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Abstract

In this paper we derive analytic formulae for statistical arbitrage trading where the
security price follows an Ornstein-Uhlenbeck process. By framing the problem in
terms of the first-passage time of the process, we derive expressions for the mean
and variance of the trade length and the return. We examine the problem of choosing
an optimal strategy under two different objective functions: the expected return; and
the Sharpe ratio. An exact analytic solution is obtained for the case of maximising
the expected return.
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1 Introduction

Statistical arbitrage trading has previously been examined by various authors
[1–6]. The goal of this type of trading is to develop highly automated trad-
ing strategies that take a probabilistic approach to trading. These strategies
engage in high frequency trading using algorithms based on stochastic meth-
ods to identify price inefficiencies in the market. The use of such an approach
has increased substantially in recent years as a greater understanding of the
stochastic behavior of financial markets has developed though empirical in-
vestigation and phenomenological modeling. This has largely been driven by
an increase in interdisciplinary research by physicists and has allowed for the
development of increasingly sophisticated models for price behavior.
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A common approach when performing this type of trading is to construct a
stationary, mean reverting synthetic asset as a linear combination of securities.
One example is the method of pairs trading which has been the focus of several
recent studies [2,3,7]. This approach allows for the construction of a trading
strategy where trades are entered when the process reaches an extreme value
and exited when the process reverts to some equilibrium value.

Most commonly used methods for investing do not address the significance
of the role of time, mainly due to the fact that modern portfolio theory [8,9]
is based on single period models. However, when considering statistical based
strategies that engage in high frequency trading, the time between trades, i.e.
trading frequency, becomes an important quantity to consider. The importance
of the role that time plays in financial markets has been explored by many
studies, for instance: data seasonality [10,11]; market activity time [12–14];
and waiting times between orders and trades [15–18]. In the context of trading
strategies it is crucial to consider not only the return per trade but also the
time over which the returns take place. In such a setting it is imperative to
consider transaction costs, because whether inefficiencies can be successfully
traded depends on the cost of trading. Continuous time trading strategies were
presented in [5] to provide a mathematical framework for the construction and
analysis of statistical arbitrage methods. It was shown that in this framework
that optimal strategies balance return per trade and transaction cost with the
stochastic trading frequency.

When implementing these type of strategies, speed of computation is vital, as
calculations are often required to be performed in real time. A high frequency
trading desk may perform thousands of transactions each day on hundreds of
different securities. In this situation, numerical methods, such as simulation or
quadrature, may not be fast enough to update calculations within the required
time constraints. In such an environment there is a need for analytic and
approximate solutions.

In this paper we present analytic formulae and solutions for calculating op-
timal statistical arbitrage strategies with transaction costs. We assume that
the traded security is described by an Ornstein-Uhlenbeck process. The result-
ing analysis provides a mathematical model which can be used to explore the
relationships between variables and offer insight into the dynamics of trad-
ing strategies. We construct a continuous trading strategy for the Ornstein-
Uhlenbeck process and express the trade length and return of the strategy in
terms of the first-passage time of the process. Using known solutions for the
first-passage time, we derive analytic solutions for: the expected return; the
variance of the return; and the expected trade length of the strategy. Opti-
mal trading strategies can be found by constructing objective functions that
are expressed in terms of the expected value and variance of the return. We
derive an analytic solution for the strategy that maximises expected return.
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The solution is shown to satisfy a real valued integral equation. We present
an approximate solution via a Taylor series expansion that is in close agree-
ment with the exact solution. We prove that for optimal trading, the trading
bands are symmetric about the mean of the traded security. We formulate
expressions for the Sharpe ratio [9] of the strategy and show how it can be
maximised. Results are illustrated using an example from an earlier work, in
which, numerical methods were used to evaluate first-passage time distribu-
tions. The model allows for the examination of the impact of transaction cost
on trade length and return, in order to determine whether a strategy can be
successful.

The rest of the paper is as follows. In section 2 we define the continuous
time trading strategy for the Ornstein-Uhlenbeck process. The trade length,
expected return, and variance of the return are formulated in terms of the first-
passage time of the Ornstein-Uhlenbeck process. We use known expressions
for the moments of the first-passage time to derive analytic formulae for the
mean and variance of the trade length and return. In section 3 we construct
optimal trading strategies for the Ornstein-Uhlenbeck process by maximising
the expected return and maximising the Sharpe ratio. An analytic solution
to the problem is obtained in the case of maximising the expected return. In
section 4 we present the results for the optimal strategies applied to real world
data. Section 5 concludes and summarises the main results of the paper.

2 Continuous time trading

A continuous trading strategy comprises a sequence of individual trades per-
formed on a continuous time stochastic process. Consequently, many of the
important quantities related to the trading strategy are functions of the fre-
quency at which these trades take place. The trading frequency is specified by
how many times the strategy trades per unit of time. This value is dependent
on how long it takes in total to move from one trade entry point to the next,
passing though the exit point along the way. We model the price of the traded
security pt as,

pt = eXt ; Xt0 = x0, (1)

where Xt satisfies the following stochastic differential equation,

dXt = −αXtdt + ηdWt, (2)

where α > 0, η > 0, and Wt is the Wiener process. A continuous time trading
strategy is defined by entering a trade when Xt = a, exiting the trade at
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Xt = m, and waiting until the process returns to Xt = a, to complete the
trading cycle. Such a strategy can be thought of as periodic, since the actions
are repeated between trade entry points. However, since Xt is a stochastic
process, the time taken to complete the trade cycle will be a random variable
T . We refer to T as the total trade length. Thus, the behavior of T will largely
determine the properties of the strategy.

We assume that a < m and decompose the total trade length into sub intervals,

T = T1 + T2,

where T1 is the time taken for the process to travel from a to m and T2 is
the time taken from m back to a. Here the variables T1, T2 can be identified
as first-passage times for the process Xt. Furthermore, since Xt is a Markov
process, the passage times T1, T2 are independent. Thus the mean and variance
of T may be written as,

E[T ] = E[T1] + E[T2], (3)

V[T ] = V[T1] + V[T2]. (4)

Expressions for the return per unit time and variance of the return per unit
time of the strategy, can be formulated in terms of the trading frequency. Let
r(a,m, c) be the return per trade as a function of entry and exit levels and
transaction cost. Then, the expected value and the variance of the return for
the strategy are given by,

µ(a,m, c) = r(a,m, c)E [1/T ] ,

σ2(a,m, c) = r(a,m, c)2V [1/T ] ,

where the variable 1/T represent the number of trades per unit time, or trade
frequency. Since the value of T is independent for each trade cycle, the trade
frequency is a renewal process and we can make use of the following results
from renewal theory [19],

E [1/T ] ∼ 1/E[T ],

V [1/T ] ∼ V[T ]/E[T ]3.

The return for a single trade can be expressed as a function of the exit and
entry values, minus the total transaction costs associated with the trade. Since
the variable Xt represents the log-price, the function r(a,m, c) = (m− a− c)
gives the continuously compound rate of return for a single trade accounting
for transaction cost. It is clear that, for a strategy to be profitable, the return

4

Electronic copy available at: https://ssrn.com/abstract=1505073



gained by moving from a to m must first exceed the transaction costs. By
multiplying the return per trade by the above expressions for the frequency,
we obtain,

µ(a,m, c) = r(a,m, c)/E [T ] , (5)

σ2(a,m, c) = r(a,m, c)2V [T ] /E [T ]3 . (6)

Note that, since the process Xt is stationary, the return per trade is determin-
istic. However the time frame over which the return is realised is stochastic.
Depending on the properties of Xt and T , a trade may take a long time before
reaching the exit level and experience a significant deviation away from the
exit level during that time. The expressions for the strategy return and vari-
ance may be calculated using well known identities for the first-passage time
of the Ornstein-Uhlenbeck process.

The first-passage time of the Ornstein Uhlenbeck process has been studied
extensively in the literature. It is used in a wide variety of fields such as:
biology [20]; disease modeling for HIV infection [21]; and finance in the context
modeling default risk [22,23]. It is well known that no closed form solution for
the first-passage time density currently exist, except for the special case when
the system is symmetric [24]. However, the moments of the first-passage time
have been investigated and calculated for various special cases [25–29]. Due
to our formulation of the problem, we are able to use these known identities
to evaluate both the expected trade length and the variance of the trade
length. By applying the transformation Yt = Xt

√
2α/η via Itô’s lemma and

performing the time dilation τ = αt we can transform the problem to the
dimensionless system,

dYτ = −Yτdτ +
√

2dWτ ,

with trade entry level ā = a
√

2α/η, exit level m̄ = m
√

2α/η, and transaction
cost c̄ = c

√
2α/η. This transformation expresses the amplitude of the process

in terms of the steady state standard deviation, θ = η/
√

2α. Note that the
trade length rescales to T = αT . To simplify analysis we will work with the
dimensionless system. For a process started at y = y0 with barrier at y = b
we define the first-passage time Tb,y0 = inf{t ≥ 0 : Yt > b|Y0 = y0}. The
first-passage time has been shown by [27,28] to have mean,

E[Tb,y0 ] =





φ1(b)− φ1(y0); y0 < b,

φ1(−b)− φ1(−y0); y0 > b,
(7)

where
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φ1(z) =
1

2

∞∑

k=1

Γ (k/2)
(√

2z
)k

/k!.

Similarly the variance of the first-passage time is due to [29] and is given by,

V[T0,y0 ] =





φ1(b)
2 − φ2(b) + φ2(y0)− φ1(y0)

2; y0 < b,

φ1(−b)2 − φ2(−b) + φ2(−y0)− φ1(−y0)
2; y0 > b,

(8)

where

φ2(z) =
1

2

∞∑

k=1

Γ (k/2) Ψ (k/2)
(√

2z
)k

/k!,

and Ψ(x) = ψ(x)− ψ(1) and ψ(x) is the digamma function,

ψ(z) =
1

Γ(z)

d

dz
Γ(z).

Since we are using an Ornstein-Uhlenbeck process that is symmetric about
Yt = 0 we also have that Tb,0 = T−b,0 and T0,y0 = T0,−y0 . Using these results
with ā < m̄ the required first-passage times are,

T1 = Tm̄,ā,

T2 = Tā,m̄ = T−ā,−m̄.

From Eq. (3) and (7) we can write the expected trade length as,

E[T ] = π
(
Erfi

(
m̄/
√

2
)
− Erfi

(
ā/
√

2
))

,

where Erfi(x) = iErf(ix) is the imaginary error function. Likewise from Eq. (4)
and (8) the variance is,

V[T ] = w1(m̄)− w1(ā)− w2(m) + w2(ā),

where

w1(z) =

(
1

2

∞∑

k=1

Γ (k/2)
(√

2z
)k

/k!

)2

−
(

1

2

∞∑

k=1

(−1)kΓ (k/2)
(√

2z
)k

/k!

)2

w2(z) =
∞∑

k=1

Γ ((2k − 1)/2) Ψ ((2k − 1)/2)
(√

2x
)(2k−1)

/(2k − 1)!.
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Fig. 1. The expected value and the variance of the trade length as a function of
trade entry and exit level. This example uses parameters α = 180.9670, η = 0.1538,
c = 0.001.
Hence, for the continuous trading strategy under the parametric system of
Eqs. (1) and (2) we can obtain the closed form solution for the expected trade
length as,

E [T ] =
π

α

(
Erfi

(
m
√

α/η
)
− Erfi

(
a
√

α/η
))

. (9)

Similarly the closed form solution of the trade length variance is,

V[T ] =

(
w1

(
m
√

2α
η

)
− w1

(
a
√

2α
η

)
− w2

(
m
√

2α
η

)
+ w2

(
a
√

2α
η

))

α2
. (10)

Figure 1 displays surface plots for the expected trade length and the variance
of the trade length for different entry and exit levels. This figure indicates the
nonlinear behavior of the trade length as the trading levels become further
apart. Using Eqs. (5) and (9) we can obtain the analytic form of the expected
return for the strategy,

µ(a,m, c) =
α(m− a− c)

π
(
Erfi

(
m
√

α
η

)
− Erfi

(
a
√

α
η

)) . (11)
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Fig. 2. The expected return and the variance of the return as a function of trade
entry and exit level in the positive half place. This example uses parameters
α = 180.9670, η = 0.1538, c = 0.001.

Likewise from Eqs. (6) and (10), the variance of the strategy return is,

σ2(a,m, c) = α(m− a− c)2

×
(
w1

(
m
√

2α
η

)
− w1

(
a
√

2α
η

)
− w2

(
m
√

2α
η

)
+ w2

(
a
√

2α
η

))

π3
(
Erfi

(
m
√

α
η

)
− Erfi

(
a
√

α
η

))3 . (12)

These analytic formulae, for the mean and variance, allow us to determine
the properties of the strategy in terms of the trade entry and exit levels and
transaction costs. Figure 2 displays a surface plot of the expected return and
variance of the return as a function of entry and exit level with a fixed trans-
action cost. Although the return per trade r(a,m, c) is linear, it is apparent
that the non-linear behavior of the trading frequency has a strong influence on
the profitability of the trading strategy. It is also interesting that the variance
of the return displays a bimodal shape which is symmetric around m = −a.
The equations for the mean and variance of the return allow us to determine
the trading bands that optimise the trading strategy.
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3 Optimal strategies

To calculate an optimal trading strategy, we seek to identify trade entry and
exit levels that maximise some objective function for a given transaction cost.
Suitable objective functions can be constructed as functions of the strategies
expected return and variance. In this section we present two examples of op-
timal strategy choice: maximising the expected return; and maximising the
Sharpe ratio.

3.1 Maximum expected return

We wish to find the values of a and m that maximise the expected return
µ(a,m, c) given in Eq. (11). Differentiating Eq. (11) with respect to a and m
and setting the derivatives equal to zero we obtain the following equations,

√
4π

αη2
e

αa2

η2 (m− a− c)− π

α

(
Erfi

(
m
√

α

η

)
− Erfi

(
a
√

α

η

))
= 0,

√
4π

αη2
e

αm2

η2 (m− a− c)− π

α

(
Erfi

(
m
√

α

η

)
− Erfi

(
a
√

α

η

))
= 0.

It is clear that ∂µ
∂a

= ∂µ
∂m

= 0 requires that a2 = m2. Since we have assumed
that a < m, this implies that a < 0 and m = −a. Thus, the optimal entry
and exit bands must be symmetric about zero. This is a somewhat significant
result since the paradigm approach for trading a mean reverting process is
to use asymmetric bands, entering a trade when the process exhibits a two
standard deviation event and exiting when it returns to zero [7]. Accordingly
the maximum expected return is given by,

µ∗(a, c) =
α(2a + c)

2πErfi (a
√

α/η)
,

where the optimal value of a satisfies the following equation,

e
αa2

η2 (2a + c)− η

√
π

α
Erfi

(
a
√

α/η
)

= 0. (13)

It is relatively straight forward to find the root of this equation numerically. As
an alternative to the numerical approach, we can construct an approximate
solution of the above equation via Taylor series. Taking a 3rd order Taylor
series of Eq. (13) around a = 0 and simplifying, we obtain,
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c +
αc

η2
a2 +

4α

3η2
a3 = 0.

This cubic equation can be solved and the appropriate negative real root
chosen to yield the following approximation that is valid for small values of
a
√

α/η,

a = − c

4
− c2α

4
(
c3α3 + 24cα2η2 − 4

√
3c4α5η2 + 36c2α4η4

)1/3

−
(
c3α3 + 24cα2η2 − 4

√
3c4α5η2 + 36c2α4η4

)1/3

4α
. (14)

3.2 Maximum Sharpe ratio

In the previous example, maximising the expected return puts no constraints
on the risk associated with the return. To account for risk, we consider max-
imising the Sharpe ratio. The Sharpe ratio was proposed by [9] in the context
of single-period portfolio theory. By considering the variance as a measure
of risk, the ratio acts as a measure for the relative return per unit of risk.
The Sharpe ratio is defined as the expected return in excess of the risk-free
rate normalised by the standard deviation of the return. In the context of
continuous time trading we define an analogous Sharpe ratio as,

S = (µ− r∗)/σ, (15)

where

r∗ = rf/E[T ],

and rf is the risk-free rate of return. Thus, r∗ corresponds to the risk-free rate
over the same time period as the return produced by the trading strategy.
This provides a measure of the strategy’s efficiency in generating returns in
excess of a risk-free investment on an equivalent time scale. Using Eqs. (15),
(11), and (12) we have,

S(a,m, c, rf ) = (m− a− c− rf )

√√√√ E[T ]

(m− a− c)2V[T ]
.

Inserting the corresponding values for the expected trade length and variance
of trade length we obtain,
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Fig. 3. The Sharpe ratio as a function of trade entry and exit level in the positive
half place. This example uses parameters α = 180.9670, η = 0.1538, c = 0.001,
rf = 0.01.

S(a,m, c, rf ) =
m− a− c− rf√

(m− a− c)2

×
√√√√√

απ
(
Erfi

(
m
√

α
η

)
− Erfi

(
a
√

α
η

))
(
w1

(
m
√

2α
η

)
− w1

(
a
√

2α
η

)
− w2

(
m
√

2α
η

)
+ w2

(
a
√

2α
η

)) .

Figure 3 displays a plot of Sharpe ratio as a function of trade entry and exit
bands. By considering the expected value and the variance of T as functions
of a and m, we can use the derivatives, ∂S

∂a
= ∂S

∂m
= 0, to obtain the following

equations,

− 1

m− a− c− rf

+
∂
∂a
E[T ]

2E[T ]
+

1

m− a− c
−

∂
∂a
V[T ]

2V[T ]
= 0,

− 1

m− a− c− rf

−
∂

∂m
E[T ]

2E[T ]
+

1

m− a− c
+

∂
∂m
V[T ]

2V[T ]
= 0.

From the equations for the expected time Eq. (9) and variance Eq. (10) we
have,

∂

∂a
E[T ] = − ∂

∂m
E[T ],

∂

∂a
V[T ] = − ∂

∂m
V[T ].

Thus, it is clear that we must again have a < 0 and m = −a as a condition
to optimise the strategy. By noting that w1(−z) = −w1(z) and w2(−z) =
−w2(z), these results allow us to express the maximum Sharpe ratio in terms
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Fig. 4. The optimal trading bands and corresponding maximum return of the strat-
egy as a function of transaction cost. The solid line represents the numerical solution
while the dashed line represents the analytic approximation.

of one less variable,

S∗(a, c, rf ) =
−(2a + c + rf )

√
απErfi

(
a
√

α
η

)

√
(2a + c)2

(
w1

(
a
√

2α
η

)
+ w2

(
a
√

2α
η

)) , (16)

which can be maximised to find a. Although these equations are less tractable
than those obtained when maximising the expected return, there is still a great
advantage in having an analytic form for the Sharpe ratio. To find the maxi-
mum one need only apply a straightforward optimization routine to Eq. (16).

4 Results

Here we present the results for the optimization discussed in the previous
section. To illustrate the results we use the same example as that presented in
Ref.[5] which constructs a stationary synthetic asset as a linear combination
of the dual listed securities, ANZ.AX and ANZ.NZ. The parameters for the
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Fig. 5. The optimal trading bands and corresponding maximum return of the strat-
egy as a function of the risk-free rate rf . This example uses c = 0.001.

Ornstein-Uhlenbeck process are found to be α = 180.9670 and η = 0.1538.

The expected return of the strategy is maximised via Eq. (13) in order to
obtain the optimal value of a for a given transaction cost c. Figure 4 displays
the solution to Eq. (13) along with the approximation formula for a. This
figure shows that despite being a low order approximation, Eq. (14) is in good
agreement with the exact solution for small values of a. When maximising the
expected return these small values of a also correspond to small values of c,
thus the approximation is valid for the case of small transaction costs. Further,
the optimal return, µ∗ obtained with the approximate solution provides a close
match to that obtained with Eq. (13). Results for the optimal strategy with
different transaction costs are shown in Table 1.

In the case of maximising the Sharpe ratio we hold the transaction cost at a
constant level, c = 0.001, and examine the optimal choice of entry and exit
point as a function of the risk-free rate rf . The optimal trading level a is
obtained by maximised Eq. (16). Figure 5 displays the optimal entry value
a, and the corresponding maximum Sharpe ratio as a function of rf . These
figures illustrate how the efficiency of the strategy is affected by the existence
of a risk-free investment over an equivalent time scale. As the risk-free return
increases, the strategy becomes less attractive on a return per unit risk basis.
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c a aapprox µ∗ µapprox

0.0010 -0.0047152 -0.0048750 0.49236 0.492250

0.0020 -0.0060232 -0.0063549 0.44219 0.441760

0.0030 -0.0069778 -0.0074910 0.40214 0.401160

0.0040 -0.0077651 -0.0084682 0.36797 0.366200

0.0050 -0.0084523 -0.0093531 0.33790 0.335130

0.0060 -0.0090721 -0.0101780 0.31095 0.306960

0.0150 -0.0133720 -0.0165920 0.14860 0.127780

0.0175 -0.0143940 -0.0182670 0.11961 0.094441

0.0200 -0.0153880 -0.0199340 0.09536 0.067177

Table 1
Results for maximising the expected return with α = 180.9670, η = 0.1538.

rf a S∗ µ σ2

0.0010 -0.0046075 9.2824 0.49231 0.0021698

0.0020 -0.0058600 8.1947 0.48757 0.0023423

0.0030 -0.0068033 7.3497 0.47782 0.0024544

0.0040 -0.0076014 6.6449 0.46638 0.0025421

0.0050 -0.0083134 6.0371 0.45405 0.0026159

0.0060 -0.0089681 5.5027 0.44115 0.0026800

0.0150 -0.0138010 2.5102 0.31271 0.0029518

0.0175 -0.0150020 2.0220 0.27554 0.0029215

0.0200 -0.0161780 1.6249 0.23890 0.0028357

Table 2
Results for maximising the Sharpe ratio with α = 180.9670, η = 0.1538, c = 0.001.

Table 2 presents the results of the optimization together with the expected
return and the variance in each case.

5 Summary

In this paper we have presented analytic formulae for statistical arbitrage
trading. We derived closed form solutions for the mean and variance of the
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trade length and the strategy return. These results allow for the description
and analysis of trading strategies, including the effects of transaction costs.
Analytic solutions for constructing optimal trading strategies were obtained
by maximising the expected return. It was shown analytically that in the
optimal case the trade entry and exit levels are symmetric about zero. A
formula for maximising the Sharpe ratio was derived. This formula provides a
way to construct an optimal strategy incorporating a measure of risk, namely
the variance of the return. It was shown that the trade entry and exit levels
are also symmetric when maximising the Sharpe ratio. We examined how the
optimal choice varies with the risk-free rate of return.

Analytic solutions such as those provided in this paper are of use when imple-
menting statistical arbitrage strategies that engage in high frequency trading,
due to the necessity to perform calculations in real time. We note that the
results obtained in this paper rely on the assumption that the security is de-
scribed by an Itô diffusion process, namely the Ornstein-Uhlenbeck process,
which is Gaussian. It is well known that financial data displays non- Gaussian
behavior and therefore the model will not accurately represent real world be-
havior. However, this approach offers a way to investigate and understand how
the important system variables relate to each other. In particular, it indicates
the importance that time plays in determining an optimal trading strategy.
The method can also be applied to non-Gaussian processes, such as the gener-
alised Ornstein-Uhlenbeck process which is driven by a Levy noise. However,
analytic results may not be so forthcoming.
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