
STRONG CONVERGENCE RATES FOR MARKOVIAN

REPRESENTATIONS OF FRACTIONAL BROWNIAN MOTION

PHILIPP HARMS

Abstract. Fractional Brownian motion can be represented as an integral

over a family of Ornstein–Uhlenbeck processes. This representation naturally
lends itself to numerical discretizations, which are shown in this paper to have

strong convergence rates of arbitrarily high polynomial order. This explains

the potential, but also some limitations of such representations as the basis of
Monte Carlo schemes for fractional volatility models such as the rough Bergomi

model.
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1. Introduction

This paper establishes strong convergence rates for certain numerical approx-
imations of fractional Brownian motion. These approximations are inspired by
Markovian representations of fractional Brownian motion [12, 13, 28, 24] and of
more general Volterra processes with singular kernels [29, 4, 2, 3, 14]. The motiva-
tion is to develop efficient Monte Carlo methods for fractional (or rough) volatility
models [22, 6, 9, 7, 25], which have been introduced on the grounds of extensive
empirical evidence [22, 6, 9] and theoretical results [5, 18, 17, 8]. The main result is
the following.

Theorem 1. For any time horizon T ∈ (0,∞), Hurst index H ∈ (0, 1/2), and
desired convergence rate r ∈ (0,∞), the following statements hold:
(a) Volterra Brownian motion can be approximated at rate n−r by a sum of n

Ornstein–Uhlenbeck processes. More precisely, there are speeds of mean reversion
xn,i ∈ (0,∞) and weights wn,i ∈ (0,∞), 1 ≤ i ≤ n, such that for any Brownian
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2 PHILIPP HARMS

motion W , the continuous versions WH and WH,n of the stochastic integrals

WH
t :=

∫ t

0

(t− s)H−1/2dWs, WH,n
t :=

n∑
i=1

wn,i

∫ t

0

e−(t−s)xn,idWs, t ∈ [0, T ].

satisfy

∀p ∈ [1,∞) : sup
n∈N

nr
∥∥WH −WH,n

∥∥
Lp(Ω,C([0,T ],R)

<∞.

(b) Under the above approximation, put prices in the rough Bergomi model con-
verge at rate n−r. More precisely, for any Brownian motion B, the stochastic
exponentials

St := 1 +

∫ t

0

Ss exp(WH
s )dBs, Snt := 1 +

∫ t

0

Sns exp(WH,n
s )dBs, t ∈ [0, T ],

satisfy for all strikes K ∈ [0,∞) that

sup
n∈N

nr |E [(K − ST )+]− E [(K − SnT )+]| <∞.
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Figure 1. Volterra Brownian motion of Hurst index H ∈ (0, 1/2)
can be represented as an integral WH

t =
∫∞

0
Y xt x

−1/2−Hdx over a
Gaussian random field Y xt . The smoothness of the random field
in the spatial dimension x allows one to approximate this integral
efficiently using high order quadrature rules.
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Proof. (a) follows from the integral representation in Lemma 1 and its discretization
in Lemma 2. More precisely, the m-point quadrature rule in Lemma 2 converges at
any rate r < δm/(1−α−β+ δ+m) = 2Hm/3, where the parameters α = H + 1/2,
β = m− 1, γ = 1/2−H, and δ = H are given by Lemma 1. Moreover, (b) follows
from (a) and Lemma 3. �

The idea behind Theorem 1 is to represent Volterra Brownian motion as an integral
over a Gaussian random field, as described in Lemma 1 and Figure 1. Thanks to the
spatial smoothness of the random field, the integral can be approximated efficiently
using high order quadrature rules, following and extending [13, 24, 1, 3]. A visual
impression of the quality of this approximation can be obtained from Figure 2. The
predicted convergence rate r ≈ 2Hm/3 using m-point interpolatory quadrature
closely matches the numerically observed one; see Figure 3.
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Figure 2. Dependence of the approximations on the number n
of quadrature intervals and the Hurst index H. Left: varying
the number n ∈ {2, 5, 10, 20, 40} = {�,�,�,�,�} of quadrature
intervals with fixed parameters H = 0.1, m = 5. Right: varying
the Hurst index H ∈ {0.1, 0.2, 0.3, 0.4} = {�,�,�,�} with fixed
parameters n = 40, m = 5.
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Figure 3. The predicted convergence rate r ≈ 2Hm/3 with m-
point interpolatory quadrature closely matches the numerically ob-

served one. Left: relative error e = ‖WH
1 −W

H,n
1 ‖L2(Ω)/‖WH

1 ‖L2(Ω)

for m ∈ {2, 3, . . . , 20} = {�,�, . . . ,�}. Right: slopes of the lines
in the left plot (dots) and predicted convergence rate (line).
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A comparison to several alternative methods [26, 15, 10, 13] exhibits the potential,
but also the limitations of integral representations as a basis for numerical simulation
schemes. The ranking of these methods in terms of overall complexity depends on
the desired accuracy and number of time points as shown in Table 1. Our scheme
outperforms the others in situations where accuracy n−1 on a time grid of step size
� n−1/H is desired. However, in fractional volatility modeling one typically wants
accuracy n−1 on finer time grids of step size ≈ n−1/H because this leads via piecewise
constant interpolation to the same accuracy in the supremum norm. On these finer
time grids our scheme achieves accuracy n−1 at complexity n1/H+r for arbitrarily
small r. Using exponentially converging quadrature rules such as Chebychev [20,
19], one could at best hope to reduce this complexity down to n1/H log n. This
is exactly the complexity of the hybrid scheme [10] and the circulant embedding
method [16]. This complexity is optimal because it coincides with the complexity of
convolution of n1/H numbers using the fast Fourier transform.

Method Structure Error Complexity

Cholesky Static 0 k3

Hosking, Dieker [26, 15] Recursive 0 k2

Dietrich, Newsam [16] Static 0 k log k
Bennedsen, Lunde and Pakkanen [10] Recursive k−H k log k
Carmona, Coutin, Montseny [13] Recursive n−1 kn9/(4H)

This paper Recursive n−1 knr for all r

Table 1. Complexity of several numerical methods for sampling
fractional Brownian motion (WH

i/k)i∈{1,...,k} with Hurst index H ∈
(0, 1/2) at k equidistant time points.

Our result has applications to fractional volatility modeling. One implication,
which is spelled out in Theorem 1, is that put prices in the rough Bergomi model
converge at the same rate as the underlying fractional volatility process. By put-call
parity, this extends to call prices if the Brownian motions B and W are negatively
correlated, as explained in Remark 2. A fully discrete Monte Carlo scheme for
the rough Bergomi model can be obtained by discretizing the Ornstein–Uhlenbeck
processes of Theorem 1 in time. This can be done efficiently because the covariance
matrix of the Ornstein–Uhlenbeck increments has low numerical rank if the time
steps are small.

Several directions for future generalization and improvement come to mind.
Theorem 1 is proved by approximation in the Laplace domain, which implies
convergence in the time domain by the continuity of the Laplace transform. As
Volterra processes with Lipschitz drift and volatility coefficients depend continuously
on the kernel in the L2 norm, it would be interesting to check if similar convergence
results hold also in this more general setting. The rate of convergence could
potentially be improved using Chebychev quadrature, taking advantage of the real
analyticity of the random field Y xt in the spatial variable x. Finally, following [10,
27], one could aim for more careful treatments of the singularity of the kernel near
the diagonal and apply some variance reduction techniques.
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2. Setting and notation

We will frequently make the following assumptions. Let H ∈ (0, 1/2), let α =
H + 1/2, let µ be the sigma-finite measure x−αdx on the interval (0,∞), let
p ∈ [1,∞), let T ∈ (0,∞), let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis, and let
W,B : [0, T ]× Ω→ R be (Ft)t∈[0,T ]-Brownian motions.

Moreover, we will use the following notation. The space C0,∞([0, T ]× (0,∞),R)
carries the initial topology and differential structure with respect to the derivatives

∂kx : C0,∞([0, T ]× (0,∞),R)→ C([0, T ]×K,R), k ∈ N,K ⊂ (0,∞) compact,

and the spaces C([0, T ] ×K,R), C([0, T ], L1(µ)), etc. carry the supremum norm.
The space of real-valued Lipschitz functions f : R → R is denoted by Lip(R) and
carries the norm ‖f‖Lip(R) = |f(0)|+ supx 6=y |f(y)− f(x)||y − x|−1.

3. Integral representation

This section establishes bounds on the tails and derivatives of the Markovian lift
of Volterra Brownian motion [12, 13, 28, 24]. These bounds are used in the error
analysis in Section 4. The meaning of the constants α, β, γ, δ,m below is consistent
throughout the paper.

Lemma 1. Assume the setting of Section 2. Then there exists a measurable mapping

Y : Ω→ C0,∞([0, T ]× (0,∞),R) ∩ C([0, T ], L1(µ))

with the following properties:
(a) Volterra Brownian motion is a linear functional of Y in the sense that

∀t ∈ [0, T ] : P
[∫ t

0

(t− s)α−1dWs =

∫ ∞
0

Yt(x)
dx

xα

]
= 1.

(b) The following integrability conditions hold: for all m ∈ N>0, β = m − 1,
γ = 1− α, and δ ∈ [0, α− 1/2),∥∥∥∥∥ sup

t∈[0,T ]

sup
x∈(0,∞)

∣∣xβ∂mx Yt(x)
∣∣∥∥∥∥∥
Lp(Ω)

<∞,

sup
x0∈[0,1]

x−γ0

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ x0

0

Yt(x)
dx

xα

∣∣∣∣
∥∥∥∥∥
Lp(Ω)

<∞,

sup
x1∈[1,∞)

xδ1

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ ∞
x1

Yt(x)
dx

xα

∣∣∣∣
∥∥∥∥∥
Lp(Ω)

<∞.

(c) The following integrability condition holds: for each β ∈ (0, 1/2),∥∥∥∥∥ sup
t∈[0,T ]

sup
x∈(0,∞)

xβ |Yt(x)|

∥∥∥∥∥
Lp(Ω)

<∞.

Proof. Let Y : [0, T ]× (0,∞)×Ω→ R satisfy for each t ∈ [0, T ] and x ∈ (0,∞) that

Yt(x) =
1

Γ( 1
2 −H)

(
Wt −

∫ t

0

Wsxe
−(t−s)xds

)
.
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Then Y : Ω→ C0,∞([0, T ]× (0,∞),R) is well-defined and measurable because the
right-hand side above is a smooth function of the sample paths of W , i.e., the
following mapping is smooth:

C([0, T ]) 3 w 7→

(
(t, x) 7→ wt −

∫ t

0

wsxe
−(t−s)xds

)
∈ C0,∞([0, T ]× (0,∞),R).

Moreover, Y : Ω → C([0, T ], L1(µ)) is well-defined and measurable by [24, Theo-
rem 2.11]. We briefly reproduce the argument here because it will be needed in the
sequel. The expression

E

[∫ ∞
0

sup
t∈[0,T ]

|Yt(x)|dx
xα

]
=

∫ ∞
0

E

[
sup
t∈[0,T ]

|Yt(x)|

]
dx

xα
(∗)

is well-defined because the supremum is measurable by the continuity in t of Yt(x).
Integration by parts and a continuity argument show that

∀x ∈ (0,∞) : P
[
∀t ∈ [0, T ] : Wt −

∫ t

0

Wsxe
−(t−s)xds =

∫ t

0

e−(t−s)xdWs

]
= 1,

which implies that

(∗) =
1

Γ( 1
2 −H)

∫ ∞
0

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

e−(t−s)xdWs

∣∣∣∣
]
dx

xα
.

This can be bounded using the maximal inequality for Ornstein–Uhlenbeck processes
of [23, Theorem 2.5 and Remark 2.6]: there is C1 ∈ (0, 4) such that

(∗) ≤ C1

Γ( 1
2 −H)

∫ ∞
0

√
log(1 + Tx)

x

dx

xα
<∞.

Thus, Y has continuous sample paths in L1(µ) by the dominated convergence
theorem. To summarize, we have shown that the following mapping is well-defined
and measurable,

Y : Ω→ C0,∞([0, T ]× (0,∞),R) ∩ C([0, T ], L1(µ)),

where the intersection of the two spaces above carries the initial sigma algebra with
respect to the inclusions. (a) follows from the above and the stochastic Fubini
theorem: for each t ∈ [0, T ], one has almost surely that∫ ∞

0

Yt(x)
dx

xα
=

1

Γ( 1
2 −H)

∫ ∞
0

∫ t

0

e−(t−s)xdWs
dx

xα

=
1

Γ( 1
2 −H)

∫ t

0

∫ ∞
0

e−(t−s)x dx

xα
dWs =

∫ t

0

(t− s)αdWs.

(b) can be seen as follows. Recall that β = m− 1 and let

C2 = sup
t∈(−∞,0]
x∈(0,∞)

|xβ∂mx (xetx)| = sup
t∈(−∞,0]
x∈(0,∞)

|xm−1∂mx ∂te
tx|

= sup
t∈(−∞,0]
x∈(0,∞)

|xm−1∂t(t
metx)| = sup

y∈(−∞,0]

∣∣mym−1 + ym
∣∣ ey <∞,

C3 = sup
x∈(0,∞)

x−(α− 1
2−δ)

√
log(1 + Tx) <∞,
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Using again the maximal inequality for Ornstein–Uhlenbeck processes of [23, The-
orem 2.5 and Remark 2.6] and noting that log(1 + Tx) ≤ Tx, one obtains the
following three estimates:

E

[
sup
t∈[0,T ]

sup
x∈(0,∞)

∣∣xβ∂mx Yt(x)
∣∣]

= E

[
sup
t∈[0,T ]

sup
x∈(0,∞)

∣∣∣∣∫ t

0

Wsx
m−1∂mx (xe−(t−s)x)ds

∣∣∣∣
]

≤ C2T E

[
sup
t∈[0,T ]

|Wt|

]
<∞,

sup
x0∈[0,1]

x−γ0 E

[
sup
t∈[0,T ]

∣∣∣∣∫ x0

0

Yt(x)x−αdx

∣∣∣∣
]

≤ C1 sup
x0∈[0,1]

x−γ0

∫ x0

0

√
log(1 + Tx)

x
x−αdx

≤ C1 sup
x0∈[0,1]

x−γ0

∫ x0

0

√
Tx−αdx = C1

√
Tγ−1 <∞,

sup
x1∈[1,∞)

xδ1E

[
sup
t∈[0,T ]

∣∣∣∣∫ ∞
x1

Yt(x)x−αdx

∣∣∣∣
]

≤ C1 sup
x1∈[1,∞)

xδ1

∫ ∞
x1

√
log(1 + Tx)

x
x−αdx

≤ C1C3 sup
x1∈[1,∞)

xδ1

∫ ∞
x1

x−1−δdx = C1C3δ
−1 <∞.

This shows (b) for p = 1. The generalization to p ∈ [1,∞) follow from the
Kahane–Khintchine inequality applied to the Gaussian process Y .

(c) can be seen as follows. Let

C4 = E

[
sup

s,t∈[0,T ]

|Wt −Ws|
|t− s|β

]
,

which is finite by the Hölder continuity of Brownian motion. Note that

Yt(x) = Wt −
∫ t

0

Wtxe
−(t−s)xds+

∫ t

0

(Wt −Ws)xe
−(t−s)xds

≤ (Wt −W0)e−tx +

∫ t

0

(Wt −Ws)xe
−(t−s)xds.

Therefore,

E

[
sup
t∈[0,T ]

sup
x∈(0,∞)

xβ |Yt(x)|

]

≤ C4 sup
t∈[0,T ]

sup
x∈(0,∞)

(
(tx)βe−tx +

∫ t

0

(t− s)βxβxe−(t−s)xds

)
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= C4 sup
y∈(0,∞)

(
yβe−y +

∫ y

0

zβe−zdz

)
≤ 2C4.

This shows (c) for p = 1. The generalization to p ∈ [1,∞) follow from the Kahane–
Khintchine inequality applied to the Gaussian process Y . �

4. Discretization

In this section, the measure µ in the integral representation of Volterra Brownian
motion is approximated by a weighted sum of Dirac measures. More specifically,
for each n ∈ N, the positive half line is truncated to a finite interval [ξn,0, ξn,n].
This interval is then split into subintervals by a geometric sequence (ξn,i)i∈{1,...,n},
and on each subinterval [ξn,i, ξn,i+1] the measure µ is approximated by an m-point
interpolatory quadrature rule such as e.g. the Gauss rule. Classical error analysis
for interpolatory quadrature rules (see e.g. [11]) then yields the desired convergence
result.

Definition 1. Let a, b ∈ R satisfy a < b, let w : [a, b] → [0,∞) be a continuous

function such that
∫ b
a
w(x)dx > 0, and let m ∈ N>0. Then a measure µ on [a, b] is

called a non-negative m-point interpolatory quadrature rule on [a, b] with respect
to the weight function w if there are grid points x1, . . . , xm ∈ [a, b] and weights
w1, . . . , wm ∈ [0,∞) such that µ =

∑m
j=1 wjδxj and

∀k ∈ {0, . . . ,m− 1} :

∫ b

a

xkw(x)µ(dx) =

∫ b

a

xkw(x)dx.

The assumptions of the following lemma are satisfied thanks to the bounds of
Lemma 1, where the same constants α, β, γ, δ,m are used.

Lemma 2. Assume the setting of Section 2, let m ∈ N>0 and α, β, γ, δ ∈ (0,∞)
satisfy 1− α− β +m > 0, let

Y : Ω→ C0,m([0, T ]× (0,∞),R) ∩ C([0, T ], L1(µ))

be a measurable function which satisfies the integrability conditions∥∥∥∥∥ sup
t∈[0,T ]

sup
x∈[0,∞)

∣∣xβ∂mx Yt(x)
∣∣∥∥∥∥∥
Lp(Ω)

<∞,

lim sup
x0↓0

x−γ0

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ x0

0

Yt(x)x−αdx

∣∣∣∣
∥∥∥∥∥
Lp(Ω)

<∞,

lim sup
x1↑∞

xδ1

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ ∞
x1

Yt(x)x−αdx

∣∣∣∣
∥∥∥∥∥
Lp(Ω)

<∞,

let r ∈ (0, δm/(1− α− β + δ +m)), for each n ∈ N and i ∈ {0, . . . , n− 1} let

ξn,0 = n−r/γ , ξn,n = nr/δ, ξn,i = ξn,0(ξn,n/ξn,0)i/n,

let µn,i be a non-negative m-point interpolatory quadrature rule on [ξn,i, ξn,i+1] with

respect to the weight function x 7→ x−α, and let µn =
∑n−1
i=0 µn,i. Then

sup
n∈N

nr

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ ∞
0

Yt(x)x−α(µn(dx)− dx)

∣∣∣∣
∥∥∥∥∥
Lp(Ω)

<∞.
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Proof. We define the constants

η =

(
1

r
− 1− α− β +m+ δ

δm

)/(
1

γ
+

1

δ

)
∈ (0,∞),

C1 =
πm

m!2m

∥∥∥∥∥ sup
t∈[0,T ]

sup
x∈[0,∞)

|xβY (m)
t (x)|

∥∥∥∥∥
Lp(Ω)

∈ (0,∞),

C2 = sup
λ∈(1,∞)

λ− 1

λ1−α−β+m − 1
∈ (0, 1/(1− α− β +m)],

C3 = sup
ξ∈[1,∞)

sup
n∈[log ξ,∞)

(
ξ1/n − 1

)
nξ−η ∈ (0,∞),

C4 = min

{
n ∈ N;n ≥ log(ξn,n/ξn,0) =

(
r

γ
+
r

δ

)
log(n)

}
<∞,

where the upper bound on C2 follows from Bernoulli’s inequality

∀λ ∈ [0,∞) : λ1−α−β+m = (1 + (λ− 1))1−α−β+m ≥ 1 + (1− α− β +m)(λ− 1),

and the upper bound on C3 follows from the inequality

∀ξ ∈ [1,∞)∀n ∈ [log(ξ),∞) : ξ1/n − 1 = exp(log(ξ)/n)− 1 ≤ e log(ξ)/n.

By [11, Theorem 4.2.3] one has for each t ∈ [0, T ], n ∈ N, and i ∈ {0, . . . , n − 1}
that ∫ ξn,i+1

ξn,i

Yt(x)x−α(µn(dx)− dx) =

∫ ξn,i+1

ξn,i

∂mx Yt(x)Kn,i(x)dx,

where the Peano kernel Kn,i : [ξn,i, ξn,i+1] → R is a measurable function which
satisfies [11, Theorem 5.7.1]

sup
x∈[ξn,i,ξn,i+1]

|Kn,i(x)| ≤ πm

m!

(
ξn,i+1 − ξn,i

2

)m
sup

x∈[ξn,i,ξn,i+1]

x−α.

Thus, one has for each n ∈ N that∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∣
∫ ξn,n

ξn,0

Yt(x)x−α(µn(dx)− dx)

∣∣∣∣∣
∥∥∥∥∥
Lp(Ω)

(∗)

≤
n−1∑
i=0

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∣
∫ ξn,i+1

ξn,i

Yt(x)Kn,i(x)dx

∣∣∣∣∣
∥∥∥∥∥
Lp(Ω)

≤
n−1∑
i=0

πm

m!2m

∥∥∥∥∥∥∥ sup
t∈[0,T ]

x∈[ξn,i,ξn,i+1]

|xβY (m)
t (x)|

∥∥∥∥∥∥∥
Lp(Ω)

ξ−α−βn,i (ξn,i+1 − ξn,i)m+1

≤ C1

n−1∑
i=0

ξ−α−βn,i (ξn,i+1 − ξn,i)m+1.

This can be expressed as a geometric series: letting λn = (ξn,n/ξn,0)1/n, one has for
each n ∈ N that

(∗) = C1ξ
1−α−β+m
n,0 (λn − 1)m+1

n−1∑
i=0

λi(1−α−β+m)
n
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= C1ξ
1−α−β+m
n,0 (λn − 1)m+1λ

n(1−α−β+m)
n − 1

λ1−α−β+m
n − 1

= C1(λn − 1)m+1
ξ1−α−β+m
n,n − ξ1−α−β+m

n,0

λ1−α−β+m
n − 1

.

Absorbing the denominator into one of the factors (λn − 1) and discarding the term
ξn,0 yields for each n ∈ N that

(∗) ≤ C1C2(λn − 1)mξ1−α−β+m
n,n = C1C2((ξn,n/ξn,0)1/n − 1)mξ1−α−β+m

n,n .

For each n ∈ N ∩ [C4,∞), this can be estimated by

(∗) ≤ C1C2C
m
3 n
−m(ξn,n/ξn,0)ηmξ1−α−β+m

n,n

= C1C2C
m
3 n
−m+ηmr(1/γ+1/δ)+(1−α−β+m)r/δ = C1C2C

m
3 n
−r.

Therefore, noting that nr = ξ−γn,0 = ξδn,n, one has

lim sup
n→∞

nrE

[
sup
t∈[0,T ]

∣∣∣∣∫ ∞
0

Yt(x)x−α(µn(dx)− dx)

∣∣∣∣
]

≤ lim sup
n→∞

ξ−γn,0 E

[
sup
t∈[0,T ]

∣∣∣∣∣
∫

(0,ξn,0]

Yt(x)x−αdx

∣∣∣∣∣
]

+ lim sup
n→∞

ξδn,n E

[
sup
t∈[0,T ]

∣∣∣∣∣
∫

[ξn,n,∞)

Yt(x)x−αdx

∣∣∣∣∣
]

+ sup
n∈N

nrE

[
sup
t∈[0,T ]

∣∣∣∣∣
∫ ξn,n

ξn,0

Yt(x)x−α(µn(dx)− dx)

∣∣∣∣∣
]
<∞. �

Remark 1. The choice of the quadrature rule in Lemma 2 is admittedly somewhat
arbitrary but produces good results. The use of the geometric grid ξn,i goes back
to [13] and simplifies the error analysis compared to more complex subdivisions
which distribute the error more equally. It would be interesting to explore if the
holomorphicity of x 7→ Yt(x) permits the use of quadrature rules with exponential
convergence rates such as Chebychev quadrature; see the discussion in Section 3.

5. Rough Bergomi model

The prices of put options in the rough Bergomi model converge at the same
rate as the approximated Volterra processes. This holds not only for the Ornstein–
Uhlenbeck approximations of Lemma 2, but in full generality for any approximations
in the L2([0, T ]× Ω) norm with exponential moment bounds.

Lemma 3. Assume the setting of Section 2, let V, Ṽ , S, S̃ : [0, T ] × Ω → R be
continuous stochastic processes with V0 = Ṽ 0 = 0 and

∀t ∈ [0, T ] : St = 1 +

∫ t

0

Ss exp(Vs)dWs, S̃t = 1 +

∫ t

0

S̃s exp(Ṽ s)dWs,

and let f : (0,∞)→ R be a measurable function such that f ◦ exp ∈ Lip(R). Then∣∣E[f(ST )]− E[f(S̃T )]
∣∣ ≤ ‖f ◦ exp ‖Lip(R)

(√
T + 6

)
× ‖exp(2|V |) + exp(2|Ṽ |)‖L2(Ω,C([0,T ])) ‖V − Ṽ ‖L2([0,T ]×Ω).
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Proof. It is sufficient to control the log prices in L1 because∣∣E[f(ST )]− E[f(S̃T )]
∣∣ ≤ ‖f ◦ exp ‖Lip(R)‖ log(ST )− log(S̃T )‖L1(Ω).

The basic inequality

∀x, y ∈ R :
∣∣ exp(x)− exp(y)

∣∣ ≤ ( exp(x) + exp(y)
)
|x− y|

and the Burkholder–Davis–Gundy inequality imply that

‖ log(ST )− log(S̃T )‖L1(Ω)

=

∥∥∥∥∥−1

2

∫ T

0

(
exp(2Vt)− exp(2Ṽ t)

)
dt+

∫ T

0

(
exp(Vt)− exp(Ṽ t)

)
dWt

∥∥∥∥∥
L1(Ω)

≤

∥∥∥∥∥1

2

∫ T

0

(
exp(2Vt) + exp(2Ṽ t)

)
(2Vt − 2Ṽ t)dt

∥∥∥∥∥
L1(Ω)

+ 6

∥∥∥∥∥∥
√∫ T

0

(
exp(Vt) + exp(Ṽ t)

)2
(Vt − Ṽ t)2dt

∥∥∥∥∥∥
L1(Ω)

≤ ‖exp(2|V |) + exp(2|Ṽ |)‖L2(Ω,C([0,T ]))

×

∥∥∥∥∥
∫ T

0

(Vt − Ṽ t)dt

∥∥∥∥∥
L2(Ω)

+ 6

∥∥∥∥∥∥
√∫ T

0

(Vt − Ṽ t)2dt

∥∥∥∥∥∥
L2(Ω)


≤ ‖exp(2|V |) + exp(2|Ṽ |)‖L2(Ω,C([0,T ]))

(√
T + 6

)
‖V − Ṽ ‖L2([0,T ]×Ω) . �

Remark 2. For each K ∈ (0,∞) the put-option payoff

f : (0,∞)→ R, x 7→ (K − x)+,

satisfies the assumption of Lemma 3 that f ◦ exp ∈ Lip(R) because

sup
x,y∈R
x 6=y

|f(ey)− f(ex)|
|y − x|

≤ eK <∞.

The call-option payoff does not have this property, but the prices of call options
can be obtained by put-call parity if W and B are negatively correlated because this
implies that S is a martingale [21].

References

[1] E. Abi Jaber. Lifting the Heston model. HAL: hal-01890751.
[2] E. Abi Jaber and O. El Euch. Markovian structure of the Volterra Heston

model. 2018. arXiv: 1803.00477.
[3] E. Abi Jaber and O. El Euch. Multi-factor approximation of rough volatility

models. 2018. arXiv: 1801.10359.
[4] E. Abi Jaber, M. Larsson, and S. Pulido. Affine Volterra processes. 2017.

arXiv: 1708.08796.
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