
ar
X

iv
:1

81
1.

10
93

5v
2 

 [
q-

fi
n.

M
F]

  3
 D

ec
 2

01
8

ON THE MARTINGALE PROPERTY IN THE ROUGH BERGOMI MODEL

PAUL GASSIAT

Abstract. We consider a class of fractional stochastic volatility models (including the so-called
rough Bergomi model), where the volatility is a superlinear function of a fractional Gaussian
process. We show that the stock price is a true martingale if and only if the correlation ρ between
the driving Brownian motions of the stock and the volatility is nonpositive. We also show that
for each ρ < 0 and m >

1

1−ρ2
, the m-th moment of the stock price is infinite at each positive

time.

1. Introduction and main results

We are interested in fractional stochastic volatility models where the dynamics of (discounted)
stock price under a risk-neutral measure take the form

(1.1) dSt/St = σ(t, Yt)dWt

(1.2) Yt =

∫ t

0

K(t, s)dZs

where Zt = ρWt + ρ̄W̄t, W, W̄ are two independent Brownian motions on a filtered probability
space (Ω, (Ft)t≥0,P), and ρ2 + ρ̄2 = 1.

A specific example we have in mind is the so-called Rough Bergomi model introduced in [2]. In
that model Y is a Riemann-Liouville fractional Brownian motion of Hurst parameter H ∈ (0, 1),
i.e.

K(t, s) = CH(t− s)H− 1
2

and the volatility function takes the form

σ(t, y) = ζ(t) exp (ηy)

where η > 0 and ζ is a continuous function of t. The rough Bergomi model with H ∈ (0, 12 ) is
part of a larger class of fractional stochastic volatility models (so-called ”rough volatility models”)
which has been recently observed to reproduce several features of historical [9] and pricing [1, 7, 2]
data, and has been the subject of intense recent academic activity1.

The first question we consider in this note is whether the price process S, which is obviously a
local martingale (and a supermartingale) is a true martingale. The true martingale property is very
important in practice, since using a strict local martingale measure for pricing has some obvious
drawbacks. For instance : if S is a strict local martingale then E[ST ] < S0 for some T > 0, so that
already the price given by the model for holding one unit of stock until time T does not coincide
with market data (this suggests that the asset price is greater than its actual ”fundamental” value

The author is grateful to P. K. Friz for related discussions. This work is partially supported by the ANR via the
project ANR-16-CE40- 0020-01.

1See for instance the website https://sites.google.com/site/roughvol/home for an up to date listing of the
relevant litterature.
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and for this reason strict local martingale models have been used in the modelisation of bubbles,
see [15] and references therein).

Note that in the rough Bergomi model, due to the superlinear growth of σ, Novikov’s criterion
for martingality is never satisfied. Nevertheless we show that if the correlation is nonpositive (which
is typically the case in actual applications), the price process is indeed a true martingale. Actually
our result does not rely on the specific form of σ in the rough Bergomi model, and only requires
a (rather weak) assumption on K and σ. We also show the converse implication in the case of a
Riemann-Liouville type kernel, under a more specific assumption of superlinear growth of σ.

Theorem 1. (1) Assume that the kernel K is such that (2.3) defines a Gaussian process with
continuous sample paths, σ = [0,∞)× R → R+ is continuous and bounded on [0, T ]× (−∞, a] for
each T , a > 0. Then if ρ ≤ 0, (St)t≥0 defined by (1.1)-(1.2) is a true martingale.

(2) Assume in addition that there exists T0 > 0 such that for some α > 1
2 ,

∀0 ≤ s ≤ t ≤ T0, K(t, s) ≥ α(t− s)α−1

and σ ≥ σ0 on [0, T0] × R, where σ0 : [0, T0] × R → R+ is continuous, nondecreasing in x, locally
Lipschitz in x (uniformly in t ∈ [0, T0]) and such that for some A > 0,

(1.3)

∫ +∞

A

(

w

inft∈[0,T0] σ0(t, w)

)
1
α dw

w
< +∞,

Then if ρ > 0, for each t > 0, one has E[St] < S0.

The second result of this note deals with the moments of the stock price. We show that, under
a similar assumption (satisfied by the rough Bergomi model), for each value of ρ ∈ (−1, 0], some of
the higher order moments are infinite.

Theorem 2. Assume that there exists T0 > 0 s.t. for some α > 1
2 , K(s, t) = α(t − s)α−1 for all

0 ≤ s ≤ t ≤ T0 and σ = σ0 on [0, T0] × R with σ0 as in Theorem 1 (2). Then if ρ ≤ 0, m > 1 are
such that ρ2 < m−1

m
, it holds that for all t > 0, E[Sm

t ] = +∞.

The finiteness of moments is important for instance in Monte Carlo simulation (to know that the
Monte Carlo error is ruled by CLT estimates, finite variance is needed) and in asymptotic formulae
(to go from stock price large deviations to call price asymptotics, see for instance [6, section 4.2]).
It would therefore be very useful to obtain a converse (positive) result.

We remark that in the Brownian case (K ≡ 1), both of the above results are well known, cf.
[17, 13, 14], and in that case the condition ρ2 > m−1

m
is also a sufficient condition for the moments

to be finite. The fact that all moments of order greater than 1 are infinite in the fractional case
with ρ = 0 was recently obtained in [12] under slightly different assumptions (along with some
partial results for ρ 6= 0). We also point out that in the case of the rough Heston model, [10] have
recently obtained some results on moments of the stock price (which are similar in spirit to those
for classical Heston, and therefore quite different from ours).

The remainder of this note is devoted to the proofs of Theorems 1 and 2, which we now outline.
The proof of Theorem 1 follows the classical argument (found already in the aforementioned [17,
13, 14], see also [3, 16] for additional references) relating the martingale property of stochastic
exponentials with explosions of a SDE (in our case, this will be a Volterra SDE). The martingale
property (1) is then essentially immediate, while the proof of (2) follows from the fact that the
Volterra SDE may blow up in arbitrarily short time with positive probability.
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The proof of Theorem 2 relies on the Boué-Dupuis formula, which expresses the expectation of
exponentials of Brownian functionals as values of (here : Volterra) stochastic control problems. We
then show that for the considered values of the parameters, we may choose a feedback control such
that, as in the previous proof, the process (and the value) blow up in arbitrarily small time. This
proof is new even in the classical (Markovian) case.

2. Proofs

2.1. Preliminaries.

2.1.1. Volterra integral equations. In this subsection, we fix

Kα(r) = αrα−1 for some α > 0,

z : [0,∞) → R continuous

b : [0,∞)× R → R+ continuous

and consider the Volterra equation

(2.1) y(t) = z(t) +

∫ t

0

Kα(t− s)b(s, y(s))ds, t ≥ 0,

of unknown y.
We will use the following results.

Proposition 1. Assume that b is Lipschitz continuous in x, uniformly in t ∈ [0, T ], for each T > 0.
Then (2.1) admits a unique continuous solution y on [0,∞).

Proof. Uniqueness is easy to check directly, and existence follows from [11, Theorem 12.2.8]. �

Proposition 2. Assume that b is nondecreasing in x and locally Lipschitz in x (uniformly in
t ∈ [0, T ] for each T > 0).

Then :

(1) there exists a unique pair (y, T∞) such that y is a continuous solution of (2.1) on [0, T∞),
and limt→T∞

y(t) = +∞.
(2) Let T < T∞, u : [0, T ] → R continuous such that

u(t) ≤ (resp. ≥ ) z(t) +

∫ t

0

Kα(t− s)b(s, u(s))ds, ∀0 ≤ t ≤ T.

Then u ≤ y (resp. u ≥ y) on [0, T ].
(3) Assume that t 7→ z(t) and t 7→ σ(t, x) are nondecreasing (for each x ∈ R). Then so is

t 7→ y(t).

Proof. cf. [11, Theorems 13.5.1 and 13.4.7] and [5, Theorem 2.6]. �

We will also use the following lemma which gives an explicit upper bound on blow-up time for
solutions to (2.1).

Lemma 1. In the setting of Proposition 2, assume that t 7→ z(t) is nondecreasing. Then with T∞

as in (1), it holds that for each T > 0

(2.2) T∞ ∧ T ≤ inf
x≥0

(

h(x) +
1

α

∫ ∞

x

(

w

inft∈[0,T ] b(t, w)

)
1
α dw

w

)

,

where h(x) = sup{t : z(t) ≤ x}.
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Proof. We follow arguments from [5]. By Proposition 2 (2), it suffices to consider the solution to
(2.1) when b is replaced by b0 := inft∈[0,T ] b(t, ·).

We fix x ≥ 0 such that h(x) and
∫∞

x

(

w
b0(w)

)
1
α dw

w
are finite, R > 1, and for each n ≥ 0 we let

Tn = sup{t : y(t) ≤ xRn} ∈ (0,+∞].

Note that T0 ≤ h(x). We then have for n ≥ 1, for each t > Tn−1

y(Tn ∧ t) = xRn = z(Tn ∧ t) +

∫ Tn∧t

0

α((Tn−1 ∧ t)− s)α−1b0(y(s))ds

≥ z(Tn ∧ t) +

∫ Tn∧t

Tn−1

α((Tn−1 ∧ t)− s)α−1b0(y(s))ds

≥ xRn−1 + (Tn ∧ t− Tn−1)
α
b0(xR

n−1)

where we have used the monotonicity of y (Proposition 2 (3)). This implies that if Tn−1 is finite,
so is Tn, with

Tn ≤ Tn−1 +

(

x(Rn −Rn−1)

b(xRn−1)

)

1
α

.

Hence

T∞ = T0 +
∑

n≥1

(Tn − Tn−1)

≤ h(x) +
∑

n≥1

(

xRn − xRn−1

b0(xRn−1)

)

1
α

= h(x) +
∑

n≥1

1

α

∫ xRn

xRn−1

w
1
α
−1

b0(xRn−1)
dw.

We obtain the result by letting R ↓ 1. �

2.1.2. Stochastic convolutions. We consider the following stochastic convolution

(2.3) Yt =

∫ t

0

K(t, s)dZs

(recall that (Zt)t≥0 is a P-Brownian motion).
We recall the well-known condition for Y to be continuous (cf. e.g. [8, Theorem 2.1]).

Proposition 3. Assume that

∀t > 0, CK(t, t) :=

∫ t

0

K(t, s)2ds < ∞,

and for each T ≥ 0, letting

θT (h) := sup
0≤t,t′≤T,|t−t′|≤h

{CK(t, t) + CK(t′, t′)− 2CK(t, t′)}

it holds that
∫

0+

√

ln(1/u)dθT (u) < ∞.

Then Y admits a version with continuous sample paths.

Note that the assumption above is satisfied for K(t, s) = α(t− s)α−1, any α > − 1
2 .

We will also need a result on the support of the law of Y .
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Proposition 4. In addition to the assumptions of Proposition 3, assume that for some δ > 0,
K(t, s) > 0 for all 0 ≤ s ≤ t with (t− s) ≤ δ. Then for each T ≥ 0, the law of Y has full support
in CT

0 := {y ∈ C([0, T ],R); y(0) = 0}.

Proof. By a direct application of the Cameron-Martin theorem, the support of the law of Y is the
closure in CT

0 of the maps

yf : t 7→

∫ t

0

K(t, s)f(s)ds, f ∈ L2([0, T ]).

Hence it suffices to show that these maps form a dense set in CT
0 . Let µ be a Radon measure on

(0, T ] such that
∫ T

0
µ(dt)yf (t) = 0 for all f ∈ L2. Then by Fubini’s theorem, this means that

∫ T

0

dsf(s)

∫ T

s

K(t, s)µ(dt) = 0

which by arbitrariness of f implies
∫ T

s
K(t, s)µ(dt) ≡ 0, hence µ ≡ 0 on (s, s+δ∧T ) for all s ∈ [0, T ].

This implies that µ = 0, and we conclude that the yf ’s are dense in CT
0 . �

2.2. Proof of Theorem 1. Since (St) is a nonnegative local martingale (hence supermartingale),
it will be a martingale on [0, T ] if and only if E[ST ] = S0.

Letting τn = inf{t > 0, Yt = n}, then since σ is bounded on [0, T ]× (−∞, n] it holds that

S0 = E [ST∧τn ] = E
[

ST 1{T<τn}

]

+ E
[

Sτn1{τn≤T}

]

.

The first term converges to E[ST ] when n goes to infinity, so that

(2.4) S0 − E [ST ] = lim
n→∞

E
[

Sτn1{τn≤T}

]

.

On the other hand, we can apply Girsanov’s theorem to write

E
[

Sτn1{τn<T}

]

= S0P̂n (τn ≤ T )

where P̂n is such that

Ŵ
(n)
t = Wt −

∫ t∧τn

0

σ(s, Ys)ds

is a Brownian motion under P̂n. Note that for t ≤ τn one has

Yt =

∫ t

0

K(t, s)
(

dẐ(n)
s + ρσ(s, Ys)ds

)

= Ŷt +

∫ t

0

K(t, s)ρσ(s, Ys)ds

where Ẑ(n) is a P̂n-Brownian motion, and

Ŷt :=

∫ t

0

K(t, s)dẐ(n)
s .

We first treat the case ρ ≤ 0. Since Yt ≤ Ŷt (for t ≤ τn) one then has τn ≥ τ0n := inf{t > 0, Ŷt =

n}. In addition, since Ẑ(n) is a P̂n-Brownian motion, one has

lim
n→∞

P̂n(τ
0
n ≤ T ) = lim

n→∞
P( sup

t∈[0,T ]

Yt ≥ n) = 0,
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and it follows that

S0 − E[ST ] = S0 lim
n→∞

P̂n(τn ≤ T ) = 0

i.e. S is a martingale.
We now treat the case ρ > 0. We then have for t < τn

(2.5) Yt ≥ Ŷt +

∫ t

0

α (t− s)
α−1

ρσ0(s, Ys)ds.

In particular, by Proposition 2 (2) and the fact that Ẑ(n) is a Brownian motion under P̂n, one has

lim
n→∞

P̂n(τn ≤ T ) ≥ P(T∞ < T )

where T∞ is the explosion time of the solution Ỹ to

Ỹt = Yt +

∫ t

0

α (t− s)
α−1

ρσ0(s, Ys)ds

(which exists and is unique P-a.s. by Proposition 2).
Let x, λ > 0 be chosen such that

x+ 1

λ
+

∫ ∞

x

(

w

ρ · inft∈[0,T ] σ0(t, w)

)
1
α dw

w
< T.

Let zλ(t) = λt − 1 and yλ be the solution to (2.1) with z = zλ and b(t, ·) = σ0. By Lemma 1, yλ
blows up on [0, T ].

By Proposition 4, the event {Y ≥ zλ on [0, T ]} has positive probability under P. But on this

event, one has Ỹ ≥ yλ on [0, T ], and T∞ < T . This proves that E[ST ] < S0.

2.3. Proof of Theorem 2. We again apply a Girsanov transformation : one has

E [Sm
T ] = Sm

0 E

[

exp

(

∫ T

0

mσ(s, Ys)dWs −

∫ T

0

m

2
σ2(s, Ys)ds

)]

= Sm
0 Ê

[

exp

(

∫ T

0

m2 −m

2
σ2(s, Ys)ds

)]

,

with
dP̂

dP
= exp

(

∫ T

0

mσ(s, Ys)dWs −

∫ T

0

m2

2
σ2(s, Ys)ds

)

(this defines a probability measure by Theorem 1 (1) since ρ ≤ 0), and we have that

Yt = Y0 +

∫ t

0

Kα(t− s)(dŴs + ρmσ(s, Ys)ds)

for a P̂-Brownian motion Ŵ . Letting Y 0
t = Y0 +

∫ t

0 Kα(t− s)dŴs, this is rewritten as

(2.6) Yt = Y 0
t +

∫ t

0

Kα(t− s)ρmσ(s, Ys)ds.

Note that since Y 0 is P̂-a.s. continuous, combining Proposition 1 with the a priori bounds

Y 0
t + ρm

(
∫ t

0

Kα

)

sup
s∈[0,t]

σ(s, sup
s≤t

Y 0
s ) ≤ Yt ≤ Y 0

t
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one can show that (2.6) admits P̂-a.s. a unique continuous solution.
By the Boué-Dupuis formula [4, Theorem 5.1], this yields

ln Ê [Sm
T /Sm

0 ] = sup
(vt)t≥0∈V

Ê

[

∫ T

0

(

m2 −m

2
σ2(s, Y v

s )−
v2s
2
ds

)

]

where

V =

{

(vt)t≥0 progressively measurable with Ê

[

∫ T

0

v2t dt

]

< +∞

}

and for v ∈ V , Y v is the unique continuous solution to

Y v
t = Y0 +

∫ t

0

Kα(t− s)(dŴs + (ρmσ(s, Ys) + vs)ds).

On the other hand, if ρ2 < m−1
m

one can find γ such that

ρm+ γ > 0, m2 −m− γ2 > 0.

The idea is then that taking the feedback control vs = γσ(Ys), using the first inequality, it holds
that for each T > 0 Y v has positive probability of blowing up before T . On the other hand, the
second inequality ensures that the gain is +∞ in this case, so that the value (and the moment) is
infinite.

We now give a rigorous proof. We fix A > 0, n > 0, let θA = inf{t;Y 0
t ≥ A} and define

vn,As =











λσ(Y n,A
s ) if (ρm+ γ)σ(s, Y n,A

s ) ≤ n and s ≤ θA,

n− ρσ(Y n,m
s ) if (ρm+ γ)σ(s, Y n,A

s ) > n and s ≤ θA

0 if s > θA

where Y n,A is the unique (by Proposition 1) solution to

Y n,A
t = Y 0

t +

∫ t∧θA

0

K(s, t)
[

(ρm+ γ)σ(s, Y n,A
s ) ∧ n

]

ds+

∫ t

t∧θA

Kα(t− s)ρmσ(s, Y n,A
s )ds

Note that 0 ≤ Y n,A
t ≤ Y 0

t +nCtα for some C > 0, which implies that vn,A ≤ Cn,A, and in particular
vn,A ∈ V .

We therefore have

ln Ê [Sm
T ] ≥ Ê

[

∫ T

0

(

m2 −m

2
σ2(s, Y n,A

s )−
(vn,As )2

2
ds

)

]

≥ Ê

[

1θA>T

∫ T

0

m2 −m− γ2

2
σ2(s, Y n,A

s )ds

]

.(2.7)

Now as in the proof of Theorem 1, we fix x, λ such that

x+ 1

λ
+

∫ ∞

x

(

w

(ρm+ γ) inft∈[0,T ] σ(t, w)

)
1
α dw

w
< T,

let zλ(t) = λt − 1 and for n ∈ N ∪ {∞} let ynλ be the solution to (2.1) with z = zλ and b(t, ·) =
(ρm+ γ)σ0 ∧ n. Note that y∞λ blows up in time T∞ < T by Lemma 1. By Proposition 2 (2), ynλ is
nondecreasing in n, and therefore for each T∞ < t < T , ynλ(t) →n↑∞ +∞.
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Fix A = λT + 1. On the event {zλ ≤ Y 0 ≤ zλ + 1}, it holds that θA > T , and by Proposition 2

(2), Y n,A
t ≥ ynλ(t) → +∞ on [T∞, T ]. Letting n ↑ ∞ in (2.7) we obtain

lnE [Sm
T /Sm

0 ] ≥ ∞ · P̂
(

zλ < Y 0 < zλ + 1 on [0, T ]
)

,

and we can conclude since the above probability is nonzero by Proposition 4.
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