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The third moment of returns is important for asset pricing. But skewness, particularly of

long horizon returns, is hard to measure precisely. In the case of the second moment, the

measurement problem is addressed through the use of realized volatility. This paper

proposes an analogous definition of the realized third moment that is computed from

high frequency1 returns, and provides an unbiased estimate of the third moment of long

horizon returns.

While standard approaches to asset pricing concentrate largely on the first and second

moment of returns, there is mounting evidence that the higher moments are also

important. There is a substantial empirical literature going back to Kraus and

Litzenberger (1976), and including more recently Harvey and Siddique (2000), Ang,

Hodrick, Xing and Zhang (2006), Ang, Cheng and Xing (2006) and Xing, Zhang and

Zhao (2010), that suggests that the asymmetry of the returns distribution both for

individual stocks and for the equity market as a whole is important for asset pricing and

investment management. Skewness is central to the debate on the role of large rare

disasters in explaining the equity risk premium (Rietz (1988), Longstaff and Piazzesi

(2004), Barro (2009), and Backus, Chernov and Martin (2011)). There is also a growing

literature starting with Carr and Wu (2007) on skew in foreign exchange markets.

Our tools for measuring the third moment of returns are much less sophisticated than

they are for the second moment. We know how to use high frequency data to compute

realized volatility and so make good estimates of the actual variance of returns. We can

compute the model free implied variance (MFIV) from option prices, and use the

difference between implied and realized variance to test for the existence of variance risk

premia. By contrast, there is no established methodology for estimating the third moment

of period returns from high frequency returns, and no recognized concept of the realized

third moment that can be traded against the option implied third moment. The aim of this

paper is to fill the gap. In particular I propose definitions of the realized and implied third

moment that are analogous to realized and implied variance.

1
I use the term “high frequency” to mean high frequency relative to the horizon of interest, rather than

restricting it to intra-day returns.
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The parallel between the second and third moments is not straightforward. Whereas the

annualized volatility of returns is substantially independent of horizon, the same is not

true of skew. It is possible for daily returns to be highly skewed but for monthly returns

to be virtually symmetric. If daily returns are identically and independently distributed

(iid) then the skew in N day returns is 1/N of the daily skew. Conversely, even if

instantaneous returns are symmetric, long horizon returns can exhibit a pronounced

skew, as in a Heston (1993) stochastic volatility model.

The skew in the Heston model is generated by the correlation between returns and the

volatility of returns. The strong negative correlation between returns and volatility in the

equity index market (the so-called leverage effect) has been documented and discussed

since it was identified by Black (1976) and Christie (1982). As I will show, it is this

leverage effect, and not the skew in short horizon returns, that generates most of the

negative skew in long horizon returns. If realized skew computed from high frequency

returns is to provide a useful estimate of the skew at lower frequencies, it must capture

the leverage effect.

Schoutens (2005) and Schoutens, Simons, and Tistaert (2005) describe swap contracts

that pay the sum of cubed daily returns. They capture the third moment of high

frequency returns, but in failing to take account of the leverage effect the pay-offs bear

no relation to the third moment of returns over the life of the swap. Bakshi, Kapadia and

Madan (“BKM”, 2003) show how the implied moments and skewness coefficient of the

risk-neutral probability density can be recovered from option prices. However, due to

risk premia in option prices, the implied density in general differs substantially from the

density under the physical measure (see Carr and Wu, 2009). There is no obvious way of

relating the implied BKM skew at any horizon to the actual behavior of high frequency

returns up to that horizon.

Realized variance of high frequency returns over a period is a good measure of the

variance of the period return because it has the Aggregation Property  the realized

variance of high frequency returns is equal in expectation to the realized variance of the
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period return, at least for price processes that are martingales. Requiring the realized

third moment to have the Aggregation Property turns out to be sufficient to define it

uniquely.

Just as there is a model-free strategy to replicate a variance swap, a swap that pays the

difference between option implied variance and realized variance, so the Aggregation

Property ensures that there is a model-free strategy to replicate a third moment or

skewness swap, one that pays the difference between the option implied third moment

and the realized third moment. From the perspective of the practitioner, this allows the

development of a useful risk management tool. From the academic perspective, just as

Carr and Wu (2009) use variance swaps to explore variance risk premia, so Kozhan,

Neuberger and Schneider (2011) use skewness swaps to explore the existence and

behavior of risk premia associated with skewness.

Using high frequency data to compute the realized second and third moments makes it

possible to measure the skewness of long horizon returns with far greater precision than

one could using long horizon returns alone. I show, using daily data, that the skew in the

equity index market, far from declining with horizon, is higher at one year than it is at

one month. Furthermore there is evidence that skewness is time varying.

These results are relevant to the debate on the role of large disasters in explaining the

equity premium. In reviewing the evidence, Backus, Chernov and Martin (2011, p1970,

“BCM”) note that “in virtually all of this research [starting with Rietz (1988), followed

by Longstaff and Piazzesi (2004), Barro (2009) and others], the distribution [of log

returns] is modeled by combining a normal component with a jump component. The

jump component, in this context, is simply a mathematical device that produces

nonnormal distributions”. There are good modeling reasons to induce extreme events

through a jump process. The returns process remains iid. With a static investment

opportunity set, the optimal strategy of the representative agent is myopic. This makes

the problem tractable, and the investor’s investment horizon irrelevant.

But if the evidence presented here is correct it means that the model is seriously mis-

specified. The parameters chosen by BCM for the process for the equity index (under the
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physical measure) imply that the skewness of daily returns is -0.6. This is consistent with

US data. But, coupled with the iid assumption, and the consequent absence of any

leverage effect, it implies a skewness of annual returns of -0.04 (see BCM, Table 3), in

contrast with a figure of around -1 suggested by the analysis presented here. If the

horizon of the representative agent is of the order of years rather than days, the

calibration of the model to daily returns may understate the role that rare disasters play in

asset pricing.

The paper is structured as follows: after presenting some empirical evidence on the

skewness of equity index returns to motivate the rest of the analysis, section 2 presents

the Aggregation Principle and applies it to price changes. The mathematics of price

changes is simpler than the mathematics of returns. Section 3 extends the theory to apply

to returns and defines realized skewness. In section 4, I use simulations to analyze the

performance of realized skewness, and in section 5 the methodology is taken direct to the

data to investigate time variation in the term structure of skewness of index returns. The

sixth section concludes.

1. Skewness of Equity Index Returns

Table 1 shows estimated skew coefficients (using standard definitions) for excess log

returns on the S&P500 index for various different periods and frequencies. The data

come from the CRSP data base (June 2011), and excess log returns are defined as

log(RM/RF) where RM is the total daily return on the S&P500 and RF is the total daily

return on T-bills, computed from the monthly rate. The p-values (against the null that the

skew is positive) and the confidence intervals are obtained by bootstrapping.

It is striking that the evidence for the negative skewness of daily index returns rests

heavily on one observation – 19 October 1987. In the period as a whole, the distribution

of daily returns appears to be significantly skewed, but in each of the twelve year sub-

periods that excludes the 1987 Crash, the estimated skew coefficient is not significantly

different from zero, and indeed in one of the periods is positive (though not significantly
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so). The weakness of the evidence for negative skewness has been noted by other authors

including Kim and White (2004).

Monthly2 returns are significantly negatively skewed in the sample as a whole and in two

of the four sub-periods; the central estimate is negative in all the sub-periods. But the

standard errors are high; for the sample as a whole, comprising 48 years of data, the 90%

confidence interval has a range of -0.29 to -1.14. Given the difficulty of measuring

skewness, it is hard to tell whether skewness is constant or varies over time.

One other feature of the data that is striking is the high level of skewness in monthly

relative to daily returns. If stock returns were iid, the moments of n-day returns would be

proportional to n and the skewness coefficient would be proportional to 1 n . There is

no evidence of such a decline in the data. To explore the relation between skewness

coefficients of daily and monthly returns more fully, I bootstrap the daily returns to

generate a synthetic time series, and compute the population skewness of both daily and

monthly returns. The results are plotted in top panel of Figure 1. The lower panel does

the same thing using monthly and annual rather than daily and monthly returns.

The hypothesis that returns are iid and the skew at the monthly horizon derives from the

skew at the daily horizon is firmly rejected by the data (p-statistic of 0.02%), and the

hypothesis that annual skew is generated by monthly skew is also rejected (p-statistic of

4.76%). This is clear evidence that the distribution of low frequency returns is heavily

influenced by serial dependence in high frequency returns. If high frequency returns are

to be used to improve the estimate of the skewness of low frequency returns, it must be

done in a way that reflects the serial dependencies that are manifest in the data.

2. Arithmetic Contracts

This section introduces the Aggregation Property – the property that ensures that the

quantity measured using high frequency returns is an unbiased estimate of its low

frequency counterpart. The goal is to get a good measure of the third moment of returns,

2
A month meaning a period of 22 trading days.
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and that will be achieved in the following section. In this section we look at moments of

price changes rather than returns because the mathematics are simpler.

2.1 Notation and Terminology

St   0,t T is a positive adapted variable defined on a standard filtered probability

space     0,
, ,t t T

 F, F .  .t denotes . t   F . I assume that the distribution of ST is

such that expectations of ST and functions of ST such as 2
TS , ln(ST) and STln(ST) exist.

 0 10 ...     Nt t t TT is a partition of [0,T].  1max  i i
i

t tT is the mesh of T.

If x is a process, ix is shorthand for
it

x in order to avoid excessive subscripting. ix

denotes 1.i ix x  Given a function g(.),  g x
T

denotes  
1

N

i
i

g x



I will sometimes refer to the period [0,T] as a month, and the length of the sub-period as

a day, but obviously nothing hangs on this. In the present section, references to variance

and skewness relate to the distribution of price changes and not of returns. To avoid

irrelevant complications with interest rates and dividends, I work throughout with

forward prices, so all trades, whenever entered into, are for settlement at time T.

2.2 The Aggregation Property

For any martingale S

 
2

2

0 0 . 
    

    
     
 S S

T T

  (1)

There are several interpretations of this equation. The left hand side is  
2

0 0
 
 TS S .

With S being martingale, this is equal to   
2

0 0 0 0T TS S S S   
 

  , the true variance

of the monthly price change ST-S0 under the physical measure  conditional on



- 7 -

information F0 available at time 0. Equation (1) then says that if prices are martingales,

the sum of squared daily price changes (the realized variance) is an unbiased estimator

of the true variance. Alternatively, interpreting the measure  as a pricing measure, it

says that the fair price of a one-month variance swap computed daily (a swap that pays

the realized daily variance over a month) is the same as the price of a contingent claim

that pays  
2

0TS S . Indeed, since the relationship holds under any pricing measure, it

also implies that a variance swap can be perfectly replicated if the contingent claim exists

(or can be synthesized from other contingent claims), and the underlying asset is traded.

It is reasonable to call the time 0 price of the claim the implied variance.

The relation between true variance of the monthly price change, the realized variance of

daily changes over the month and the implied variance of one-month options at the

beginning of the month holds exactly, whatever the price process and whatever the

length and number of sub-periods, provided only that S is a martingale. It depends on the

interchangeability of the summation and the square function under the expectations

operator.

In order to generalize the notion of true, realized and implied characteristics, some more

definitions are needed. If g is a real-valued function and X is an adapted (scalar or vector)

process, then (g; X) has the Aggregation Property if for any times 0 s t u T   

      0.       s u s u t t sg X X g X X g X X (2)

Applying the Law of Iterated Expectations, if (g; X) has the Aggregation Property then

   0 0 0 
 

     
 
Tg X X g X

T

  for any partition T.  g X
T

is the realized

characteristic; and  0 0  Tg X X is the implied characteristic (if the measure is a

pricing measure) or the true characteristic if the measure is the physical measure.
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We have seen that (g; S) has the Aggregation Property for any martingale S when g(x) =

x2. The obvious question is whether there are any other interesting functions g for which

this holds. The answer (as demonstrated formally below in Proposition 1) is no.

However, we do not need to restrict ourselves to the case where X = S. Suppose that X(S)

is a vector-valued process     , : 0,t t TS V S t T where    t T t TV S Var S , the variance

of ST conditional on information at t. Define G to be the set of analytic functions g such

that   ;g X S has the Aggregation Property for all martingales S.

Proposition 1: G consists of the functions3

   2 3
1 2 3 4, 3 .g S V h S h V h S h S S V            (3)

where the {hi} are arbitrary constants.

Proof: see Appendix.

Proposition 1 shows that G is spanned by four functions: g S and ,g V which are

uninteresting,
2g S , which is the variance and is familiar, and

3 3 ,g S S V   

whose properties we now explore.

The true characteristic of this function is

   

   

 

0 0 0 0 0 0

3

0 0 0 0

3

0 0

, , (since 0)

3 (definition of )

(since is a martingale).

           

    
 

  
 

T T T T

T T

T

g S S V V g S S V V

S S V S S g

S S S

 





(4)

Hence, the characteristic captured by g is the third moment. The left hand side of

equation (4) is the true third moment of the price change over the month. The realized

3
The convention is that the  operator has priority over all others, so S3 is read as (S)3 and not as (S3).
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third moment is    3, 3g S V S S V      
T T

. The Aggregation Property means

that the realized third moment equals the true third moment in expectation

   
33

0 0 03 .TS S V S S  
         


T

  (5)

Equation (5) is significant in several respects. It shows that skewness in low frequency

returns derives only in part from the skewness in high frequency returns. The second

source (and indeed the only source when S is a continuously sampled continuous

martingale) is the covariation between shocks to the price level and shocks to future

variance.

It also shows how high frequency data can be used to get more efficient estimates of the

skewness in price changes over a period than can be obtained from just the price change

over the period. This improvement rests on two assumptions: the discounted price

process is a martingale, and the variance of the terminal price is in the observer’s

information set. Third, if a pricing measure is used, the right hand side is the implied

third moment (which can be inferred from the prices of options that mature at time T).

The difference between the implied and realized third moments can be used to detect and

analyze risk premia associated with skewness.

Fourth, again interpreting the equation under a pricing measure, it suggests how a third

moment swap can be designed and replicated. A third moment swap pays the difference

between the implied and the realized third moments. To replicate the swap, both S and V

have to be tradable as well as observable. To make V tradable, assume the existence of a

traded square contract, a security that pays
2
TS . With  being a pricing measure, the

price of the contract on day i is

 

2

2 2 2

2 since .

i i T

i i T i

i i i i T

P S

S S S

S V S S

   

    

  







(6)
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The gain from holding one square contract for one period is

2
1 1 1 12 .        i i i i iP S S S V (7)

Suppose an agent enters into a one month third moment swap at day 0, paying floating

and receiving fixed, with the realized third moment being computed from daily prices.

She uses the fixed payment to buy a contract that pays the cube of the price change over

the month. She hedges by holding -3(Si - S0) square contracts and   2

03 i iS S V 

forward contracts over day i. If her initial wealth W0 = 0, her terminal wealth is

    

       

3 3

0

1 1
2 2

0 1 1 1 0 1
0 0

3

3 2 3 0.

T T

N N

i i i i i i i i
i i

W S S S S V

S S S S S V S S V S

  

   
 

   
 

 
    

 

   
          

   



 

T

(8)

(8) shows that the agent can hedge the swap exactly for any finite partition T. So in

particular it works perfectly with discrete monitoring and with jumps in the price of the

underlying or in its variance. The only requirements are that the market is frictionless,

and that the asset and the square contract on it can be traded at any time t that is used for

computing the realized third moment.

3. Geometric Contracts

3.1 Generalized Variance

Financial economists are interested in the behavior of returns, not price changes. It is

tempting to apply the theory in the previous section directly to the log price, ln .t ts S

But the log price is not a martingale either under a pricing measure or, in general, under

the physical measure. In looking for a definition of implied and realized variance of



- 11 -

returns, I start from the premise that it is important to keep the Aggregation Property.

The price for this is a relaxation of the definition of variance.

Let f be an analytic function on the real line with the property that   2

0
lim 1



x

f x x .

Given a process s, define the process    f
t T t T tv s E f s s    . I will call  f

t Tv s a

generalized variance process for s.4

The variance measures that are widely used by academics and practitioners (squared net

returns and squared log returns) conform to the definition of generalized variance. Two

other generalized variance measures, vL and vE, turn out to be important

     
     

where 2 1 ,

where 2 1 .

      

      

L x
t t T t

E x x
t t T t

v L s s L x e x

v E s s E x xe e




(9)

To explain the use of the letters L and E, rewrite (9) as

 

 

2 1 ln so ln ln 2;

2 ln 1 so ln ln 2.

  
      

  

  
      

  

L LT T
t t t T t t

t t

E ET T T
t t t T T t t t t

t t t

S S
v S S v

S S

S S S
v S S S S S v

S S S

 

 

(10)

In a Black-Scholes world, where the underlying asset has constant volatility  , the price

of a log contract, one that pays lnST, is  2ln 2tS T t  , so
L
tv is the implied Black-

Scholes variance of the log contract. It is the same as the model-free implied variance of

Britten-Jones and Neuberger (2000). Similarly,
E
tv is the implied Black-Scholes variance

of the contract that pays STlnST. I call it entropy because of the functional similarity to

entropy as used in thermodynamics and information theory.

4
To simplify the algebra, the variance is not annualized; it tends to increase in magnitude with time to

maturity.
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The following properties of the log and entropy variance will be useful. From the first

line of (10)

 

1 1

2 2 so

2 0.  

 

   

L
t t t T

L
t t t

v s s

v s




(11)

Similarly, from the second line

 

 

 

1

1

1 1

1 1

2 2

so 2 2 2 0

which implies that 2 0.





 

 





 

 

    

       

   

t T

t t

t

s sE
t t t T

s s E E E
t t t t t t t

s E
t t t

e v s s e

e e v v s s v s

e v s







(12)

3.2 Aggregation with Returns

Let G* be the set of analytic functions g where   ;g X S has the Aggregation Property

for any positive martingale S, where X(S) is the vector process (s, v) with lns S and v

is a generalized variance process for s.

Proposition 2: the set G* comprises the following functions

       

 

2

1 2 3 4 5

4 5

5 4

4 5

, 1 2 2

where are arbitrary constants, with the following constraints:

if 0, and 0;

if 0, and 0;

if 0, is any generalized varianc

s s

i

L

E

g s v h s h e h v h v s h v s e

h

h v v h

h v v h

h h v

               

   

   

   e measure.

(13)

Proof: see Appendix.

I now examine the properties of three particular members of G*.
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Proposition 3: the function   1M sg s e   is a measure of expected return and has

the Aggregation Property.

Proof: The Aggregation Property follows immediately from Proposition 2 with h2 = 1,

and h1 = h3 = h4 = h5 = 0. The implied characteristic is  0 0 1TS S  and is the mean

return. ■

With gM the implied return is zero. The realized return is the sum of daily net returns

over the month. The swap contract corresponding to gM takes the form of a standard

equity for floating swap – the receiver receives the total return on the underlying (net of

the riskless interest rate) each “day” on a fixed nominal amount. The payer can hedge

perfectly by going long 1/Si forward contracts each day.

3.3 Variance of Returns

Proposition 2 can also be used to develop a measure of variance that aggregates

perfectly, even in the presence of jumps.

Proposition 4: the function    2 1V sg s e s    is a measure of variance and has

the Aggregation Property.

Proof: The Aggregation Property follows from Proposition 2 with h1 = -2, h2 = +2, h3 =

h4 = h5 = 0.    2 3 Vg x x O x , so gV is a generalized variance measure. ■

With this unconventional definition of variance, the implied variance at time t, IVt, is the

price of a contract that pays gV(sT-s0), so . L
t tIV v The realized variance is

   2 1     V s
tRV g s e s

T T

. The corresponding definition of true variance is

  0 02 1 ln    t t T TTV S S S S where the expectation is under the physical or

objective measure, rather than under some risk-adjusted measure. The true variance is



- 14 -

unobservable; the realized variance is an unbiased estimate of the true variance under the

assumption that the price process is martingale; the implied variance is an unbiased

estimate of the true variance in the absence of a variance risk premium.

The definition of implied variance is the same as the standard MFIV but differs from the

definition of Bakshi, Kapadia and Madan (2003) which is the variance (conventionally

defined) of the risk neutral distribution of log returns. The realized variance is the same

as in Bondarenko (2007), but differs from the more conventional definition, 2s
T

. The

conventional definition has the merit that it corresponds to the definition used in practice

in the variance swap market. But, as noted by Jiang and Tian (2005; see particularly

footnote 7), the replication of a standard variance swap is imperfect. The replication is

only perfect in the limit case when the mesh of the partition goes to zero, and with the

added assumption that the price process is continuous. By contrast, the fact that the new

measure of realized variance has the Aggregation Property means that replication is

perfect for every price path and every partition, and in particular is robust to jumps.

In practice, with reasonably frequent rebalancing, the two measures of realized variance

are very similar. This is not surprising since they are both generalized measures of

variance. Suppose one computes the monthly realized volatility of the S&P500 using

daily returns. Using either measure, the mean volatility over the last ten years (2001-

2010) is just over 18% (annualized). The root mean square difference between the two is

0.06%. Since the 1950s the biggest difference between the two measures was in the

month of October 1987 when the conventional measure of realized volatility was

101.2%, while the alternative measure registered 98.8%.

There do not appear to be any strong theoretical arguments for preferring the

conventional definition of realized variance (apart from the fact that it is well established

both in the academic and practitioner communities). The main justification for the

conventional measure of realized variance is that it converges to the quadratic variation

as the mesh size becomes small. The quadratic variation is important because it is an

unbiased estimate of the conditional variance of the log price process under certain
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conditions (see Andersen, Bollerslev, Diebold and Labys, 2003, Theorem 1 and

Corollary 1).5 But, as the following Proposition states, RV also has this property when

the process is a diffusion.

Proposition 5: Let f be an analytic function on the real line such that   2

0
lim 1
x

f x x


 .

For any continuous semimartingale s, the associated realized variance   f s
T

converges in probability to the quadratic variation of s over the period [0, T] as the

mesh of the partition T goes to zero.

Proof: see Appendix.6

The realized variance RV, with f = gV, like the standard definition, converges to the

quadratic variation as the mesh becomes fine; it has the added advantage that, with finite

mesh, it is an unbiased estimate of the quadratic variation under the assumption that the

price is a martingale. In the empirical sections of this paper, I will use the term variance

in the sense of Proposition 4.

3.4 The Third Moment of Returns

Proposition 2 also shows the way to construct a definition of the realized third moment

of returns that closely resembles the definition already established for price changes.

Proposition 6:      , 3 1Q E E sg s v v e K s      , where  K s 

 6 2 2 ,s sse e s     approximates the third moment of log returns and has the

Aggregation Property.

5 The key condition is that the predictable component of returns is predetermined. If volatility is stochastic
then this condition is certainly violated under any pricing measure, and cannot be expected to hold under
the physical measure, and the quadratic variation is not an unbiased estimator of the conditional variance
of log returns. An implication of Propositions 4 and 5 together is that, if the price process is continuous,

the quadratic variation of returns is an unbiased estimate of the logarithmic variance   
0 0T

L s s ,

under any pricing measure.
6 I am much indebted to Eberhard Mayerhofer for the proof of this Proposition.
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Proof: gQ has the Aggregation Property by Proposition 2 with h1 = 6, h2 = -12, h3 = -3, h4

= 0, and h5 = 3.      , 3 1 .      Q E E E
T t t T t T t T tg s s v v v S S K s s With the price

following a martingale, the first term is zero in expectation.    3 4 K x x O x and

converges to the third moment of returns when x is small. ■

The implied third moment, ITMt, is the price of a claim that pays  , Q E
T t tg s s v which

can be replicated exactly from forward contracts, entropy contracts and log contracts.

The price of the claim is

 3 . E L
t t tITM v v (14)

In a Black-Scholes world, all options trade on the same implied volatility, the log and

entropy variances are equal and ITMt = 0. As Bakshi and Madan (2000) show, any

general claim can be replicated by a portfolio of vanilla options; the replicating portfolio

for the third moment claim is

0
2 20

6 ( ) ( ) 3 ,
  

  
 
 

t

t

S
Et
tS

t t

k S S k
k dk k dk v

S k S k
C P F (15)

where C(k) and P(k) denote a call and a put with maturity T and strike k, and F is an at-

the-money forward contract with the same maturity.

The implied third moment is thus the price of a portfolio that is long out of the money

calls and short out of the money puts. By dividing the implied third moment by the

implied variance to the power of 3/2, the implied skewness coefficient (ISC) can be

computed

 

 
 

3 2 3 2

3
= = .

E L
t tt

t
L

t t

v vITM
ISC

IV v
(16)
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The realized third moment is  ,  Q E
tRTM g s v

T

; it is natural then to define the

realized skewness coefficient

 

    

 
3 2 3 2

3 1

= .

2 1





 



 


 

  
 





E s

t
t

st

v e K s
RTM

RSC
RV

e s

T

T
(17)

Finally, we can define the true third moment and true skew coefficient as

 ,    
Q E

t t T t tTTM g s s v and  
3 2

t t tTSC TTM TV .

The realized third moment is an unbiased estimator of the true third moment if the

underlying asset and the entropy contract defined on it follow a martingale. The realized

skew coefficient is not necessarily an unbiased estimate of the true skew coefficient since

the ratio of two unbiased estimators is not in general an unbiased estimate of the ratio.

A third moment swap, where the floating leg is the realized third moment and the fixed

leg is the implied third moment, can be replicated perfectly by dynamic hedging, trading

the entropy contract and the forward contract. To replicate the swap, it is necessary that

an entropy contract with maturity T is traded (or equivalently, that calls or puts with

maturity T and all possible strikes are traded, so that the entropy contract can be

replicated). An agent who writes the swap, receiving fixed and paying floating, receives

net

      0 03 3 1 .E L E sv v v e K s    
T

(18)

To hedge her position she needs to buy six log contracts, with terminal pay-off 6ln TS .

This costs 0 06ln 3 LS v (by (10)). She also needs to hedge dynamically by holding a long

position of 6 iS entropy contracts on day i (contracts that have a pay-off of lnT TS S ) and
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also a short position in  3 2 4E
i i is v S  forward contracts. The replication of the swap

is exact.

3.4 True and Realized Third Moments when Prices are not Martingales

We are interested in using the realized third moment to estimate the true third moment of

returns. Proposition 6 shows that the realized third moment is an unbiased estimator of

the true third moment when prices are martingale. But when prices are not martingale, it

is a biased estimator. The following proposition characterizes the bias under the much

weaker assumption that the process is ergodic.

Proposition 7 The difference between the true and realized third moment depends on the

cross-correlation between returns on the underlying asset and the returns on a hedged

option position. Specifically

 
1 1

0 1 1 1

1 0 0

1
2

6

where is the price of the entropy contract at time , and 1 ln .

T T
u u t u t t t

u t u t t

Et
t t t t

t

E S S S E S
TTM RTM

S S S S

E
E t S v

S

      
  

 

    
    

  


    



  

(19)

If changes in the term structure of volatility are parallel, and the correlation between

returns on the underlying asset on day t and returns on a fixed maturity delta-hedged

entropy contract on day t+n is ry(n)then

 

   

 
 

  
 

,
1

where , .
0 1

T

TM ry
n T

TM

ry

w n T n
T n T nTTM

w n T
RTM T T






  
 







(20)

The difference between the true variance of a price series and its realized variance

depends on the auto-correlation function of returns,  rr u .

 
     

 
, where , ,




 

T

V rr v
n T

T nTV
w n T n w n T

RV T



(21)
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Proof: in Appendix.

The first part of the proposition says that if the expected return on an asset is positively

(negatively) correlated with its variance risk premium in prior or in subsequent periods,

then the realized third moment is a downward (upward) biased estimate of the true third

moment. Under the hypothesis that the underlying asset and the entropy contract are

martingales, the expected return on the asset and its variance risk premium are zero, and

hence there is no bias.

The second part expresses the bias in terms of the cross-correlation between the expected

return and the variance premium. The assumption that shifts in term structure are parallel

allows us to approximate the return on an option contract with a maturity that declines in

time by a duration matched constant maturity option.

The third part, concerning the relation between realized and true variance is well-known

in the literature (see Campbell, Lo and MacKinlay (1996) page 49). The relationship

between realized variance estimates computed using different horizons has long been

used as a test for serial correlation in returns (Lo and MacKinlay, 1988).

4. Simulations

As we saw in section 1, direct estimates of the skewness of monthly returns are very

noisy even with many years of data. Realized skewness, which makes use of higher

frequency data, offers the possibility of measuring skewness with much greater

precision. But Proposition 7 shows that the estimates will be biased in the presence of

equity and variance risk premia. In this section we use simulation to get a sense of the

bias and precision that may occur in practice.

The process that is simulated is the SVCJ stochastic volatility model of Duffie, Pan and

Singleton (2000) with contemporaneous jumps in the underlying and volatility
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 
 

1

  

   

   

S
tZSt

t t t

t

V V
t t V t t t t

dS
dt V dW e dN

S

dV V dt V dW Z dN

(22)

where S is the price of the underlying, V is its spot variance, WS and WV are Brownian

processes with constant correlation , N is a Poisson process with intensity , ZS is

normally distributed with mean S and standard deviation S, while ZV is distributed

exponentially with mean V.

The parameters used for the simulation, shown in Table 2, are taken from Broadie,

Chernov and Johannes (2007; Table I “EJP”, and Table IV). They are estimated from

S&P futures and options data from 1987 to 2003. The drift  is chosen so that S is

martingale under the physical measure as well as the risk-adjusted measure. As a result,

the realized variance is an unbiased estimate of the true variance. The difference in the

parameters of the volatility process under the two measures implies the existence of

variance risk premia that create a bias in the realized third moment.

The risk-adjusted parameters are used to compute option prices and the implied log and

entropy variances. Paths for the asset price and implied variances are then simulated7

under the physical measure, using daily increments over 200 months, each of 22 days.

For each run, the distribution of the 200 monthly returns is then used to compute the

sample second and third moments as well as the skewness coefficient. In addition, the

monthly realised and implied moments are calculated and averaged over the 200 months.

The top panel of Table 3 shows that the sample variance of monthly returns computed

over 200 months provides a fairly precise estimate of the actual variance. The

unconditional variance of monthly returns implied by the parameters in Table 2 is 0.214

x 10-2; the sample estimate has a standard deviation of 0.038 x 10-2. By contrast, the

standard deviations both of the third moment and of the coefficient of skewness are of

similar magnitude to their true values, implying that 200 observations would be

insufficient to reject the hypothesis that the distribution of returns is positively skewed.

7
The QE algorithm recommended in Andersen (2007) is used for the discretization; the results are

substantially the same if Euler discretization is used.
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The implied moments have far smaller standard deviations than their sample

counterparts; this is to be expected since they are beginning-of-month expectations rather

than end-of-month out-turns. But they are strongly biased because of the risk premia in

option prices as manifest in the large difference between the physical and risk-adjusted

parameters in Table 2.

The realized second moment is an unbiased estimate of the unconditional second

moment. This is expected since the simulated price process is martingale. It is also less

noisy than the sample second moment. The realized third moment is also much less noisy

than its sample counterpart, showing its value as a tool for estimating skewness. But it

does exhibit substantial bias. With the implied variance being larger than the expected

variance one might expect the realized third moment (which is the covariation between

implied variance and returns) to be biased upwards in absolute terms. This is not the

case. The reason for the downward is that the speed of mean reversion () is twice as

large under the risk adjusted measure as under the physical measure. This reduces the

sensitivity of implied variance to a shock in instantaneous volatility, and so reduces the

magnitude of the covariation between implied variance and returns.

As noted by Broadie, Chernov and Johannes (2007, p 1476) the diffusive risk premium is

hard to estimate. So while it is clear that this premium may give rise to significant bias,

the sign of the bias that arises in practice cannot be identified with confidence. The

variance jump risk premium in this model, though substantial, does not give rise to bias

in the realized skewness since it affects only the level of the implied variance, but does

not affect its covariation with returns.

The implications for the estimates of the skewness coefficient follow immediately from

the estimates of the second and third moments. The sample estimate is very noisy, with a

standard deviation almost equal to its mean; the implied estimate is much more precise,

but more than three times too large, while the realized estimate is somewhat biased (-

27%) but with a standard deviation of only 9% of its mean.

The second panel is similar to the first except that it is concerned with annual returns

estimated using 20 years of data. The true unconditional skewness of annual returns is
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somewhat lower than of monthly returns, but with only 20 rather than 200 observations,

the sample estimate is now much noisier. The implied skewness is still biased, but the

bias is somewhat smaller than in the monthly data. The magnitude of the bias in the

realized skewness is much greater. At longer horizons, the increased speed of mean

reversion in volatility greatly attenuates the covariation between returns and implied

variance.

The main conclusions that can be drawn from the simulations is that realized skewness

provides a far more precise estimate of skewness than does the sample skewness, but it is

subject to bias if the risk neutral speed of mean reversion in volatility differs from its

value under the physical measure. However, other variance risk premia, that do not affect

the covariation between returns and implied volatility (such as the variance jump risk

premia in the SVCJ model) have no effect on realized skewness though they do give rise

to bias in the implied skewness.

5. Skewness of Equity Index Returns

5.1 The Term Structure of Skewness

The empirical analysis in this section is based on European options written on the

S&P500 index traded on the CBOE obtained from OptionMetrics. The one month

options mature every month, while the 3, 6 and 12 month options mature every three

months. In each of the series, the first period starts in December 1997 and the last starts

in September 2009. The data set includes closing bid and ask quotes for each option

contract along with the corresponding strike prices, Black-Scholes implied volatilities,

the zero-yield curve, and closing spot prices of the underlying. Entries with non-standard

settlements are deleted.

Put and call option prices for every strike at each maturity are computed by interpolating

implied volatilities between quoted strike prices using a cubic spline. Outside the quoted

range, the implied volatilities at the lowest and the highest strike price are used. The Log

and Entropy Contracts are synthesized from the continuum of conventional options and

vE and vL are calculated. This is the procedure used by Carr and Wu (2009).
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Table 4 shows summary statistics at different maturities. Realized variance is on average

lower than implied variance, which is consistent with a positive variance risk premium,

and both increase linearly with maturity as one might expect. The realized and implied

third moments are negative at all maturities8. They increase with maturity faster than

linearly. The implied third moment is on average larger (in absolute size) than the

realized third moment at short maturities, but the difference appears to vanish or reverse

at longer maturities. The skewness, both implied and realized, exceeds -1 on average at

all maturities. Implied skewness appears to decline with maturity, whereas realized

skewness on average actually increases with maturity.

Both the second and third moments, whether realized or implied, are highly skewed and

variable. They are very highly (negatively) correlated with each other, with correlations

in excess of -0.9. The skewness coefficients tend to be much less variable and to be

distributed symmetrically. They are much less highly correlated with variance; the sign

of the correlation coefficient is positive implying that the higher the variance the less

skewed the distribution, but the correlations are all below 0.5.

To analyze the term structure of skewness, define Yt,n as the realized third moment

accumulated over the quarter ending in month t using options that mature at the end of

month t+n. The Y are all negative, and are highly correlated in the cross-section, with the

magnitude increasing with maturity. Table 5 reports the results of the regression

   ,,

3 3 6 6 9 9

,0

3,6,9


     
t nt n

t

Y
D D D e n

Y
. (23)

where Di is a dummy that takes the value of 1 if n = i, and zero otherwise, and ,t n is an

error term. The estimated value of 3 is 2.18 implying that the realized third moment

over six months is 3.18 its value over 3 months. Realized variance is linear in horizon, so

the realized skewness coefficient over six months is 3.18/21.5 = 1.12 times its value over

three months. The increase is statistically significant; log3 would need to be below 0.60

for the skewness to be lower at six months than at three, and t(log3-0.60) = 3.21.

8
In the entire sample there are eight out of 154 months in which the realized third moment is positive, and

no cases at longer maturities.
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The point estimate of relative skewness increases from 1 at three months to 1.12 at six

months, and to 1.15 at nine and twelve months, though the increases beyond six months

are not statistically significant. The panel regression of Table 5 therefore confirms the

impression given by the population averages of Table 4 that realized skewness rises with

horizon up to six months, and shows no evidence of significant decline in horizons up to

one year.

Before concluding that true skewness too increases with horizon, it is necessary to

address the issue of bias. Proposition 7 shows how cross correlations between index

returns and returns on a hedged constant maturity entropy contract can be used to

estimate the size of any bias. To compute the option returns, I price a notional entropy

contract whose maturity is set equal to two-thirds of the horizon of interest9 by

interpolating linearly between the entropy contracts with neighboring maturities. To put

some error bounds round the point estimates, I also compute the same statistics by

bootstrapping the two series, destroying their auto-correlation structure. The results are

set out in Table 6.

This shows that the realized second and third moments both over-estimate the true

moments at all maturities, with the effect being more important (and more significant

statistically) for the variance than for the third moment, and for shorter horizons than for

longer horizons. It is not possible to draw firm conclusions about bias in the skewness

coefficient since it is the ratio of two biased estimates, but at the very least one can say

that the data do not suggest that the realized skewness over-estimates the true skewness,

and they also suggest that any bias in the moment estimates attenuates with maturity.

The analysis of realized skewness of index returns at horizons of up to one year shows

that returns are strongly negatively skewed at all horizons (with a skew coefficient in

excess of -1), that there is no evidence at all that skewness declines with horizon and

some evidence that it actually increases for horizons up to six months.

9
The figure of two thirds is chosen to ensure that the constant maturity contract has the same weighted

average maturity as the entropy contracts used for estimating the third moment. The conclusions are not
sensitive to the choice of maturity.
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5.2 Time Variation in Skewness

Realized skewness is quite volatile. Table 4 shows that the realized skewness of the

S&P500 on a quarterly horizon has averaged -1.39 with a standard deviation of 0.5. It is

important to know whether this variation is predictable or whether it is just noise. To

investigate this we test the power of a simple predictive model of realized skewness

using implied skewness and lagged realized skewness as predictors.

Table 7 reports the regression

 
, 1 , 2 ,

for 1,3,6 and 12, and min 3, ,

         

 

t t n t t n t m t t nRSC ISC RSC

n m n
(24)

where RSCt,t+n , the realized skew coefficient from time t to t+n is forecast using ISCt,t+n

the skew implied by the time t prices of options that expire at t+n, and the lagged

realized skew. The table shows that there is predictable time variation in the realized

skew coefficient, with between 10% and 25% of the variation in the realized skew being

predictable using simple explanatory variables. The lagged realized skew enters in with

positive sign for shorter maturities suggesting the possibility the skew risk premium is

predictable, but the magnitude is small. The coefficient is not statistically significant at

longer horizons. The regression results are similar if other measures of lag realized skew

are used.

Figure 2 shows the relationship between realized and predicted skew graphically at the

quarterly horizon, and demonstrates that the time variation is significant economically as

well as statistically, with predicted skew varying between -1.0 and -1.8 over the period.

6. Conclusions

Skewness of returns at long horizons is important for both asset pricing and risk

management, yet measuring skewness is very difficult. With almost fifty years of data

the evidence that daily index returns are negatively skewed just meets standard

significance levels, but even then the results are heavily influenced by the Crash of 1987.
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For longer horizon returns, there is also evidence that returns are negatively skewed. But

the confidence intervals are wide, and the results are insignificant in some 12 year sub-

periods. There is however strong evidence that the distribution of long horizon returns

can only be explained by serial dependencies in the data, and is inconsistent with an iid

model of the returns process. There is a need for a methodology to measure the skewness

of long horizon returns that is far more precise than simply using the sample skewness,

and which respects the serial dependencies.

In the case of the second moment of returns, the problem has been addressed by using

high frequency returns to compute the realized variance over long horizons. The key

property of realized variance is that it is an unbiased estimate of the true conditional

variance. In the paper this property has been formalized as the Aggregation Property, and

it has been shown that there is a unique definition of the realized (and true) third moment

under which the realized third moment is an unbiased estimate of the true third moment.

We have also seen that the standard definition of realized variance needs to be slightly

modified so that it too has the Aggregation Property.

The realized second and third moments of index returns are highly correlated, but there is

significant variation in the realized skewness coefficient and it is predictable; implied

skewness from option prices (as measured by the slope of implied volatility with strike)

predicts realized skewness (which roughly corresponds to the correlation between returns

and volatility shocks). The realized skewness of the market index actually increases with

the horizon, at least from one to twelve months. This is inconsistent with an iid model in

which the twelve month skewness would be less than 30% of the one month skewness.

There are many further research questions that could usefully be explored with the use of

realized skewness. The examination of the relationship between implied variance and

realized variance, and the existence of variance risk premia by Carr and Wu (2009) could

readily be extended to skewness risk premia both in the equity index market (as in

Kozhan, Neuberger and Schneider (2011)) and in other financial markets. The evidence

on the pricing of skewness and coskewness presented by Ang, Hodrick, Xing and Zhang
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(2006) could be refined using a definition of skewness with a more rigourous theoretical

basis.

It would also be nice to be able to extend the analysis to higher order moments (or indeed

to the cumulants of the distribution as in Backus, Chernov and Martin (2011)). This

would not be straightforward; as Proposition 2 shows, the set of functions that possess

the Aggregation Property is quite limited; the way forward here may be to include other

traded claims in addition to those on the variance of the distribution.
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Equation Chapter 1 Section 1 APPENDIX

Proof of Proposition 1

It is straightforward to prove that all members of G have the Aggregation Property; all

that is needed is to substitute (3) into (2). Proving the converse, that all analytic functions

that have the Aggregation Property are in G, is more complicated.

Let  be a random variable with   0  and 2     , and g an analytic function

that has the Aggregation Property. We consider two processes with  0,1,2t . The first

is given by S0 = S1 = 0, S2 =  . S is clearly martingale. The process (S, V) is

(0, (0,  . For the Aggregation Property to hold

     , 0,0 , .g g g               (A-1)

It follows that g(0, 0) = 0. The second process for S is

 
Pr

0 , with 0 and 1 0.
Pr 1

 
 



  
    

  

u u
ud u d

d d
(A-2)

S is martingale. The process (S, V) is

 
   
   

   

0

2 2 2
0

, ,0 Pr
0,

,0 ,0 Pr 1

where 1 .

u u
V

d d

V u d

  



  

  
 

  

   



(A-3)

For the Aggregation Property to hold

     

           

0 0

0 0

, 1 ,

, , 1 , 1 0,0 .

g u V g d V

g u V g g d V g

  

      

       

         








(A-4)
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Simplifying, and using the fact that g(0, 0) = 0, gives

     0 0, , , ,g u V g g u V                 (A-5)

for arbitrary u and V0
10. Take the limit of (A-5) as 0u 

     0 0, , 0, .g V g g V                (A-6)

Take the derivative of (A-6) with respect to V0

   2 0 2 0, 0, ,g V g V      (A-7)

where the subscript denotes the partial derivative. Now take limits as 0V 

   2 2, 0,0 ,g g     (A-8)

(A-8) holds for any random variable  with   0  and 2     . So for any

positive function p

     

     

2

2

, is constant provided that 1,

0 and 0.

p S g S V dS p S dS

Sp S dS S V p S dS

 

 

 

 



  

 

 
(A-9)

The Lagrangian of system (A-9),    2
2 1 2 3,g S V S S V      , is zero, so g2(S, V)

must take the form

      2
2 , ,g S V a B V S C V S V    (A-10)

10
We require that u and V0 can take any values within some neighborhood; we do not require that they can

take any value. We derive g’s properties within that neighbourhood and then use the assumption that g is
analytic to extend the function to the real plane.
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for some constant a and functions B and C. But substituting (A-10) back into (A-7)

shows that C(v) is a constant, denoted by 2c. Integrating (A-10) gives

       2

0
, 2 ,    

V

g S V aV S B W dW c S V V D S (A-11)

where D again is an arbitrary function. It is easy to verify that (A-11) does indeed satisfy

(A-6) provided that D(0) = 0. Substituting it into the more general (A-5) shows that c =

0, and that the following must be satisfied if g is to have the Aggregation Property

       
0

0

0,


 



        

V

V
u B W dW D u D D u (A-12)

for arbitrary u, V0 and random variable  with zero mean. For this to hold,

differentiating (A-12) with respect to V0 gives    0 0B V B V    , so B(V) must be a

constant, denoted by 3b. Let

 
1 Pr 1 2

*
1 Pr 1 2


  



  
  

 

  (A-13)

for some  0,1 .  Substitute into (A-12), divide by 2 and take limits as 0 

   

  2 3
1 2

'' '' 0 6 , so

,

 

  

D u D bu

D u d u d u bu
(A-14)

for any d1, and d2. So g must take the form

   2 3
1 2 3 4

1 1 2 3 2 4

, 3

where , , and .

    

   

g S V h S h V h S h S SV

h d h a h d h b
(A-15)

.  ■
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Proof of Proposition 2

The proof is similar to the proof of Proposition 1, but with the added problem that the

form of the variance function is not known. The proof that all members of G* have the

Aggregation Property is straightforward. We focus on the converse.

Let  be a random variable with 1e   
 and  f     , and g a function that

has the Aggregation Property. We consider two processes with  0,1,2t . The first is

given by s0 = s1 = 0, s2 = . S = es is clearly martingale. The process (s, v) is

(0, (0, . For the Aggregation Property to hold

     , 0,0 , .g g g               (A-16)

It follows that g(0, 0) = 0. The second process for s is

 
Pr

0 , with 0 and 1 1.
Pr 1

 
 



  
    

  


u du u

ud e e
d d

(A-17)

S is martingale. The process (s, v) is

 
   
   

     

0

0

, ,0 Pr
0,

,0 ,0 Pr 1

where 1 .

u u
v

d d

v f u f d

  



  

  
 

  

     





(A-18)

For the Aggregation Property to hold

     

           

0 0

0 0

, 1 ,

, , 1 , 1 0,0 .

g u v g d v

g u v g g d v g

  

      

       

         








(A-19)

Simplify, and use the fact that g(0, 0) = 0, to give
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     0 0, , , ,g u v g g u v                 (A-20)

for arbitrary u and v0 > 0. Take the limit of (A-20) as 0u 

     0 0, , 0, ,g v g g v                (A-21)

Take the derivative of (A-21) with respect to v0

   2 0 2 0, 0, ,g v g v      (A-22)

where the subscript denotes the partial derivative. Now take limits as 0v 

   2 2, 0,0 ,g g     (A-23)

Since (A-23) holds for any random variable  with 1e   
 and  f     , using

the same Lagrangian argument as in (A-9), g2(s, v) must take the form

         2 , 1 ,sg s v a B v e C v f s v     (A-24)

for some constant a and functions B and C. Substituting (A-24) back into (A-22) shows

that C(v) is a constant, which we denote by 2c. Integrating (A-24) gives

          
0

, 1 2 ,
v

sg s v av e B w dw cv f s v D s      (A-25)

where D again is an arbitrary function. It is easy to verify that (A-25) does indeed satisfy

(A-21). Substituting it into the more general (A-20) shows that the following equation

must be satisfied if g is to have the Aggregation Property

             
     

0

0
0 01 2

0

v
u

v
e B w dw c v f u f u f u v f

D u D D u


 

 




           

      

  

 

 


(A-26)
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For a random variable  and  0,1p define

Pr
.

0 Pr 1
p

p

p





 

 


 (A-27)

If 1e   
 and  f     then 1pe

   


 and   .    


pf p Putting p into

(A-26) gives

             
         

0

0
0 01 2

1 0 0.

v
u

p v
e B w dw cp v f u f u f u v f

p D u D u D p D


 

 




           

        

  

 

 


(A-28)

By setting p = 0, we can see that D(0) = 0. Since the other terms in (A-28) are linear in

the arbitrary scalar p , the first term must be so too, which implies that B is constant, and

can be denoted by -b. So (A-26) can be simplified to

             
     

0 01 2

0

ub e f c v f u f u f u v f

D u D D u

  

 

               

      

  

 

  


(A-29)

Let

 
 
 

ln 1 Pr 1 2
*

ln 1 Pr 1 2


  



  
  

 


  (A-30)

for some  0,1 .  Substitute into (A-29), divide by 2 and take limits as 0 

         
        

02 1 2 '' ' 2 2

'' ' '' 0 ' 0 0

ub e c v f u f u f u

D u D u D D

    

    
(A-31)

Since (A-31) holds for arbitrary v0
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   0, or '' ' 2 0.c f u f u    (A-32)

If 0c  , we can solve for f using its limit properties at 0 to give

     2 1 .uf u e u L u    (A-33)

The general solution for D from (A-31) is

      2
1 2 1 8 2 4u uD u d u d e c b ue cu      (A-34)

where d1 and d2 are arbitrary scalars. Putting (A-34) into (A-25) gives

       
2

1 2 3 4 5

1 1 2 2 3 4 5

, 1 2 2 , where

; ; 4 ; ; 4 .

       

       

s sg s v h s h e h v h v s h e v s

h d h d h a b c h c h c b
(A-35)

Finally, substituting for g into (A-20) gives

     

       
0 0

4 0 5

, , ,

4 2 2 2 1 2 .u

g u v g g u v

h u v h e e

   

    

            

       


 

 

 

 
(A-36)

For this to be zero, as required for Aggregation, one of three conditions is necessary

 

   

4 5

4

5

1) 0;

2) 0, and 2 , so ;

3) 0, and 2 , so .

h h

h f e f E

h f f L

 

 

 

       

     

 

 

 

 

(A-37)

 ■

Proof of Proposition 5

By assumption, f is an analytic function which can be written as
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   

 

2

3

,

where .k
k

k

f x x h x

h x a x


 


(A-38)

and the convergence radius of f is infinity, so

lim sup 0.k
k

k

a


 (A-39)

Let X be a continuous semimartingale. Assume, without loss of generality, that X(0) = 0.

For a function g, define the g-variation of X as

     

      
 

1
1

, lim (if it exists), where

, ,

n

t tn

nt
n

i n i nt
i

V X g V g

V X g g X X








 
(A-40)

where [x] denotes the integer part of x. Let TN be the following increasing sequence of

stopping times

 inf 0 ,N tT t X N   (A-41)

and define the stopped process .
N

N
t t TX X  For 3,k 

 

 

   
 

   
 

   

 

1

1
1 1

3

1

1

33

1
1

2
2

2
2

= 2 .

kN Nnt nt
k i nk i nN N

i n i n
i i

N Nnt
i nk i n

i

nt
k N N

i n i n
i

X X
X X N

N

X X
N

N

N X X




 











 






 





(A-42)

Hence
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  
 

   

  33

1 1
1 1 1 1

2 .
t n t nM Mk kN N N N

k i n k i ni n i n
k i k i

a X X a N X X


 
   

     
             

    (A-43)

(A-39) implies that the first term on the right hand side tends to a finite limit as M tends

to infinity. Denoting the limit by cN,
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So for each N and for all t < TN the h-variation of X is bounded. Since X is continuous by

assumption, its cubic variation converges to zero in probability as n tends to infinity (see

Lepingle, 1976, and Jacod, 2008). Hence, by (A-44), the h-variation of X equals 0 on [0,

TN], and the f-variation of X equals the quadratic variation on the same interval. Since TN

is an increasing sequence of stopping times tending to infinity, NT t increases to t a.s..

Furthermore, for N' > N, we have V(XN, f)t = V(XN’, f)t on  0, NT t , hence the f-

variation of X is well defined by the sequence V(XN, f)t and equals the quadratic variation

of X. The result holds true for any function f that satisfies (A-38) and (A-39). In

particular, it holds for f = L and f = E.  ■

Proof of Proposition 7
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is an algebraic identity. The first part of the proposition immediately follows by taking

expectations at time 0, and applying the definitions of realized and true third moment.

Let 1 1
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. We can approximate Y by:
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Now xu+1 is the return on a delta hedged option position with duration T-u-1
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where u is the daily implied Black-Scholes volatility of the Entropy Contract at time u.

If shifts in the volatility term structure are parallel, then to remove the dependence of xu

on T we need to define  t ty x T t  and write
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The realized third moment is simply the diagonal term where n=0, giving
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The third part of the proposition comes from the identity
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and then reasoning is as before. ■
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Table 1: Skewness of Daily and Monthly S&P500 returns 1963-2011

Period
Skewness
Coefficient

p-value
[5%,95%]
confidence
intervals

Daily 7/1963 - 6/2011 -0.832 0.043 [-1.81 ,-0.02]

7/1963 -6/1975 +0.145 0.818 [-0.10, +0.40]

7/1975 -6/1987 -0.085 0.224 [-0.28, +0.10]

7/1987 -6/1999 -3.312 0.026 [-6.17, -0.18]

7/1999 -6/2011 -0.202 0.241 [-0.66, +0.29]

Monthly 7/1963 - 6/2011 -0.736 0.001 [-1.14, -0.29]

7/1963 -6/1975 -0.669 0.002 [-1.03, -0.27]

7/1975 -6/1987 -0.212 0.293 [-0.86, +0.47]

7/1987 -6/1999 -0.868 0.240 [-1.89, +0.49]

7/1999 -6/2011 -1.008 0.007 [-1.64, -0.20]

Returns are log excess returns, computed from CRSP data. The skewness

coefficient is the standard estimate of the population skewness. The p-value

is against a null of positive skewness. p-values and confidence intervals are

obtained by bootstrapping 10,000 times.

Table 2: Parameter estimates used in simulations

   V V S (%) S (%)  

 measure 0.015 0.026 0.54 0.08 1.48 -2.63 2.89 -0.48 0.6

 measure 0.031 0.057 0.246 0.08 8.78 -5.39 5.78 -0.48 0.6

The parameters for the SVCJ model  1   
S
tZS

t t t t tdS S dt V dW e dN where V

follows       V V
t t V t t t tdV V dt V dW Z dN . Parameters are under the physical and

risk-adjusted ( and ) measures. The numbers correspond to daily percentage returns

and are taken from Tables I (row “EJP”) and IV of Broadie, Chernov and Johannes

(2007). The drift parameter  is chosen to make S a martingale under both measures.
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Table 3: Simulation Results

Sample Implied Realized

Monthly returns
Second Moment

(x100)
0.214

(0.038)
0.301

(0.013)
0.213

(0.026)

Third Moment
(x1000)

-0.044
(0.045)

-0.238
(0.001)

-0.037
(0.010)

Skewness -0.427
(0.367)

-1.594
(0.063)

-0.307
(0.030)

Annual Returns
Second Moment

(x100)
2.46

(0.88)
3.81

(0.03)
2.44

(0.29)

Third Moment
(x1000)

-1.49
(3.15)

-4.81
(0.01)

-0.81
(0.18)

Skewness -0.359
(0.833)

-0.648
(0.006)

-0.194
(0.020)

The top panel reports the results of 10,000 simulations of a stochastic

volatility process with jumps as described in equation (22). Each simulation

comprises 200 months of 22 trading days. For each simulation, the second

and third moments and skewness coefficient of the 200 monthly returns are

computed. The average of these statistics across the 10,000 simulations are

then recorded in the first column, together with their standard deviation in

parentheses. The second and third columns do the same for the implied

statistics (using one month options) and for the realized characteristics

(using daily returns).

The lower panel is similar except that it shows statistics of annual returns

computed over 20 year simulated histories. A year is defined as a period of

252 trading days.
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Table 4: Realized and Implied Variance and Skewness of the S&P500 1997-2009

Sample Implied Realized Correl with 2nd moment
Implied Realized

Monthly returns

Second Moment
(x100)

0.23 0.47
(0.53)

0.39
(0.63)

Third Moment
(x1000)

-0.16 -0.64
(1.36)

-0.38
(1.21)

-0.954 -0.934

Skewness -1.98
-1.90
(0.88)

-1.10
(0.92)

0.297 0.074

Three monthly returns

Second Moment
(x100)

0.82
1.44

(1.00)
1.16

(1.84)

Third Moment
(x1000)

-0.43
-2.99
(3.22)

-2.39
(7.53)

-0.952 -0.976

Skewness -0.58
-1.69
(0.48)

-1.39
(0.50)

0.451 0.166

Annual returns

Second Moment
(x100)

4.11
5.50

(3.17)
4.75

(4.76)

Third Moment
(x1000)

-6.21
-15.00
(15.13)

-18.14
(29.22)

-0.916 -0.954

Skewness -0.74
-1.10
(0.35)

-1.60
(0.51)

0.235 0.403

The implied second and third moments are calculated from quoted option prices each

month on the trading day following the previous option expiry date in December 1997

to September 2009 each month for monthly expiries, and three monthly for the longer

maturities. The realized statistics are calculated using daily returns over the remaining

life of the option. The sample statistics are computed using returns to expiry. Each cell

shows the mean with the standard deviation in parentheses. Moments are computed

using the model free definitions from this paper. The correlations are with the

corresponding second moment – implied with implied, and realized with realized.
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Table 5: Estimation of the Term Structure of the Realized Third Moment

n Log n n Relative
SkewEstimate Std error

0 0 1.00 1
3 0.777 0.054 2.17 1.122
6 1.030 0.063 2.80 1.150
9 1.163 0.074 3.20 1.147

The table reports the results of the panel regression    , ,0 ,
3,6,9

log log  


  
t n t i i t n

i

Y Y D

where Di is a dummy that takes the value of 1 if n = i, and zero otherwise, ,t n is an error

term, and Yt,n is the realized third moment over the quarter to time t, computed using the

implied variance of options that expire at the end of month t+n. The standard errors are

White cross-section standard errors. The relative skew is  
3 2

1 .
3




 jj n
n
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Table 6: Estimated Ratio of True Moment to Realized Moment

Horizon Variance
Third

Moment

1 month 0.71 0.77
[0.87,1.13] [0.83,1.16]

3 months 0.67 0.88
[0.76,1.23] [0.72,1.30]

1 year 0.88 1.01
[0.51,1.42] [0.44,1.54]

The estimates of the ratio of true variance and the third moment of returns to their

realized counterparts make use of Proposition 7, and are computed from the auto- and

cross-correlation structure of returns on the index and on hedged entropy contracts on the

S&P500 over the period January 1996 to October 2010. The entropy contract return is

based on a notional maturity equal to two thirds of the horizon, with prices obtained by

linearly interpolating between the prices of the two nearest maturing entropy contracts.

The numbers in square parentheses are the 5% and 95% intervals obtained by

bootstrapping the returns data 1000 times. They show the confidence intervals under the

null hypothesis of zero auto-correlation, and hence unbiased estimates.
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Table 7: Regression of Realized Skew Coefficient on Implied

   adjR2

1 month -0.480
(-2.74)

0.328
(3.70)

9.4%

-0.240
(-1.49)

0.297
(3.33)

0.264
(2.46)

15.9%

3 month -0.595
(-2.61)

0.470
(3.16)

19.1%

-0.541
(-2.70)

0.359
(2.55)

0.161
(1.48)

19.0%

6 month -0.364
(-1.30)

0.838
(4.35)

25.5%

-0.382
(-1.34)

0.904
(3.65)

-0.084
(-0.72)

24.2%

12 month -0.857
(-2.87)

0.672
(3.01)

19.4%

-0.658
(-2.41)

0.657
(3.21)

0.152
(0.98)

20.2%

The table reports OLS results for the regression

, 1 , 2 ,         t t n t t n t m t t nRSC ISC RSC for n = 1, 3, 6 and 12

months, and m = min(n, 3) months. t–statistics in parentheses using

Newey-West standard errors. Regressions are monthly for n =1, and

quarterly otherwise, over the period 1998-2009.
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Figure 1:Skewness of index returns at different intervals

The upper plot uses bootstrapped daily returns to simulate the joint distribution of the

skewness coefficient of daily and monthly log excess returns on the S&P500 index 1963-

2011. The large square shows the actual skewness of daily and monthly returns over the

period. The bold line plots the line y = √22x.The lower plot is similar except it shows

annual returns against monthly returns and the line is y = √12x.
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Figure 2: Realized Skewness of 3 monthly returns on the S&P 500

The graph shows the realized skewness coefficient of 3 monthly returns on the S&P500

computed using daily returns and implied variance changes over successive quarters

from March 1998 to December 2009, together with the expected skewness coefficient at

the beginning of the quarter. The expected skew is computed using the model in Table 6,

where expected realized skew is a linear function of lagged realized skew and implied

skew. The realized variance over the quarter is plotted on the right hand axis for

comparison purposes.
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