Poterba and Summers (1988) and Clegg (2015)) process consisting of the 

sum of a random walk and a stationary AR(1) process, i.e., the absolute value of the 
AR(1)-coefficient P CI has to be smaller than one. The model equations are given as,
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The error terms of the two components Rt
PCI and Mt

PCI are assumed to be 
mutually independent normally distributed zero-mean white-noise processes. 
Model parameters are the cointegrating coefficient PCI, the variances of the error 

terms of the transient component ( M
PCI) as well as the random walk component 

( R
PCI) and PCI. From a trader’s perspective, the mean-reversion, captured by the 

M component, reflects potential trading opportunities and is therefore of special 
interest. Due to orthogonality, the model allows to easily calculate the proportion 
of variance attributable to mean-reversion (R2

M), allowing to assess the degree of 
mean-reversion embedded in a time series. As neither the spread nor the distinct 
components are observable, estimation is solely possible in state space. The authors 
derive the state space representation and show that Maximum likelihood estimates 
of the associated Kalman filter are consistent and that the model is identified.

As an initial showcase, the PCI model is applied to S&P 500 daily data starting 

from 1990 and ending in 2015. The aim of the authors is to construct a relative-
value arbitrage strategy relying on the mean-reverting component of the price 
spread. The distance approach, as proposed by Gatev et al. (2006), and the coin-
tegration approach (Caldeira and Moura 2013) serve as benchmark methods. With 
monthly returns after costs of 1 percent the PCI model outperforms the benchmark 

returns of the distance approach (0.1 percent) and cointegration (0.1 percent and 
0.15 percent depending on the specification) by far. Therefore, the PCI model 
serves as the baseline for our high-frequency pairs trading application.
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3.2. The persistence-based decomposition model

As pointed out by Rende et al. (2019), the relationship between securities, 

paradigmatically represented by the spread, might be subject to shocks exhibiting 

different levels of persistence, namely infinite-, finite-, and non-persistent shocks. 

Examples for finite shocks can be uninformed trading as well as the short-term 

price impact of trades, while a prominent examples for shocks with no persis-

tence is microstructure noise due to micro-level market frictions (Rende et al. 

2019). Within the PBD time series model the three orthogonal components are 

modeled by a random walk (infinite persistence), a stationary AR(1) process with 

coefficient PBD (finite persistence) and pure noise (no persistence). The structural 

model equations are as follows:
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The full PBD model consists of five parameters. The spread coefficient PBD, 

the variance of the stationary AR(1) process ( M
PBD), the variance of the random 

walk ( R
PCD), the variance of the pure noise ( W

PBD) and PBD. The authors define 

multiple components to quantify a spread’s mean-reversion, each attributable to 

a different source: First, R2
M
, representing the proportion of variance attributable 

to finite-persistent mean-reversion. Second, R2
W

 the mean-version attributable to 

non-persistent mean-reversion. Third, R2
M
W the total mean-reversion which is the 

sum of R2
W
 and R2

M
. Given that we cannot observe the components, the model has 

to be transferred into state space. Rende et al. (2019) derive the likelihood of the 

associated Kalman filter and elaborate on statistical properties such as identifica-

tion and consistency of the (quasi) Maximum likelihood estimators.

To gain a better understanding of the PBD model, Rende et al. (2019) inves-

tigate if, compared to suitable alternatives, the PBD model fits well to minute-

by-minute price spreads for S&P 500 constituents from 1998 to 2016. According 

to the Bayesian information criterion (Schwarz 1978) and a likelihood ratio test 

routine for the PBD model in 35.38 percent of the 2 333 202 analyzed pairs the 

PBD model helps to accurately model the spread. In addition, the out-of-sample 

prediction power is investigated. In terms of directional accuracy and root-mean-

square error the PBD model is superior compared to the PCI model, a stationary 

AR(1) model and a naive approach. The latter findings are stable over time.
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Based on the findings of Rende et al. (2019), we hypothesize that in a high-
-frequency pairs trading application the PBD model adapts better to the noisy 
data than the PCI model. To evaluate our hypothesis, we develop a relative-value 
arbitrage strategy in the light of Clegg and Krauss (2018) building on the M com-
ponent of the PBD model extracted from the spread.

4. The backtester

4.1. Building blocks, computational challenges,  

and execution limitations

We implement a backtester to compare the trading results of PCI and 
PBD. First, we provide an overview about the different building blocks, com-
putational challenges, and execution limitations. Then, we provide a detailed 
description of the different building blocks. Table 2 provides a summary of the 
main parameters and selection criteria.

Table 2

Summary of the restricted backtesting framework

PCI PBD

Number of non-overlapping study periods 949 949

Formation period, in days 5 5

Trading period, in days 5 5

Eligibility criterion 1 Same industry

Eligibility criterion 2 Top 5 correlated stocks

Eligibility criterion 3 LRS in bottom 5%

Eligibility criterion 4 0.5 < PCI < 1 0.5 < PBD < 1

Eligibility criterion 5 R2
MR  0.5 R2

M  0.5

Portfolio size, in pairs 10

Portfolio selection In-sample Sharpe ratio

Opening signal o 2.0

Closing signal c 2.0

Stop loss, in percent 10

Transaction costs, in percent 0.05

Execution gap, in periods (minutes) 1

Volume constraint (open) ( Y
o  0 & X

o  0)

Volume constraint (close) ( Y
c  0 & X

c  0)
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Study periods: We split our data set into 949 non-overlapping study periods 
(Papadakis and Wysocki 2007). Each study period consists of a five days formation 

period (FP) and a five day trading period (TP)3. Thereby, five days correspond to 
one trading week. In the formation period the PCI and PBD models are calibrated 
and the most suitable according to a variety of eligibility criteria (see Table 2 eli-
gibility criteria 1 to 5) are traded in the subsequent trading period.

Return computation: We calculate our returns in line with Gatev et al. (2006). 

For all pairs, we scale the sum of the payoffs at the end of a trading day with the 
total amount of the invested capital at the end of the previous trading day. This 
approach results in a daily return time series. Regarding the invested capital we 
solely consider committed capital, i.e., 1 U.S. dollar (USD) is spend on every pair 
at the beginning of the trading period if a position is opened or not. Consequently, 
we calculate the return on committed capital.

Execution limitations and transactions costs: Our rigorous backtesting 
framework relies on the following execution limitations and transactions costs:

1. Execution gap: In line with Gatev et al. (2006), we account for bid-ask spread 

and time for signal processing by shifting an incoming trading signal (entry 
and exit) at the end of minute t to the end of minute t + 1.

2. Volume constraint for opening / closing a position: We only open or close 
a position if at time t + 1 there is positive trading volume for both stocks 
Y and X, i.e., ( Y

o  0 & X
o  0) and ( Y

c  0 & X
c  0), respectively. Thereby, 

i
o ( i

c) denotes the volume of stock i at opening (o) (closing (c)), where  
i  {Y, X}. If the volume conditions are violated we postpone the execution 
of the order to the next minute where the condition is fulfilled. If during the 
trading period of interest the condition is never met, the order is canceled.

3. Transaction costs: Following Avellaneda and Lee (2010) we assume transaction 

costs of 0.05 percent (5 basis points) per half turn per stock, i.e., 0.20 percent 
per full turn per pair.

4. Short-selling fees: The short leg of a pair is charged an additional fee for the 

days d.o a pair is open. We follow Do and Faff (2012) and assume a conserva-

tive fee of 1 percent per annum payable for the open days d.o scaled by 360: 

0 01
360

.
. .

⋅
∆

d o

. If 0 < d.o  1 we charge one day, i.e, we charge a minimum 

fee of 0 01
1

360
. ⋅ . 

Computational challenges: In our large scale HF application, the size of 65 GB 
for the raw data imposes a real challenge with respect to RAM handling in the 

 3 In a trading context, the term day refers to trading days.
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context of parallel processing. To deal with RAM constraints, we cut the data into 
nineteen yearly time-slices, each consisting of approximately 50 batches, where 
each batch corresponds to a study period, and store them in a HDF5 container. 
For further analysis, those batches are distributed among five machines consisting 
of 80 cores (2.4 GHZ to 3.6 GHZ) as well as 206 GB RAM. The jobs are processed 
in parallel. In this setting, it takes 14 days to fit one specification of the PBD model 
and 8 days to fit one specification of the PCI model to all 2333202 pairs. Trading 
takes an additional two days for each model and each specification.

4.2. Formation

Available stocks and pairs: Stocks are treated as available if (i) the stocks 
are a S&P 500 constituent at the last day of the formation period and (ii) no price 
information are missing within the formation period. A pair is available if the two 
stocks forming that pair are individually available.

Overnight jumps: Abnormal changes occurring overnight are a well-known 
phenomenon in high-frequency stock prices (Stübinger and Endres 2018). We 
replace every price time series by a cumulated return time series, where overnight 

changes are set to zero (Rende et al. 2019). This approach guarantees that our 
maximum likelihood estimators are not harmed by overnight jumps (Liu et al. 
2017). Consequently, the fitting procedures are carried out on the adjusted time 
series.

Eligible pairs: Within the 949 study periods we fit a PCI and a PBD model 
to 2 333 202 pairs fulfilling the eligbility criteria 1 and 2 (Tab. 2), i.e., 2458.59 
pairs on average per formation period. Those available pairs are divided into 
eligible and non-eligible pairs. A pair is considered as eligible if the subsequent 
five eligibility criteria hold simultaneously – see Table 2. First, the stocks have to 
be in the same industry according to the GICS industry classification. The latter is 
a common requirement in pairs trading applications (Gatev et al. 2006). Second, 
a higher correlation between stocks is associated with a higher chance of co-
movement (Gatev et al. 2006; Chen et al. 2017). Therefore, we only consider for 
stock i the five industry partner stocks exhibiting the highest correlation (Rende 
et al. 2019). In addition, limiting the number of available pairs renders our high-
frequency pairs trading study computationally feasible. Third, both models rely 
on maximum likelihood estimation, i.e., it is possible to calculate a likelihood 
ratio score (LRS) between reasonable nested alternatives and the full PBD or full 
PCI model, respectively. Turning to the PCI model a reasonable alternative is the 
pure random walk model ( M

PCI  PCI  0), while for the PBD model the random 
walk with noise model ( M

PBD  PBD  0) is a suitable alternative. Because lower 
LRS are associated with a higher chance of following the full model rather than 
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the alternative we only consider pairs with a LRS located in the five percent quan-
tile. Fourth, we demand 0.5 < m < 1, where m  {PCI, PBD}. The rationale is 

that a larger m is associated with a higher half-life or mean-reversion and, thus 
higher trade duration potentially reducing bid-ask bounce effects. Fifth, potentially 
exploitable mean-reversion  – as represented by the variance attributable to the 
stationary AR(1) process mean-reversion – should be pronounced in the spread 
time series. Specifically, we aim for R2

M
  0.5 for the PBD model and R2

MR

  0.5  

for the PCI model. The eligibility criteria three to five are inspired by Clegg and 
Krauss (2018).

Top pairs: We let all eligible pairs participate in an in-sample trading and 
calculate the respective Sharpe ratio  – see Bertram (2010), Dunis et al. (2010), 
Caldeira and Moura (2013), Clegg and Krauss (2018). Next, for each stock i its 
eligible partner stocks are ranked in descending order according to their in-sample 
Sharpe ratio. We refer to stock its partner with the highest in-sample Sharpe ratio 
as its trading partner (Clegg and Krauss 2018). We extract a list solely containing 
stocks and their trading partners. A portfolio consisting of the top 10 pairs (Miao 
2014, Stübinger et al. 2018) in the sense of the largest in-sample Sharpe ratio is 
then traded in the the following trading period.

4.3. Trading

As a relative-value arbitrage strategy relies on mean-reverting patterns, we 
monitor a transformation of both models M component (see  – equation (3)) dur-
ing the trading period to detect trading signals. We do not monitor the spread 
itself as typical in the distance approach (Gatev et al. 2006) or the cointegration 
approach (Caldeira and Moura 2013) because the spread is non-stationary by 
construction in our case. To be specific, we calculate the standard score for both 
models for every minute t in the five days trading period given as

 S
M

t

m TP t

m TP

M

m FP

,

,

,

=

s  (3)

where m  {PCI, PBD}. It is common to assume that the estimated in-sample 
spread relationship between two securities carry over to the out-of-sample trad-

ing period. Hence,
the parameters needed to calculate the standard scores in the trading period 

are estimated in the formation period using the model equations (1) and (2), 

respectively. Loosely speaking, a trading signal is a sufficiently large deviation of 
the M component from its mean value. In mathematical terms, sufficiently large 
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means |Sm,TP |  o , i.e., the standard score crosses the opening threshold o. Fol-
lowing Gatev et al. (2006), Huck (2015), and Rad et al. (2016) we opt for o  2. 

A position is opened by going long the undervalued security and shorting the 
overvalued stock. If | o| is crossed while a position is already open we do not 
take an action. An investment of 1 USD in the long position is offset by selling 
short the price ratio of the two securities forming the pair weighted with the in-
sample spread coefficient m. In general, the latter will differ from 1 USD. The 

portfolio value might change minute-by-minute depending on whether we open 
a position as reaction to a trading signal. When a trade is entered the maximum 
amount of capital is invested. The lower bound of the investment is a stop-loss 
rule of 10 percent, i.e., if the portfolio value drops below 90 percent of its ini-
tial value the pair is excluded from any further trading activities (Nath 2003, 
Caldeira and Moura 2013). An upper bound is not implemented. If no position 
is open the portfolio is held in cash, i.e., we assume that there are no interest 
earnings. Open positions are closed if |Sm,TP | < c, where c denotes the closing 
threshold. We choose symmetric thresholds and set c  2 (Bertram 2010). In 

addition, a closing action is forced if a stock is not listed anymore or if the end 
of trading period is reached and a position is still open. The last available price 
is then used to calculate profits. The PBD model, as well as the PCI model, can 
notch up losses from converging trades, due to the behavior of the random walk 
component. By contrast, the distance and the cointegration approach always earn 
profits from converging trades.

5. Results

In this section, we evaluate the performance of the PBD, the PCI model and 
the general market (MKT) from a financial perspective. The latter is a simple 
S&P 500 buy-and-hold strategy. We proceed as follows: First, we analyze the per-
formance in the light of our backtesting framework outlined in section 4. Second, 
we relaxing the execution limitations step-by-step to gain a better understanding 
of how the restrictions affect the trading results.

5.1. Backtesting results

5.1.1. Risk and return characteristics

First, we pin down the performance of the different approaches in terms of 
a variety of daily and annualized risk as well as return measures. Table 3 sum-
marizes the results.
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Panel A – daily return metrics: With a value of 0.04 percent per day, the PBD 
model yields the highest mean return after transaction costs compared to PCI 

( 0.06 percent) and the general market (0.02 percent). For the PBD and the 
PCI model the return values are highly significant. The large number of trades 
explains the fairly low standard deviations of 0.0076 for the PBD model, 0.0103 
for the PCI model and 0.0124 for MKT, respectively. Moreover, the PBD model 
exhibits the highest hit rate (Share  0) with a value of 54.56 percent compared 

to 47.28 percent for the PCI model and 53.01 percent for MKT. While the PCI 
approach and the MKT are skewed to the left, the daily return time series of 
the PBD model is skewed to the right. The latter indicates that the right tail is 
more pronounce which is beneficial from an investors perspective (Cont 2001). 

Kurtosis values of 10.46 for the PBD model, 7.54 for the PCI model and 7.75 
for the MKT are associated with a notable risk in the tails of the distribution. 
This leptokurtic behavior is well in line with the stylized facts of financial time 
series (Cont 2001).

Table 3

Daily and annualized risk-return metrics  – restricted backtesting. Panel A depicts daily 
return characteristics, panel B depicts risk and panel C annualized risk-return metrics for 
the the persistence-based decomposition model (PBD), the partial cointegration model 

(PCI) and the general market (MKT)

PBD PCI MKT

A

Mean return 0.0004 0.0006 0.0002

Standard Error (Newey-West) 0.0001 0.0002 0.0002

t-Statistic 3.0886 2.9522 1.5479

Minimum 0.0583 0.0881 0.0903

25% Quantile 0.0031 0.0051 0.0055

Median 0.0001 0.0003 0.0005

75% Quantile 0.0035 0.0043 0.0061

Maximum 0.0859 0.0794 0.1158

Share  0 0.5456 0.4728 0.5301

Standard dev. 0.0076 0.0103 0.0124

Skewness 0.6063 0.3100 0.0272

Kurtosis 10.4654 7.5358 7.7488
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PBD PCI MKT

B

Hist. VaR 1% 0.0313 0.0447 0.0515

Hist. CVaR 1% 0.0282 0.0432 0.0483

Hist. VaR 5% 0.0091 0.0169 0.0184

Hist. CVaR 5% 0.0162 0.0260 0.0293

Maximum drawdown 0.4637 0.9813 0.5678

C

Return p.a. 0.0916 0.1441 0.0438

Standard dev. p.a. 0.1200 0.1639 0.1974

Downside dev p.a. 0.0776 0.1229 0.1396

Sharpe ratio p.a. 0.7630 0.8792 0.2217

Sortino ratio p.a. 1.1793 1.1721 0.3135

Panel B  – daily risk metrics: In terms of all risk metrics the PBD model is 

favorable to the benchmark approaches. The values for the 1 and 5 percent value 

at risk (VaR) and the corresponding conditional versions (CVaR) indicate that the 

PBD approach exhibits a lower tail risk. An an example compare the 1 percent VaR 

of 0.0313 for the PBD model to 0.0447 for the PCI model and 0.0515 for the 

MKT. In addition, the exposure to drawdown risk, as measured by the maximum 

drawdown is found to be lower for the PBD model.

Panel C  – annualized risk metrics: With an average annualized return of 

9.16 percent after transaction costs the PBD model outperforms the general 

market (4.38 percent) and the PCI model ( 14.41 percent) by far. The higher 

annualized returns are achieved with a significantly smaller standard deviation 

which translates to the highest annualized Sharpe ratio of 0.7630 for the PBD 

model. For the general market the Sharpe ratio is 0.2217 and the PCI model ex-

hibits a negative Sharpe ratio of 0.8792. If we solely focus on downside risk as 

reflected by the downside deviation and the Sortino ratio, the advantage of the 

PBD model compared to the PCI model and the MKT is even more pronounced. 

This is in line with the positive skewness and a higher rate as described in panel A.

5.1.2. Trading statistics

Next, we compare the PBD and the PCI approach in light of trading statistics  – 

see Table 4). The average number of pairs traded per 5-days trading period for the 

Table 3 cont.
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PBD model is 9.824, i.e, nearly all of the 10 pairs are traded. Turning to the PCI 

model, only about half of the 10 pairs are traded on average. A deep-dive analysis 

on the latter point yields that the method is not able to identify a sufficiently large 

number of eligible pairs. Panel B shows descriptive statistics of the number of eligible 

pairs identified across all 949 study periods. Note that due to eligibility criterion 3 

(Tab. 2) the maximum number of eligible pairs is 5 percent of the pairs fulfilling 

criteria 1 and 2, i.e., on average 2458.59  0.05  123 pairs. Out of the approximately 

123 pairs solely 7.55 pairs are eligible on average for the PCI approach compared 

to 30.26 for the PBD approach. This low mean value combined with a median 

value of 5 for the PCI method explains the difference in the average number of 

pairs traded per 5-days period. Interestingly, the trading frequency, quantified by 

the average number of round-trip trades per pair, is more than twice as high for 

the PCI model (14.78) compared to the PBD approach (6.52). Consequently, the 

average time pairs are open per round-trip is significantly smaller for PCI. On aver-

age pairs are open 0.25 days for the PCI approach, while this value is 0.63 for the 

PBD model. The share of trades where the volume constraints are violated is about 

6 percentage points larger for the PBD model and average waiting time is longer 

(4.9 minutes versus 3.8 minutes). The latter findings provide a first indication that 

volume constraints might affect returns. With a value of 94.82 percent the share of 

converging trades is very high for the PCI model. For the PBD model the share 

of converging trades is about 8 percentage points lower.

Table 4

Trading statistics and eligible pairs  – restricted backtesting. Panel A depicts summary statistics 
of the number, the duration of trades, the volume constraints and the distribution of 
converging and diverging trades, and panel B shows descriptive statistics for the number 
of eligible pairs across the 949 study periods for the the persistence-based decomposition 

model (PBD) and the partial cointegration model (PCI)

PBD PCI

A

Average number of pairs traded per 5-days period 9.8240 5.0474

Average number of round-trip trades per pair 6.5168 14.7762

Standard deviation of number of round-trip trades per pair 6.1182 10.6481

Average time pairs are open per round-trip, in days 0.6310 0.2477

Standard deviation of time pairs are open per round-trip, 
in days

1.0037 0.8648

Share of trades with zero volume 0.2204 0.1460
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PBD PCI

Average time a trade is delayed due to zero volume, in 
minutes

4.9233 3.8097

Share of converged trades 0.8659 0.9482

Share of trades where closing is forced, stop-loss 0.0044 0.0022

Share of trades where closing is forced, end of data 0.1297 0.0496

B

Minimum 0.00 0.00

25% Quantile 20.00 1.00

Median 30.00 5.00

Mean 30.26 7.55

75% Quantile 40.00 11.00

Maximum 87.00 56.00

Share study periods with zero eligible pairs [%] 2.00 15.00

The analysis of trading statistics at least partly explains why PCI returns are 

not robust: First, the low number of eligible pairs is associated with a lower 

chance of detecting profitable pairs. Second, the duration of round-trip trades 

for the PCI model might be not long enough for an exploitable relationship to 

establish. Third, the high number of converging trades along with the low aver-

age return could be an indication that the random walk component develops in 

an unfavorable way harming profits.

5.1.3. Performance over time

Pairs trading profits are known to decline over time – see Do and Faff (2010), 

Bowen and Hutchinson (2016) and Stübinger and Endres (2018). Figure 1 tracks 

the cumulative profit (committed capital) of a 1 USD investment in the PBD ap-

proach (black), the PCI approach (blue) and the general market (red) from 1998 

to 2016. With exception of the early years the PBD approach is superior to the 

performance of PCI and the general market. For the PBD approach we observe 

a M-pattern, with peak periods in bear market phases. The first peak period starts 

2001 and ends 2003. This period is associated with decimalization, the emergence 

of the dot-com bubble, the September 11 attacks and the beginning of the Iraq 

war. The second peak corresponds with the financial crisis. The good performance 

Table 4 cont.
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of pairs trading strategies in market phases exhibiting bearish conditions is well-

documented for low- and high-frequency data – see Do and Faff (2010), Bowen 

and Hutchinson (2016), Liu et al. (2017), Clegg and Krauss (2018) and Stübinger 

and Endres (2018). The reason is that, by construction, the strategy is liquidity 

providing (Do and Faff 2010). In the period ranging from 2001 to 2003 the PCI 

model also achieves positive profits but at a significantly lower level than the PBD 

model. In addition, the PCI model cannot capitalize on the financial crisis. The 

general market shows a weak positive trend.

After 2010, profits for the PBD and the PCI model start to decline, while 

the general market shows a positive trend. As pointed out by Clegg and Krauss 

(2018), declining pairs trading profitability is most probably due to an increase 

in market efficiency due to the wide-spread adoption of quantitative strategies, 

such as pairs trading. At the end of period covered in our data, the PBD model 

yields a cumulative profit of 4.05 USD, whereas the PCI model yields a cumulative 

profit of 0.91 USD. For the general market this value is 0.45 USD.

The evaluation of Figure 1 shows that the PBD model performs very well 

in bear markets. We would expect that in bear markets especially the short leg 

contributes to the profitability of the strategy. For lower frequencies, supporting 

evidence is provided by Bowen and Hutchinson (2016). By contrast, for high-

frequency data only little is known about the contribution of the long and short 

leg at different market phases. At the time of writing, there is no high-frequency 

study providing empirical evidence for the U.S. market4. To evaluate the hypoth-

esis, we separately plot the financial performance (Fig. 2) of the long and short 

leg (black) as well as of the long (red) and the short leg (blue). Before 2001, 

with the exception of the 2000s, both legs roughly provide the same contribu-

tion to the total profit. Starting from the end of 2001 to the beginning of 2016, 

the short leg yields higher profits than the long leg. During this time span, the 

USD development of the short leg has two peaks, which coincide with the two 

peaks of the USD development of both legs together, i.e., the two prominent 

bear market periods. The latter supports the hypothesis that within bear market 

phases the short leg contributes more to the overall profit than the long leg for 

high-frequency data. Note that from 2010 to November 2016, short-selling prof-

its decrease, while profits due to the long position show a positive trend. The 

underlying rationale is that after the financial crisis the U.S. economy started to 

recover and the general market increased (see Fig. 1).

 4 Using the distance and cointegration approach, Mikkelsen and Kjærland (2018) find for 100 Oslo 
Stock Exchange constituents from January 2012 to March 2016 that on average the long position 
contributes more to the overall profit than the short leg.
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Figure 1. Financial performance over time. We plot the development of the financial 
performance (committed capital) over time for the PBD model, the PCI model and  

the general market

Figure 2. Financial performance over time of the long leg and the short leg

5.1.4. Exposure to common risk factors

To investigate exposure to systematic risk factors, we run three Fama-French 
type regressions: First, a classic Fama-French 3-factor model (FF3) (Fama and 
French 1996). The model quantifies if a strategy is subject to general market risk 
(Market), small minus big capitalization stocks (SMB), and high minus low book-
to-market stocks (HML). Second, a variant of the Fama-French 3 Factor model 
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extended by two additional factors, namely a short-term reversal factor (Reversal) 
and a momentum factor (Momentum) (Gatev et al. 2006). In line with Clegg and 
Krauss (2018) we refer to this model as FF3+2. Third, the Fama-French 5-factor 
model as outlined by Fama and French (2015) (FF5). It augments FF3 by a factor 
accounting for robust minus weak profitability (RMW) and a second factor captur-
ing the difference in investment behavior between conservative and aggressive 
stocks (CMA)5. Table 5 summarizes the regressions results. A “5” in the label of 

a factor indicates that this factor belongs to FF5. Standard errors are reported 
below the corresponding coefficient in parentheses. From our Fama-French analy-
sis we draw the following conclusions: First, for all variants, we find statistically 
and economically significant excess returns of approximately 0.04 percent per 
day after transaction costs. Second, the market factor is very close to zero and 
insignificant for all variants. The latter does not come as a surprise, as the PBD 
pairs trading strategies follow a long-short design. In addition, the SMB, CMA, 
and RMW factors are insignificant. Fourth, The HML factor and Reversal factor 
exhibit a positive loading and are both significant, indicating that the PBD results 

are partially driven by reversal patterns and by selecting pairs of stocks exhibiting 

a high book-to-market ratio. The highly significant alphas provide evidence that 
our PBD based pairs trading results are different from a simple reversal strategy. 
As expected, the loading of the momentum factor is negative. Fifth, with a value 
of 0.0010 the FF3+2 has the largest adjusted R2. The majority of the increase 
seems to be driven by the Reversal factor.

5.1.5. Return drivers: parameter and industry profiles

In this section, we deep-dive into the average parameter and industry profile 
difference between all pairs, the 10 percent most profitable and the 1 percent 
most profitable pairs, to identify influential factors. Table 6 summarizes the results. 
The most profitable pairs tend to share the following characteristics. First, they 

exhibit an average level of M of 0.0030, compared to 0.0009 for average pairs. By 
contrast, the average level of R is at 0.0015 for average pairs, while it is at 0.0004 
for the most profitable pairs. Hence, we can cautiously infer that profitable pairs 

show stronger mean-reversion that can potentially be exploited. Thereby, the ra-

tio 
s

s
M

W

 is almost constant at a value of four. On the other hand, we observe that 

the ratio 
s

s
M

R

 is increasing with the profitability of the pairs. Second, in terms of 

profitability PBD, R2
M
 and PBD are of minor importance. Third, the industry is an 

 5 We download all relevant data from the website of Kenneth R. French: http://mba.tuck.dartmouth. 
edu/pages/faculty/ken.french/data_library.html. We are thankful to Kenneth R. French for providing 
the data.
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important driver of profitability. A large proportion of the 1 percent most profit-
able pairs belongs to industries associated with a similar business model such as 

utilities (35.05 percent) or financials (14.43 percent). With the exception of the 
oil & gas industry (1.03 percent), these finding coincide with the idea that the 
probability for the existence of a relationship between companies is higher when 
they run similar business models (Gatev et al. 2006). Using the same data set, 
Rende et al. (2019) report similar findings evaluating the industry composition 

for those pairs where the PBD model yields the best fit.

Table 5

Systematic sources of risk  – restricted backtesting. Shows the exposure to common 
risk factors for the PBD strategy. *** :  p < 0.001, ** :  p < 0.01, * :  p < 0.05

FF3 FF3+2 FF5

Intercept
0.0004*** 0.0004*** 0.0004***

(0.0001) (0.0001) (0.0001)

Market
0.0000 0.0000 0.0000

(0.0001) (0.0001) (0.0001)

SMB
0.0001 0.0001 –

(0.0002) (0.0002) –

HML
0.0004* 0.0005** –

(0.0002) (0.0002) –

Momentum
– –0.0001 –

– (0.0001) –

Reversal
– 0.0003* –

– (0.0001) –

SMB5
– – 0.0000

– – (0.0002)

HML5
– – 0.0002

– – (0.0002)

RMW5
– – –0.0002

– – (0.0003)

CMA5
– – 0.0004

– – (0.0003)

R
2 0.0010 0.0020 0.0018
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Adjusted R2 0.0004 0.0010 0.0007

Observations 4745.00 4745.00 4745.00

RMSE 0.0076 0.0076 0.0076

Table 6

Parameter and industry profiles. Shows parameter and industry profiles across all pairs, 
the 10 percent most profitable pairs and the 1 percent most profitable pairs. Thereby,  

M
PBD, W

PBD and R
PBD  denote the variances of the stationary AR(1) process, the noise compo-

nent and the random walk, respectively. In addition, PBD is the AR(1) coefficient, R2
M is the 

proportion of mean-reversion attributable to the stationary AR(1) process and PBD is the 
spread coefficient

All pairs
10% most 

protable

1% most 

protable

PBD 0.2371 0.2591 0.2725

M
PBD 0.0009 0.0016 0.0030

W
PBD 0.0002 0.0004 0.0007

R
PBD 0.0015 0.0008 0.0004

4.5000 4.0000 4.2857

0.6000 2.0000 7.5000

PBD 0.8917 0.8165 0.8050

R2
M 0.7187 0.7005 0.7162

Basic Materials [%] 13.1813 9.5337 2.0619

Consumer Goods [%] 12.8497 10.3627 7.2165

Consumer Services [%] 12.5078 14.5078 8.2474

Financials [%] 14.2383 12.4352 14.4330

Health Care [%] 7.4611 6.0104 3.0928

Industrials [%] 16.5699 14.3005 8.2474

Oil & Gas [%] 5.7306 5.2850 1.0309

Technology [%] 9.4197 11.1917 18.5567

Telecommunications [%] 0.8290 0.9326 2.0619

Utilities [%] 7.2124 15.4404 35.0515

s

s
M

W

s

s
M

R

Table 5 cont.
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5.2. Beyond returns: evaluating backtest assumptions

Within this section, we aim to quantify the impact of the execution limitations 
underlying our backtester, as immediate order execution is often the baseline 
in the high-frequency pairs trading literature  – among others, see Miao (2014) 
and Stübinger and Bredthauer (2017). For this purpose, we relax our backtest-
ing frictions step-by-step and evaluate the performance. In total, we consider six 
new strategy variants  – three per approach. Table 7 summarizes which execution 
constraints are active in the different strategies variants. The other parameters 
remain the same as in the fully constraint backtesting framework  – see Table 2. 
First, we forgo on short-selling fees (PBD 1, PCI 1), i.e., we keep the execution gap 
and volume constraints. Second, we only account for an execution gap (PBD 2, 
PCI 2). Third, we do not account for any execution limitations (PBD 3, PCI 3).

Table 7

Summary of constraints in the relaxed backtesting framework. Shows the restrictions 
imposed in the different strategy variants for the PBD (PBD 1, PBD 2 and PBD 3) and the 

PCI model (PCI 1, PCI 2 and PCI 3)

Constraint PBD 1 PBD 2 PBD 3 PCI 1 PCI 2 PCI 3

Execution gap, 
in periods

1 1 0 1 1 0

Volume con-
straint (open)

( Y
o  0 

& X
o  0)

None None
( Y

o  0 
& X

o  0)
None None

Volume con-
straint (close)

( Y
c  0 

& X
c  0)

None None
( Y

c  0 
& X

c  0)
None None

Short-selling 
fees [%, p.a.]

0

Next, we will outline how flexibilizing execution limitations affect risk and 
returns metrics. Table 8 provides an overview of the performance of the different 
strategy variants.

Relaxing  – short-selling fees: For the PBD model, not accounting for short-
selling fees (PBD 1) has a minor effect. With a value of 0.04 percent per day after 
costs the mean return practically does not change. In general, risk metrics slightly 
decrease or remain on the same level and return metrics as well as risk-return 
metrics slightly increase. For example, the annualized Sharpe ratio increases 
from 0.76 to 0.84. The PCI model (PCI 1) benefits more from not charging the 
short-selling fee, although the absolute impact is small. As an example, con-
sider the change in the mean return after transaction costs from –0.06 percent  
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to –0.05 percent per day. The reason for the latter is that the average time pairs 
are open per round-trip trade is smaller than 1 for both strategies and therefore 
often solely the minimum fee for one day is charged. Thus, for the PCI model, 
the impact on trading results is larger because the average number of round-trip  
trades per pair is much larger. Note that both the average number of round-trip tra- 
des per pair, as well as the average time pairs are open per round-trip trade, 
almost do not change (not shown).

Table 8

Daily and annualized risk-return metrics  – relaxed backtesting. Panel A depicts daily 
return characteristics, panel B depicts risk and panel C annualized risk-return metrics for 
different strategy variants of the PBD model (PBD 1, PBD 2 and PBD 3), the PCI model 

(PCI 1, PCI 2 and PCI 3) and the general market (MKT)

PBD 1 PBD 2 PBD 3 PCI 1 PCI 2 PCI 3 MKT

A

Mean return 0.0004 0.0016 0.0035 0.0005 0.0011 0.0027 0.0002

Standard Error 
(N-W)

0.0001 0.0002 0.0003 0.0002 0.0003 0.0002 0.0002

t-Statistic 3.3471 8.9109 13.2533 2.6337 4.3191 13.4990 1.5479

Minimum 0.0583 0.0585 0.0599 0.0880 0.0914 0.0832 0.0903

25% Quantile 0.0031 0.0027 0.0018 0.0051 0.0043 0.0020 0.0055

Median 0.0001 0.0005 0.0014 0.0003 0.0003 0.0017 0.0005

75% Quantile 0.0035 0.0044 0.0059 0.0043 0.0055 0.0067 0.0061

Maximum 0.0860 0.0864 0.1303 0.0795 0.0909 0.1045 0.1158

Share  0 0.5598 0.5756 0.6105 0.4755 0.5172 0.6015 0.5301

Standard dev. 0.0076 0.0088 0.0108 0.0103 0.0119 0.0110 0.0124

Skewness 0.6117 1.5260 2.4645 0.3129 0.8838 0.8623 0.0272

Kurtosis 10.4667 11.2909 14.7676 7.5936 9.0918 11.9495 7.7488

B

Hist. VaR 1% 0.0312 0.0245 0.0146 0.0449 0.0408 0.0434 0.0515

Hist. CVaR 1% 0.0281 0.0267 0.0238 0.0432 0.0420 0.0391 0.0483

Hist. VaR 5% 0.0091 0.0067 0.0022 0.0168 0.0132 0.0099 0.0184

Hist. CVaR 5% 0.0161 0.0148 0.0130 0.0260 0.0242 0.0212 0.0293

Maximum 
drawdown

0.4588 0.4119 0.2366 0.9778 0.9345 0.3847 0.5678
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PBD 1 PBD 2 PBD 3 PCI 1 PCI 2 PCI 3 MKT

C

Return p.a. 0.1004 0.4689 1.3860 0.1309 0.2946 0.9397 0.0438

Standard dev. p.a. 0.1201 0.1391 0.1709 0.1640 0.1894 0.1739 0.1974

Downside dev p.a. 0.0774 0.0713 0.0611 0.1225 0.1139 0.0954 0.1396

Sharpe ratio p.a. 0.8362 3.3701 8.1089 0.7984 1.5555 5.4027 0.2217

Sortino ratio p.a. 1.2973 6.5781 22.6789 1.0686 2.5852 9.8540 0.3135

Relaxing  – short-selling fees and volume constraints: Naturally, the question 
arises as to how to trade in the backtesting engine when there might be zero trad-
ing volume available at a point in time. The problem originates from the fact that 
the econometric approaches applied in trading applications demand equidistant 
observations  – a requirement which is often not fulfilled in high-frequency stock 
price data sets. To address the equidistance issue prices, are usually forward filled 
and missing volume information are replaced with zeros. Thus, to account for the 
latter in the restricted backtesting framework, we impose the constraint that the 
trading volume for both stocks have to be greater than zero. Solely accounting 
for an execution gap leads to an increase in daily mean returns after transaction 
costs of 300 percent resulting in an annualized return of 46.89 percent for the 
PBD model (PBD 2). A comparison of PCI 1 and PCI 2 yields that daily returns 
after costs is now positive and highly significant with a value of 0.11 percent. 
This translates to an annualized return of 29.36 percent. We observe that for both 
models standard deviation (daily and annualized) and kurtosis slightly increase, 
but besides that all distributional characteristics as well as risk and return metrics 
exhibit favorable changes compared to PBD 1 and PCI 1, respectively. Thereby, 
the PBD model is outperforming the PCI model in every metric.

Relaxing  – short-selling fees, volume constraints and execution gap: Finally, 
we do not consider any execution restrictions. As a consequence annual returns 
increase to 138.60 percent after costs for the PBD model (PBD 3) and to 93.97 
percent for the PCI model (PBD 3). If we contrast PBD 3 with PBD 2and PCI 

3 with PCI 2 we observe significant improvements in terms of return, risk and, 
risk and return metrics with the exception of standard deviations and kurtosis 
which is as expected. As in the other cases PBD is superior.

From our analysis we can draw the following conclusions: First, the PBD 
model is superior to the benchmark model for every strategy variant. Second, 

short-selling fees have a minor impact on returns. Third, the timing of order 
execution in light of volume constraints and a general execution gap is crucial 

Table 8 cont.
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for the success of a strategy. Thereby, the volume constraints contribute more to 

the relative increase in returns compared to the waiting rule in our setting. The 

sharp increase of returns after not accounting for an execution gap and volume 

constraints indicates that the driving force behind large high-frequency delay-zero 

alpha returns is the bid-ask bounce. The latter finding for the effect of a waiting 

rule is not new: Among others, Gatev et al. (2006) report decreasing returns after 

accounting for an execution gap on daily data. Bowen et al. (2010) and Bowen 

and Hutchinson (2016) report similar patterns for high-frequency data. To the 

best of our knowledge, no high-frequency pairs trading study quantifies the effect 

of volume constraints. Thus, not accounting for an execution gap and volume 

constraints might result in significantly upward-biased returns. As in our case, 

annual returns increase from about 10 percent after costs to about 138 percent 

for the PBD model if we do not account for any execution gap.

6. Conclusion

With this manuscript, we have made three contributions to the high-frequency 

pairs trading literature. First, we apply the persistence-based decomposition 

model introduced by Rende et al. (2019) to S&P 500 minute-by-minute starting 

from 1998-01-02 and ending 2016-11-18. The PBD model decomposes a spread 

into the sum of a random walk (infinite persistence), a stationary AR(1) process 

(finite persistence) and noise (no persistence) to account for different levels of 

persistence. Thereby, our backtester accounts for (i) bid-ask bounce typically 

embedded in high-frequency data (Aït-Sahalia and Yu 2009); (ii) signal process-

ing; (iii) entry and exit volume constraints, i.e., we solely trade if the available 

trading volume is larger than zero for both stocks, otherwise we postpone the 

trade until the condition is met; (iv) short-selling fees and; (v) conservative 

transaction costs of 0.20 percent per full turn per pair. The PBD model yields an 

annual return after costs of 9.16 percent compared to a value of –14.41 percent 

for the partial cointegration (PCI) (Clegg and Krauss 2018) and 4.38 percent 

for a simple buy-and-hold strategy. The PBD model is superior in terms of risk 

and return metrics. Second, we shed light onto the model mechanics and the 

development of return over time. We find that the volume constraint is violated 

in 22.04 percent of all trades, giving a first indication that volume constraints 

are not negligible. Evaluating the performance over time yields that the PBD 

model shows an outstanding performance in bear markets such as the financial 

crisis. A deep-dive analysis points out that during turbulent market phases the 

short-leg contributes significantly more to the profitability of the strategy than 

the long leg. While this finding is not new for pairs trading strategies applied 
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daily (Bowen and Hutchinson 2016), we are the first high-frequency pairs trad-
ing study reporting this effect for the U.S. market. Fama-French type analyses 
provide evidence that our returns can only partially be explained by exposure to 
systematic risk. Concerning parameter and industry profiles of the most profit-
able pairs we conclude that the most influential drivers are industry affiliation 
and a dominance of exploitable mean-reversion over the pronouncedness of 
the random walk. Specifically, we find that among the most profitable pairs, the 
share of industries with a similar business model is very high. The third con-
tribution is to quantify the effect of not accounting for execution limitations. If 
no execution limitations are imposed during the backtesting process, the PBD 
model yields annual returns after costs of 138.6 percent. In addition, all risk and 
return metrics improve. These results indicate that intraday pairs trading returns 
are highly sensitive to execution limitations.
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