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Abstract We use a forward characteristic function approach to price variance and
volatility swaps and options on swaps. The swaps are defined via contingent claims
whose payoffs depend on the terminal level of a discretely monitored version of the
quadratic variation of some observable reference process. As such a process we con-
sider a class of Levy models with stochastic time change. Our analysis reveals a
natural small parameter of the problem which allows a general asymptotic method to
be developed in order to obtain a closed-form expression for the fair price of the above
products. As examples, we consider the CIR clock change, general affine models of
activity rates and the 3/2 power clock change, and give an analytical expression of the
swap price. Comparison of the results obtained with a familiar log-contract approach
is provided.
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1 Introduction

The modern theory of asset pricing requires a well-defined notion of stochastic integral
in order to describe the gains from dynamic trading strategies conducted in contin-
uous time. The widest class of processes for which stochastic integrals are defined
are semi-martingales, which loosely speaking, arise as the sum of a bounded varia-
tion process and a local martingale. The quadratic variation of a semi-martingale is a
continuous time process which loosely speaking, arises by integrating over time the
squared increments of the semi-martingale. The financial markets have recently seen
the introduction of contingent claims whose payoffs depend on the terminal level of
a discretely monitored version of the quadratic variation of some observable refer-
ence process. When annualized, this random variable is frequently referred to as the
realized variance. The most popular example of such a contract is a variance swap
(an example of one is given in Appendix 1). Less liquid examples of such contracts
are volatility swaps and options on realized variance.

The greater liquidity of variance swaps relative to other contracts on realized var-
iance is probably due to the existence of a well-known strategy for replicating the
terminal level of quadratic variation under idealized conditions. This strategy com-
bines dynamic trading in the underlying with a static position in a strip of co-terminal
options of all positive strikes. Theoretically, if one can observe the initial prices of
all of these options, one can calculate the theoretical variance swap rate Demeterfi et
al. (1999). In reality, market quotes for variance swap rates account for both missing
strikes and option market illiquidity. In fact, the illiquidity of deeper out-of-the-money
options is usually so pronounced that most market makers avoid taking positions in
them, thereby adding to the replication error induced by missing strikes. The resulting
possibility of loss is typically then compensated for through the setting of the variance
swap quote.

When replicating variance swaps in this manner, at least two sources of errors can
occur in practice:

1. Interpolation/extrapolation error due to the finite number of available option
quotes relative to the continuum of option quotes needed to create the log contract.

2. Errors due to third and higher order powers of daily returns, often due to jumps.

The absence of market option prices suggests the use of parametric models which
are capable of achieving consistency with the observed option prices. Examples of
such models include local and stochastic volatility models or combinations of both.
The reality of jumps further suggests using more sophisticated jump-diffusion and
pure jump models to price swaps and options on quadratic variation. Among multiple
papers on the subject, note the following Schoutens (2005); Carr and Lee (2003);
Carr et al. (2005); Gatheral and Friz (2005). One can also combine the use of stochas-
tic volatility models and jump models by subjecting jump processes to stochastic time
change. For instance, in Schoutens (2005) variance swaps were priced using a familiar
log-contract approach by computing a characteristic function of some jump processes
with stochastic time change. The latter could be introduced either by a known distribu-
tion of the stochastic time (as in a celebrated VG model of Madan and Seneta 1990) or
by a given SDE which describes evolution of the stochastic time (as an example, Carr,
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Pricing swaps and options on quadratic variation under stochastic time change models 143

Geman, Madan and Yor use as the rate of time change the well-know CIR process
Carr et al. 2003).

Monte-Carlo methods can be used to price the quadratic variation products within
these models. Unfortunately, analytical and semi-analytical (eg. FFT) results are avail-
able only for the simplest versions of these models. For instance, Swishchuk (2004)
uses the change-of-time method for the Heston model to derive explicit formulas for
variance and volatility swaps. Also, Carr et al. (2005) proposed a method of pricing
options on quadratic variation in Lévy models via the Laplace transform.

In the present paper we consider a class of models that are known to be able to
capture at least the average behavior of the implied volatilities of the stock price
across moneyness and maturity—time-changed Lévy processes. We derive an analyti-
cal expression for the fair value of the quadratic variation and volatility swap contracts
as well as use the approach similar to that of Carr and Madan (1999) to price options
on these products.

Our main contribution made in this paper is:

• In contrast to Carr and Lee (2009) who investigated variance swaps under contin-
uous observations here we consider variance and volatility swaps under discrete
observations.

• We use a forward characteristic function approach and propose a new asymptotic
method which allows an analytical representation for the quadratic variation of a
Lévy process with stochastic time change, if the latter is an affine process, and the
annualized time between the observations is relatively small.1

• We consider the activity rate models with a rather general jump specification pro-
posed by Carr and Wu (2004). Using our method we prove (Theorem 1) that under
this specification the annualized quadratic variation of the Lévy process with sto-
chastic time determined by a pure diffusion process is given by the annualized
realized variance times a constant coefficient ξ . This coefficient is determined via
derivatives of the characteristic function of the underlying Lévy process.

• We also prove (Theorem 2) that given the above conditions the annualized qua-
dratic variation of the Lévy process under stochastic time determined by a jump-
diffusion process is also given by a product of the annualized realized variance and
a constant coefficient ξ plus some constant η which is determined via derivatives
of the characteristic function of the underlying Lévy process and jump integrals
of the time change process.

• We further extend our results by investigating a more general case when discrete
observations of the underlying spot price occur over a bigger time interval. We
show (Theorem 3) that in this case the formulae for the price of the quadratic
variation swap acquire two extra terms. The first one p0(τ ) is a function of time
between observations τ and is determined by a particular model of the underlying
Lévy process. The last term p2(τ )EQ[V 2] is proportional to the square of variance
and is some kind of convexity adjustment.

• In addition to this general results we derive an analytical representation of the
variance and volatility swaps for some particular models, namely the Lévy pro-

1 A more precise definition is given in the body of the paper.
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144 A. Itkin, P. Carr

cesses with the CIR time change and so-called “3/2 power” time change. The
latter model does not belong to the class of the affine models, therefore this result
further extends the proposed approach.

The rest of the paper is organized as follows. In Sect. 2 we define a forward char-
acteristic function (FCF) and how the quadratic variation of some stochastic process
is related to this function. In Sect. 3 we give a general representation of FCF for the
Lévy process with stochastic time change. Section 4 considers in details a particu-
lar example of the time change which follows a well-known CIR process. First we
propose an asymptotic method which allows us to derive an analytical expression for
the quadratic variation of such a process under an arbitrary Lévy model. As exam-
ples, Heston and stochastic skew model of Carr and Wu are considered. Then we are
discussing volatility swaps and options on the quadratic variation and show how to
price them analytically within the framework of the proposed approach. Section 5
generalizes these results for a wide class of the time-change processes that have an
affine activity rate. A general theorem is proved which again provides an analytical
representation of the quadratic variation of such a process. In Sect. 6 we extend our
approach to one more class of the stochastic time change processes which follows
so-called “3/2 power” clock change. We show that despite this model is not affine it
still allows variance swaps to be priced in a closed form. Based on the results obtained
a comparison of various models with respect to modeling variance swaps is provided
in Sect. 7. We examine the Heston model (Black-Scholes with the CIR time change,
SSM model and NIG model also with the CIR time change and discuss the results.

2 Quadratic variation and forward characteristic function

Let St denote the observable price at time t ≥ 0 of some reference index, which is
assumed to be strictly positive. The discretely monitored quadratic variation of the sto-
chastic process st = log St/S0 after N + 1 observations is a random variable defined
as follows:

N∑

i=1

(
sti − sti−1

)2 (1)

The annualized version of this random variable is defined as:

k
N

N∑

i=1

(
sti − sti−1

)2
, (2)

where k is the number of periods per year eg. 252.
Suppose that a variance swap matures at time T and further suppose that the obser-

vations are uniformly distributed over (0, T ) with τ = ti − ti−1 = const,∀i = 1, N .
For each dollar of notional, the floating part of the payoff on the variance swap is
defined as
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EQ

[
k
N

N∑

i=1

(
sti − sti−1

)2

]

. (3)

Like all swaps, the variance swap has zero cost of entry and the magnitude of the fixed
payment is determined at inception. Assuming no arbitrage, there exists a probability
measure Q such that the fixed payment per dollar of notional can be presented as:

QN (s) ≡ EQ

[
1
T

N∑

i=1

(sti − sti−1)
2

]

= 1
T

N∑

i=1

EQ
[
(sti − sti−1)

2
]
, (4)

Note, that quadratic variation is often used as a measure of realized variance. More-
over, modern variance and volatility swap contracts in fact are written as a contract
on the quadratic variation of the log st process because i) this is a quantity that could
be observed at the market, and ii) for models with no jumps the quadratic variance
exactly coincides with the realized variance.

As shown by Hong (2004), this fixed payment can be determined in any model
where one has knowledge of the characteristic function of the future return sti − sti−1 .
The idea is as follows.

Let us define a forward characteristic function

φt,T ≡ EQ
[
exp(iust,T )|s0, ν0

]
≡

∫ ∞

−∞
eiusqt,T (s)ds, (5)

where st,T = sT − st and qt,T is the Q-density of st,T conditional on the initial time
state

qt,T (s)ds ≡ Q
(
st,T ∈ [s, s + ds)|s0

)
. (6)

From Eqs. 4 and 6 we obtain

QN (s) ≡ 1
T

N∑

i=1

EQ
[
(sti − sti−1)

2
]

= 1
T

N∑

i=1

EQ
[
s2

ti ,ti−1

]

= − 1
T

N∑

i=1

∂2φti ,ti−1(u)

∂u2

∣∣∣
u=0

. (7)

Thus, if one knows the forward characteristic function of each discrete time incre-
ment of the price, one can use the above formula to compute the fixed payment on a
variance swap per dollar of notional. The variance swap rate that one quotes is just the
square root of this fixed payment.
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3 Analytical expression for the forward characteristic function

According to Carr and Wu (2004) consider a d-dimensional real-valued stochastic
process Xt |t ≥ 0 with X0 = 0 defined on an underlying probability space (Q,F, P)

endowed with a standard complete filtration F = {Ft |t ≥ 0}. We assume that X is a
Lévy process with respect to the filtration F. That is, Xt is adapted to Ft , the sample
paths of X are right-continuous with left limits, and Xu − Xt is independent of Ft and
distributed as Xu−t for 0 ≤ t ≤ u. The characteristic function of Xt then is given by
the Lévy-Khintchine theorem (see Cont and Tankov 2004).

Next, let t → Tt (t ≥ 0) be an increasing right-continuous process with left limits
such that for each fixed t the random variable Tt is a stopping time with respect to F.
Suppose furthermore that Tt is finite P-a.s. for all t ≥ 0 and that Tt → ∞ as t → ∞.
Then the family of stopping times Tt defines a random time change. Without loss of
generality, we further normalize the random time change so that E[Tt ] = t . With this
normalization, the family of stopping times is an unbiased reflection of calendar time.

Finally, consider the d-dimensional process Y obtained by evaluating X at T , i.e.,
Yt ≡ XTt , t ≥ 0. We consider that this process describe the underlying uncertainty of
the economy. For example, in the one-dimensional case, we can take Y as describing
the returns on the asset underlying an option. Obviously, by specifying different Lévy
characteristics for Xt and different random processes for Tt we can generate various
stochastic processes from this setup. In principle, the random time Tt can be modeled
as a non-decreasing semi-martingale.

In what follows we model dynamics of our underlying spot price by this kind of
time-changed Lévy process, so that the log return follows the following equation

st ≡ ln St/S0 = (r − q)t + Yt , (8)

where r is the forward interest rate and q is the continuous dividend.
To remind, a general Lévy process Xt has its characteristic function represented in

the form

φX (u) = EQ
[
eiu Xt

]
= e−t'x (u), (9)

where 'x (u) is known as a Lévy characteristic exponent (Cont and Tankov 2004).
For time-changed Lévy process, Carr and Wu (2004) show that the generalized

Fourier transform can be converted into the Laplace transform of the time change
under a new, complex-valued measure, i.e. the time-changed process Yt = XTt has
the characteristic function

φYt (u) = EQ
[
eiu XTt

]
= EM

[
e−Tt'x (u)

]
= Lu

Tt
('x (u)) , (10)

where the expectation and the Laplace transform are computed under a new com-
plex-valued measure M. The measure M is absolutely continuous with respect to the
risk-neutral measure Q and is defined by a complex-valued exponential martingale
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DT (u) ≡ dM
dQ

∣∣∣
T

= exp [iuYT + TT'x (u)] , (11)

where DT is the Radon-Nikodym derivative of the new measure with respect to the risk
neutral measure up to time horizon T . Moreover, optimal stopping theorem ensures
that

Dt (u) = EQ
[
DT (u)

∣∣Ft
]

= exp [iuYt + Tt'x (u)] (12)

is a Q martingale and that for all Ft random variable ZT follows

EM
[
ZT

∣∣∣Ft

]
= EQ

[
MT

Mt
ZT

∣∣∣Ft

]
. (13)

Equation 11 reduces the problem of obtaining a generalized Fourier transform of
a time-changed Lévy process into a simpler problem of deriving the Laplace trans-
form of the stochastic clock. The solution to this Laplace transform depends on the
specification of the instantaneous activity rate ν(t) and on the characteristic exponents.

Further we again follow the idea of Hong (2004). For the process Eq. 9 we need to
obtain the forward characteristic function which is

φt,T (u) ≡ EQ
[
eiu(log sT −log st )

∣∣∣Ft

]
= eiu(r−q)(T −t)EQ

[
eiu(YT −Yt )

∣∣∣Ft

]
, (14)

where t < T . First, let us consider a single time-change process. The results for a
vector version could be obtained in a similar way. From the Eq. 13 one has

EQ
[
eiu(YT −Yt )

∣∣∣Ft

]
= EQ

[
EQ

[
eiu(YT −Yt )

∣∣∣Ft

]]

= EQ
[
EQ

[
eiu(YT −Yt )+(TT −Tt )'x (u)−(TT −Tt )'x (u)

∣∣∣Ft

]]

=
[
EQ

[
MT

Mt
e−(TT −Tt )'x (u)

∣∣∣Ft

]]

= EQ
[
EM

[
e−(TT −Tt )'x (u)

∣∣∣Ft

]]
(15)

For Markovian arrival rates ν the inner expectation will be a function of ν(t) only.
Now let us consider a time-homogeneous time-change processes, for instance, CIR

process with constant coefficients (as it is later specified in the Eq. 33). With the
allowance for the Eq. 10 the last expression could be rewritten as

EQ
[
EM

[
e−(TT −Tt )'x (u)

∣∣∣Ft

]]
= EQ

[
EM

[
e−'x (u)

∫ T
t ν(s)ds

∣∣∣νt

]]

= EQ
[
Lu
θ ('x (u))

∣∣∣νt

]
,

where θ =
∫ T

t ν(s)ds.
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Now for all the arrival rates that are affine, the Laplace transform Lu
θ ('x (u)) is

also an exponential affine function in νt

Lu
θ ('x (u)) = exp [α(τ,'x (u)) + β(τ,'x (u))νt ] , τ ≡ T − t. (16)

and hence

e−iu(r−q)τ φt,T (u) = EQ
[
eiu(YT −Yt )

∣∣Ft

]
= EQ

[
exp [α(τ,'x (u)) + β(τ,'x (u))νt ]

∣∣νt
]

= eα(τ,'x (u))EQ
[
eβ(τ,'x (u))νt

∣∣νt

]
= eα(τ,'x (u))φνt (−iβ(τ,'x (u))νt ) .

(17)

Here as φνt () we denote the generalized characteristic function of the activity rate
process under the risk neutral measure Q. If this characteristic function is available in
a closed form as well as the characteristic exponent of the Lévy process, then one can
use the Eq. 7 with t = ti−1, T = ti (so θ =

∫ ti
ti−1

ν(s)ds) and get an analytical expres-
sion for the quadratic variation of the Lévy process QN (s). Actually if the arrival rate
is affine then φνt () is also an exponential affine function.

4 CIR clock change

Let consider two moments of time: t and t + h, h > 0. In the case of the CIR clock
change (dyt = κ(θ−yt )dt+η

√
yt d Zt ) the conditional Laplace transform (or moment

generation function) of the CIR process

ψt,h(v) = EQ
[
e−vyt+h

∣∣∣yt

]
, v ≥ 0 (18)

can be found in a closed form (see, for instance, Gourieroux 2005). Since νt in our
case is a positive process, the conditional Laplace transform characterizes the transition
between t and t + h (Feller 1971). The CIR is the affine process, therefore

ψt,h(v) = EQ
[
e−vyt+h

∣∣∣yt

]
= exp [−a(h, v)yt − b(h, v)] , (19)

where functions a, b obey the differential equations

∂a(h, v)

∂h
= −κa(h, v) − 1

2
η2a2(h, v)

∂b(h, v)

∂h
= κθa(h, v) (20)

with initial conditions a(0, v) = v, b(0, v) = 0.
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This system of equations has the following solution

a(h, v) = ve−κh

1 + v η2

2κ (1 − e−κh)

b(h, v) = 2κθ
η2 log

[
1 + v

η2

2κ
(1 − e−κh)

]
. (21)

Now we apply these results to the Eq. 17. We substitute τ = ti − ti−1 instead of h
in the above expression and from the Eq. 19 obtain

EQ
[
eβ(τ,'x (u))νt

∣∣∣νt

]
= exp [−a(τ,−β(τ,'x (u)))νt − b(τ,−β(τ,'x (u)))] ,

(22)

where coefficients a, b are given in the Eq. 21. Therefore, from the Eq. 17

φti−1,ti (u) = exp [α(τ,'x (u)) − a(τ,−β(τ,'x (u)))νt − b(τ,−β(τ,'x (u)))] .

(23)

Now, expressions for α(τ,'x (u)) and β(τ,'x (u)) in the case of the CIR time-
change have been already found in Carr and Wu (2004) and read

β(τ,'x (u)) = − 2'x (u)(1 − e−δτ )

(δ + κQ) + (δ − κQ)e−δτ
,

α(τ,'x (u)) = −κQθ

η2

[
2 log

(
1 − δ − κQ

2δ
(1 − e−δτ )

)
+ (δ − κQ)τ

]
, (24)

where δ2 = (κQ)2 + 2'x (u)η2, κQ = κ − iuησρ and σ is a constant volatility rate
of the diffusion component of the process.2

Further let us have a more close look at the Eq. 7. Suppose the distance between any
two observations at time ti−1 and ti is one day. As it is well-known, taking into account
an accurate business calendar brings just small corrections to the final quadratic vari-
ation value. Therefore, suppose also that these observations occur with no weekends
and holidays. Then τi ≡ ti − ti−1 = τ = const . Further we have to use the Eq. 23 with
t = ti−1 and T = ti , substitute it into the Eq. 7, take second partial derivative and put
u = 0. As this results in a very tedious algebra we use a simple Mathematica program
while the resulting expression is still very bulky. To simplify it and make a qualitative
analysis of the results transparent below we propose the following asymptotic method
to obtain an approximate price of the quadratic variation swap contract.

2 In Carr and Wu (2004) the authors do not discuss which branch of the complex logarithm function should
be used in the above expression.
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4.1 Asymptotic method

A detailed analysis of the Eq. 23 shows that the time interval τ enters this equation
only as a product κτ .

To prove it, note that according to the Eq. 7 we need to compute a second derivative
of φti ,ti +τ at u = 0. If we expand the Eq. 23 into series on u up to the quadratic term,
the double coefficient at u2 is just φti ,ti +τ (u = 0). One can validate, for instance with
Mathematica, that in the obtained expression the time interval τ appears only as a
product κτ . Intuitively, this could be understood because in the Eq. 23 for φti ,ti +τ the
time interval τ appears only either as δτ or κτ . And according to the definition of δ
given after Eq. 24 at u = 0 δ ≡ κ because 'x (0) = 0. As the expression for φti ,ti +τ

has to contain (δ′
u)2(u = 0) and δ′′(u)(u = 0), one could expect to see some other

terms proportional to τ , like τη2/κ etc.
Now we introduce an important observation that usually κτ + 1. Indeed, accord-

ing to the results obtained for the Heston model calibrated to the market data the value
of the mean-reversion coefficient κ lies in the range 0.01–30. On the other hand, as
it was already mentioned, we assume the distance between any two observations at
time ti and ti−1 to be one day, i.e τ = 1/365. Therefore, the assumption κτ + 1 is
provided with a high accuracy.

The above means that our problem of computingφ′′
u (ti , ti +τ )(u = 0) has two small

parameters—u and κτ . And, in principal, we could produce a double series expansion
of φ′′

u (ti , ti + τ ) on both these parameters. However, to make it more transparent, let
us expand the Eq. 23 first into series on κτ up to the linear terms (that can also be
done with Mathematica). Eventually we arrive at the following result

− ∂2φti ,ti−1(u)

∂u2

∣∣∣
u=0

= ξ
[
θ + (ν0 − θ)e−κti

]
τ + O(τ 2)

ξ = ∂2'x (u)

∂u2

∣∣∣
u=0

(25)

Then from the Eq. 7 we obtain

QN (s) = − 1
T

N∑

i=1

∂2φti ,ti−1(u)

∂u2

∣∣∣
u=0

≈ ξ

T

∫ T

0

[
θ + (ν0 − θ)e−κt ] dt

= ξ

[
θ + (ν0 − θ)

1 − e−κT

κT

]
. (26)

4.2 Some examples

4.2.1 Heston model

The above expression could be easily recognized if we remind that the familiar
Heston model can be treated as the pure continuous Lévy component (pure log-
normal diffusion process) with σ = 1 under the CIR time-changed clock. For the
continuous diffusion process the characteristic exponent is (see, for instance, in
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Carr and Wu 2004) 'x (u) = σ 2u2/2, therefore for the Heston model ('x )
′′
u(0) = 13

and

QN (s) = θ + (ν0 − θ)
1 − e−κT

κT
(27)

Thus, we arrive at the well-known expression of the quadratic variation under the
Heston model (see, for instance, Swishchuk 2004).

As it is seen from the Eq. 26 adding jump components to the description of the
underlying stochastic process does not change the ansatz of the dependence QN (s, T )

affecting only the coefficient of the ansatz. This looks to be a new and interesting result.
Thus, the dependence QN (s, T ) is basically determined by the stochastic time-change
process, rather than by the Lévy model of the process.

To make it more transparent we can switch some steps in the derivation of the
Eq. 27. Indeed, let us now first expand φt,T (u) in the Eq. 17 into series on κτ and
(r − q)τ (as the interest rate is usually about 1–10% and τ = 1/365 that the first term
is also a small parameter), that yields

φt,T (u) = EQ
[
1 − τ νt'x (u) + O(τ 2)

∣∣∣ν0

]
. (28)

Then substituting this expression into the Eq. 7 we obtain

QN (s) = τξ

N∑

i=1

EQ
[
νti |ν0

]
≈ ξEQ

[∫ T

0
νt dt

∣∣∣ ν0

]
≡ ξEQ[V ]. (29)

The r.h.s. of this formula differs from the definition of the realized variance just
by the constant coefficient ξ . Therefore, if one uses the CIR stochastic clock—same
what is used in the Heston model—the resulting expression for QN (s) will differ from
that for the Heston model by the same coefficient ξ . That is exactly what we obtained
above.

4.2.2 SSM model

According to Carr and Wu (2004) let us consider a class of models that are known to
be able to capture at least the average behavior of the realized volatilities of the stock
price across moneyness and maturity.

We use (0,Ft , Q) to denote a complete stochastic basis defined on a risk-neutral
probability measure Q under which the log return obeys a time-changed Lévy process

st ≡ log St/S0 = (r − q)t +
(

LR
T R

t
− ξ RTR

t

)
+

(
LL

T L
t

− ξ LTL
t

)
, (30)

3 The Second derivative of the drift term −i(r − q)u on u Vanishes.
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where r, q denote continuously-compounded interest rate and dividend yield, both of
which are assumed to be deterministic; LR and LL denote two Lévy processes that
exhibit right (positive) and left (negative) skewness respectively; T R

t and T L
t denote

two separate stochastic time changes applied to the Lévy components; ξ R and ξ L are
known functions of the parameters governing these Lévy processes, chosen so that the
exponentials of LR

T R
t

− ξ RTR
t and LL

T L
t

− ξ LTL
t are both Q martingales. Each Lévy

component can has a diffusion component, and both must have a jump component to
generate the required skewness.

Carr and Wu notice that in principle, this generic specification can capture all of
the documented features, for instance, of the currency options. First, by setting the
unconditional weight of the two Lévy components equal to each other, we can obtain
an unconditionally symmetric distribution with fat tails for the currency return under
the risk-neutral measure. This unconditional property captures the relative symmetric
feature of the sample averages of the implied volatility smile. Second, by applying
separate time changes to the two components, aggregate return volatility can vary over
time so that the model can generate stochastic volatility. Third, the relative weight of
the two Lévy components can also vary over time due to the separate time change.
When the weight of the right-skewed Lévy component is higher than the weight of the
left-skewed Lévy component, the model generates a right-skewed conditional return
distribution and hence positive risk reversals. When the opposite is the case, the model
generates left-skewed conditional return distribution and negative risk reversals. Thus,
we can generate variations and even sign changes on the risk reversals via the separate
time change. Finally, the model captures the instantaneous correlation between the
return and the risk reversal through the correlations between the Lévy components
and the time change.

For model design we make the following decomposition of the two Lévy compo-
nents in the Eq. 30

LR
t = J R

t + σ R W R
t , LL

t = J L
t + σ L W L

t , (31)

where (W R
t , W L

t ) denote two independent standard Brownian motions and (J R
t , J L

t )
denote two pure Lévy jump components with right and left skewness in distribution,
respectively.

We assume a differentiable and therefore continuous time change and let

νR
t ≡ ∂TR

t

∂t
, νL

t ≡ ∂TL
t

∂t
, (32)

denote the instantaneous activity rates of the two Lévy components. By definition
TR

t , TL
t have to be non-decreasing semi-martingales. We model the two activity rates

as a certain affine process. For instance, it could be a square-root processes of Heston
(1993)

dνR
t = κ R(θ R − νR

t )dt + ηR
√
νR

t d Z R
t ,

dνL
t = κL(θ L − νL

t )dt + ηL
√
νL

t d Z L
t , (33)
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where in contrast to Carr and Wu (2004) we don’t assume unconditional symmetry and
therefore use different mean-reversion κ , long-run mean θ and volatility of volatility
η parameters for left and right activity rates.

We allow the two Brownian motions (W R
t , W L

t ) in the return process and the two
Brownian motions (Z R

t , Z L
t ) in the activity rates to be correlated as follows,

ρRdt = EQ[dW R
t d Z R

t ], ρL dt = EQ[dW L
t d Z L

t ]. (34)

The four Brownian motions are assumed to be independent otherwise.
Note that the above definition is pretty wide in sense that it covers a lot of the exist-

ing models, including Merton jump-diffusion model, Kou double-exponential model,
NIG, VG, CGMY, Hyperbolic, LS and even pure continuous models.

Now assuming that the positive and negative jump components are driven by two
different CIR stochastic clocks as in the Eq. 33, it could be shown in exactly same
way as we did for the single time process, that the annualized fair strike QN (s, T ) is
now given by the expression

QN (s, T ) = ξ L

[

θ L + (νL
0 − θ L)

1 − e−κL T

κL T

]

+ ξ R

[

θ R + (νR
0 − θ R)

1 − e−κR T

κ RT

]

. (35)

So now we have two independent mean-reversion rates and two long-term run coef-
ficients that can be used to provide a better fit for the long-term volatility level and the
short-term volatility skew, similar to how this is done in the multifactor Heston (CIR)
model.

4.3 Volatility swaps

Similar to a contract on the quadratic variation, a volatility swap contract makes a bet
on the annualized realized volatility that is defined as follows

V ol(st ) ≡ 1
T

EQ

√√√√
N∑

i=1

[
ln

sti

sti−1

]2

≈ 1
T

EQ




√∫ T

0
νt dt

∣∣∣∣ ν0



 = 1
T

EQ[
√

V ],

(36)

where V stays for the total annualized realized variance.
Swishchuk (2004) uses the second order Taylor expansion for function

√
V obtained

in Brockhaus and Long (2000) to represent EQ[
√

V ] via EQ[V ] and V ar [V ] as

EQ[
√

V ] ≈
√

EQ[V ] − V ar V
8(EQ[V ])3/2 . (37)
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As we already showed in the Eq. 29 for the CIR time-change the quadratic variation
process V differs from that of the Heston model by the constant coefficient ξ . There-
fore, V ar [V ] in our case differs from that for the Heston model by the coefficient ξ2.
As Swishchuk and Brokchaus and Long showed for the Heston model

V ar [V ] = η2e−κT

2κ3T 2

[(
2e2κT − 4κT eκT − 2

)
(ν0 − θ)

+θ
(

2κT e2κT − 3e2κT + 4eκT − 1
)]

. (38)

Thus, for the Lévy models with the CIR time-change the fair value of the annualized
realized volatility is

V ol(st ) =
√
ξ V ol H (st ), (39)

where V ol H (st ) is this value for the Heston model obtained by using the Eqs. 27, 37,
and 38.

A more rigorous approach is given by Gatheral (2006). He uses the following exact
representation

EQ
[√

V
]

= 1
2
√
π

∫ ∞

0

1 − EQ
[
e−xV ]

x3/2 dx . (40)

Here

EQ
[
e−xV

]
= EQ

[
exp

{
−x

∫ T

0
vt dt

}]

is formally identical to the expression for the value of a bond in the CIR model (Eq. 19)
if one substitutes there β(τ,'x (u)) with −x .

4.4 Options on the quadratic variation

Having known the values of EQ[V ] and EQ[
√

V ] we can price vanilla European
options on the quadratic variation using a log-normal method of Gatheral and Friz
(2005). This method, however, first is an approximation, and second, for complicated
models like SSM, accurate computing of EQ[

√
V ] could be a problem. Also we found

after a careful consideration that another method proposed in Carr et al. (2005) results
just in a true identity, and thus cannot be used for obtaining the option value. There-
fore we intend to proceed in sense of Lee paper (Lee 2004) and make use of the FFT
method.

Let us denote

Q(T ) ≡ λ

∫ T

0
νt dt, λ ≡ ('x )

′′
u(0)

1
T

. (41)
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For the CIR process the characteristic function φ(u, T ) ≡ EQ[eiuQ(T )] is known

φ(u, T ) = AeB,

B = 2iuλv0

κ + δ coth(δT/2)
,

A = exp
[
κ2θT
η2

] [
cosh(δT/2) + κ

δ
sinh(δT/2)

]−
2κθ
η2

δ2 = κ2 − 2iuλη2. (42)

Therefore, according to Lee (2004) the call option value on the quadratic variation
is given by the following integral

C(K , T ) = e−α log(K )

π

∫ ∞

0
Re

[
e−iv log(K )ω(v)

]
dv, (43)

where

ω(v) = e−rTφ(v − iα, T )

(α + iu)2 (44)

The integral in the first equation can be computed using FFT, and as a result we
get call option prices for a variety of strikes. For complete details see Lee (2004) and
Carr and Madan (1999) original paper.

The put option values can be constructed from the Put/Call symmetry.
Parameter α in the Eq. 43 must be positive. Usually α = 0.75 works well for var-

ious models. It is important that the denominator in Eq. 44 has only imaginary roots
while integration in Eq. 43 is provided along real v. Thus, the integrand of Eq. 43 is
well-behaved.

Note that a similar approach was proposed in Sepp (2008).

5 Other affine activity rates models

Further we follow Carr and Wu (2004) to consider affine activity rate models with
more general jump specification. First they prove the following proposition.

Proposition 5.1 (Carr-Wu) If the instantaneous activity rate νt , the drift vector µ(Z),
the diffusion covariance matrix σ (Z)σ-(Z), and the arrival rate γ (Z) of the Markov
process are all affine in Z then the Laplace transform LTt (λ) is exponential-affine in z0.

The assumptions of this proposition mean that the following representation takes
place

ν(t) = b-
v Zt + cv, b ∈ Rk, cv ∈ R

µ(Zt ) = a − k Zt , k ∈ Rkxk, a ∈ Rk
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[
σ (Zt )σ (Zt )

-
]

i i
= αi + β-

i Zt , αi ∈ R,βi ∈ Rk

[
σ (Zt )σ (Zt )

-
]

i j
= 0, i .= j

γ (Zt ) = aγ + b-
γ Zt , αγ ∈ R,βγ ∈ Rk (45)

In a one factor setting Carr and Wu adopt a generalized version of the affine term
structure model proposed by Filipovic (2001), which allows a more flexible jump
specification. The activity rate process νt is a Feller process with generator

A f (x) = 1
2
σ 2x f ′′(x) + (a′ − kx) f ′(x)

+
∫

R+
0

[
f (x + y) − f (x) − f ′(x)(1 ∧ y)

]
(m(dy) + xµ(dy)), (46)

where a′ = a +
∫
R+

0
(1 ∧ y)m(dy) for some constant numbers σ, a ∈ R+, k ∈ R+

and nonnegative Borel measures m(dy) and µ(dy) satisfying the following condition:

∫

R+
0

(1 ∧ y)m(dy) +
∫

R+
0

(1 ∧ y2)µ(dy) < ∞. (47)

The first line in Eq. 46 is due to the continuous part of the process and is equivalent
to the Cox et al. (1985) or Heston (1993) specification. The second line is due to the
jump part of the process. All three components of the Lévy triplet depend linearly on
the state variable x . The condition in Eq. 47 says that the jump component dictated
by the measure m(dy) has to exhibit finite variation, while the jump component dic-
tated by the measure µ(dy) only needs to exhibit finite quadratic variation. Carr and
Wu provide various Lévy measure specifications that can be adopted with the only
slight modification: arrival rates of negative jumps need to be set to zero to have the
stochastic clock to be a Lévy subordinator.

Under such a specification, the Laplace transform of random time is exponential

Lu
Tt

('x (u)) = exp [−α(t,'x (u)) − β(t,'x (u))νt ] , (48)

with the coefficients α(t,'x (u)),β(t,'x (u)) given by the following ordinary differ-
ential equations:

β′t (t,'x (u)) = 'x (u) − kβ(t,'x (u)) − 1
2
σ 2β2(t,'x (u))

+
∫

R+
0

[
1 − e−yβ(t,'x (u)) − β(t,'x (u))(1 ∧ y)

]
µ(dy),

α′t (t,'x (u)) = aβ(t,'x (u)) +
∫

R+
0

[
1 − e−yβ(t,'x (u))

]
m(dy), (49)
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with boundary conditions β(0) = α(0) = 0.
Now we are ready to formulate a more general result for the quadratic variation of

such Lévy processes.

Theorem 1 Given the above conditions the annualized quadratic variation of the
Lévy process under stochastic time determined by a pure diffusion process is

QN (s) = 1
T
ξEQ[V ],

ξ ≡ ('x )
′′
u(0)

∂2β(t,'x (u))

∂t∂u

∣∣∣
t,u=0

+ ('x )
′2
u (0)

∂3β(t,'x (u))

∂t∂2u

∣∣∣
t,u=0

. (50)

Proof We prove it based on the idea considered in the previous sections. Namely, we
again express QN (s) as in the Eq. 7 via the forward characteristic function φti−1,ti (u),
which is (the drift term already appears as k in the Eq. 49)

φti−1,ti (u) = EQ
[
Lu

Tτ
('x (u))

∣∣∣ ν0

]

= EQ
[
exp [−α(τ,'x (u)) − β(τ,'x (u))νt ]

∣∣∣ ν0

]
. (51)

Let us remind the reader that κτ + 1 is a small parameter as well as (r −q)τ + 1.
Therefore we expand the above expression in series on τ up to the linear terms to
obtain

φti−1,ti (u) = EQ {exp [−α(0,'x (u)) − β(0,'x (u))νt ] ·
[

1 −
(
∂α(τ,'x (u))

∂τ

∣∣∣
τ=0

+ ∂β(τ,'x (u))

∂τ

∣∣∣
τ=0

νt

)
τ

]
+ O(τ 2).

}

(52)

Note, that according to the boundary conditions α(0,'x (u)) = β(0,'x (u)) = 0.
Therefore, differentiating the above formula twice on u gives

∂2φti−1,ti (u)

∂u2

∣∣∣
u=0

= −τ

{
' ′′

x (0)

[
∂2α(t,'x (u))

∂t∂u

∣∣∣
t,u=0

+ νt
∂2β(t,'x (u))

∂t∂u

∣∣∣
t,u=0

]

+ (' ′
x (0))2

[
∂3α(t,'x (u))

∂t∂2u

∣∣∣
t,u=0

+ νt
∂3β(t,'x (u))

∂t∂2u

∣∣∣
t,u=0

]}

(53)

Further it could be easily checked from the Eq. 49 and the boundary conditions
that β ′

t (0,'x (0)) = 0, α′
t (0,'x (0)) = 0. Differentiating the second equation in the
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Eq. 49 we obtain that

∂2α(t,'x (u))

∂t∂u

∣∣∣
t,u=0

= ∂α

∂u
(0,'x (0))β(0,'x (0)) + ∂β

∂u
(0,'x (0))α(0,'x (0))

+
∫

R+
0

y
∂β

∂u
(0,'x (0))e−yβ(0,'x (0))m(dy)

= ∂β

∂u
(0,'x (0))

∫

R+
0

y m(dy)

∂3α(t,'x (u))

∂t∂2u

∣∣∣
t,u=0

= ∂2α

∂u2 (0,'x (0))β(0,'x (0)) + ∂2β

∂u2 (0,'x (0))α(0,'x (0))

+2
∂α

∂u
(0,'x (0))

∂β

∂u
(0,'x (0))

+
∫

R+
0

m(dy)e−yβ(0,'x (0))

[
y
∂2β

∂u2 (0,'x (0))

−y2
(
∂β

∂u
(0,'x (0))

)2
]

= ∂2β

∂u2 (0,'x (0))

∫

R+
0

y m(dy)

−
(
∂β

∂u
(0,'x (0))

)2 ∫

R+
0

y2 m(dy) (54)

Therefore, if the activity rate is a pure diffusion process these two derivatives of
α(t,'x (u)) vanish. Thus, we finally found that

∂2φti−1,ti (u)

∂u2

∣∣∣
u=0

= −EQ[ξτνt ]. (55)

Using this formula together with the Eq. 7 we obtain the result of the Theorem.

QN (s) = − 1
T

N∑

i=1

∂2φti−1,ti (u)

∂u2

∣∣∣
u=0

≈ 1
T
ξEQ

[∫ T

0
νt dt

∣∣∣ ν0

]
= 1

T
ξEQ[V ]. (56)

01

Theorem 2 Given the above conditions the annualized quadratic variation of the
Lévy process under stochastic time determined by a jump diffusion process is

QN (s) = 1
T
ξEQ[V ] + η,

η ≡ ('x )
′′
u(0)

∂2α(t,'x (u))

∂t∂u

∣∣∣
t,u=0

+ ('x )
′2
u (0)

∂3α(t,'x (u))

∂t∂2u

∣∣∣
t,u=0
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= ('x )
′′
u(0)

∂β

∂u
(0,'x (0))I1

+('x )
′2
u (0)

[
∂2β

∂u2 (0,'x (0))I1 −
(
∂β

∂u
(0,'x (0))

)2

I2

]

,

In ≡
∫

R+
0

yn m(dy). (57)

Proof The proof directly follows from the previous Theorem.

Thus, in the case of jumps in the activity rate even the exponential affinity of the
Laplace transform of the random time is not sufficient to provide the same result, i.e.
the quadratic variation differs not just by a constant multiplier ξ from the total realized
variance of the process but also by some constant η.

Now let us consider the case when discrete observations of the underlying spot
price occur over a bigger time interval, such that κτ might not be a small parameter.

Theorem 3 Given the above conditions the annualized quadratic variation of the
Lévy process under stochastic time determined by a pure diffusion process is

QN (s) = 1
τ

{
p0(τ ) + p1(τ )

T
EQ[V ] + p2(τ )

T
EQ[V 2]

}
(58)

Proof We start with the Eq. 51 and differentiating it twice on u obtain

φti−1,ti (u)
∣∣∣
u=0

= EQ {exp [−α(τ,'x (0)) − β(τ,'x (0))νt ] ·
[
−∂2α(τ,'x (u))

∂u2

∣∣∣
u=0

− ∂2β(τ,'x (u))

∂u2

∣∣∣
u=0

νt

+
(
∂α(τ,'x (u))

∂u

∣∣∣
u=0

+ ∂β(τ,'x (u))

∂u

∣∣∣
u=0

νt

)2
]}

(59)

Show that α(τ,'x (0)) = β(τ,'x (0)) = 0. Expanding α(τ,'x (0)) and β(τ,

'x (0)) in series on τ and noticing that 'x (0) = 0 we have

α(τ,'x (0)) = α(0, 0) + τ ∂α(τ,0)
∂τ + 1

2
τ 2 ∂2α(τ,0)

∂τ 2 + · · ·

β(τ,'x (0)) = β(0, 0) + τ ∂α(τ,0)
∂τ + 1

2
τ 2 ∂2β(τ,0)

∂τ 2 + · · · (60)

Now

1. α(0, 0) = β(0, 0) = 0 according to the boundary conditions to the Eq. 49.
2. From the second equation of Eq. 49 it follows that in case of no jumps α′

τ (τ, 0) =
aβ(τ, 0) = 0. In turn from the first equation β ′

τ (τ, 0) = 0.
3. Differentiating the Eq. 49 in time and using a chain rule we arrive at the conclusion

that all higher derivatives of α(τ, 0) and β(τ, 0) in time vanish as well.
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Thus the Eq. 59 could be rewritten as

− φti−1,ti (u)
∣∣∣
u=0

= EQ
[

p0 + p1νt + p2ν
2
t

]
,

p0(τ ) = ∂2α(τ,'x (u))

∂u2

∣∣∣
u=0

−
[
∂α(τ,'x (u))

∂u

∣∣∣
u=0

]2

p1(τ ) = ∂2β(τ,'x (u))

∂u2

∣∣∣
u=0

− 2
∂α(τ,'x (u))

∂u

∣∣∣
u=0

∂β(τ,'x (u))

∂u

∣∣∣
u=0

p2(τ ) = −
[
∂β(τ,'x (u))

∂u

∣∣∣
u=0

]2

(61)

And therefore

QN (s) = 1
T

N∑

i=1

{
p0(τ ) + p1(τ )EQ[νti ] + p2(τ )EQ[ν2

ti ]
}

≈ 1
T

{
N p0(τ ) + p1(τ )

τ
EQ[V ] + p2(τ )

τ
EQ[V 2]

}

= 1
τ

{
p0(τ ) + p1(τ )

T
EQ[V ] + p2(τ )

T
EQ[V 2]

}
(62)

01

Thus if the time distance between market observations is not small the formula for
the price of quadratic variation swap acquires two extra terms. The first one p0(τ ) is
a function of time between observations τ and is determined by a particular model of
the underlying Lévy process. The last term p2(τ )EQ[V 2] is proportional to the square
of variance and is kind of convexity adjustment.

Based on this representation we could reconsider our results obtained in the pre-
vious sections, for instance for the CIR time change model. Expanding coefficients
p0(τ ), p1(τ ), p2(τ ) into series on τ and keeping the first two terms gives

p0(τ ) ≈ −1
2
κθ

∂2'x (u)

∂u2

∣∣∣
u=0

τ 2 + O(τ 3)

p1(τ ) ≈ ∂2'x (u)

∂u2

∣∣∣
u=0

τ +
[

1
2
κ
∂2'x (u)

∂u2

∣∣∣
u=0

+ 2η2

κ

(
∂'x (u)

∂u

∣∣∣
u=0

)2
]

τ 2

+O(τ 3)

p2(τ ) ≈ −
(
∂'x (u)

∂u

∣∣∣
u=0

)2

τ 2 + O(τ 3) (63)

This means that in the first approximation on κτ coefficients p0(τ ) and p2(τ ) van-
ish. That is why the price of the quadratic variation swap is proportional to EQ[V ],
i.e. the standard log contract. However, p0(τ ) and p2(τ ) appear in the second order
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approximation of the price in κτ . For instance, for the Heston model (a pure diffusion
underlying process) these coefficients read

p0(τ ) = −1
2
κθτ 2 + O(τ 3), p1(τ ) = τ + 1

2
κτ 2 + O(τ 3) p2(τ ) = O(τ 3).

(64)

In general it can be shown that for the CIR time change model and a pure diffusion
underlying process the coefficient p2(τ ) = 0.

6 3/2 power clock change

In this section we consider one more class of the stochastic clock change. Despite it
is not affine, it still allows variance swaps to be priced in a closed form.

Originally this model has been proposed in a simple form (long term run coefficient
is constant) by Heston (1999) and Lewis (2000) to investigate stochastic volatility. Here
we consider a more general case when the long-term run could be either a deterministic
function of time, or even a stochastic process.

Let the futures price F of the underlying asset be a positive continuous process. By
the martingale representation theorem, there exists a process v such that:

d Ft

Ft
= √

vt d Z̃t , t ∈ [0, T ], (65)

where Z̃ is a Q standard Brownian motion. In particular, let us assume the risk-neutral
process for instantaneous variance to be:

dvt = κvt (θt − vt )dt + εv
3/2
t dW̃t , t ∈ [0, T ], (66)

where W̃ is a Q standard Brownian motion, whose increments have known constant
correlation ρ ∈ [−1, 1] with increments in the Q standard Brownian motion Z̃t , i.e.:

d Z̃t dW̃t = ρdt, t ∈ [0, T ]. (67)

The risk-neutral process Eq. 66 for v has its volatility governed by the known
positive constant ε. The 3/2 power specification for the volatility of v is empirically
supported. The v process is mean-reverting with speed of mean reversion κvt , where
κ is known. The reason that the speed of mean-reversion is proportional rather than
constant is primarily for tractability. In fact, when θt is a deterministic function of time
(let us remind that Heston and Lewis explored just the case θ = const), the process
Eq. 66 is more tractable than the usual Heston dynamics, since we will show that there
exists a closed form solution for the characteristic function of the log price. In contrast,
for the Heston model where the long run mean θt is a deterministic function of time,
there is no closed form formula for the characteristic function of the log price. As a
bonus, when v0 > 0 and the process θ is positive, then the process Eq. 66 neither
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explodes nor hits zero. In contrast, the Heston process can hit zero for some parameter
values, which is unrealistic. Although our primary motivation for proportional speed
of mean-reversion is tractability, nonlinear drift in the v process is also empirically
supported.

In Eq. 66, the level towards which v reverts is assumed to be an unknown stochastic
process θ . We do assume however that θ is conditionally independent of the two Q
standard Brownian motions Z̃ and W̃ , i.e.:

dθt d Z̃t = 0 = dθt dW̃t , t ∈ [0, T ]. (68)

We also assume that the evolution coefficients of θ are independent of F and v and of
the Brownian motions Z̃t and W̃t driving them. We may summarize these two assump-
tions by saying that θ evolves independently of F and v. Other than this independence
assumption, we assume nothing about the dynamics of θ , not even its initial level.
So long as consistency with independence is maintained, the process θ can jump, be
arbitrarily path dependent, and can depend on other processes.

As a result, we call our pricing theory robust since the risk-neutral dynamics of θ are
not fully specified. In the Black Scholes model, both θ and v are constant and equal
to each other. The usual approach for introducing stochastic volatility is to specify
a particular stochastic process for v and keep θ constant. Indeed, assuming that the
risk-neutral process for instantaneous variance is:

dvt = κvt (θ − vt )dt + εv
3/2
t dW̃t , t ∈ [0, T ], (69)

with θ a known constant, Heston (1999) and Lewis (2000) solve for the characteristic
function of XT in closed form. Once the characteristic function of XT is known in
closed form, it is straightforward to numerically determine option prices.

In our model, one can interpret θ as the process that the instantaneous variance
would follow if the speed of mean reversion were infinite. When κ is finite, the pro-
cess θ is instead a state variable that governs the level of v. Without formally realizing
it, Carr and Lee (2003) consider the case where κ is infinite. When κ = ∞, the 3/2
specification for the volatility of variance and the correlationρ between the two Brown-
ian motions becomes irrelevant. Assuming an independent but otherwise unspecified
stochastic process for v, Carr and Lee show how to replicate the payoff to volatility
derivatives by dynamic trading in standard European options and their underlying
futures. An unfortunate implication of their independence assumption is that implied
volatility is always a symmetric function of the difference between log strike and log
forward. In other words, their analysis is consistent with the existence of an implied
volatility smile, but not an implied volatility skew. Since implied volatility tends to
display both smile and skew in most markets, they add independent jumps of known
size in order to generate a skew.

To be consistent with both smile and skew without introducing jumps, we employ
a finite κ and perimetrically specify how v tends towards the unspecified process θ .
As in Carr and Lee, our pricing of volatility derivatives maturing at T will be perfectly
consistent with the implied volatility smile of maturity T . In contrast to Carr and Lee,
our analysis requires that the parameters κ, ε, and ρ be known constants. Our analysis
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also requires the state variable v0 be known in order to initially price volatility deriva-
tives. For now, we just naively assume that κ, ε, ρ, and v0 are somehow known. Future
research will focus on the roles of κ, ε, ρ, and v0 in calibrating across maturities or
determining appropriate hedge ratios. It will also explore how the parameters might
be learned from the time series or how these required inputs might be learned from
knowledge of prices of related instruments such as variance swaps or barrier options.

6.1 General analysis

Before we discuss how to apply the above formalism of the forward characteristic
function to pricing variance swaps under the described “3/2-power” clock change, let
us first consider another possible approach. Let us assume that the Eq. 65 is valid, and
let st ≡ ln

(
Ft
F0

)
be the log price relative. Let:

φ(u) ≡ EQ[eiusT |FT ], u ∈ R, (70)

be the characteristic function of the log price relative. Using the law of iterated expec-
tations, we have:

φ(u) = EQ
{

EQ[eiusT |Fθ
T ]|FT

}
, (71)

where Fθ
T indicates conditioning on the θ path over [0, T ]. As it is shown in Carr

and Sun (2007) the conditional characteristic function EQ[eiusT |Fθ
T ] depends on the

particular θ path only through the sufficient statistic:

I0 ≡
∫ T

0
eκ

∫ t ′
0 θ(u)dudt ′. (72)

In other words, if two θ paths {θ1(u), u ∈ [0, T ]} and {θ2(u), u ∈ [0, T ]} lead to the
same value of I0, then the value of the conditional characteristic function is the same.
As a result, (71) implies that the unconditional characteristic function has the form:

φ(u) =
∫ ∞

0
ψ(u, I0)q(I0)d I0, (73)

for all u ∈ R, where ψ(u, I0) is the conditional characteristic function and q(I0) is
the unknown risk-neutral density of I0. From Carr and Sun (2007) the conditional
characteristic function is given by:

ψ(u, I0) = eiux 6(γ̃ − α̃)

6(γ̃ )

(
2

ε2 Itv

)α̃

M
(
α̃; γ̃ ; −2

ε2 Itv

)
. (74)
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where M(α̃; γ̃ ; z) denotes the confluent hypergeometric function of the first kind, and:

α̃ ≡ −
(

1
2

+ κ̃

ε2

)
+

√(
1
2

+ κ̃

ε2

)2

+ u(u + i)
ε2 ,

γ̃ ≡ 2
[
α̃ + 1 + κ̃

ε2

]
,

and where:

κ̃ ≡ κ − ρεiu.

In (73), we treat the LHS as a known function of u obtained from the market prices
of European options of all strikes maturing at T . We think of the RHS as an inte-
gral transform of the unknown risk-neutral density q(I0). Since the kernel ψ(u, I0) is
known for all u ∈ R and all I0 > 0, one can theoretically invert for q(I0).

Now consider the problem of determining the Laplace transform of the risk-neutral
density of the realized quadratic variation:

L(λ) ≡ EQ[e−λ
∫ T

0 vt dt |FT ], λ > 0. (75)

Again, using the law of iterated expectations, we have:

L(λ) = EQ
{

EQ[e−λ
∫ T

0 vt dt |Fθ
T ]|FT

}
, (76)

where Fθ
T again indicates conditioning on the θ path over [0, T ]. As shown in Carr

and Sun (2007) the conditional Laplace Transform EQ[e−λ
∫ T

0 vt dt |Fθ
T ] depends on

the particular θ path only through the sufficient statistic I0 defined in (72). As a result,
(76) implies that the unconditional Laplace transform has the form:

L(λ) =
∫ ∞

0
C L(λ, I0)q(I0)d I0, (77)

for all λ > 0, where C L(λ, I0) is the conditional Laplace transform of the risk-neutral
PDF of the realized variance and where q(I0) is the now known risk-neutral density
of I0. The conditional Laplace transform of the risk-neutral density of the realized
quadratic variation reads (Carr and Sun 2007)

C L(λ, It ) ≡ L(t, v) = 6(γ − α)

6(γ )

(
2

ε2 Itv

)α

M
(
α; γ ; −2

ε2 Itv

)
, (78)

where α and γ are defined after the Eq. 74, and recall that

It ≡
∫ T

t
eκ

∫ t ′
t θ(u)dudt ′. (79)
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Hence, by real inversion of this Laplace transform, the risk-neutral density of the
realized quadratic variation can be obtained and hence realized volatility derivatives
can be priced.

6.2 Closed-form solution for the variance swap

In this section we follow our algorithm that has been described earlier as applied
to the affine clock change in order to derive a closed-form solution for the variance
swap price under the stochastic “3/2-power” clock change. Let us consider Eq. 69,
where now θ = θ(t) is a known deterministic function of time. Again we consider
the forward characteristic function of an arbitrary Lévy process with the characteristic
exponent 'x (u) under the stochastic clock change determined by the “3/2-power”
law. Similarly to Eq. 51

φti−1,ti (u) = eiu(r−q)τEQ
[
Lu

Tτ
('x (u))

∣∣∣ ν0

]

= eiu(r−q)τEQ
[
C L (

'x (u), Iti
) ∣∣∣ ν0

]
, (80)

where

C L(λ, Iti ) = 6(γ − α)

6(γ )

(
2

ε2 Iti v

)α

M
(
α; γ ; −2

ε2 Iti v

)
,

α = −
(

1
2

+ κ

ε2

)
+

√(
1
2

+ κ

ε2

)2

+ 2
'x (u)

ε2 ,

γ ≡ 2
[
α + 1 + κ

ε2

]
,

Iti ≡
∫ ti

ti−1

e
κ

∫ t ′
ti−1

θ(u)du
dt ′ (81)

Now we make an assumption that κθ(t)τ + 1 is a small parameter. This is a gen-
eralization of the assumption κτ + 1, that we made for the CIR clock change, for the
case of the “3/2- power” model. Therefore, we expand the above expression in series
on κθ(t)τ up to the linear terms.

First of all, expansion of Iti−1 reads

Iti = τ + κθ(τ )τ 2 + O(τ 2), (82)

and therefore

z = 2
ε2 Iti−1vt

≈ 2
ε2τvt

(83)
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As per Abramowitz and Stegun (1964) (13.5.1) an asymptotic expansion series for
M(α; γ ; z) at large |z| reads

M (α; γ ; z) = eiπα6(b)

6(b − a)
z−α

[
R−1∑

n=0

(α)n(1 + α − γ )n

n! (−z)−n + O
(
|z|−R

)]

+ez6(b)

6(a)
zα−γ

[
S−1∑

n=0

(γ − α)n(1 − α)n

n! (−z)−n + O
(
|z|−S

)]

,

−3
2
π < argz <

3
2
π. (84)

We keep the first two terms in these series with n = 0, 1. Further, omitting a tedious
algebra and remembering that 6(0) = ∞ we find that

− ∂2φti−1,ti (u)

∂u2

∣∣∣
u=0

= ('x )
′′
u(0)EQ[τvti ]. (85)

Using this formula together with the Eq. 7 we obtain exactly the same result as for
the CIR process (29), i.e.

QN (s) = ('x )
′′
u(0)

1
T

N∑

i=1

EQ
[
τνi−1 |ν0

]
≈ ('x )

′′
u(0)EQ

[
1
T

∫ T

0
νt dt

∣∣∣ ν0

]

≡ ('x )
′′
u(0)EQ[V ]. (86)

The only difference is that now EQ[V ] is computed using the “3/2-power” law,
rather than the CIR process. This can be done by using a representation of the Laplace
transform obtained in Carr and Sun (2007). Indeed, we have

L(t, v) ≡ EQ
[
e−λ

∫ T
t vudu

∣∣∣vt = v
]
, v ≥ 0, t ∈ [0, T ]

and thus

EQ[V ] ≡ EQ

[∫ T

t
vudu

∣∣∣ vt = v0

]
= −∂L(t, v)

∂λ

∣∣∣
λ=0

=
[
− log

(
2

ε2 IT v0

)
+ 6′(2ν)

6(2ν)
− 2M (0,1,0)

(
0; 2ν;− 2

ε2 IT v0

)

−M (1,0,0)

(
0; 2ν;− 2

ε2 IT v0

)]
∂α

∂λ

∣∣∣
λ=0

=
[
− log

(
2

ε2 IT v0

)
+ 6′(2ν)

6(2ν)
− M (1,0,0)

(
0; 2ν;− 2

ε2 IT v0

)]
2

2κ + ε2 ,

(87)
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where

ν = 1 + κ

ε2 , IT ≡
∫ T

0
eκ

∫ t ′
0 θ(u)dudt ′,

M (1,0,0)(α, γ , ζ ) is the derivative of M(α, γ , ζ ) on α, M (0,1,0)(α, γ , ζ ) is the deriva-
tive of M(α, γ , ζ ) on γ ,6′(2ν) ≡ d6(x)/dx |x=2ν , and as follows from Abramowitz
and Stegun (1964) (13.1.2) M (0,1,0)(0, γ , ζ ) = 0.

As it can be easily validated, at short maturities when T → 0 the integral IT → 0
as well, and from Eq. 84

M (1,0,0)(0, b,−∞) → log
(

2
ε2 IT v0

)
− 6′(2ν)

6(2ν)

Therefore, EQ[V ] → 0 as expected, i.e. in this limit the Eq. 87 is consistent.
From a practitioner point of view computing the derivative of the confluent hyper-

geometric function on the first parameter could be kind of tricky. One possible way
to eliminate this is to make use of the definition of the Kummer function given in
Abramowitz and Stegun (1964). By comparing the series expansion it could be veri-
fied that

M (1,0,0) (0; γ ;−z) =
∞∑

i=1

zi

i(γ )i
= −

(
z
γ

)
2 F2[(1, 1); (2, 1 + γ );−z], (88)

where 2 F2(a1, . . . , ap, b1, . . . , bq , z) is the generalized hypergeometric function (Hy-
pergeometricPFQ in Mathematica notation, or hypergeom in Matlab).

Another approach could be as follows. Let us consider the hypergeometric equation
(see, for instance, Carr and Sun 2007, Eq. 225)

zh′′(z) + (γ − z)h′(z) − αh(z) = 0. (89)

According to Carr and Sun (2007) it has the solution

h(z) = 6(γ − α)

6(γ )(−1)α
M(α; γ ; z) (90)

Let us differentiate the Eq. 89 on the parameter α, and then put α = 0 to obtain

zw′′(z) + (γ − z)w′(z) = 1, (91)

where w(z) = ∂h(z)/∂α, and we took into account that h(z)|α=0 = 1. This equation
has the following solution

w(z) = C1 + C2I1(z) − I2(z),

I1(z) =
∫ z

1

et

tγ
dt, I2(z) =

∫ z

1

et

tγ
6(γ , t)dt (92)
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where 6(x, y) is the incomplete gamma function. Differentiating now Eq. 90 on α

and comparing with the Eq. 92 gives

C1 = −6′(γ )

6(γ )
+ M ′

α(0; γ ; 1), C2 = I2(0) − M ′
α(0; γ ; 1)

I1(0)
(93)

Now from the Eq. 87 we obtain

EQ[V ] = 2
2κ + ε2

{
− log(z) + 6′(2ν)

6(2ν)

+
(

1
2ν

)
2 F2[(1, 1); (2, 1 + γ ); 1])

[
I1(z)
I1(0)

− 1
]

+ I2(z) − I2(0)
I1(z)
I1(0)

}
,

z ≡ 2
ε2 IT v0

(94)

As in the Eq. 87 the long-term run coefficient θ(t) is an arbitrary function of time,
it gives one a very nice opportunity to better calibrate this model to the real market
data.

Another important observation is that, for instance, the CIR model for the stochastic
time change is linear in drift. In other words, the SDE which governs the stochastic
variance vt has a drift term linear in vt . Therefore, let us assume that the instantaneous
variance Vt is mean reverting in general, i. e.

dVt = k(θ − Vt )dt + dMt (95)

where dMt is the increment at t of a martingale, e.g. dMt = w(Vt , t)dWt . Then for
any choice of M, it is easy to give a closed form expression for the fair strike of the
variance swap. Just note that

EQ[dVt ] = dEQ[Vt ] = k(θ − EQ[Vt ])dt (96)

Hence if µ(t) = EQ[Vt ], then (96) implies the first order linear ODE µ′(t) =
k(θ − µ(t)). Solving this subject to µ(0) = V0 and integrating over t from 0 to T
gives fair strike of the variance swap. Note that the answer is independent of how the
volatility of Vt is specified.

In contrast, when the drift of Vt is nonlinear, e.g. quadratic then the answer depends
on how the volatility of Vt is specified. Our “3/2-power” process gives one way to pro-
ceed.

7 Numerical experiments

As an numerical example first we determine a fair strike of the quadratic variation for
three models.
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7.1 Heston model

Considering the Heston model as a pure diffusion process (GBM with drift µ and
volatility 1) under the CIR time change, the expression for the characteristic exponent
of this process reads

'x (u) = −iµu + 1
2
σ 2u2, (97)

therefore ' ′′
x (u)|u=0 = σ 2.

The Heston model has 5 free parameters κ, θ, η, ρ, v0 that can be obtained by cal-
ibrating the model to European option prices. In doing so one can use an FFT method
as in Carr and Madan (1999).

7.2 SSM

The second model is the stochastic skew model of Carr and Wu that has been briefly
described in Sect. 4. To complete the description of the model we specify two jump
components J L

t and J R
t using the following specification for the Lévy density Carr

and Wu (2004)

µR(x) =
{
λRe−|x |/νR

j |x |−α−1, x > 0,

0, x < 0.

µL(x) =
{

0, x > 0,

λLe−|x |/νL
j |x |−α−1, x < 0.

(98)

so that the right-skewed jump component only allows up jumps and the left-skewed
jump component only allows down jumps. In contrast to Carr and Wu (2004) for both
type of jumps, we use different parameters λ, ν j ∈ R+. This specification has its
origin in the CGMY model of Carr, Geman, Madan, and Yor Carr et al. (2005). The
Lévy density of the CGMY specification follows an exponentially dampened power
law. Depending on the magnitude of the power coefficient α the sample paths of the
jump process can exhibit finite activity (α < 0), infinite activity with finite variation
(0 < α < 1), or infinite variation (1 < α < 2). Therefore, this parsimonious spec-
ification can capture a wide range of jump behaviors. Further we put α = −1, so
the jump specification becomes a finite-activity compound Poisson process with an
exponential jump size distribution as in Kou (1999).

For such Lévy density the characteristic exponent has the following form

'R
x (u) = −iuλR

[
1

1 − iuνR
j

−
νR

j

1 − νR
j

]

+ 'R
d (u)
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'L
x (u) = iuλL

[
1

1 + iuνL
j

−
νL

j

1 + νL
j

]

+ 'L
d (u)

'k
d (u) = 1

2
(σ k)2(iu + u2), k = L , R, (99)

where 'k
d (u) is the characteristic exponent for the concavity adjusted diffusion com-

ponent σWt − 1
2σ

2t .
Thus, form Eq. 99 we find that ('k

x )′′(0) ≡ (σ k)2 + 2λknk
j , k = L , R.

Overall, the SSM model has 16 free parameters κk , θk, ηk, ρk, vk
0, σ k, λk, νk

j , k =
L , R that can be obtained by calibrating the model to European option prices, again
using the FFT method.

7.3 NIG-CIR

The normal inverse Gaussian distribution is a mixture of normal and inverse Gauss-
ian distributions. The density of a random variable that follows a NIG distribution
X ≈ N I G(α,β, µ, δ) is given by (see Barndorff-Nielsen 1998)

fN I G(x;α,β, µ, δ) = δαeδγ+β(x−µ)

π
√

d2 + (x − µ)2
K1

(
α
√
δ2 + (x − µ)2

)
, (100)

where K1(w) is the modified Bessel function of the third kind.
As a member of the family of generalized hyperbolic distribution, the NIG distribu-

tion is infinitely divisible and thus generates a Lévy process (Lt )t>0. For an increment
of length s, the NIG Lévy process satisfies

Lt+s − Lt ≈ NIG(α,β, µs, δs) (101)

Combined with the CIR clock change it produces a NIG-CIR model. The possible
values of the parameters are α > 0, δ > 0,β < |α|, while µ can be any real number.

Below for convenience we use transformed variables, namely:

8 ≡ β/δ, ν ≡ δ

√
α2 − β2

The characteristic exponent of the NIG model reads

'x (u) = iuµ + δ

[√
α2 − β2 −

√
α2 − (β + iu)2

]
(102)

7.4 Calibration

For all the tests given below we first retrieved the vanilla option price data from http://
finance.yahoo.com/. If the option was American, we computed its implied volatility
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and used this value to find a corresponding European vanilla option price. We used
just the OTM puts and calls. Then to calibrate the model we minimized a nonlinear
least-square functional

min
p1...pN

L∑

i=1

wi (Vi,market − Vi,model)
2, (103)

where p1 . . . pN are the best fit parameters of the model to be found, Vi,market , i = 1, L
is the set of market data, Vi,model , i = 1, L are the corresponding theoretical values,
and wi , i = 1, L are the weights. If the characteristic function of the model is known
in the closed form we used the Carr-Madan procedure to find the option price via FFT.
The weights were defined as by wi = 1/(N S)q , where N S is the normalized strike,
N S = log(K/F)/(σAT M

√
T ), K is the option strike, F is the forward price, σAT M

is the option ATM volatility, q is some constant, that in the below tests was chosen
q = 2. Therefore, the option prices closer to the ATM acquired a bigger weight. The
interest rates were averaged through the time period used in the calibration routine.

The Eq. 103 was solved using differential evolution - a global optimization method
which belongs to the class of genetic algorithms. The set of parameters to be calibrated
was chosen appropriately. For instance, as it is known, for the Heston model only 4 of
the 5 parameters could be independently obtained by calibration.

7.5 Results

We use these three models to compute the fair value of the quadratic variation con-
tract on SMP500 and Google on August 14, 2006. Parameters of the models were
obtained by calibrating them to the 480 available European option prices. We found
the following values of the calibrated parameters (see Tables 1, 2 and 3).

It is interesting to see whether the term structure of the variance swap prices com-
puted using these models and the values of the parameters obtained by calibration

Table 1 Calibrated parameters of the Heston model

κ θ η v0 ρ

1.572 0.038 0.504 0.019 −0.699

Table 2 Calibrated parameters of the SSM model

κL θL ηL v0L ρL σL λL νL

1.2916 0.6515 2.1152 0.3366 −0.9998 0.2077 0.02396 1.8455

κR θR ηR v0R ρR σR λR νR

6.7486 1.999 0.0004 0.0002 0.4049 0.0734 0.0029 0.5864

123



172 A. Itkin, P. Carr

Table 3 Calibrated parameters of the NIGCIR model

κ θ η v0 ρ δ ν 8 µ

2.855 0.093 0.787 0.057 −0.987 0.897 7.533 −1.285 0.482

Fig. 1 Fair strike of SPX in Heston, NIGCIR and SSM models. Comparison with a log contract (as per
Bloomberg)

is able to replicate the market data. To remind, all the model’s parameter do not
depend on time. Therefore, we compared the fair swap price obtained in such a
way with that given by the log contract for SPX (Fig. 1) and Google (Fig. 2). The
log contract data were obtained from Bloomberg. As it could be seen usage of the
SSM model slightly improves an agreement with the log contract as compared with
the Heston model. But, nevertheless, the difference is substantial, especially at large
maturities.

8 Conclusion

In this paper we investigated variance and volatility swaps and options on these instru-
ments under discrete observations. We proposed a new asymptotic method which aims
to obtain a closed-form expression for the fair price of these instruments, if the under-
lying process is modeled by a Lévy process with stochastic time change. This is done
in two cases.

The first one is when the stochastic time change process belongs to the class of
affine processes. We began with the case when the annualized time between the obser-
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Fig. 2 Same for Google

vations is relatively small and considered the activity rate models with a rather general
jump specification proposed by Carr and Wu (2004). Using our method we proved
that under this specification the annualized quadratic variation of the Lévy process
with stochastic time determined by a pure diffusion process is given by the annualized
realized variance times a constant coefficient ξ . This coefficient is determined via
derivatives of the characteristic function of the underlying Lévy process. The exam-
ples given in the paper consider the CIR clock change for the Black-Scholes model
(which is actually the Heston model), NIG model and SSM model. We also proved
the Theorem that the annualized quadratic variation of the Lévy process under sto-
chastic time determined by a jump-diffusion process is also given by a product of
the annualized realized variance and a constant coefficient ξ plus some constant η
which is determined via derivatives of the characteristic function of the underlying
Lévy process and jump integrals of the time change process. We further managed to
extend our results by investigating a more general case when discrete observations of
the underlying spot price occur over a bigger time interval. We showed in the The-
orem 3 that in this case the formulae for the price of the quadratic variation swap
acquire two extra terms. The first one p0(τ ) is a function of time between observa-
tions τ and is determined by a particular model of the underlying Lévy process. The
last term p2(τ )EQ[V 2] is proportional to the square of variance and is some kind of
convexity adjustment. These two extra terms appears only in the second order approx-
imation on the time interval between the observations τ . Therefore, in the case of rare
discrete observations the standard log-contract price (which is, in fact, an expecta-
tion of the realized variance) is no longer valid. For the particular case of the CIR
time change the second term p2 vanishes even in the second order of approximation
in τ .
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The second case considered in the paper is when the stochastic time change follows
the so-called “3/2 power” process which is not affine. For this model the closed-form
expression for the fair price of the variance and volatility swaps was also obtained in
the closed-form.

The above results could be helpful because they allow fast pricing of the above
instruments under rather complicated models, which in turn proved to be able to catch
many characteristics of the underlying process. However, given numerical examples
and comparison with the market data indicate that even these complicated models
(at least, these particular three models used in our tests) are not able to capture the
term-structure of the variance swaps. One possible way of achieving that is a known
approach of considering the long term coefficient of the mean-reverting part of the
variance process to be stochastic as well. So for the future it would be interesting to
try applying our approach to this kind of models.

Appendix: Typical CBOE contract on variance swaps

8.1 S&P 500 3-month variance contracts

CBOE S&P 500 3-month Variance Futures are based on the realized, or historical, var-
iance of the S&P 500 Index. CBOE S&P 500 3-month Variance Futures are quoted in
terms of variance points, which are defined as realized variance multiplied by 10,000.
One variance point is worth $50. For example, a variance calculation of 0.06335 would
have a corresponding price quotation in variance points of 633.50, and a contract size
of $31,675.00 (633.50 × $50).

The Final Settlement Value for CBOE S&P 500 3-month Variance Futures is cal-
culated using continuously compounded daily S&P 500 returns over a three-month
period, assuming a mean daily price return of zero. A “continuously compounded”
daily return (Ri) is calculated from two reference values, an initial value Pi and a final
value Pi+1, using the following formula:

Ri = ln
(

Pi+1

Pi

)

Daily returns are accumulated over a three-month period, and then used in a stan-
dardized formula to calculate three-month variance. This three-month value is then
annualized assuming 252 business days per year:

252
Ne − 1

Na−1∑

i=1

R2
i .

Here Ne is the number of expected S&P 500 values needed to calculate daily returns
during the three-month period. The total number of daily returns expected during the
three-month period is Ne − 1. Na is the actual number of S&P 500 values used to
calculate daily returns during the three-month period. Generally, the actual number of
S&P 500 values will equal the expected number of S&P 500 values. However, if one
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or more “market disruption events” occurs during the three-month period, the actual
number of S&P 500 values will be less than the expected number of S&P 500 values
by an amount equal to the number of market disruption events that occurred during the
three-month period. The total number of actual daily returns during the three-month
period is Na − 1.
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