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Abstract

We find that an intuitively appealing and fairly manageable continuous-time model provides

an excellent characterization of the U.S. short-term interest rate over the post Second World

War period. Our three-factor jump-diffusion model consists of elements embodied in existing

specifications, but our approach appears to be the first to successfully accommodate all such

features jointly. Moreover, we conduct simultaneous and efficient inference regarding all model

components which include a shock to the interest rate process itself, a time-varying mean re-

version factor, a stochastic volatility factor and a jump process. Most intriguingly, we find that

the restrictions implied by an affine representation of the jump-diffusion system are not rejected

by the U.S. short rate data. This allows for a tractable setting for associated asset pricing

applications.
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1 Introduction

Understanding the dynamics of the U.S. “short rate,” i.e., the risk-free instantaneous yield or spot rate

is important for both practical and theoretical reasons. The short rate governs the price of riskless fund

transfers and is thus a key determinant of the intertemporal consumption and investment decisions

of economic agents. In addition, the short rate impacts the expected returns of primary assets whose

excess returns (over the short rate) are functions of systematic risk exposures and associated risk

premia. Finally, the short rate serves as a direct input to pricing and hedging in the huge fixed-

income securities market and the associated trading of fixed-income derivatives. Consequently, it is

not surprising that short rate modeling has been an active research area for decades.

In spite of the voluminous literature, the consensus view is that existing models fail to capture

important features of the short-term interest rate dynamics. An impetus for much recent work is

Chan, Karolyi, Lonstaff, and Sanders (1992) (hereafter CKLS) who stress the empirical difficulties

of one-factor continuous-time specifications within the Vasicek (1977) and Cox, Ingersoll and Ross

(1985) class of models. This helped inspire a large body of research on nonparametric continuous-

time models for the short rate; see, e.g., Äıt-Sahalia (1996a and b); Conley, Hansen, Luttmer, and

Scheinkman (1997) (henceforth CHLS); Jiang and Knight (1997); and Stanton (1997). Among these

contributions, Äıt-Sahalia (1996b) considers several specifications of the seven-day Eurodollar rate

and concludes that the principal source of rejection of existing models is the strong nonlinearity of

the drift coefficient. He finds that around its mean, where the drift is essentially zero, the spot rate

behaves like a random walk. The drift then mean-reverts strongly when far away from the mean.

Similar results are reported in Jiang and Knight (1997), based on a sample of Canadian interest rates

and CHLS for a sample of U.S. Federal funds rates. CHLS stress that this dynamic behavior does

not necessarily imply non-linearity, or even mean-reversion, of the drift coefficient, but instead may

result from so-called volatility-induced stationarity governed mainly through the specification of the

diffusion coefficient.

More recently, Bandi (2002) also argues that the constant-elasticity-of-variance model with linear

drift fails due to the martingale nature of the short rate over most of its empirical range, with the

indications of nonlinearities in the drift term driven exclusively by a small number of observations at

the edges of the sample domain. Durham (2002) and Jones (2003) both conclude that the apparent

nonlinearity of the drift coefficient may be induced by the misspecification of standard one-factor

models and they conjecture that more general drift and diffusion specifications are necessary. Specif-

ically, Jones (2003) advocates a stochastic drift model, while Durham (2002) emphasizes a more

general representation of the diffusion term, possibly allowing for the presence of stochastic volatility.

Multi-factor models have previously been used in the attempt of capturing the short rate dynamics;
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see, e.g., Andersen and Lund (1997); Balduzzi, Das, Foresi and Sundaram (1996); Jegadeesh and

Penacchi (1996); and Longstaff and Schwartz (1992). These contributions find that the presence

of latent factors improves the fit for the short rate data significantly relative to the CKLS model.

Nevertheless, the consensus remains that the spot rate eludes standard parametric specifications,

including those within the so-called “affine class” commonly used in asset pricing applications.1

In contrast, we document that the main features of the U.S. short-term interest rate, i.e., complex

conditional heteroskedasticity, fat-tailed innovations and pronounced autocorrelation patterns, may

be captured within an intuitively appealing and manageable continuous-time jump-diffusion setting.

Relative to earlier contributions, we explore a more general parametric class of continuous-time mod-

els, allowing for both multiple latent factors, entering separately in the drift and diffusion coefficients,

and jumps in the interest rate level. Furthermore, we investigate alternative representations both

within and outside of the affine class. This is reflected in our estimation approach that is not tailored

to a specific functional form and readily handles latent factors. Thus, our analysis implicitly provides

an assessment of the severity of the constraints that routinely are imposed by inference techniques

explicitly designed for affine representations. We also seek to identify the role that the different model

components play in capturing the dominant features of the data. Finally, we provide a qualitative

illustration of some implications of our estimated system for the term structure of interest rates.

Our empirical analysis exploits a long sample of weekly observations on the 3-month U.S. T-Bill

yield spanning 1954 to 2000. We estimate the system through a variant of the simulated method

of moments (SMM) introduced by Duffie and Singleton (1993). Specifically, we rely on the efficient

method of moment (EMM) technique of Gallant and Tauchen (1996) to guide the selection of moment

conditions. This ensures that the moments summarize the key statistical features of the data, greatly

enhancing the efficiency of the inference. Finally, EMM offers a variety of powerful specification tests

that allow us to assess the quality of the model fit as well as likely sources of misspecification. Since

different models are confronted with the identical set of (informative) moment conditions, we may

readily assess the relative performance of non-nested specifications.

Both of our favored models contain three factors featuring stochastic volatility, mean drift and

jumps. The inclusion of the stochastic volatility factor is critical for a good fit, whereas the stochastic

mean offers a more modest, but still significant, improvement. Specifically, we find it important to

allow for a relatively fast mean-reversion of the short rate around a highly persistent time-varying cen-

tral tendency process. Economically, the mean drift may be indicative of slowly evolving inflationary

expectations, time-variation in the required real interest rate, or both. Furthermore, we find jumps

1Other recent contributions that have investigated the short term interest rate include Das (2002); Eraker (2001);

Elerian, Chib, and Shephard (2001); Hamilton (1996); Johannes (2004); Li, Pearson, and Poteshman (2002), and more.
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to be integral to the quality of fit and to relieve the stochastic volatility factor from accommodating

extreme outlier behavior. Without jumps, the estimated volatility specifications are unable to match

the degree of persistence in the conditional variance process typically observed in short-term interest

rate series. Interestingly, we find little evidence of the so-called level effect. Moreover, our analysis

suggests that correlation between the shocks to the short rate process and the other two latent factors

is not critical in modeling the short rate series. Overall, there is no indication of misspecification

in our preferred models. Along some relevant dimensions, our affine three-factor jump specification

provides the superior fit, which lends support to jump-diffusion representations of the form suggested

by Duffie, Pan, and Singleton (2000) and Chacko and Das (2002).

In summary, we argue that all main characteristics of the short-term interest rate process can be

captured with an intuitively appealing and fairly manageable continuous-time model. This finding is

especially interesting since one, from prior evidence, may have concluded that the short rate dynamics

eludes models within a standard parametric jump-diffusion framework. We document a need for both

the type of stochastic volatility and mean drift specifications explored separately in, e.g., Andersen

and Lund (1997), Durham (2002) and Jones (2003). However, even jointly, these do not suffice for a

satisfactory representation. In order to achieve a reasonable fit to our long U.S. short rate series we

must also introduce a jump component. Even with this added complexity, one of our specifications

remains within the affine model class and therefore provides a tractable basis for a broad range of

asset pricing questions.

The remainder of the paper is structured as follows. Section 2 introduces our candidate models for

the short-term interest rate, while Section 3 compares our approach to that pursued in other recent

contributions. Empirical results and the details of the EMM implementation are documented in

Section 4. Section 5 illustrates potential implications for term structure modeling and compares our

qualitative findings with stylized empirical evidence from the term structure literature. Concluding

remarks are in Section 6.

2 Candidate Models

We have two main objectives in mind when formulating our short rate models. First, we strive to

retain an intuitive interpretation of the various features of the models, which facilitates a comparison

to the extant literature. Second, we aim to preserve the tractability necessary for asset pricing

applications and allow for rather straightforward economic interpretation. These objectives lead us

towards two distinct, but related types of models. In their most general form, they fall, respectively,

outside and within the affine class.
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The first family of models takes the form:

drt = κ1(µt − κ λ rt /κ1 − rt) dt+
√
Vt r

γ
t dW1,t + (eZt − 1)rt dqt , γ ≥ 0 , (1)

d lnVt = κ2(α− lnVt ) dt+ η1 dW2,t , (2)

dµt = κ3(ϑ− µt ) dt+ η2
√
µt dW3,t , (3)

where Wi, i = 1, 2, 3, are Brownian motions with correlation coefficients corr(dW1,t, dWi,t) = ρ1,i,

i = 2, 3, while q is a Poisson process uncorrelated with Wi, i = 1, 2, 3, and governed by the jump

intensity parameter λ, i.e., Prob(dqt = 1) = λ. In the event that dqt = 1, the short rate is subject

to a jump, which is expressed as a fraction (eZt − 1) of the current rate rt, where Zt � N(µJ , σJ) is

independent of q and W1-W3. It then follows that, conditional on a jump or equivalently dqt = 1, the

average jump size is

κ = E(eZt − 1) = e(µJ +σ2
J/2) − 1 . (4)

Within the family (1)-(3), we recognize several well-known special cases. If we assume that the

volatility and mean are constant,
√
Vt = σ and µt = µ, and exclude jumps, λ = 0, we obtain the

one-factor CKLS model:

drt = κ1(µ− rt) dt+ σ rγt dW1,t , γ ≥ 0 . (5)

According to this representation, rt reverts towards the mean level µ, with κ1 measuring the speed of

the mean reversion. Subject to appropriate parameter restrictions, the presence of the rγt term in the

diffusion coefficient rules out negative rates and induces conditional heteroskedasticity, as volatility

depends on the level of the short rate, the so-called level effect. Further imposing γ = 0.5 results in

the affine one-factor Cox, Ingersoll, and Ross (1985) (CIR) model, while γ = 0 produces the Vasicek

(1977) specification.

Relaxing the restriction that µ is constant yields the “central tendency” model, which is a special

case of (1) given by

drt = κ1(µt − rt) dt+ σ rγt dW1,t , γ ≥ 0 , (6)

in combination with (3). The specification (6) and (3) allows for a time-varying mean level of the

short rate to dictate the short-run mean reversion in the drift. This extension is consistent with

the indications in Figure 1 that, while there are extended periods of strong drift, mean reversion is

not simply related to a pull towards the overall mean of around 5.6%. The series often appear to

drift downwards, even when rates are considerably below the mean, and to drift upwards even when

rates are well above the mean. It thus appears as if rt converges rather quickly towards a time-

varying mean level, µt, whereas µt itself reverts more slowly towards the unconditional mean, ϑ. The
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specification resembles the central-tendency representations proposed originally by Jacobs and Jones

(1986), and later by Beaglehole and Tenney (1991), Balduzzi et al. (1995), Jegadeesh and Penacchi

(1996), and Jones (2003). The model is also similar in spirit to that of Brennan and Schwartz (1979),

although their second factor is the consol yield, which is a traded asset (a bond price). An obvious

interpretation of the time-varying mean is that of an (expected) inflation factor that, in accordance

with the Fisher effect, manifests itself in the required nominal interest rate. Further drift may be

induced by a slow evolution in the equilibrium real interest rate.

The central tendency model is easily extended to the case of a time varying volatility process.

The stochastic volatility and mean drift model continues to be a special case of our family (1)-(3).

Specifically, it is given by

drt = κ1(µt − rt) dt+
√
Vt r

γ
t dW1,t , γ ≥ 0 , (7)

combined with equations (2)-(3). Andersen and Lund (1997) and Durham (2002) estimate versions

of this model in which µt = µ. The stochastic volatility specification of Andersen and Lund (1997)

is unusual in the interest rate literature, but it is inspired by the success of similar formulations for

discrete-time asset returns, and discretized versions of this short rate model have been estimated

by Kearns (1992), Torous and Ball (1995) and Vetzal (1996). Moreover, it resembles the stochastic

volatility models of Fong and Vasicek (1991), and Chen (1996). If log-volatility in equation (2) is

serially correlated, then ARCH-type effects will interact with the level effect, creating rather complex

volatility dynamics.

Finally, extending the stochastic volatility and mean drift model to allow for jumps produces

the general non-affine specification (1)-(3). Theory predicts that an unexpected information arrival

should induce a discontinuity in the return process. For example, jumps in interest rates could be

induced by an announced shift in monetary policy. Moreover, from a statistical perspective, adding

a jump component may improve the descriptive power of our models as jumps can accommodate

outliers in the short rate distribution.

In recent years, the term structure literature has relied predominantly on models in the so-called

affine class; see, e.g., Duffie and Kan (1996). Thus, we also consider representations of the form

drt = κ1(µt − µJ λ /κ1 − rt) dt+
√
Vt dW1,t + Zt dqt , (8)

dVt = κ2(α− Vt ) dt+ η1

√
Vt dW2,t , (9)

dµt = κ3(ϑ− µt ) dt+ η2
√
µt dW3,t , (10)

where W1-W3 and q satisfy the same assumptions as those stated for (1)-(3), except that here we

assume corr(dW1,t, dWi,t) = 0, i = 2, 3. Furthermore, we assume Zt � N(µJ , σJ). The system (8)-

(10) extends the two- and three-factor models of Fong and Vasicek (1991), Chen (1996) and Balduzzi,
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Das, Foresi, and Sundaram (1996) by including a jump component and it extends the jump-diffusion

specifications of Das and Foresi (1996) by incorporating stochastic volatility and mean factors. Still,

it falls within the model class considered by Chacko and Das (2002), Duffie, Pan, and Singleton (2000)

and Piazzesi (2003b), and thus provides a tractable setting for bond and option pricing applications.

The model (8)-(10) contains most of the features in (1)-(3). Thus, the interpretation of the

specific components discussed for the prior system still applies here, although there also are some

important differences. In order to preserve the affine structure of the model, we fix the γ coefficient

at zero, thus suppressing the level effect. Further, in the system (8)-(10) the Brownian motion

shocks are uncorrelated and jumps are normally distributed. This implies that the short rate can

become negative. In practice, however, when the model parameters are fixed at reasonable values,

the likelihood of observing negative rates is very small for most realizations of the state variables.

Thus, this problem may be secondary compared to the advantage offered by the semi closed-form

bond pricing formulas it delivers.2 Ultimately, it is an empirical issue to assess the descriptive value

of the affine model relative to non-affine specifications such as (1)-(3), which offer some additional

desirable properties but are less practical for pricing applications.

3 Recent Developments in the Literature

The estimation of continuous-time diffusion models poses technical challenges. Early methods rely

on the discretization of the underlying process and are subject to an estimation bias as documented

by, e.g., Lo (1988). Further, it is often the case that the lack of analytical expressions for the models’

transition densities as well as the presence of latent variables renders traditional estimation techniques

infeasible. However, novel developments in continuous-time econometrics have spurred renewed inter-

est in the estimation of interest rate diffusion models. Among the recent contributions, we have the

nonparametric approaches of Äıt-Sahalia (1996a and b), Conley, Hansen, Luttmer and Scheinkman

(1997), Hansen and Scheinkman (1995), Jiang (1998), Jiang and Knight (1997), and Stanton (1997).

One advantage of nonparametric techniques is that such methods lend themselves readily to the es-

timation of nonlinear models. This has produced an intense debate about the functional form of the

drift and diffusion terms in one-factor interest rate models. Äıt-Sahalia (1996a and b) and Stanton

(1997) find that the degree of mean reversion is stronger in the tails of the interest rate process. On

the other hand, other authors warn that such evidence should be interpreted with caution, as non-

parametric methods may be subject to a small sample bias; see, e.g., Pritsker (1998) and Chapman

2See, e.g., Piazzesi (2003b) for a more extensive discussion on affine models and negative rates.
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and Pearson (2000).3

Previous contributions have investigated the role of jumps in the short-term interest rate diffu-

sion. Johannes (2004) estimates a one-factor jump-diffusion model nonparametrically using daily

T-bill observations ranging from January 1965 through February 1999. He concludes that jumps are

necessary to generate large enough moves in daily interest rates; also, he finds that jumps account for

a significant portion of the interest rate volatility and serve an important economic purpose by pro-

viding a conduit for macroeconomic information to enter the term structure. Das (2002) estimates a

model with normal jumps and ARCH conditional heteroskedasticity, relying on daily Fed funds rates

from January 1988 through December 1997. He finds empirical support for the presence of jumps and

provides evidence that their occurrence is linked to Fed activity as well as day-of-the-week effects.

In contrast, we alleviate the impact of institutional arrangements such as the reserve maintenance

period—discussed in detail by Hamilton (1996)—by only considering weekly observations. In addi-

tion, we assess the importance of jumps within a full-fledged continuous-time multi-factor setting,

which provides a control for the influence of persistent stochastic volatility and mean drift factors on

the inference. In some respects, our model is more in line with that of Piazzesi (2003a), but her work

has a distinct macroeconomic regime focus. Her jumps correspond to the meeting dates of the Fed

Open Market Committee meeting and release dates for macroeconomic data. Given the modeling

choice, her sample is limited to five years of data on LIBOR, swap and Fed target rates. In contrast,

to provide robust identification of the persistent and latent mean drift and volatility factors as well

as the jump component in our full-fledged jump-diffusion model, we require a much longer sample of

short-term interest rates.

Empirically, yields on zero-coupon bonds at close-by maturities are highly correlated. Litterman

and Scheinkman (1991) demonstrate that virtually all variation in U.S. Treasury rates is captured by

three factors, interpreted as changes in level, steepness and curvature. This evidence has motivated

a large body of research on reduced-form term structure models, in which bond yields are expressed

as an affine (or quadratic) function of a state vector. Estimation is often performed for a panel

of bond yields through method of moment techniques, typically relying on simulation to deal with

the presence of latent state variables. Dai and Singleton (2000), Ahn, Dittmar, and Gallant (2002),

and Brandt and Chapman (2002) use EMM in their applications. Duffee and Stanton (2001) raise

concerns about the finite-sample properties of EMM estimates obtained from a multi-dimensional

score generator. To avoid this issue, Duffee (2002) and Collin-Dufresne, Goldstein and Jones (2003)

3Other recent papers that have studied the properties of the drift and diffusion terms in diffusion models for the

short-term interest rate include, e.g., Bandi (2002), Das (2002), Jones (2003), Elerian, Chib, and Shephard (2001),

Durham (2002), and Li, Pearson, and Poteshman (2002).
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(henceforth CGJ) rely on quasi-maximum likelihood for model estimation. Likewise, Brandt and

Chapman (2002) emphasize the trade-off between robustness and efficiency, and advocate an SMM

approach using economic stylized facts to guide the choice of moment conditions, rather than relying

on the score moments associated with a likelihood function. Our paper differs from the above along

several dimensions. First, our factors have a clear statistical interpretation, which adds to the model

transparency and facilitates the specification analysis. Second, the above models do not include

jumps, which we deem crucial in obtaining a satisfactory fit. Third, their estimates rely on a panel

of yields, while we focus on the short rate alone. Although our approach is, in theory, inefficient in

this regard, it has several important advantages, which we now discuss.

A first advantage derives directly from the special position of the spot rate within the yield

curve. Since the yields at longer maturities determine expected returns on fixed-income securities,

their pricing will generally reflect the uncertain evolution of the underlying state variables and will

thus depend upon the level and the dynamics of market factor risk premia. Thus, term structure

modeling induces an additional layer of functional forms that need to be asserted and estimated.

In contrast, short rate models avoid this complexity as performance is evaluated strictly under the

objective probability measure. An important implication is that we can assess whether features like

jumps as well as stochastic volatility and mean drift—with relevant term structure implications—

are fundamental features inherent in the short rate. Furthermore, and related, we avoid making

assumptions regarding the factor risk premia. Thus, we avoid any ambiguity as to whether rejection

of models occurs because of a misspecification of the underlying dynamics, of the risk premia, or both.

Second, our approach does not rely on a multi-dimensional score generator, and thus it is not subject

to the concern of Duffee and Stanton (2001) about the finite sample properties of EMM estimates

obtained using a multi-dimensional auxiliary model.

Third, and most importantly, forcing a multi-factor model to simultaneously fit the time-series and

cross-sectional properties of bond yields will often produce outright counterfactual implications for the

short rate dynamics. For example, CGJ argue that the model-implied spot-rate volatility obtained

by inverting the yield curve using an affine multi-factor specification can be negatively correlated

with the time series of volatility estimated with a standard GARCH approach. The problem occurs

because the volatility state variable represents both a combination of yields (thus impacting the

cross section of bond prices) and the quadratic variation of the short rate (thus impacting the time

series of yields). In response, they advocate an “unspanned stochastic volatility” (USV) model, in

which the cross section of bond prices is independent of volatility. Hence, the identification of the

volatility factor now depends entirely on time-series data, as in our estimation procedure.4 More

4Another reaction is exemplified by Diebold and Li (2002), who forecast the term structure from a standard three-
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recently, Thomson (2003) has applied a new class of specification tests to term structure models of

the LIBOR swap curve. Consistent with CGJ, he concludes that volatility is poorly identified by

the cross section of bond yields. Even slight forms of model misspecification can induce large errors

in imputed volatility. He documents three main problems for affine models at the short end of the

yield spectrum: they ignore outliers in the data, they fail to capture the time-varying spot rate mean,

and they err on the variance dynamics. And the forecasts of the conditional variance are especially

inaccurate. Thus, he argues that time-series identification of volatility is more robust to model

misspecification. We conclude that critical features of the short rate process appear incompatible

with standard term structure models. Moreover, the misspecification is directly related to the need

for a proper accommodation of the time-varying mean and variance as well as the outliers in the short

rate data. These are, of course, the exact features that our empirically driven estimation procedure

inherently is forced to focus on. Hence, until more robust implementations of term structure models

are developed, there are good reasons to separate time-series estimation of the short rate dynamics

from term structure modeling.

Several recent contributions extend the maximum likelihood approach for continuous-time model

estimation. Äıt-Sahalia (2002a, b) develops closed-form Hermite series expansions for the likelihood

function of multivariate diffusions. Such approach is applied in Äıt-Sahalia and Kimmel (2002) to

obtain a closed-form expression for the likelihood function of the canonical affine models in Dai and

Singleton (2000). Schaumburg (2002) extends Äıt-Sahalia and Kimmel’s approach for the purpose of

conducting maximum likelihood estimation of diffusions driven by Levy-type processes. Of course, in

the presence of dynamic latent (stochastic volatility) variables these likelihood-based techniques still

face the non-trivial practical problem of integrating out the unobserved variables. In addition, Bates

(2003) derives a rule to recursively update the joint characteristic function of latent variables and

the data conditional upon past data. He applies the method to estimate an affine continuous-time

jump-diffusion model using a sample of daily S&P 500 index returns. At the same time, considerable

progress has been done with simulation-based Bayesian methods. Recent applications of the Monte

Carlo Markov Chain (MCMC) estimation technique towards estimating continuous-time models for

interest rates include Eraker (2001), Jones (2003), Elerian, Chib, and Shephard (2001). To our

knowledge, however, none of these methods has been applied successfully to estimate a multi-factor

continuous-time jump-diffusion model for interest rates.

dimensional VAR based on extracted level, slope and curvature factors without explicitly imposing any no-arbitrage

constraints. They report a significant improvement in the out-of-sample forecast performance relative to currently

popular term structure models as well as a random walk benchmarks.
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4 Empirical Results

In this section, we report on our EMM implementation. Section 4.1 outlines the semi-nonparametric

(SNP) model selection procedure used to obtain the moment conditions for the subsequent EMM

estimation step. Section 4.2 details our EMM estimation and inference results.

4.1 The SNP Model

The finite-sample performance of the EMM procedure hinges on a sensible choice of the moment

conditions used in the simulation-based EMM estimation step. The family of SNP densities introduced

by Gallant and Nychka (1987) provides a natural starting point for this task. Loosely speaking,

Gallant and Long (1997) show that the score function of an SNP density asymptotically spans the

score of the true model, suggesting that the EMM methodology is asymptotically efficient when

the order of the SNP model is expanded until an adequate statistical representation of the data is

obtained.

In choosing our SNP model, we follow a careful model selection procedure. Andersen, Chung, and

Sørensen (1997) find that the finite sample properties of the EMM estimates may deteriorate if an in-

discriminate moment selection procedure is followed. To reduce the risk that random sample variation

is encoded in the score vector by overfitting the auxiliary model, we use a Gaussian leading term, de-

signed to capture the bulk of the dependency in the conditional mean and variance of the series. Next,

we allow a squared Hermite polynomial expansion to accommodate any remaining non-normality and

possible time-series dependency in the innovation process. An ARMA form is the natural candidate

to capture the rich dynamics in the short rate conditional mean, while an ARCH-type representation

generally provides a reasonable characterization of the conditional heteroskedasticity in interest rate

data. Specifically, we adopt an EGARCH form. This choice is motivated not only by goodness-of-fit

criteria, but also by the analysis in Andersen and Lund (1997), which shows that an EGARCH score

generator has better “dynamic stability” properties than, e.g., a GARCH model, a consideration

which proves important in the EMM implementation. Finally, we allow for an additional source of

interaction via the interest level effect, i.e., we scale the EGARCH conditional variance term by r2δ
t .

This last extension may be helpful in parsimoniously capturing the underlying dynamics of interest

rate volatility and in identifying the corresponding level effect in the continuous-time models. In sum,

this leads to the class of SNP densities:

fK(rt|xt; ξ) =

(
ν + (1 − ν ) × [PK(zt, xt)]

2∫
R[PK(zt, xt)]2φ(u)du

)
φ(zt)

rδt−1

√
ht
, ν = 0.01 , (11)

where φ(.) is the standard normal density, xt = {r1, . . . , rt−1} reflects the information set, ξ is the
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SNP density parameter vector,

zt =
rt − µt

rδt−1

√
ht
,

µt = φ0 +
s∑
i=1

φirt−i +
u∑
i=1

ζi(rt−i − µt−i) ,

lnht = ω (1 −
p∑
i=1

βi) +
p∑
i=1

βi lnht−i + (1 + α1L+ ...+ αqL
q) [ θ1zt−1 + θ2 (b(zt−1) −

√
2/π) ] ,

b(z) = |z| for |z| ≥ π/2K, b(z) = (π/2 − cos(Kz))/K for |z| < π/2K ,

PK(z, x) =
Kz∑
i=0

ai(x)z
i =

Kz∑
i=0


 Kx∑

|j|=0

aijx
j


 zi , a00 = 1 ,

where j is a multi-index vector, xj ≡ (xj11 , . . . , x
jM
M ), and |j | ≡ ∑M

m=1 jm. As in Andersen and

Lund (1997), b(z) is a smooth, twice-differentiable, function that closely approximates the absolute

value operator in the EGARCH variance equation, with K = 100.

We estimate the SNP densities in (11) by (quasi-)maximum likelihood (QML). In this application,

our proxy for the riskless short rate is the three-month Treasury bill yield. Chapman, Long, and

Pearson (1999) show that the bias induced by the three-month interest rate proxy is economically

small for linear multi-factor models of interest rates. Shorter maturity T-bill rates are available but are

adversely affected by idiosyncratic variation, as observed by Duffee (1996). The data series is weekly,

spanning 1954 to 2000, and is obtained from the H.15 release of the Federal Reserve System.5 These

rates are quoted on a bank discount basis (see, e.g., Sinkey (1989) for a definition) and we convert

them into continuously compounded yields prior to analysis. Our series is limited to the weekly

frequency, although daily observations are available. This minimizes the impact of missing data

points, possible holiday as well as day-of-the-week effects, and other institutionally driven features.6

Wednesdays have the least number of missing observations, so we use the reported Wednesday rate.

When this observation is missing, we use the Tuesday rate instead. This ensures a valid series from

January 6, 1954 to June 28, 2000. A time-series plot of the data is provided in Figure 1, while

summary statistics are given in Table 1.

Our model selection procedure within the family of SNP densities (11) is guided by the Bayesian

(BIC) and Hannan-Quinn (H-Q) information criteria; we assign less importance to the commonly

5The H.15 data are available at several Web sites supported by the Federal Reserve System; see, e.g., the URL

http://www.research.stlouisfed.org/fred/fredfile.html
6Hamilton (1996) documents the presence of institutional features in the daily Federal Funds rate, produced by,

e.g., reserve maintenance requirements. These effects likely spill over other short maturity rates: e.g., Durham (2002)

finds that the daily one-week maturity rates are noisy as well. To avoid such problems, some previous studies rely on

monthly data. We follow the, by now, common practice of estimating the model at a weekly frequency.
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used Akaike criterion (AIC) because of its tendency to overparameterize the models. Further, we

pay close attention to the Ljung-Box tests for the autocorrelation of the (raw and squared) residuals,

which provide guidance in detecting possible sources of misspecification in the conditional mean and

variance leading terms of our densities.

Our analysis, summarized in Table 2, points towards an ARMA(4,1)-Level-EGARCH(2,1)-Kz(6)-

Kx(0). More specifically, a relatively high order ARMA term is necessary to reproduce the rich

conditional mean dynamics and to eliminate most of the dependencies in the residuals. Similarly,

a combined analysis of the information criteria and Ljung-Box statistics indicates the need for a

second-order EGARCH term, enriched with the presence of level effects. We experimented with

higher-order polynomials, but found no support for that extension. Also, we rejected a Hermite(6,1)

specification for the standardized residual in which, to conserve on the number of parameters, the

non-homogeneous terms of order higher than two are fixed at zero.7 The constrained Hermite(6,1)

score generator was nonetheless used to check the robustness of our EMM estimates, as discussed

in Section 4.2 below. As a final specification check on the score generator, we conducted extensive

simulations from our SNP conditional density. Through Monte Carlo integration, we computed the

moments of a long simulated series of short rate and confirmed that they converge to values close to

those observed in the actual sample.

4.2 EMM Estimation

We denote the parameter vector of our continuous-time model ψ and let {rt(ψ), xt(ψ)}T (N)
t=1 represent

a sample simulated from the model with xt(ψ) = {r1(ψ), . . . , rt−1(ψ)} reflecting the information set.

The EMM estimator of ψ is then defined by

ψ̂N = arg min
ψ

mT (N)(ψ, ξ̂)
′ WN mT (N)(ψ, ξ̂) ,

where mT (N)(ψ, ξ̂) is the expectation of the score function, evaluated by Monte Carlo integration at

the quasi-maximum likelihood estimate of the auxiliary model parameter ξ̂,

mT (N)(ψ, ξ̂) =
1

T (N)

T (N)∑
t=1

∂ ln fK(rt(ψ)|xt(ψ); ξ̂)

∂ξ
,

and the weighting matrix WN is a consistent estimate of the inverse asymptotic covariance matrix

of the auxiliary score function. Following Gallant and Tauchen (1996), we estimate the covariance

matrix of the auxiliary score from the outer product of the gradient. In simulating the short rate

sequence {rt(ψ), xt(ψ)}T (N)
t=1 , two antithetic samples of 75,000 × 25 + 5,000 rate are generated from

7A similar strategy has been used in Chernov, Gallant, Ghysels, and Tauchen (2002).
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the continuous-time model at time intervals of 1/25 of a week.8 The first 5,000 observations are

discarded to eliminate the effect of the initial conditions. Lastly, a sequence of T (N) = 75, 000

weekly rates is obtained by collecting the end-of-the-week observations from the simulated sample.

4.2.1 CKLS and CIR Models

Our representations nest a host of special cases that have been studied extensively in the literature,

so it is worthwhile to ponder their empirical shortcomings in some detail. A natural starting point for

our investigation is the one-factor representation of CKLS or CIR form in equation (5). One caveat

is, however, that all such one-factor models fare so poorly that it may be treacherous to assign much

meaning to the point estimates or even qualitative features of the fit. Nonetheless, one common

finding is noteworthy. When we allow the level effect coefficient, γ, to be a free parameter, we

invariably estimate it at a comparatively low value and with a great deal of imprecision. The culprit

is that for the SNP density the corresponding level coefficient, δ, and the long-run volatility mean, ω,

are highly correlated. The problem in identifying γ separately is also noted, for a shorter sample than

ours in, e.g., Conley et al. (1997), Gallant and Tauchen (1997), and Tauchen (1997). We conclude

that the fully specified CKLS model is poorly identified, and going forward we fix γ at the CIR value

of 1/2, a point estimate we could reject neither in this setting nor within the more general multi-factor

representations explored subsequently. The discrepancy relative to some earlier empirical findings on

the size of γ is likely driven by our longer sample that refutes the strictly monotone relation between

the interest rate level and volatility. For example, at the very low interest rate levels in the 1950s

and early 1960s the volatility was comparatively high. Likewise, the volatility in the 1970s was much

higher than in the mid 1980s and early 1990s although the level of the short rate was about the same.

Parameter estimates, standard errors, and the overall goodness-of-fit test statistic for the CIR

model are reported in Table 3, while score generator diagnostics are in Table 5. Note that, henceforth,

dt = 1/52 and parameter estimates are given for weekly interest rate data expressed in decimal form

on a yearly basis, as is common in the extant literature. The long-term mean µ of the interest

rate is estimated at 5.1%, roughly in line with the 5.6% mean in our sample (Table 1). The κ1

coefficient captures the persistence of the short-term interest rate. Our κ1 estimate implies a first

order autoregressive coefficient of exp(−κ1/52) = 0.9967 at the weekly level, and a half-life of shocks to

8Estimation conducted using considerably longer simulated samples produced nearly identical results. Further-

more, when the data generating process contains a jump component, the simulation step involves an additional layer

of approximation as our procedure for generating jumps renders the EMM criterion function discontinuous in the

parameter vector, and this creates problems for the numerical minimization of the EMM objective function, as in An-

dersen, Benzoni and Lund (2002). To avoid this problem jumps are smoothed using a close continuously differentiable

approximation, as described in Appendix A.
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rt of 4 years, also in line with the stylized features of short-term interest rate series. However, although

the parameter estimates are plausible, they are imprecisely determined and, more importantly, the

model is overwhelmingly rejected at any reasonable significance level. This is consistent with, e.g., the

findings of Äıt-Sahalia (1996b), Bandi (2002), Durham (2002), and Tauchen (1997). The individual

moment diagnostics in Table 5 suggest that one of the main problems is the model’s inability to

accommodate the tail behavior of our interest rate data. Indeed, the score components associated

with the a20 and a60 terms in the polynomial expansion of the SNP density are highly significant.

4.2.2 Central Tendency

The central-tendency model, given by (6) and (3), extends CIR by adding a stochastic mean factor.

Initial experimentation revealed that the correlation coefficient ρ1,3 is insignificant and poorly identi-

fied by the SNP score moments. Thus, from here on we fix ρ1,3 = 0. For the same reason, we impose

the identical constraint on the ρ1,2 coefficient whenever volatility is stochastic.

The estimation results, reported in Tables 3 and 5, are not supportive of the central tendency

model. Even though our point estimates are plausible, the parameters are poorly identified with stan-

dard errors that increase relative to CIR. Moreover, while the goodness-of-fit has improved slightly,

the model is still overwhelmingly rejected. The reasons are readily identified. The moments asso-

ciated with the higher order SNP coefficients continue to be highly significant, suggesting that the

conditional innovations are no less troublesome than they were for the one-factor model. Hence, while

the central-tendency factor may, indeed, improve upon the characterization of the drift coefficient it

does not help in terms of accommodating the fat tails in the conditional error distribution.

4.2.3 Non-Affine Stochastic Volatility

The stochastic volatility model extends the CIR in a different direction, as the second factor now

induces additional variation in the volatility dynamics. We focus initially on the specification given

by (7) and (2) with, for the time being, a constant short-rate mean, i.e., µt = µ.

The estimation results, again in Table 3 and 5, are quite remarkable. The addition of the stochastic

volatility factor has vastly improved the descriptive value of the model. It now attains a p-value of

about 2%, and the standard errors suggest a considerable improvement in precision as well. The

unconditional mean µ is 5.1%, and the estimate for the mean-reversion coefficient κ1 is indicative of

strong serial dependence in the mean dynamics, with an implied first order autoregressive coefficient

of exp(−κ1/52) = 0.9962 at the weekly level, and a half-life of shocks to rt of 3-4 years. Both

estimates are in line with the characteristics of our interest rate data. However, our estimate for κ2

appears at odds with the empirical properties of the short-term rate. The first order autoregressive
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coefficient for the volatility process implied by our estimate is exp(−κ2/52) = 0.8877 at the weekly

level, considerably smaller than the value of the largest inverse root of the polynomial 1−β1L−β2L
2,

which is 0.9925 based on our discrete-time EGARCH estimates.

In this case, the EMM t-ratios do not pinpoint any particular source of misspecification—individually,

each score component is insignificant (Table 5). Of course, these statistics provide only suggestive

diagnostics and the 2% p-value for the overall goodness-of-fit test (Table 3) suggests that, despite the

dramatic improvement relative to the CIR and central tendency specifications, the model may not

be fully adequate.

4.2.4 Non-Affine Stochastic Volatility and Jumps

Overall, the empirical results from the stochastic volatility specification indicate potential model

misspecification. A possible explanation is that, in this model, stochastic volatility serves the dual

purpose of generating random shocks, and thus producing large outliers, while also accounting for

the strong volatility persistence. Our estimates may suffer from the intrinsic tension between the

two roles. On the one hand, because of the pronounced non-normality of the (conditional) short rate

innovations, the volatility factor will tend to display an erratic pattern that accommodates outlier

observations. On the other hand, the latent factor must also try to replicate the strong persistence in

the conditional volatility of the interest rate. Our results suggest that the former feature interferes

negatively with the latter function.

These observations motivate the extension of the model to incorporate a jump component, as in

(1) and (2) with the constraint, for now, that the short rate mean is constant, i.e., µt = µ. Initial

experimentation reveals that the parameter µJ , associated with the average jump size, is insignificant

and poorly identified. Thus, we impose the restriction µJ = 0 during estimation. Point estimates

and EMM t-ratios are again reported in Table 3 and 5, respectively.

The estimates for µ and κ1 are qualitatively consistent with the empirical features of the data

and largely unchanged relative to the corresponding values in the pure stochastic volatility model.

However, the presence of jumps has a remarkable impact on the volatility parameters. While the long-

run volatility mean, α, estimate is unchanged, that of κ2 is now considerably smaller and more precise.

The first order autoregressive coefficient for the volatility process increases to exp(−κ2/52) = 0.9723

at the weekly level, which is very close to the result from our discrete-time EGARCH results and

qualitatively consistent with findings in the extant literature. Interestingly, the estimate for the

volatility-of-volatility coefficient η1 is now also much smaller and more precise than that found in the

pure stochastic volatility model. These findings are fully consistent with the hypothesis above: Jumps

mitigate the task of volatility in accommodating the tail properties of the short rate distribution.
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When jumps are introduced in the model, the volatility-of-volatility coefficient compensates for their

presence and becomes smaller. Further, the κ2 parameter is relieved from accommodating extreme

outlier behavior and is estimated at a level consistent with a more persistent volatility process.

Turning to the jump coefficients, our estimates indicate that jumps are significant with an arrival

rate of 5-6 jumps per year. Under the µJ = 0 restriction, the expected value E(eZt-1) of a jump,

conditional on dqt = 1, is very close to zero. Similarly, the standard deviation of the jump component

implied by our estimate is σ(eZt-1)=0.0263, indicating that most discontinuities are in the order of

±5-6% of the current interest rate level, corresponding to roughly 30-35 basis points.

4.2.5 Non-Affine Stochastic Volatility, Mean Drift, and Jumps

We finally explore the joint effect of simultaneously allowing stochastic volatility and a general time-

varying mean drift specification.

We first consider the specification given by (7) and (2)-(3), with the jump component excluded.

Our findings in Table 3 indicate that the model delivers a reasonable statistical fit with the p-value

for the goodness-of-fit test achieving the respectable level of 14.08%. However, the interpretation of

the volatility persistence coefficient κ2 and the volatility-of-volatility term η1 are troublesome for the

reasons described earlier. The implied first order autoregressive coefficient is exp(−κ2/52) = 0.8456

at the weekly level, which seems unreasonably low given the apparent persistence in the volatility of

interest rate data. Also, η1 is quite large relative to the estimate from, e.g., the stochastic-volatility

jump-diffusion model. Even if the EMM t-ratios do not clearly identify any particular types of

misspecification, it still suggests that a jump extension may be successful in alleviating the dual role

of volatility in accounting for both volatility persistence and outlier behavior.

Upon estimating the more general system (1)-(3), we find the descriptive value of the model to

improve considerably relative to all of the previous specifications. The overall goodness-of-fit statistic

now attains an impressive 25% p-value, and the score diagnostics suggest that all structural features of

the mean and volatility dynamics are accommodated satisfactorily. And, reassuringly, the presence

of jumps affects the volatility coefficient estimates substantially. The degree of persistence in the

volatility process, controlled by κ2, is now close to what we expect given the properties of interest

rate data (Table 3). Similarly, the η1 estimate decreases considerably compared to that from the no-

jumps case. Further, both κ2 and η1 are much more precisely estimated, and all coefficients are highly

significant. Moreover, the jump estimates are close to those found in the stochastic volatility model

without the central tendency factor. Jumps occur at a rate of 5-6 per year and, given dqt = 1, their

mean is (near) zero. Furthermore, our σJ estimate implies a standard deviation of σ(eZt−1) = 0.0266,

indicating that most discontinuities are still in the order of ±5-6% of the current interest rate level.
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Finally, turning to the drift coefficients, the unconditional mean ϑ is 5.7%, virtually indistinguishable

from the 5.6% sample mean. Interestingly, the role of κ1 in the two-factor stochastic volatility

model has been passed on to κ3 in the three-factor model. The reversion of µt to the unconditional

mean ϑ is slow, as indicated by the low value of κ3, implying a first order autoregressive coefficient

at the weekly frequency of exp(−κ3/52) = 0.9937, and a half-life of 2-3 years for shocks to µt. In

contrast, the much stronger mean reversion indicated by κ1 implies a weekly autoregressive coefficient

of exp(−κ1/52) = 0.9722 and a half-life of shocks to rt of about 6 months. The implication is that

the short rate converges quite rapidly towards the time-varying mean µt, consistent with the periods

of pronounced drift that are identifiable in Figure 1. At the same time, µt converges extremely slowly

to the overall mean, thus inducing the seemingly borderline stationary mean dynamics of the short

rate that are evident from the graphical display.

Our preferred specifications are remarkably different from the one-factor representations of, e.g.,

Äıt-Sahalia (1996b), Conley et al. (1997), Eom (1998), and Stanton (1997). Although our three-

factor model may appear elaborate, it retains a high degree of tractability and appears to provide a

superior fit. Since the first EMM step consists of a semi-nonparametric approximation to the short

rate process, the method can, in principle, detect any form of misspecification, including, of course,

the omission of terms from the drift specification such as, e.g., r−1
t and r2

t , which are incorporated in

Äıt-Sahalia (1996b). However, because our chosen score generator has a homogeneous SNP density,

Kx = 0, the mean dynamics of the conditional density are inherited solely from the ARMA(4,1)

leading term. On the one hand, this restriction is arguably well motivated since the score generator

model is selected on the basis of formal information criteria. It implies, on the other hand, that the

omnibus specification test may have low power against a misspecified linear drift.9 Hence, it may be

reasonable to allow for a potentially overparameterized, non-homogeneous score generator in order

to retain the ability to detect nonlinearity in the drift specification. Consequently, we estimate the

three-factor model by EMM using the identical leading term, but with a Hermite(6,1) specification

for the standardized residual with the non-homogeneous terms of order higher than 2 fixed at zero to

retain relative parsimony. This does not produce any indications of misspecification in our continuous-

time model. Moreover, all the score vector diagnostics associated with the non-homogeneous part

of the conditional density (not reported here) remain insignificant. Finally, the associated changes

in the point estimates of the continuous-time parameters are generally insignificant. In sum, the

additional moments in the (constrained) Hermite(6,1) score generator do not appear to provide much

useful information, nor do they suggest an inherent source of misspecification in our three-factor

jump-diffusion model.

9We are grateful to George Tauchen for suggesting this possibility.
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4.2.6 Affine Stochastic Volatility and Jumps

Motivated by the recent development of the affine modeling paradigm, we now investigate the affine

version of the stochastic volatility model much in parallel with the account provided above. We

initially explore the system (8)-(9) with a constant short rate mean, µt = µ, and no jumps. The

results are reported in Tables 4 and 5. With the appropriate adjustments, they are very similar to

those for the corresponding non-affine model. Although the estimates for the µ and κ1 coefficients are

plausible, those for κ2 and η1 have the same problems as noted before. The first order autoregressive

coefficient for the volatility process is exp(−κ2/52) = 0.8825 at the weekly level, which is practically

identical to the value for the non-affine model (0.8877). In sum, the estimated volatility process has

fatter tails than what we would expect and it reverts too rapidly to its long-term mean. The EMM

t-ratios are again not particularly helpful in identifying the sources of misspecification, but the model

has an overall p-value of 2%, in line with the one obtained in the non-affine case. This suggests that

extensions along the lines pursued in the log-volatility model will also be successful in this context.

Thus, we turn to the system (8)-(9), still with the µt = µ restriction, but now enriched by the

presence of jumps. The estimates for µ and κ1 are largely unchanged. The unconditional mean is

found to be 5.1%, roughly consistent with the 5.6% sample mean. The κ1 estimate implies a first

order autoregressive coefficient exp(−κ2/52) = 0.9951 at the weekly level, and half-life of shocks to rt

of 2-3 years. On the other hand, the estimates of the volatility coefficients change considerably and

are now in line with prior expectations. Here, κ2 = 1.6645, a sensible value and consistent with the

corresponding non-affine estimate (1.4585). Further, the η1 estimate is roughly one half of what was

found in the prior case.

We again restrict the jumps to have a zero mean (µJ = 0). In the affine case jumps arrive at a

slightly slower rate (approximately 3 per year). Their size is controlled by the σJ term. For dqt = 1,

the discontinuities in the short rate typically fall within the ±0.34% range. Notice that jumps now

are directly related to changes in the level of the interest rate, instead of representing a percentage

change in the rate. With this in mind, the results in the affine case are qualitatively consistent with

the prior ones, i.e., when dqt = 1 jumps are typically in a range of ±6% of the average short rate.

This is synonymous to relatively frequent but fairly small jumps. They are, however, consistent with

jumps of the magnitude associated with Federal Reserve Bank changes in the federal funds rate of

a quarter or half percentage point. The presence of jumps not only allows the stochastic volatility

dynamics to accommodate the economically important longer-term persistence, but it also improves

the quality of the fit considerably. The model p-value is now a very respectable 29% and the score

diagnostics do not indicate any particular source of misspecification.
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4.2.7 Affine Stochastic Volatility, Mean Drift, and Jumps

We consider now the affine three-factor model (8)-(10), in which the jump component is temporarily

switched off. Our findings appear in Tables 4 and 5. The model provides a reasonable statistical fit

for our short rate data (the p-value is 17.27%). However, the volatility coefficients suffer from the

same problems of interpretation as encountered when estimating the prior non-jump specifications.

Namely, the mean reversion coefficient κ2 and the volatility-of-volatility parameter η1 both appear

unrealistically large.

Again, adding jumps to the model resolves the issue. When we estimate the system (8)-(10) with

the only restriction that µJ = 0 the volatility process regains its natural interpretation. Our estimate

for κ2 is 1.6271, indicative of high volatility persistence and very close to the value in the non-affine

model. Further, the η1 estimate drops to roughly one-half of the value obtained in the no-jump case.

Turning to the stochastic mean coefficients, the unconditional mean ϑ is estimated at 5.3%,

statistically indistinguishable from the sample mean. As in the non-affine setting, the role of κ1 is

passed on to κ3 in the three-factor model. Although less precisely estimated, the magnitude of κ3

is close to that of the corresponding non-affine model term. This finding is qualitatively consistent

with the seemingly borderline stationary mean dynamics of the short rate, evident from Figure 1.

In contrast, the much stronger mean reversion indicated by κ1 implies that the short rate converges

rapidly towards the time-varying mean, µt, consistent with the periods of pronounced drift identifiable

in the display as well.

Jump estimates are similar to those obtained for the two-factor stochastic volatility model. Jumps

arrive at a rate of 3-4 per year, and are relatively small in magnitude (typically within the ±6% range

of the average rate). Nevertheless, they have a significant impact not only on the volatility estimates,

as discussed above, but also on the quality of the model fit. The p-value associated to the goodness-

of-fit test statistic increases from 17.27 to 37.79%. Finally, the score t-ratios do not indicate any

model misspecification. These results are quite remarkable. The affine model class seems to perform

as well as, or even better than, the non-affine version explored earlier. The improvement in overall

goodness-of-fit may in part be due to the slightly weaker identification of the structural parameters

and associated increase in the imputed variance of the basic noise components. Nonetheless, there is

no compelling reason to favor one model class over the other from a statistical perspective.

5 Yield Curve Illustrations

So far, our objective has been to develop a continuous-time model that captures the dynamics of the

short-term interest rate, rt. The preferred specification contains jumps and three factors: the short
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rate itself, the conditional variance of the short rate, Vt, and a stochastic mean level, µt. However,

our findings have implications that extend beyond the short rate dynamics. The short rate process,

along with assumptions about the market prices of risk (risk premia), determines the entire yield

curve. If no additional state variables appear in the specification of the risk premia, as is customarily

assumed, movements in the yield curve are determined solely by changes in the three factors rt, Vt

and µt.
10 In this section, we provide qualitative illustrations of the yield curve implications of our

model for a plausible specification of the risk premia. Specifically, Litterman and Scheinkman (1991)

analyze a large number of yields using principal components. They identify three dominant factors,

interpreted as changes in level, steepness, and curvature. If a candidate short rate model is to be

taken seriously, then it should be able to induce similar changes in the yield curve, strictly by time-

variation in the state variables. We stress that this does not constitute a formal specification test, but

rather a qualitative screening. A full-fledged analysis would require a comprehensive panel of bond

yields and goes well beyond the scope of this paper. Nonetheless, this line of reasoning points to a

serious limitation of the two-factor stochastic volatility jump-diffusion model and confirms the need

for the third factor, the stochastic mean µt process associated with the central tendency models.11

In Section 4.2, we found that the empirical properties of the affine three-factor jump-diffusion

model were similar to those of its non-affine counterpart. Thus, in this section we take advantage of

the analytical tractability of the affine specifications to illustrate the implications of our estimates for

the yield curve. In its risk-adjusted form, the model (8)-(10) becomes:

drt = {κ1(µt − µ∗
J λ

∗ /κ1 − rt) −
√
Vt ξ1(t) } dt+

√
Vt dW

∗
1,t + Z∗

t dq
∗
t , (12)

dVt = {κ2(α− Vt ) − η1

√
Vt ξ2(t) } dt+ η1

√
Vt dW

∗
2,t , (13)

dµt = {κ3(ϑ− µt ) − η2
√
µt ξ3(t) } dt+ η2

√
µ
t
dW ∗

3,t , (14)

where ξ1(t)-ξ3(t) are the model risk premia, dW ∗
i,t = dWi,t+ ξi(t) dt, i = 1, . . . , 3, q∗ is an independent

Poisson process with parameter λ∗, while Z∗
t � N(µ∗

J , σ
∗
J). The coefficients λ∗, µ∗

J and σ∗
J incorporate

an appropriate risk-adjustment compared to their counterparts λ, µJ and σJ , previously estimated

in Section 4.2 under the physical probability measure.

Following Dai and Singleton (2000) and Duffie, Pan and Singleton (2000), we characterize ξ1(t)-

10It is generally straightforward to construct a pure exchange general equilibrium model that supports the chosen

specification, see Duffie and Kan (1996).
11An alternative approach is to introduce additional state variables that only affect the risk premia dynamics, and

not the short rate. There is evidence that this may be a fruitful avenue to pursue, as argued by, e.g., CGJ.
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ξ3(t) by:12

ξ1(t) =
√
Vt ξ1 , (15)

ξ2(t) = η1

√
Vt ξ2 , (16)

ξ3(t) = η2
√
µt ξ3 . (17)

In the remainder of this section, we fix the coefficients in (12)-(14) that are not affected by model risk

adjustments at the EMM estimates in Table 4, while we calibrate the risk premia in (15)-(17) and

the risk-adjusted coefficients λ∗, µ∗
J and σ∗

J to match qualitatively the stylized empirical evidence for

the term structure of interest rates.

A natural benchmark for the risk premia is the local expectations hypothesis (EH), i.e., ξi(t) = 0

for all i. Unfortunately, the local EH implies that the yield curve, on average, is downward sloping

(inverted), due to the “convexity bias;” see, e.g., Black (1995). In contrast, inspection of historical

U.S. interest rates reveals that the yield curve tends to be upward sloping and quite steep at the

short end (0-5 years), while it is relatively flat for maturities in excess of 5 years. Our specification

of the market prices of risk is calibrated to reflect these properties. Specifically, we set ξ1 = −250,

ξ2 = 0, and ξ3 = −55. Since the market prices of risk are negative, the effect is to increase the drift

in the short rate which offsets the downward convexity bias.13 Note further that the risk adjustment

in the process for rt is increasing in the (stochastic) volatility,
√
Vt. This feature is important for our

interpretation of the effect of volatility changes. The market price of risk for Vt is set to zero, mainly

because its effect on the term structure is minimal. Our yield curves are computed from continuous

compounded yields, so the yields are given by R(rt, Vt, µt, t, T ) = − logB(rt, Vt, µt, t, T )/(T − t),

where B(rt, Vt, µt, t, T ) is the time-t price of a bond with maturity T , which is computed using the

semi closed-form formula reproduced in Appendix B. The yield curve depends on the current state

vector, i.e., the vector of state variables (rt, Vt, µt). The following analysis is predicated on a baseline

case for the state vector from which one or more state variables are perturbed. We summarize the

investigation in three scenarios, each demonstrating a “typical” yield curve shift.

We first consider the separate effect of changes in rt. In Figure 2, the current benchmark is

(rt, Vt, µt) = (0.08, 0.0072, 0.08), which generates an upward sloping yield curve. This is a common

occurrence as the unconditional mean of the short rate is well below the risk neutral mean. The

shocks in Figure 2 are changes in rt of ±0.01, or 100 basis points (bps). Maturities beyond 5 years

12The model risk-premia could be extended using the essentially affine specification advocated by Duffee (2002) and

used by Brandt and Chapman (2002), or the even more general representation studied in Cheridito, Filipović and

Kimmel (2003).
13The widely different magnitudes of the risk premia compensates for differences in scaling. Their relative impact in

terms of generating an upwardly sloping yield curve (on average) is, in fact, of the same order of magnitude.
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are barely affected by this change, so it is natural to refer to such shifts as changes in steepness. To

rationalize this finding, note that the mean reversion parameter for rt (towards the stochastic level

µt) is κ1 = 1.7887, corresponding to a half life of only 4-5 months. Thus, any shock to rt wears

off quickly. It is also worth noting the rich set of possible shapes for the yield curve. For example,

in Figure 2, the yield curve for rt = 0.09 has an inverse hump. This particular shape cannot be

accommodated by the one-factor CIR model.

Litterman and Scheinkman (1991) find that the single most important change in the yield curve

is the parallel shift, whereby yields at all maturities change by a similar amount. They refer to this

as the level factor. To capture this feature we use a simultaneous change in rt and µt. As a result,

Figure 3 portrays an overall change in interest rate levels, which is qualitatively consistent with the

evidence documented in Litterman and Scheinkman (1991).14

To summarize, different changes in rt and µt induce shifts in the steepness and the level of the

yield curve. In general, the shape of the yield curve reflects the expected movement in the short-

term interest rates: rt converges rather rapidly towards µt, which itself displays mean reversion. The

influence of Vt on the yield curve is, arguably, less transparent. To develop some intuition, we first

consider the Merton (1973) model with constant interest volatility, i.e., the one-factor arithmetic

Brownian motion, drt = µ dt+ σ dWt. The market price of risk is a constant, ξ, and the yield curve

is given by

R(t, T ) = rt +
1

2
(µ− ξ σ )(T − t ) − 1

6
σ2(T − t )2. (18)

If ξ < 0, an increase in σ causes short-term yields to rise while long term yields drop. To understand

this result, note that a rise in volatility has two different effects on the yield curve: the risk neutral

drift, µ−ξ σ, becomes larger, which enhances yields. We call this the “risk premium” effect. However,

at the same time the convexity bias rises, and this lowers yields. For short-term maturities the risk

premium effect dominates, but for longer-term maturities the convexity bias is stronger.15

In order to investigate whether this intuition carries over to the stochastic volatility setting of our

three-factor model, Figure 4 displays the yield curve with (rt, Vt, µt) = (0.088, 0.0072, 0.091) as the

14What we document is not a truly parallel shift as the 30-year rate varies only by a fraction of the 100 bps change

at the short end of the curve. This, however, is a consequence of mean reversion in µt. Also, our findings are related to

the result that, under weak restrictions on the economy, the yield on the long (asymptotic) zero-coupon bond cannot

fall, see Dybvig et al. (1996). Reconciling the behavior of long-term interest rates with such theoretical implications is

outside the scope of this paper.
15This result is not an artifact of the Gaussian model used here. Litterman et al. (1991) reach the identical conclusion

for a short rate model which rules out negative rates, and where the volatility factor is related to the volatility of a

long rate rather than the short rate. The relation between the short rate volatility and the yield curve is also studied

in Christiansen and Lund (2002) and further investigated in Mele (2002).
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baseline case. We consider changes in Vt of ± 0.0032. The shift in the yield curve is somewhat different

from the constant volatility case, since yields at all (non-zero) maturities rise following an increase

in Vt. Likewise, a decrease in Vt lowers all yields. This discrepancy is driven by the mean reversion

in volatility. The risk premium effect implies that yields for medium-term maturities increase for

positive shocks to Vt but—due to the mean reversion—the shock to Vt wears off before the convexity

effect starts to dominate. Overall, changes in Vt only materially affect medium-term maturities (1

to 10 years), leaving the short rate and the 30-year yield unaffected. In fact, if the short rate risk is

not priced, i.e. ξ1(t) = 0, even large changes in Vt leave the yield curve virtually unaffected (with a

slight decrease) which further bolsters the claim that the impact in Figure 4 is almost entirely due

to a risk-premium effect. Since the yield curve is tilted mainly at intermediate maturities, we may

associate changes in Vt with the third factor identified by Litterman and Scheinkman (1991), the

curvature of the yield curve. Furthermore, Litterman et al. (1991) argue that a large part of the short

rate volatility is explained by the difference between the 3 year yield and a weighted average of the 1

month and 10 year yields. The yield curves changes in Figure 4 are consistent with this claim since

increased volatility elevates the 3 year rate relative to the 1 month and 10 year rates.16

The two-factor stochastic volatility model cannot accommodate the same range of dynamic yield

curve features. To illustrate this, we recalibrate the market prices of risk, and attempt to replicate

the typical yield curve shifts through perturbations to the factors rt and Vt. The main difference,

relative to the three-factor model, is the interpretation of changes in rt. This is captured in Figure

5. Contrary to Figure 2, changes in rt now have a significant impact on long-run maturities, and the

overall picture is, in fact, much closer to Figure 3, which represents a change in interest rate levels

(generated by a joint change in rt and µt). Hence, the two-factor stochastic volatility model is unable

to generate changes in the yield curve that are limited to the short-run maturities. The source of the

problem is the overly simplistic mean dynamics. Specifically, the drift of the short rate is governed by

a single mean reversion parameter, κ1, which is almost zero. Thus, the model exclusively captures the

strong persistence in the short rate. This precludes short-lived shocks to rt, which are instrumental

in generating the steepness changes, thus ruling out this empirically important feature of the yield

curve dynamics.

In sum, our qualitative term structure illustrations suggest important roles for the type of stochas-

tic volatility and mean factors, we have estimated from the short rate series, in the analysis of the full

term structure. Obviously, these illustrations only serve as a preliminary screening of the properties

16Although volatility shocks may affect the inflection of the yield curve through the mechanisms detailed above,

other sources of curvature may be required to capture the cross-sectional variation in bond yields. As mentioned, for

example, CGJ advocate an unspanned stochastic volatility model and conjecture that a fourth latent factor is needed

to generate the curvature effect.
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of our model. We do, nonetheless, find it very telling that features such as complex mean drift, strong

volatility persistence and sudden jumps are identifiable not only through a study of multiple yields

but in fact also are necessary to explain the dynamics of short-term interest rates.

6 Conclusions

The objective of this paper is to identify a class of models that captures the salient features of the

short-term interest rate and is sufficiently tractable to form the basis for asset pricing applications. To

this end, we consider continuous-time specifications which lie within and outside the affine class. We

extend classical specifications to a multi-factor setting, in which the latent variables may be readily

interpreted as the conditional mean and volatility of the interest rate. Further, we enrich our models

by incorporating a jump component. We conduct estimation via EMM using weekly U.S. 3-month

T-Bill rates. We exploit the estimation procedure to generate powerful EMM tests and diagnostics

which help us converge towards a couple of specifications that fit the short rate data satisfactorily.

Along the way, we identify the features of the interest rate dynamics that account for the inadequate

performance of widely used models nested within our general representations. Finally, we illustrate

the qualitative implications of our estimated representations for the term-structure of interest rates.

Our analysis leads us from a simple one-factor model to three-factor specifications featuring sto-

chastic volatility, mean drift and jumps. The inclusion of the stochastic volatility factor is critical in

providing a good fit, whereas the stochastic mean factor offers a more minor, but still significant, im-

provement. Specifically, it is important to reproduce a relatively fast mean-reverting behavior of the

short rate around a highly persistent time-varying central tendency process. Economically, the mean

drift may be indicative of slowly evolving inflationary expectations, time-variation in the required

real interest rate, or both. Finally, jumps are critical to the quality of the fit by directly accommo-

dating outliers and thus relieving the stochastic volatility factor from this task. All our three-factor

jump-diffusion models pass powerful specification tests, with the affine representation performing on

par with the very best models. This result lends support to the affine class of jump-diffusion models,

providing a convenient setting for asset pricing applications. Finally, we find that qualitative evi-

dence gleaned from the term structure of interest rates is consistent with the inclusion of stochastic

volatility and mean factors of the type that we have identified from the short-term interest rate series

alone.

Arguably, our main contribution is to demonstrate that a standard continuous-time jump diffusion

model can accommodate all main features of the U.S. short-term interest rate series. We accomplish

this by exploiting an estimation technique that is sufficiently powerful to allow for joint inference
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regarding multiple latent factors and jump components. In contrast, the recent literature tends to

conclude that the short rate process is incompatible with such models.17 Of course, this does not

imply that our reduced form modeling approach is the correct one—there is surely no such thing as a

correct model—but it does point towards a role for this more traditional framework as a useful basis

for many asset pricing applications.

Appendix A: Numerical Implementation of EMM

The algorithm used to simulate a sample {rt(ψ), xt(ψ)}T (N)
t=1 of short-term rates rt and lagged observations

xt from the continuous-time jump-diffusion models (1)-(3) and (8)-(10) resembles closely that illustrated in

Andersen, Benzoni, and Lund (2002) and Andersen and Lund (1997).

The short rate as well as the model’s state variables is simulated using the Euler scheme—see, for

example, Kloeden and Platen (1992). In our simulations, we set dt = 1/52 and generate weekly observations

expressed in decimal form on a yearly basis. As the SNP model was fit on weekly short rate data expressed

in percentage form on a yearly basis, our simulated rates are multiplied by a factor of 100 before being used

in the EMM score generator.

Simulations from the stochastic volatility and mean drift terms are not problematic, thus we focus

exclusively on the jump component. Poisson jumps are first approximated with a Binomial distribution; i.e.,

we replace dqt with a random variable Y such that Prob{Y = 1} = λ(t) dt and Prob{Y = 0} = (1−λ(t) dt).

For this purpose, we generate a random variable U Uniform(0,1) and we smooth the discontinuity of Y over

an interval centered around 1 − λ(t):

Y =




0 if 0 ≤ U < 1 − λ(t) dt − h/2,

g(X) if 1 − λ(t) dt − h/2 ≤ U < 1 − λ(t) dt + h/2,

1 if 1 − λ(t) dt + h/2 ≤ U ≤ 1,

where X = U − (1 − λ(t) dt − h/2) and g(X) = −2/h3X3 + 3/h2X2 for 0 ≤ X ≤ h.

Notice that g is a C∞ function and that it becomes steeper as the interpolation interval length h goes

to zero. In our application, we fine-tune h by choosing the smallest possible interval size that eliminates the

numerical problems in the EMM criterion function. This yields an accurate approximation to the jumps in

the simulated short rate sequence.

Convergence conditions for the Euler approximations in a jump-diffusion setting are discussed in, for

example, Kloeden and Platen (1989) and Protter and Talay (1997). These conditions are not explicitly

verified for our specific approximation algorithm. As is often the case with high-level assumptions, such
17This is one reason that scholars have explored alternative short rate and term structure models incorporating

regime shifts. This extensive literature includes, e.g., Hamilton (1988), Cai (1994), Gray (1996), Ang and Bekaert

(2002a, 2002b), Bansal and Zhou (2002), Bansal, Tauchen and Zhou (2003), Dai, Singleton and Yang (2003), and Li

and Yu (2003).
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verification would be difficult. Nevertheless, it does not appear to constitute a problem for our application

as extensive simulations verify that the moments of the simulated process converge.

At any iteration of the minimization, each jump κ(t) is generated, in the event dqt = 1, using the identical

seed. Also, we obtain variance reduction through the use of antithetic variates in the simulation; see, for

example, Geweke (1996) for a discussion of this technique.

As a final remark, it should be noted that short rates that are generated through the algorithm explained

above may occasionally take on either negative or large values during the course of the EMM optimization.

In order to avoid program crashes, we implement the following strategy. Given a simulated rate rt, we

compute the censored/smoothed rate r̂t according to:

r̂t =



C1 exp(C2 rt) + C3 if rt ≤ rmin,

rt if rmin < rt < rmax,

.5(rt + rmax + log(1 + rt − rmax)) if rmax ≤ rt,

where rmin = 0.02%, rmax = 75%, C1 = 0.5 rmin exp(−2), C2 = 2/rmin, and C3 = 0.5 rmin.18 Then,

when evaluating the EMM criterion function, we use the lagged values of r̂ to replace the corresponding

simulated rates which are needed to compute (a) the level effect term, (b) the conditional mean, and (c) the

non-homogeneous terms of the polynomial expansion in the SNP density.

Appendix B: The Affine Bond Pricing Model

Given the risk-adjusted model (12)-(14), the time-t price B(rt, Vt, µt, t, T ) of a bond maturing at T is

B(rt, Vt, µt, t, T ) = exp {γ(t) + β1(t) rt + β2(t)Vt + β3(t)µt } ,

where β1(t) = (e−κ1(T−t)−1)/κ1, while β2(t)-β3(t) and γ(t) are the solution to a system of ordinary differential

equations:

β̇2(t) = ξ1β1(t) + (κ2 + η2
1ξ2)β2(t) − 0.5β1(t)2 − 0.5η2

1β2(t)2 , (19)

β̇3(t) = −κ1β1(t) + (κ3 + η2
2ξ3)β3(t) − 0.5η2

2β3(t)2 , (20)

γ̇(t) = µJλβ1(t) − κ2αβ2(t) − κ3ϑβ3(t) − λg(β1(t)) + λ , (21)

with g(x) = exµJ+0.5x2σ2
J , β2(T ) = 0, β3(T ) = 0, and γ(T ) = 0. The solution to (19)-(21) can be computed in

closed-form; see, e.g., Chen (1996). Nevertheless, the analytical expressions for β2(t), β3(t), and γ(t) are quite

cumbersome, thus it is more practical to solve the same system numerically using standard finite-differencing

methods.
18We borrowed the spline transformation which is used in the rt ≥ rmax case from Gallant and Tauchen (2002).
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Tables and Figures

Table 1: Summary statistics. Data on weekly U.S. 3-month T-Bill Yields from 01/06/1954 to

06/28/2000 (N=2,426 observations). All figures are computed using weekly interest rate data ex-

pressed in percentage form on a yearly basis.

Mean 5.5614
Std. Dev. 2.8310
Skewness 1.1765
Kurtosis 4.9796

Autocorrelation of Yields:

Lag Autocorr. Lag Autocorr. Lag Autocorr.

1 0.9960 8 0.9538 35 0.8382

2 0.9909 9 0.9479 40 0.8240

3 0.9855 10 0.9422 45 0.8032

4 0.9796 15 0.9161 50 0.7794

5 0.9732 20 0.8925 55 0.7589

6 0.9664 25 0.8683 60 0.7417

7 0.9599 30 0.8482 65 0.7165
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Table 2: SNP Model Estimates. Data on weekly U.S. 3-month T-Bill yields, 01/06/1954 to

06/28/2000, (N=2,426 observations). Parameter estimates are for weekly interest rate data expressed

in percentage form on a yearly basis and refer to the following model:

fK(rt|xt; ξ) =

(
ν + (1 − ν ) × [PK(zt, xt)]

2∫
R[PK(zt, xt)]2φ(u)du

)
φ(zt)

rδt−1

√
ht
, ν = 0.01 ,

where φ(.) is the standard normal density,

zt =
rt − µt

rδt−1

√
ht
,

µt = φ0 +
s∑
i=1

φirt−i +
u∑
i=1

ζi(rt−i − µt−i) ,

lnht = ω (1 −
p∑
i=1

βi) +
p∑
i=1

βi lnht−i + (1 + α1L+ ...+ αqL
q) [ θ1zt−1 + θ2 (b(zt−1) −

√
2/π) ] ,

b(z) = |z| for |z| ≥ π/2K, b(z) = (π/2 − cos(Kz))/K for |z| < π/2K , K = 100 ,

PK(z, x) =
Kz∑
i=0

ai(x)z
i =

Kz∑
i=0


 Kx∑

|j|=0

aijx
j


 zi , a00 = 1 .

Parameter Estimate (std. error)

φ0 0.0025 (0.0015)
φ1 1.8607 (0.0974)
φ2 -0.9024 (0.1160)
φ3 0.0843 (0.0539)
φ4 -0.0433 (0.0230)
ζ1 -0.8319 (0.0937)
ω -0.5053 (2.3824)
α1 -0.8153 (0.1320)
β1 1.6288 (0.2505)
β2 -0.6315 (0.2484)
θ1 -0.0828 (0.0340)
θ2 0.4366 (0.0456)
δ 0.8171 (0.2166)

a10 0.0305 (0.0187)
a20 -0.1510 (0.0210)
a30 -0.0322 (0.0122)
a40 0.0702 (0.0107)
a50 -0.0174 (0.0112)
a60 -0.0996 (0.0115)
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Table 3: EMM Estimates of the Continuous-Time Non-Affine (Jump-)Diffusion Models. Estimates

are for the sample period 01/06/1954 to 06/28/2000. Standard errors are reported in brackets.

Parameter estimates are for weekly interest rate data expressed in decimal form on a yearly basis and

refer to the following model:

drt = κ1(µt − κ λ rt /κ1 − rt) dt+
√
Vt r

γ
t dW1,t + (eZt − 1)rt dqt ,

d lnVt = κ2(α− lnVt ) dt+ η1 dW2,t ,

dµt = κ3(ϑ− µt ) dt+ η2
√
µ
t
dW3,t ,

Zt � N(µJ , σJ) , κ = E(eZt − 1) = e(µJ +σ2
J/2) − 1 , µJ = 0 , Prob(dqt = 1) = λ dt .

In all models, ρ1,i = corr(dW1,t, dWi,t) = 0, i = 2, 3, and γ = 0.5. In the CIR and the log-normal

stochastic volatility (SV1) models, the drift term is fixed at µt = µ. Similarly, in the CIR and central

tendency (CT ) models, the volatility term is fixed at
√
Vt = σ.

Parameter CIR CT SV1 SV1J SV1-SD SV1J-SD

µ
0.0510 0.0513 0.0508

(0.0040) (0.0046) (0.0050)

κ1
0.1701 1.8403 0.1966 0.2338 1.3511 1.4312

(0.1090) (5.0245) (0.1221) (0.1252) (0.9599) (0.3464)

σ
0.0249 0.0255

(0.0027) (0.0028)

α
-7.1535 -7.1707 -6.1453 -7.0461
(0.2289) (0.3040) (0.3386) (0.2237)

κ2
6.1956 1.4585 8.7248 1.8506

(1.5021) (0.2184) (1.9792) (0.2640)

η1
2.6774 1.5327 3.3885 1.7709

(0.2854) (0.2034) (0.4095) (0.1539)

ϑ
0.0527 0.0674 0.0574

(0.0046) (0.0121) (0.0070)

κ3
0.2790 0.3005 0.3319

(0.5002) (0.1967) (0.1591)

η2
0.0362 0.0880 0.0560

(0.0349) (0.0315) (0.0105)

σJ
0.0263 0.0266

(0.0033) (0.0019)

λ
5.3967 5.2980

(0.1974) (0.1188)
χ2 [d.f. ] 58.93 [16] 54.71 [14] 26.42 [14] 18.16 [12] 17.24 [12] 12.53 [10]

(P-Value) (< 10−5) (< 10−5) (0.0229) (0.1109) (0.1408) (0.2510)
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Table 4: EMM Estimates of the Continuous-Time Affine (Jump-)Diffusion Models. Estimates are for

the sample period 01/06/1954 to 06/28/2000. Standard errors are reported in brackets. Parameter

estimates are for weekly interest rate data expressed in decimal form on a yearly basis and refer to

the following model:

drt = κ1(µt − µJ λ /κ1 − rt) dt+
√
Vt dW1,t + Zt dqt ,

dVt = κ2(α− Vt ) dt+ η1

√
Vt dW2,t ,

dµt = κ3(ϑ− µt ) dt+ η2
√
µt dW3,t ,

Zt � N(µJ , σJ) , µJ = 0 , Prob(dqt = 1) = λ dt .

In the affine stochastic volatility model (SV2), the drift term is fixed at µt = µ.

Parameter SV2 SV2J SV2-SD SV2J-SD

µ
0.0512 0.0526

(0.0055) (0.0018)

κ1
0.2593 0.2555 1.6313 1.7887

(0.1449) (0.0350) (1.3334) (1.2393)

α
0.000054 0.000059 0.000069 0.000052

(0.000016) (0.000014) (0.000022) (0.000019)

κ2
6.4995 1.6645 6.2121 1.7895

(1.2123) (0.5138) (0.9844) (0.4087)

η1
0.0195 0.0109 0.0218 0.0110

(0.0033) (0.0018) (0.0037) (0.0026)

ϑ
0.0533 0.0525

(0.0069) (0.0061)

κ3
0.2968 0.2792

(0.2401) (0.2930)

η2
0.0535 0.0459

(0.0203) (0.0198)

σJ
0.0017 0.0016

(0.0002) (0.0002)

λ
2.9844 3.2688

(0.2159) (0.1223)
χ2 [d.f. ] 25.90 [14] 14.19 [12] 16.42 [12] 10.74 [10]

(P-Value) (0.0266) (0.2889) (0.1727) (0.3779)
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Figure 1: Weekly U.S. 3-month T-Bill Yields, 01/06/1954 to 06/28/2000.
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Figure 2: Yield curve from bond prices generated by the affine stochastic volatility and mean drift

jump-diffusion model. The model coefficients as well the jump parameters µ∗
J , σ

∗
J , and λ∗ are fixed

at the EMM estimates in Table 4. The risk premia coefficients (ξ1, ξ2, ξ3) are set at (−250, 0,−55).

The state variables (Vt, µt) take values (0.0072, 0.08), while rt is 0.09 (· · ·), 0.08 (- -), and 0.07 (—).
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Figure 3: Yield curve from bond prices generated by the affine stochastic volatility and mean drift

jump-diffusion model. The model coefficients as well the jump parameters µ∗
J , σ

∗
J , and λ∗ are fixed

at the EMM estimates in Table 4. The risk premia coefficients (ξ1, ξ2, ξ3) are set at (−250, 0,−55).

The state variables Vt takes value 0.0072, while (rt, µt) are (0.075, 0.075) (· · ·), (0.065, 0.065) (- -),

and (0.055, 0.055) (—).
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Figure 4: Yield curve from bond prices generated by the affine stochastic volatility and mean drift

jump-diffusion model. The model coefficients as well the jump parameters µ∗
J , σ

∗
J , and λ∗ are fixed

at the EMM estimates in Table 4. The risk premia coefficients (ξ1, ξ2, ξ3) are set at (−250, 0,−55).

The state variables (rt, µt) take values (0.088, 0.091), while Vt is 0.012 (· · ·), 0.0072 (- -), and 0.0042

(—).
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Figure 5: Yield curve from bond prices generated by the affine stochastic volatility jump-diffusion

model (constant mean). The model coefficients as well the jump parameters µ∗
J , σ

∗
J , and λ∗ are fixed

at the EMM estimates in Table 4. The risk premia coefficients (ξ1, ξ2) are set at (−250, 0). The state

variable Vt takes value 0.0072, while rt is 0.07 (· · ·), 0.06 (- -), and 0.05 (—).
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