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Abstract

This paper explores a common machine learning tool, the kernel ridge regression, as applied to financial

volatility forecasting. It is shown that kernel ridge provides reliable forecast improvements to both a linear

specification, and a fitted nonlinear specification which represents well known empirical features from

volatility modeling. Therefore, the kernel ridge specification is still finding some nonlinear improvements

that are not part of the usual volatility modeling toolkit. Various diagnostics show it to be a reliable and

useful tool. Finally, the results are applied in a dynamic volatility control trading strategy. The kernel ridge

results again show improvements over linear modeling tools when applied to building a dynamic strategy.
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1 Introduction

Machine learning (ML) tools have been dramatically changing the world of data analytics. They have been

applied in almost all fields with enough data to make improved predictive modeling a possibility. Even

though the basic ML toolbox has been around for over 50 years, modern computing, data availability, and

improved algorithms have invigorated this area of research. Finance is obviously a major area for appli-

cation of these tools.1 It is obvious why primary interest is directed at forecasting returns and developing

trading strategies. Economic gains in this area have the potential to be quite large. However, they run

up against efficient market limits that imply predictability of market returns should be difficult if not im-

possible. This makes this modeling space difficult, and more importantly, difficult to perform clear model

comparisons in a world where the signal to noise ratio is very low. This paper turns to modeling volatility,

where predictability is higher, and selecting good predictive models may have a larger impact.2

The conditional variance of returns, or volatility, is very predictable. This feature has been known

for a long time, and has led to the development of many useful models and procedures.3 Early work

concentrated on squared and absolute daily returns. In the early 1990’s a revolution occurred with the

use of high frequency data to estimate variances over a given day using intraday data. Known as realized

volatility, it provided more accurate measures of volatility and its dynamics.4

The purpose of this paper is to develop and explore predictive models for daily realized volatility time

series using a kernel ridge regression. This machine learning tool is capable of capturing a rich set of non-

linear features in the data. There are many methods in the standard machine learning tool set including,

nearest neighbors, support vectors, ridge and lasso regressions, regression trees, and random forests. There

are also deep neural networks which form much of the basis for modern image classification. A full com-

parison of all these tools is beyond the scope of this paper. Also, which tool is well suited for time series

analysis is still an open question. Analysis here will concentrate on the kernel ridge regression. Recently,

kernel ridge has been applied in macro forecasting in Exterkate, Groenen, Heij & van Dijk (2016). It looks

like a promising tool for exploring a large rich set of nonlinear features while avoiding model over fitting.

1ML research in finance is not new. In the 1990’s there was an earlier wave of interest. Several early examples include Diebold
& Nason (1990), LeBaron (1992), Meese & Rose (1990), and Mizrach (1992). LeBaron (1998) brings together many tools considered
important today. These include neural networks, evolutionary learning, and boostrap/cross-validation systems in the search for
improved foreign exchange trading strategies.

2Examples of machine learning tools for volatility prediction are Andrada-Felix, Fernandez-Rodriguez & Fuertes (2016), Audrino
& Knaus (2016), Chen, Hardle & Jeong (2010), Luo, Zhang, Xu & Wang (2017), and Lux, Hardle & Lessmann (2018).

3See Andersen, Bollerslev, Christoffersen & Diebold (2006) for one of many surveys in this large area of research.
4This area is now very large, and is a standard for volatility modeling. See Barndorff-Nielsen & Shephard (2010) and Andersen,

Bollerslev, Christoffersen & Diebold (2013) for two of the many surveys available.
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It is closely related to support vector machine regressions, but these use a slightly nonstandard objective

function that makes comparisons to other time series results in econometrics more difficult. By utilizing a

flexible functional form, kernalized methods in machine learning can theoretically represent any possible

nonlinear relationship. This makes them a good approach in searching for possible volatility nonlinearities.

Volatility may be much more predictable than returns, but it provides its own set of challenges. First,

the known predictable features mean that the bar is now higher in terms of forecast comparisons. Just being

able to forecast volatility is not interesting. The question is whether a model is able to beat a well defined

benchmark. This opens the question of exactly what this benchmark should be. This paper searches through

some common examples from the recent financial time series literature. Second, volatility has some patterns

that suggest either formal long memory processes, or potential regime shifts that might make building

smaller parsimonious models difficult.

Section 2 will introduce the data and linear and nonlinear models that will be used. Section 3 estimates

the various models and measures the comparisons across the standard models along with the kernel ridge

target. Section 4 sets up a basic volatility control strategy to perform some initial comparisons on the

economic significance of the results, and section 5 concludes.

2 Data and methodology

The key financial time series used in this paper is a modified realized volatility measure. As with other

realized volatility measures it uses intraday data to generate daily volatility estimates. Instead of using

data on the order of 5 minute observations, it uses the less frequent sampling in a data set provided by

Global Financial Data (GFD). They provide a series with hourly observations going back to 1933, and thirty

minute observations starting in 1987. Only the post 1987 data will be used in this study.5

This estimated realized volatility is given by,

RV1
t =
√

N
√

π

2
(

1
N
)

N

∑
h=1
|rt,h|, (1)

where rt,h are the log returns across 30 minute intervals within day t. This differs from traditional realized

volatility in that for robustness the absolute return replaces usual squared returns. They are adjusted to line

up with daily standard deviations by multiplying by an adjustment factor. The application of
√

N is used

5LeBaron (2018) also uses the longer hourly series. In this paper the 30 minute series is used to give a more detailed picture of
volatility for the nonlinear methods.
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to blow up the 30 minute standard deviations to daily units. As is common in many volatility series, means

for the series are taken over different horizons. The approach of Corsi (2009) is used in constructing both a

weekly and monthly volatility measure aggregated as

RVm
t =

1
m

m−1

∑
j=0

RV1
t−j.

As in most of these studies m will be set to 5 and 22 days. Finally, to exclusively concentrate on short term

volatility features the values are divided by a lagged 250 day volatility estimate, RV250
t .

Two other measures are used from the GFD data set. One uses the 30 minute trading volume series

which measures the total number of shares traded on the Dow in intervals of 30 minutes. This series is

converted to a local trend measure that tests whether volume is locally rising, or falling through the day.

The first 30 minutes and last 30 minutes are removed to eliminate the well known unusual trading behavior

at the open and the close. Then the remaining 30 minute periods are divided by two, and the mean of the

second part is divided by the mean of the early part. This gives a simple ratio indicating whether trading

volume is rising or falling. The ratio is then logged to give a trend volume measure denoted by TVt.

A more common technical indicator using daily information is generated from closing and high/low

information. It is constructed from,

CRt = 2(
Ct − Lt

Ht − Lt
)− 1.

This value ranges from −1 to 1 corresponding to a close at the low or the high at the end of the day. It

captures some possible persistence in daily price moves, and might be an indicator of increased trading

activity, and also volatility in the future.

Table 1 presents summary statistics on all these measures. It is clear that the RVt measures are highly

skewed and leptokurtic. Kurtosis for the daily RV estimate is over 70. Often estimation of volatility models

log transforms these to get closer to Gaussian series. These will be given by

rvm
t = log(RVm

t )

The table shows that this transformation moves the data much closer to Gaussian features which will make

model estimation easier.

In nonlinear modeling the actual units matter, and estimation can be hindered by widely different units

of variability in different series. At an extreme, researchers can normalize series by ranges, or standard
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deviations. This study refrains from doing this, but tries to keep the units comparable. The volatility

measures are all in units of logged daily standard deviations normalized by a 250 day mean volatility.

Looking at the rvm
t measures in table 1 shows that this gives a reasonably close range in variability of these

measures as shown by their standard deviations. There is a clear reduction in variability moving from the

high to lower frequency volatility. The other two measures are left alone since their units are meaningful in

both cases. The trend volume indicator does show a relatively low standard deviation (0.10) relative to the

other measures.

Baseline volatility modeling follows Corsi (2009) by building a model for volatility dynamics and fore-

casting from,

rv1
t+1 = β0 + β1rv1

t + β2rv5
t + β3rv22

t + µt. (2)

This basic model can be estimated with ordinary least squares (OLS), and gives a useful linear comparison

with other more complex models that will follow.

Finally, volatility forecasts will be mapped back into normalized standard deviations by taking,

R̂V
1
t+1 = er̂v1

t+1+0.5∗σ2
rv , (3)

where σ2
rv is a estimate of the variance of the logged RV measures. The latter term in the exponential is the

usual bias adjustment when moving in and out of log measures. It would give the true expectation if rvt

were strictly Gaussian, but it is a commonly used approximation for volatility.

The linear model mentioned above will be added to in several ways. The primary purpose of this paper

is to see if the linear framework can be improved with kernel ridge. However, before doing this the target

benchmark will also be raised a little. First, standard nonlinear features will be added to it. Volatility is

well known to have a sign asymmetry in lagged returns. When returns are negative, future volatility tends

to be higher.6 More recently, Wang & Yang (2017) show that volatility persistence itself can depend on past

returns in a nonlinear way. Combining both these features into the original linear framework gives,7

rv1
t+1 = β0 + (β1 + β5rt + β6|rt|)rv1

t + β2rv5
t + β3rv22

t ++β4 I(rt > 0) + µt. (4)

6This feature was discovered in Black (1976), and named in Christie (1982) as being related to the amount of leverage at various
firms. It has recently been reexamined in Hasanhodzic & Lo (2011). Glosten, Jagannathan & Runkle (1993) and Nelson (1991) are
useful models, and a more modern approach is in Curci & Corsi (2012).

7 Another nonlinear specification that adjusts volatility measures by using intraday fourth moments is given in Bollerslev, Patton
& Quaedvlieg (2016), and also in Buccheri & Corsi (2017). Also, a survey of realized volatility forecasting with nonlinear models is in
McAleer & Medeiros (2010).
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This specification will be raced against a nonlinear kernel representation. The key question is just what

sort of nonlinear econometric technology should be used. Modern machine learning provides many ap-

proaches to approximating arbitrary nonlinear functions. It is beyond the scope of this paper to test all

of them, but some rudimentary decisions and comparisons have been made. The model comparison and

search is greatly assisted by the Python Scikit Learn package. Not only does it contain many of the tools

mentioned here, but its consistent interface across models allows for easy comparison and cross validation.

For a modern data analytic example this one is not all that standard. Modern “big data” problems

usually consist of large cross sections and many potential right hand side variables. In this problem the

data set is only moderately sized (about 8000 observations), and the number of right side variables is small

(3-7). The sample size makes it unlikely that highly parameterized, deep learning, neural networks will

succeed. There is still a set of nonlinear models which may be useful. Particularly important are kernel

based approaches. Support vector regressions have been used in several finance applications, but they are

designed more for classification, and usually involve an objective function which is nonstandard for time

series analysis.8 A relatively new tool is kernel ridge regression. This is both more directly applicable to

standard least square objectives. Also, it has recently seen some early success in macroeconomic time series

forecasting.9 Kernel ridge combines a large sequence of nonlinear kernels on the right-hand side along with

the standard ridge regression, (L2), penalty function to avoid over fitting. This model was the most reliable

of the nonlinear models used.

The models are evaluated using standard measures such as mean squared error (MSE), and mean abso-

lute error (MAE). They are estimated in the target space with forecasts of next period conditional standard

deviation. For example,

MSE =
1
T

T

∑
t=1

(RVt − R̂Vt|t−1)
2 (5)

where R̂Vt|t−1 is the RV forecast determined on the previous day. Also reported is a pseudo out of sample

R2 measure which is given by,

R2 = 1−
∑T

t=1(RVt − R̂Vt|t−1)
2

∑T
t=1(RVt − RVt)2

, (6)

where RVt represents the mean RV estimated over a training sample. In most cases all these estimates will

be made out of sample as part of a cross validation procedure.

8See Chen et al. (2010) for an application of support vector machines for volatility prediction.
9See Exterkate et al. (2016) and Exterkate (2013). These papers also include much of the mathematical structure and details of the

model that are skipped here. Also, Efron & Hastie (2016) provides a good textbook summary of the kernel methods as applied to
support vector machines. Much of the intuition and machinery carries over to kernel ridge regression. They also provide comparisons
with kernel smoothing methods which are different from the kernel basis function approach.
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3 Empirical results

3.1 Benchmark models

This section introduces several baseline models which will be used as comparison with the kernel ridge re-

gression. The time period will be January 1987 through October 2017, yielding a sample of 8005 daily obser-

vations. All estimation done here is full sample, and all estimation is by ordinary least squares (OLS). This

generates obvious bias in model fitting parameters, but identification is done by minimizing the Bayesian

Information Criterion (BIC) which penalizes model complexity.

Table 2 begins by estimating a simple autoregressive model of order 1 (AR(1)) on the volatility process.

It generates a large significant coefficient, and a R2 of nearly 0.327. The numbers in parenthesis are standard

errors. This indicates that even the most basic of models generates a fair amount of predictability when it

comes to daily realized volatility. The second model fit is the basic Corsi model with the three different lags.

All three coefficients are highly significant, the BIC and MSE drop dramatically, and the R2 moves to 0.390.

The next change adds the impact of the sign of current return through β4. Model improvement is again

observed through a reduction in BIC. The fourth line now adds the parameters from Wang & Yang (2017).

Both are highly significant, and BIC drops to 6098. The model now has a MSE which is 10 percent less than

the standard Corsi model. Finally, the two extra features are added for the trend volume (TVt), and the

closing ratio (CRt). Both these coefficients are significant, but there is only a small improvement in MSE.

BIC increases, so the optimal model specification would not use these variables. The target nonlinear model

is the one given in line 4 which is essentially Wang & Yang (2017)’s format with some extra information for

return signs.

It is important to note that while goodness of fit measures do improve, the changes are not enormous.

Improvements in MSE beyond the basic Corsi model are only 10 percent.

3.2 Kernel predictors

This section begins estimating nonlinear kernel ridge regressions for different sets of predictors. The object

is to determine the optimal kernel framework, and to also get some insight into how well the kernel handles

nonlinear functions.

Since the kernel ridge is our target model for study, performance measurement now becomes more

critical. The various forecast performance metrics are measured with a randomized 5 fold cross validation.
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In a time series situation it is important to see how this is done. All lags for various regressions are formed

initially. For example, rv22
t which goes back 22 periods will be estimated for each target, RVt+1. These can

be thought of as lined up for a cross sectional regression as in,

rv1
t+1 = f (rv1

t ,rv5
t ,rv22

t ). (7)

Then 4/5’s of these points are chosen at random as the training set for model estimation, and 1/5 are used

for testing model performance. Randomized cross-validation is important in time series situations, since in

makes sure that randomized test sets are spread across the entire time series. Obviously, this implicitly is

imposing strong stationarity assumptions.

Table 3 reports the results across 250 randomized train/test pairs, and estimates MSE, R2, and MAE

for several different selections of predictors. Estimation is done with the Python Scikit Learn kernel ridge

regression. It uses the Radial Basis Function kernel with a penalty α = 0.1, and a bandwidth γ = 0.05.

These optimal parameters were estimated through a grid search procedure using randomized 5 fold cross

validation, and 250 draws. The columns on the left side of the table indicate the predictors that were

included.

The testing begins with the standard Corsi three lagged model. The table reports a mean MSE of 0.190

which is slightly better than the linear specification from the last table. The number in parenthesis estimates

the standard error on the MSE based on the 250 simulations. We know that the sign of the previous return

matters in volatility forecasts, but for a nonlinear model, we can let the kernel model decide how to use

this, so in row two the return, rt, is added. This leads to a large drop in MSE, and an increase in R2. Small

forecast improvements continue as the volume trend and the close ratio are added in rows 3 and 4.

The final two rows are diagnostic, and designed to understand if the kernel ridge is able to understand

various nonlinear features detected in previous research. Both |rt| and the sign of rt are redundant informa-

tion given that the kernel should be able to approximate any nonlinear function for the current return, rt.

This does seems to be the case since the addition of neither function generates any forecast improvement.

From these results, the model from row 4 with rt, trend volume, and the closing ratio, along with the

Corsi lags will be used as the optimal kernel ridge combination. In the next subsection it will be raced

against some of the benchmark comparison models.
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3.3 Kernel ridge comparisons

This section will compare the various volatility forecasting models. All comparisons will be done using

250 randomized 5 fold cross validations where 4/5 of the data is randomly chosen as a training set, and

the final 1/5 is the testing set. As before, time ordering is randomized in this setup. Models that will be

used for comparison are the simple 3 factor linear model from Corsi (2009), the augmented nonlinear model

with return and absolute return interactions as in Wang & Yang (2017), and finally, a linear ridge regression

is also run on the same information set as the kernel ridge. The last test is a comparison that tests the

importance of the nonlinear radial basis terms in the ridge regression.

Results are given in table 4. Models are compared using mean squared error (MSE), R2, and mean

absolute error (MAE).10 The first line presents the results from the nonlinear kernel ridge using the optimal

specification from table 3, row 4. It presents the MSE, R2, and MAE means from the 250 cross-validation

experiments. Numbers in parenthesis are the standard errors for these estimated means. Both the MSE and

R2 are improvements over the various models fit in table 2. However, the improvement does get smaller as

the comparison models are made more complex.11 The MSE is also slightly larger than the value estimated

in table 3, but this is within the range of sampling error as indicated by the standard errors.

The second line in table 4 refers to the basic three factor linear volatility model estimated on line two

of table 2. The table presents values relative to the nonlinear kernel ridge models. For example, the MSE

value of 0.873 indicates that the mean MSE for the kernel model is about 87 percent the MSE for the linear

model, a roughly 13 percent improvement. Similarly, the R2 for the kernel (showing a value of 1.204 is over

20 percent larger than the linear model. MAE improvements are not as dramatic, but appear significant.

Standard errors for the mean ratios are given in parenthesis. Finally, the values in brackets present the

fraction of cross-validation runs where the kernel ridge model beats the comparison model in terms of the

respective goodness of fit estimate. For the linear model these values are all well above 0.95.

The third line in the table moves to the augmented linear model with nonlinear interaction terms as

given in line 4 from table 2. The improvements of the kernel ridge relative to this more complex model

decline. The MSE ratio now shows a value of 0.937, in other words the kernel gives an improvement of

about 6.5 percent. The small standard errors still show that statistically this is a dramatic improvement.

A similar result is given for the R2 where there is an 8 percent improvement for the kernel ridge model.

Quantitatively the MAE reduction is again small, but significant. Finally, the values in brackets are above

10The R2 measure is not a true R2. See earlier section for discussions.
11This is interesting since the early comparison table was estimated on the full sample.
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or near 0.95 indicating that 5 percent or fewer of the nonlinear model runs beat the richer kernel ridge

specification.

The last row removes the nonlinear components from the kernel ridge regression. The same predictor

variables are used, and a new penalty function, α = 3, is estimated using a grid search on a 250 length

cross-validation. This experiment directly tests the value added of the nonlinear kernel component of the

ridge regression. The results show that the nonlinear kernel components still add value to the forecasts.

Linear ridge regression on its own does well relative to the other models. It is especially interesting, that it

seems to be roughly equivalent to the nonlinear model specification. However, it still falls short of the full

kernel ridge specification. The latter specification shows an MSE improvement of nearly 7 percent, and a

R2 improvement of 9 percent. It does show one of the weakest values for comparisons with other models

in that only 87 percent of the kernel ridge runs beat the linear kernel in terms of MSE. This result is a little

curious since the other comparisons, R2 and MAE, are still well above 0.90.

4 Volatility control strategies

This section begins to explore the economic significance of the forecast comparisons. For volatility forecasts,

a common application is a volatility control strategy. In these strategies the volatility forecast is used to

dynamically adjust a portfolio between cash and equity to come as close as possible to a target level of

volatility. The portfolio problem can be stated as,

αt =
σT

σ̂t+1
, (8)

where σT is a target standard deviation, and σ̂t+1 is the one period ahead forecast standard deviation. It is

easy to show that this strategy applied to an equity and risk free asset gives,

rp
t+1 = αtre

t+1 + (1− αt)r f ,

delivering a portfolio that tries to hit the target level of volatility. It is important to note that strategies

of this type completely avoid trying to forecast expected returns. For the runs here, the target will be set

to 10 percent in annual standard deviation units. Also, the strategy is implemented on each day, and it is

assumed to buy at the open, and sell at the close since our volatility estimates purposefully ignore overnight

returns.
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All the results report the values from a 5 fold randomized cross-validation as used in the previous

sections. The estimated portfolio strategies, αt, are bias adjusted in the training samples. This means that a

proportional increase or decrease in αt is applied, λαt, to bring the portfolio standard deviation to the exact

target in the training data. Then λ is applied to the testing data. The reason for doing this is to adjust for

many bias levels that have been added when estimating the final αt target.

Results will again be compared using a similar cross validation strategy as in the last section. Forecasting

models are estimated on training data, and implemented on test data. Strategy summaries are given in table

5. For these simulations the risk free rate is assumed to be 2 percent per year with 250 trading days in a year.

The first column is the most important performance measure. For each cross validation run, the portfolio

returns are generated, and their standard deviations and means are estimated. The first column displays

the MSE difference between the estimated portfolio standard deviation and the target. This is the most

critical value for understanding how well the strategy is performing. The second column, std(σp
t ), displays

the standard deviation of the portfolio volatility estimates. This gives an idea of how well volatility is being

controlled even though it may be biased off its target. The final two columns show the expected return and

the Sharpe ratio for the dynamic portfolios. Both are reported as annualized returns.

The first line in the table, labeled “naive”, shows the results for a static portfolio fraction. The fraction, α,

is estimated using the standard deviation in the training set, and no attempt is made to forecast conditional

variances or dynamically adjust the strategy. This is an important benchmark comparison model. It should

be compared to the next line, “linear”, which refers to the three lag linear model. It can be seen here that the

variability of the portfolio variances around their target drops by nearly a factor of 3. Overall variability, as

given in the Std measure, falls by a factor of 2. It is clear that the dynamic strategy is having a large impact

on the smoothness of the volatility controlled portfolios.

The third row in table 5 moves to the nonlinear augmented volatility model. In terms of variability

around the target volatility there is another large reduction of nearly 1/3 relative to the linear forecast

model. There is a small reduction in variability as the std moves from 0.00026 to 0.00023. The final line

moves to the kernel ridge model. Given that it has been the best performer in terms of prediction, it is not

surprising that it shows further model improvement in the first two columns. However, the gains are now

getting smaller. For the MSE from the target, the value has only fallen by about 10 percent. The std value

only falls from 0.00023 to 0.00022. These gains do not appear that dramatic. In some ways they might have

been predicted by thinking about the overall improvement in R2 from 0.440 to 0.469 when moving from the

nonlinear model to the kernel ridge. Further work will be necessary to determine if these improvements
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are really important to investors.

The last two columns are presented only for some extra information on the strategies. They demonstrate

that the returns often move in unexpected ways. They actually rise for the nonlinear strategies. This is not

expected, and may indicate something interesting about the nonlinearities that the strategies are finding.

Also, it should be noted that the modest Sharpe ratios are partially a result of the fact that the strategy is

only implemented during the open to close period each day, and does not contain the overnight returns.

Figure 1 compares the distributions of the estimated standard deviations for the different strategies from

table 5. The blue bars represent the kernel ridge based portfolios. The target standard deviation is 0.10 in

annual standard deviation units. The other extreme, the naive strategy, is shown with the green bars. The

difference between the two is quite dramatic, and visually repeats the result from the table. It is clear why

investors who desire a smoother portfolio return would be interested in implementing these strategies. The

benchmark nonlinear model (orange) is very close to the kernel in terms of distribution. It is difficult to

think that any set of investor preferences would be able to tell the difference between these two strategies.

5 Conclusions

This paper has explored several nonlinear forecasting tools as applied to forecasting a new daily realized

volatility series for the Dow Industrials. The results show that a common machine learning tool, kernel

ridge regression, was able to find nonlinear features which generated statistically significant improvements

in out of sample forecasts. It was able to improve on a basic linear model, and also a nonlinear model using

recent results from financial econometrics. In volatility space, where there is a lot of structure, the kernel

ridge model is able to detect and utilize some of this structure.

It should be noted that the kernel ridge approach dramatically improved on the basic linear framework,

and did so with no complex model specification. There was no need to coax the model with constructed

nonlinear feature variables. It was able to learn them itself. The nonlinear specification used here was the

result of many years of model explorations. It was even demonstrated that adding extra helper functions of

predictors, like absolute values, was completely superfluous to the kernel ridge specification. It had already

figured out how to use these, demonstrating its power as a general nonlinear function fitter.

The final results show that most of these improvements are significant to a trader using a dynamic

volatility control strategy. However, the marginal gains of kernel ridge versus the nonlinear specification

may not be economically important. On the other hand, kernel ridge did not require and careful model
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prespecification, and its usefulness may be large in areas where lots of nonlinear model exploration has not

been done. Further analysis of simple trading systems, such as volatility control, is an important issue for

future research.

For a realized volatility forecasting problem, kernel ridge regression is a reliable way to include nonlin-

ear features in modeling. It also appears to be fitting nonlinear features which have not yet been discovered

in standard econometric models. While its forecast improvements beyond nonlinear specifications are sig-

nificant, their economic gains relative to these models may not be that large.
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Table 1: Summary Statistics

Mean Std Skewness Kurtosis
RV1 1.004 0.56 4.87 72.5
RV5 1.003 0.43 3.71 36.0
RV22 1.000 0.33 1.96 10.3
rv1 −0.108 0.46 0.14 4.35
rv5 −0.065 0.35 0.47 4.59
rv22 −0.045 0.29 0.37 4.20
Trend Volume (TV) −0.202 0.10 −1.10 7.69
Close Ratio (CR) 0.051 0.54 −0.10 2.09

Summary statistics for realized volatility measures. Values are normalized by 250 day moving averages, which gener-
ates means near 1. rvt = log(RVt). Trend volume is the ratio of trading volume in the second half versus the first half
of the day. Close ratio refers to where the market closes relative to the current high/low range.
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rv1
t+1 = β0 + (β1 + β5rt + β6|rt|)rv1

t + β2rv5
t + β3rv22

t + β4 It(rt > 0) + β7TVt + β8CRt

Table 2: Benchmark model fitting

β1 β2 β3 β4 β5 β6 β7 β8 BIC R2 MSE
0.55 7480 0.327 0.220

(0.009)
0.23 0.38 0.28 6351 0.390 0.200

(0.013) (0.023) (0.023)
0.21 0.40 0.28 −0.05 6193 0.414 0.191

(0.013) (0.023) (0.023) (0.004)
0.14 0.38 0.28 −0.05 −3.89 8.35 6098 0.440 0.183

(0.015) (0.023) (0.023) (0.004) (0.809) (0.996)
0.16 0.39 0.28 −0.05 −1.03 3.12 0.25 0.04 6102 0.443 0.182

(0.014) (0.023) (0.023) (0.004) (0.474) (0.540) (0.051) (0.014)

Model estimation: Fitted parameters, Jan 1987-Oct 2017, full sample. Estimation is by OLS, and numbers in parenthesis
are standard errors on the parameter estimates. For this table only, R2 is the traditional, in sample, R2 measure. BIC
refers to the Bayesian information criterion, or Schwarz criterion used for in sample model selection.
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Table 3: Kernel variable selection

rv1 rv5 rv22 rt TVt CRt |rt| I(rt > 0) MSE R2 MAE
X X X 0.190 0.411 0.292

(0.003) (0.001) (0.001)
X X X X 0.169 0.474 0.284

(0.003) (0.005) (0.001)
X X X X X 0.168 0.477 0.283

(0.002) (0.005) (0.001)
X X X X X X 0.167 0.479 0.284

(0.002) (0.005) (0.001)
X X X X X X X 0.168 0.479 0.284

(0.002) (0.005) (0.001)
X X X X X X X 0.168 0.478 0.284

(0.002) (0.005) (0.001)

Kernel ridge model estimates using randomized 5-fold cross validation to generate out of sample forecast performance.
X’s represents subsets of predictor variables used. Values in parenthesis are estimated standard errors across the 250
cross validation trials.
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Table 4: Kernel Ridge Forecast Comparisons

Comparison MSE R2 MAE
Raw 0.169 0.469 0.283

(0.002) (0.003) (0.001)
Linear 0.873 1.204 0.964

(0.005) (0.007) (0.001)
[0.976] [0.976] [1.000]

Nonlinear 0.937 1.082 0.986
(0.003) (0.004) (0.001)
[0.936] [0.936] [0.972]

Linear Ridge 0.932 1.090 0.988
(0.004) (0.005) (0.001)
[0.876] [0.976] [0.928]

Forecast comparisons with kernel ridge regression. Raw refers to the raw forecast parameters from the benchmark
kernel ridge regression (optimal kernel ridge model). All other forecast measures represent the kernel ridge values
relative to the other comparison models. For example, MSE= 0.873, means that the kernel ridge MSE/Linear MSE mean
ratio is 0.873. Numbers in parenthesis are standard errors across the 250 cross validation trials. Numbers in brackets
represent the fraction of trials where the kernel ridge generates a lower forecast error than the target comparison model
(given in left column).
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Table 5: Volatility Control

Volatility Model MSE(target - vol) Std(σp) E(rp) Sharpe ratio
Naive 1.78x10−7 0.00042 0.046 0.262
Linear 6.83x10−8 0.00026 0.045 0.378

Nonlinear 5.58x10−8 0.00023 0.058 0.381
Kernel 5.13x10−8 0.00022 0.057 0.369

Volatility control strategy results. First column is the MSE of the distance to the target volatility for the simulated
portfolios across 250 cross validation runs. Std(σp) measures the standard deviation of these volatility estimates. The
last two columns are the expected return and Sharpe ratio respectively for the dynamic volatility control portfolios in
annualized units. The strategy is implemented only with each day (open to close).
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Figure 1: Volatility control strategy standard deviations
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