

#### Model Free Results on Volatility Derivatives

**Bruno Dupire** Bloomberg NY

SAMSI Research Triangle Park February 27, 2006

## Outline

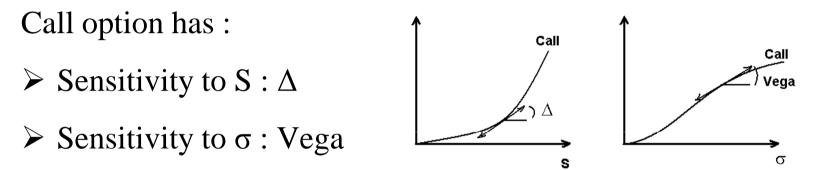
- I VIX Pricing
- II Models
- III Lower Bound
- IV Conclusion

## Historical Volatility Products

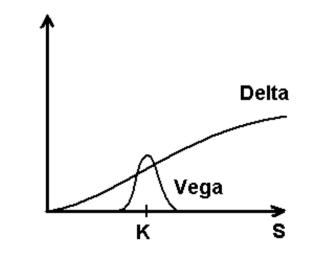
• Historical variance:

$$\frac{1}{n}\sum_{i=1}^{n}(\ln(\frac{S_{i}}{S_{i-1}}))^{2}$$

- OTC products:
  - Volatility swap
  - Variance swap
  - Corridor variance swap
  - Options on volatility/variance
  - Volatility swap again
- Listed Products
  - Futures on realized variance


# Implied Volatility Products

- Definition
  - Implied volatility: input in Black-Scholes formula to recover market price:  $BS(S, \sigma^{impl}, r, K, T) = C_{K,T}^{Market}$
  - Old VIX: proxy for ATM implied vol
  - New VIX: proxy for variance swap rate
- OTC products
  - Swaps and options
- Listed products
  - VIX Futures contract
  - Volax


### I VIX Futures Pricing

### Vanilla Options

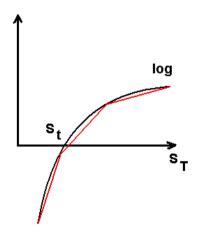
Simple product, <u>but</u> complex mix of underlying and volatility:



These sensitivities vary through time, spot and vol :






# Volatility Games

To play pure volatility games (eg bet that S&P vol goes up, no view on the S&P itself):

≻Need of constant sensitivity to vol;

≻Achieved by combining several strikes;

≻Ideally achieved by a log profile : (variance swaps)

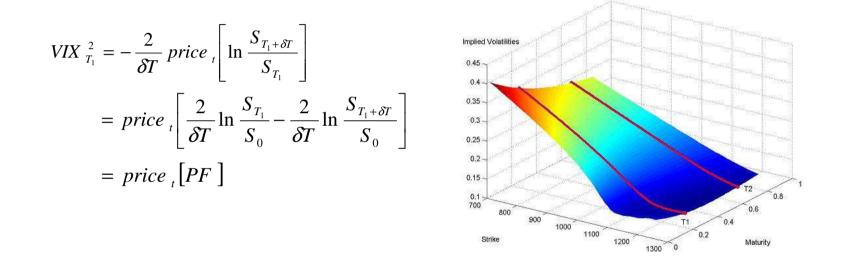


Under BS: 
$$dS = \sigma S dW$$
,  $E\left[\ln \frac{S_T}{S_0}\right] = -\frac{\sigma^2}{2}T$   
For all S,  $\ln(\frac{S}{S_0}) = \frac{S-S_0}{S_0} - \int_0^{S_0} \frac{(K-S)^+}{K^2} dK - \int_{S_0}^{\infty} \frac{(S-K)^+}{K^2} dK$ 

The log profile is decomposed as:

$$\frac{1}{S_0}$$
 Futures  $-\int_{0}^{S_0} \frac{P_{K,T}}{K^2} dK - \int_{S_0}^{\infty} \frac{C_{K,T}}{K^2} dK$ 

In practice, finite number of strikes  $\implies$  CBOE definition:


$$VIX_{t}^{2} \equiv \frac{2}{T} \sum \frac{K_{i+1} - K_{i-1}}{2K_{i}^{2}} e^{rT} X(K_{i}, T) - \frac{1}{T} (\frac{F}{K_{0}} - 1)^{2}$$
Put if  $K_{i} < F$ ,
$$FWD a div$$

Call otherwise FWD adjustment

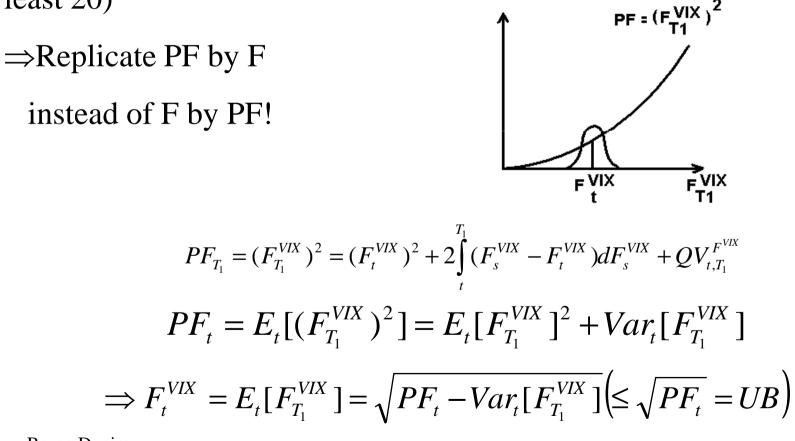
| <b>SPX</b><br>It 16:59 |          | 195       |                |         | ~~                     | 4004 05      |                 |                      | -     | . ~              |        |
|------------------------|----------|-----------|----------------|---------|------------------------|--------------|-----------------|----------------------|-------|------------------|--------|
|                        |          |           | . 45           |         | . 33                   |              | //1095.0        | 58                   | In    | dex C            | IOMC   |
| Lomniote               |          |           | i 1095<br>Edit | 5.69 L  | o 1087.<br>Contract Mo |              | Security Lis    | + <u>CI</u>          | X Ind | 0.V              | ĵ      |
| Template               | s List 🕌 |           |                |         | onitor:                |              |                 | n ÷ <mark>∍</mark> I | V THU | ex               |        |
| Center                 | 1095.    |           |                | f Stri  |                        |              |                 | Conto                | n E   | Johana           |        |
| Center                 | 1000.    |           | iber o         | i Stri  | Kes 10                 | -or-         | <b>/</b> • 11'0 | n Cente              |       | xchang<br>ampoci |        |
|                        |          | ОШУ       |                |         |                        |              |                 | PULS                 | (C)   | omposi           | ιe     |
| Ticker                 | Strike   | Bid       | Ask            | Last    | Volume                 | Ticker       | Strike          | Bid                  | Ask   | Last             | Volume |
| SPX 22 MAY 0           | 4 (Contr | act Size: | 100)           |         |                        | SPX 22 MAY 0 | 4 (Contr        | act Size:            | 100)  |                  |        |
| D SPQ+EH               | 1040     | 53.00     | 55.00          |         |                        | 19) SPQ+QH   | 1040            | 1.25                 | 1.75  | 1.35             | 301    |
| 2) SPQ+EJ              | 1050     | 43.80     | 45.80          | 47.00   | 4385                   | 20) SPQ+QJ   | 1050            | 2.00                 | 2.50  | 2.40             | 328    |
| D SPQ+EL               | 1060     | 34.90     | 36.90          | 36.00   | 1                      | 21) SPQ+QL   | 1060            | 3.00                 | 3.70  | 3.20             | 23     |
| Ð SPQ+EM               | 1065     | 30.60     | 32.60          | 30.10   | 1                      | 22) SPQ+QM   | 1065            | 3.80                 | 4.50  | 4.00             | - 79   |
| D SPQ+EN               | 1070     | 26.60     | 28.60          | 28.00   | 10                     | 23) SPQ+QN   | 1070            | 4.70                 | 5.40  | 4.80             | 202    |
| ) SPQ+E0               | 1075     | 22.70     | 24.70          | 23.80   | 111                    | 24) SPQ+Q0   | 1075            | 6.00                 | 6.30  | 6.30             | 689    |
| ) SPQ+EP               | 1080     | 19,30     | 20-99          | 19.20   | 117                    | 25) SPQ+QP   | 1080            | 7.50                 | 8.00  | 8.20             | 14     |
| 3) SPQ+ER              | 1090     | (12.90    | 14.40          | ) 13.00 | 783                    | 26) SPQ+QR   | 1090            | 11.00                | 11.90 | 11.70            | 192    |
| 9) SPT+ET              | 1100     | 8-10      |                | 8.70    | 11438                  | 27) SPT+QT   | 1100            | 15-30                | 15-88 | 16.90            | 1570   |
| IO) SPT+EB             | 1110     | 4.60      | 5.00           | 4.90    | 683                    | 28) SPT+QB   | 1110            | 21.40                | 23.40 | 22,10            | 126    |
| 1) SPT+EC              | 1115     | 3.30      | 3.60           | 3.20    | 738                    | 29) SPT+QC   | 1115            | 25.10                | 27.10 | 26.00            | î      |
| 2) SPT+ED              | 1120     | 2.25      | 2,95           | 3.00    | 1239                   | 30) SPT+QD   | 1120            | 29,10                | 31.10 | 30.00            | 13     |
| 3) SPT+EE              | 1125     | 1.65      | 2,10           | 1.90    | 3978                   | 31) SPT+QE   | 1125            | 33.30                | 35.20 | 31.50            | 153    |
| 4) SPT+EF              | 1130     | 1.15      | 1.40           | 1.35    | 461                    | 32) SPT+QF   | 1130            | 37.70                | 39.70 | 40.00            |        |
| 5) SPT+EG              | 1135     | .65       | 1.05           | .90     | 1521                   | 33) SPT+QG   | 1135            | 42.30                | 44.30 | 43.50            | 1      |
| 6) SPT+EH              | 1140     | .50       | .60            | .65     | 1548                   | 34) SPT+QH   | 1140            | 47.00                | 49.00 | 48.30            |        |
| 17) SPT+EI             | 1145     | .30       | .50            | .50     | 1                      | 35) SPT+QI   | 1145            | 51.80                | 53.80 | 52,50            | í      |
| 18) SPT+EJ             | 1150     | .30       | .40            | .30     | 6754                   | 36) SPT+QJ   | 1150            | 56.70                | 58.70 | 54.20            | i i    |

Australia 61 2 9777 8600 Brazil 5511 3048 4500 Europe 44 20 7330 7500 Germany 49 69 920410 Hong Kong 852 2977 6000 Japan 81 3 3201 8900 Singapore 65 6212 1000 U.S. 1 212 318 2000 Copyright 2004 Bloomberg L.P. G403-707-1 11-May-04 17:26:05

### Perfect Replication of $VIX_{T_1}^2$



We can buy today a PF which gives  $VIX_{T1}^2$  at  $T_1$ : buy  $T_2$  options and sell  $T_1$  options.


# Theoretical Pricing of VIX Futures F<sup>VIX</sup> before launch

•  $F^{VIX}_{t}$ : price at t of receiving  $\sqrt{PF_{T_1}} = VIX_{T_1} = F_{T_1}^{VIX}$ at  $T_1$ .  $UB = \sqrt{PF_t} = F_{T_1}^{VIX} = \sqrt{PF_T}$  $F_{T_1} = \sqrt{PF_T}$  $F_{t} = E_t[\sqrt{PF_T}] \le \sqrt{E_t[PF_T]} = \sqrt{PF_t} = Upper Bound(UB)$ 

•The difference between both sides depends on the variance of PF (vol vol), which is difficult to estimate.

### Pricing of F<sup>VIX</sup> after launch

Much less transaction costs on F than on PF (by a factor of at least 20)



### Bias estimation

$$F_t^{VIX} = \sqrt{UB^2 - Var_t[F_{T_1}^{VIX}]}$$

 $Var[F_{T_1}]$  can be estimated by combining the historical volatilities of F and Spot VIX.

Seemingly circular analysis :

F is estimated through its own volatility!

## VIX Fair Value Page

| GRAB        |                                                                      | Search               | - /                            | Actions        | J Setting                                        | 5   R                     | elated Funct<br>Index | ions Help<br>FVD        |
|-------------|----------------------------------------------------------------------|----------------------|--------------------------------|----------------|--------------------------------------------------|---------------------------|-----------------------|-------------------------|
|             | VI                                                                   | XF                   | utur                           | res F          | air V                                            | alue                      |                       |                         |
| Ticker      | Expiration                                                           | Days                 | Risk<br>Free                   | Upper<br>Bound | Volatility<br>of Vi×                             | Fair<br>Value             | Futures<br>Price      | Fair -<br>Futures       |
| UXX4        | 11/17/04<br>12/18/04*                                                | 12                   | <u>1.65</u> %<br><u>1.74</u> % |                | <mark>82.42</mark> <mark>2</mark><br>Historical  | 140.44                    | 138.20                | 2.24                    |
| UXF5        | 1/19/05<br>3/19/05*                                                  | 75                   | <u>1.88</u> %<br>2.04%         |                | <mark>66.44</mark> 2<br>Historical               | 156.80                    | 152.00                | 4.80                    |
| UXG5        | 2/16/05<br>3/19/05*                                                  | 103                  | <u>1.97</u> %<br>2.04%         |                | <mark>64.45</mark> <mark>2</mark><br>Historical  | 154.73                    | 157.30                | -2.57                   |
| UXK5        | 5/18/05<br>6/18/05*                                                  | 194                  | <mark>2.15</mark> %<br>2.19%   |                | <mark>-58.87</mark> <mark>2</mark><br>Historical | 149.13                    | 170.00                | -20.87                  |
| the corresp | of these addi<br>onding futur<br>VXB<br>140.<br>977 8600<br>Japan 81 | es con<br>Fast<br>06 | itracts.<br>VX<br>14           | B Spot<br>0.30 | Fast - S<br>-0.24                                | pot<br>500<br>2000 Copyri |                       | 59 920410<br>mberg L.P. |

### Behind The Scene

| M         | icrosoft Excel - ¥IX_spre                | adsheet_v4.xl                  | 5                                   |                |                       |               |                            |                             |                      |                            |                    |                              | læ × |
|-----------|------------------------------------------|--------------------------------|-------------------------------------|----------------|-----------------------|---------------|----------------------------|-----------------------------|----------------------|----------------------------|--------------------|------------------------------|------|
| -         | <u>File E</u> dit <u>V</u> iew Insert Fo | ormat <u>T</u> ools <u>D</u> a | ta <u>B</u> loomberg <u>W</u> indow | Help           |                       |               |                            |                             |                      |                            |                    |                              | 8 ×  |
| ⇒₿        | 1999 (N)                                 |                                |                                     |                |                       |               | e.                         |                             |                      |                            |                    |                              |      |
| 17        | * 🗅 🗲 🖬 🔒 🗸                              | ð 🗘 🚏 🐰                        | B 🛍 🍼 🗠 - O                         | - 🍓 Σ          |                       | <b>3</b> (2)  | ♥ ] Arial                  | • 14 • B                    | <u>I</u> <u>U</u> ≣≣ | <b>臺國 \$ %</b> ,           | *:00 <b>;</b> 00 年 | 🔟 • 🔷 • 🛕 •                  |      |
|           | H2 =                                     | F                              | 0                                   | Н              | 1 1                   | r             | 12                         | 1 1 1                       |                      | N                          | 0                  | P                            | _    |
| 1         | E                                        | F                              | G                                   | н              | 1 1                   | J             | К                          | L.                          | M                    | N                          | 0                  | P                            | -    |
| 2         |                                          |                                |                                     |                |                       |               |                            | VXB Fast                    | VXB spot             | SPOT-FAST                  |                    |                              |      |
| 3         | VIX FUTU                                 | RES FA                         |                                     |                |                       |               |                            | 140.217                     | 140.20               | -0.0168                    |                    |                              |      |
| 4         |                                          |                                |                                     | Bid            | Mid                   | Ask           |                            |                             |                      | Futures                    |                    |                              |      |
| 111112000 | Futures Ticker                           |                                | Expiry                              |                | Upper Boun            |               | Volvol                     | Fair Value                  | Bid                  | Last Price                 | Ask                | FAIR-PRIC                    | CE   |
| 6         | UX1 Index                                |                                | 11/17/2004                          | 123.95         | 142.33                | 158.59        | 60.00%                     | 141.49                      | 136.8                | 138.2                      | 138.5              | 3.29                         |      |
| 7         | UX2 Index                                |                                | 1/19/2005                           | 138.60         | 164.30                | 186.49        | 50.00%                     | 160.14                      | 151                  | 152                        | 152                | 8.14                         |      |
| 8         | UX3 Index                                |                                | 2/16/2005                           | 138.60         | 164.30                | 186.49        | 40.00%                     | 160.63                      | 157                  | 158.3                      | 158.2              | 2.33                         |      |
| 9         | UX4 Index                                |                                | 5/18/2005                           | 139.50         | 163.38                | 184.20        | 30.00%                     | 159.52                      | 169                  | 170                        | 170                | -10.48                       |      |
| 10        | UNT INGON                                |                                | 0/10/2000                           | 100.00         | 100.00                | 104.20        | 00.0070                    |                             |                      |                            | and the second     |                              | _    |
| 11        |                                          |                                |                                     |                | Varianc               | e swap ter    | m structure                | Mid                         | Forward              | Variance term              | structure          | Bi                           |      |
| 12        | Synthetic V                              | /ariance                       | swap rates                          |                | 18.00                 |               |                            | Ask                         | 22.00 -              |                            |                    |                              | sk   |
| 13        |                                          |                                |                                     |                | 17.00                 |               |                            |                             | 20.00                |                            |                    |                              |      |
| 14        | Expiration                               | Bid                            | Mid                                 | Ask            | 16.00                 |               |                            |                             | 1.07120.00.000       |                            |                    |                              |      |
| 15        | 11/20/2004                               | 12.85                          | 13.77                               | 14.63          | 15.00                 |               |                            |                             | 18.00                |                            |                    | 1                            | -    |
| 16        | 12/18/2004                               | 13.17                          | 14.08                               | 14.93          | 14.00                 |               |                            |                             | 16.00                |                            |                    |                              | —    |
| 17        | 1/22/2005                                | 13.51                          | 14.23                               | 14.91          | 13.00                 |               |                            |                             | 14.00                | _                          |                    | 1                            |      |
| 18        | 3/19/2005                                | 14.47                          | 15.19                               | 15.88          | 12.00                 |               |                            |                             | 12.00                |                            |                    |                              |      |
| 19        | 6/18/2005                                | 15.13                          | 15.67                               | 16.19          | 11.00                 |               |                            |                             | 10.00                |                            |                    |                              |      |
| 20        | 9/17/2005                                | 15.82                          | 16.28                               | 16.72          | 10.00 - ,<br>Nov- Dec | - Jan- Feb-   | Mar- Apr- May- Ju          | n- Jul- Aug- Sep-           |                      | - 66 -<br>- 05 -           | - 905 -<br>- 015 - | - 90-IN<br>- 90-IN<br>- 90-D |      |
| 21        |                                          |                                |                                     |                | 04 04                 |               | 05 05 05 06                |                             | Nov-04<br>Dec-04     | Jan-05<br>Feb-05<br>Mar-05 | Apr-05<br>May-05   | Jun-05<br>Jul-05<br>Aug-05   |      |
|           | Peolized                                 | Variana                        | Enturne                             |                | Patch Mark            | to other mark | Barbara Barbara Manadi Man | 1095 2408 2408 2408 -       | Forward              | Vorionaa ou                | uon roto           | -                            |      |
| 22        |                                          |                                |                                     |                | Implied '             | Vol skew      |                            | Forward Variance swap rates |                      |                            |                    |                              |      |
| 23        | (3-month)                                |                                |                                     |                | 12                    |               |                            |                             | Expiration           |                            | Mid                | Ask                          |      |
| 24        | Expiration                               | 22.5                           | Mkt Quote                           |                | 0.28                  |               |                            |                             | 11/20/2004           |                            | 14.23              | 15.86                        |      |
| 25        |                                          | bid                            | mid                                 | as             | 1 A 2 A 2             |               |                            |                             | 12/18/2004           |                            | 14.23              | 15.86                        |      |
| 26        | 12/18/2004                               | 161.00                         | 166.00                              | 171            | 0.23                  |               |                            | = Nov                       | 12/18/2004           |                            | 14.40              | 16.74                        |      |
| 27        | 3/19/2005                                | 231.00                         | 238.50                              | 241 lon poilou | 0.40                  |               |                            | - Dec                       | 1/22/2005            | 11.59                      | 14.40              | 16.74                        |      |
| 28        | 6/18/2005                                | 266.50                         | 271.00                              | 276            | 0.18                  |               |                            | ◆ Jan                       | 1/22/2005            | 13.86                      | 16.43              | 18.65                        |      |
| 29        | 9/17/2005                                | 288.50                         | 293.50                              | 298            | 0.13                  | Bring R.      |                            |                             | 3/19/2005            | 13.86                      | 16.43              | 18.65                        |      |
| 30        |                                          |                                |                                     | -              |                       |               |                            |                             | 3/19/2005            | 13.95                      | 16.34              | 18.42                        |      |
| 31        | 9/18/2004                                |                                | 166.79                              |                | 0.08                  |               |                            |                             | 6/18/2005            | 13.95                      | 16.34              | 18.42                        |      |
| 32        |                                          |                                |                                     |                | 1050 11               |               |                            | 1250                        | 6/18/2005            | 14.85                      | 17.68              | 20.11                        |      |
| 33        |                                          |                                |                                     |                |                       | Stri          | ke                         |                             | 9/17/2005            | 14.85                      | 17.68              | 20.11                        |      |
| 34        |                                          |                                |                                     |                |                       |               |                            | 1                           | <u>1</u>             |                            |                    |                              |      |
|           | ► ► Main Vix \Vix Fut                    | tures / Nov 04 ,               | ( Dec 04 / Jan 05 / Mar             | 05 🖌 June 05   | 5 / Sep 05 /          |               |                            | 1                           |                      | 1                          | 1                  |                              | Ŀ١Ľ  |
|           | ulating Cells: 17%                       |                                |                                     |                |                       |               |                            | and the second second       |                      |                            |                    |                              |      |
| S S       | tart 🛛 🥭 🗹 📧 🙆                           | MA1                            | 'L 💅 Win 阿 1-E                      | L 🧖 2-B        | iL 🎦 3-BL             | 1-BL          | (A 🛃 Figur 🧃               | MATL                        | Help M               | licr 📝 Bloo 🕍              | LVie 🤇             | 6 🕅 🚱 📴 3:03                 | 3 PM |

15

# VIX Summary

>VIX Futures is a FWD volatility between future dates  $T_1$  and  $T_2$ .

> Depends on volatilities over  $T_1$  and  $T_2$ .

>Can be locked in by trading options maturities  $T_1$  and  $T_2$ .

▶2 problems :

□Need to use all strikes (log profile)

 $\Box$ Locks in  $\sigma^2$ , not  $\sigma \Longrightarrow$  need for convexity adjustment and dynamic hedging.

# II Volatility Modeling

# Volatility Modeling

- Neuberger (90): Quadratic variation can be replicated by delta hedging Log profiles
- Dupire (92): Forward variance synthesized from European options. Risk neutral dynamics of volatility to fit the implied vol term structure. Arbitrage pricing of claims on Spot and on vol
- Heston (93): Parametric stochastic volatility model with quasi closed form solution
- Dupire (96), Derman-Kani (97): non parametric stochastic volatility model with perfect fit to the market (HJM approach)

# Volatility Modeling 2

- Matytsin (99): Parametric stochastic volatility model with jumps to price vol derivatives
- Carr-Lee (03), Friz-Gatheral (04): price and hedge of vol derivatives under assumption of uncorrelated spot and vol increments
- Duanmu (04): price and hedge of vol derivatives under assumption of volatility of variance swap
- Dupire (04): Universal arbitrage bounds for vol derivatives under the sole assumption of continuity

#### Variance swap based approach (Dupire (92), Duanmu (04))

- V = QV(0,T) is replicable with a delta hedged log profile (parabola profile for absolute quadratic variation)
  - Delta hedge removes first order risk
  - Second order risk is unhedged. It gives the quadratic variation
- V is tradable and is the underlying of the vol derivative, which can be hedged with a position in V
- Hedge in V is dynamic and requires assumptions on

 $V_t \equiv E_t[V] = QV_{0,t} + E_t[QV_{t,T}]$ 

# Stochastic Volatility Models

• Typically model the volatility of volatility (volvol). Popular example: Heston (93)

$$\frac{dS_t}{S_t} = \sqrt{v_t} dW_t$$
$$dv_t = \kappa (v_{\infty} - v_t) dt + \alpha \sqrt{v_t} dZ_t$$

- Theoretically: gives unique price of vol derivatives (1<sup>st</sup> equation can be discarded), but does not provide a natural unique hedge
- Problem: even for a market calibrated model, disconnection between volvol and real cost of hedge.

## Link Skew/Volvol

- A pronounced skew imposes a high spot/vol correlation and hence a high volvol if the vol is high
- As will be seen later, non flat smiles impose a lower bound on the variability of the quadratic variation
- High spot/vol correlation means that options on S are related to options on vol: do not discard 1<sup>st</sup> equation anymore

From now on, we assume 0 interest rates, no dividends and V is the quadratic variation of the price process (not of its log anymore)

#### Skew⇔volvol

To make it simple:

# Carr-Lee approach

- Assumes
  - Continuous price
  - Uncorrelated increments of spot and of vol
- Conditionally to a path of vol, X(T) is normally distributed,  $= X_0 + \sqrt{Vg}$  (g: normal sample)
- Then it is possible to recover from the risk neutral density of X(T) the risk neutral density of V
- Example:  $E[(X_T X_0)^{2n}] = E[V^n g^{2n}] = \mu_{2n} E[V^n]$
- Vol claims priced by expectation and perfect hedge
- Problem: strong assumption, imposes symmetric smiles not consistent with market smiles
- Extensions under construction

### III Lower Bound

# Spot Conditioning

- Claims can be on the forward quadratic variation  $QV_{T_1,T_2}$
- Extreme case:  $f(v_T)$  where  $v_T$  is the instantaneous variance at T
- If f is convex,

 $E[f(v_T)] = E[E[f(v_T | X_T = K)]] \ge E[f(E[v_T | X_T = K])] = E[f(v_{loc}(K,T))]$ 

Which is a quantity observable from current option prices

#### X(T) not normal => V not constant

• Main point: departure from normality for X(T) enforces departure from constancy for V, or:

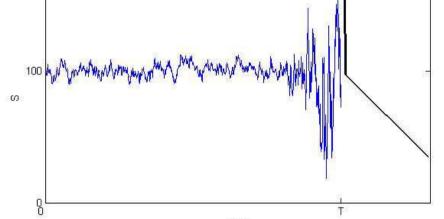
smile non flat => variability of V

- Carr-Lee: conditionally to a path of vol, X(T) is gaussian
- Actually, in general, if X is a continuous local martingale
  - QV(T) = constant => X(T) is gaussian
  - <u>Not</u>: conditional to QV(T) = constant, X(T) is gaussian
  - <u>Not</u>: X(T) is gaussian => QV(T) = constant

## The Main Argument

- If you sell a convex claim on X and delta hedge it, the risk is mostly on excessive realized quadratic variation
- Hedge: buy a Call on V!
- Classical delta hedge (at a constant implied vol) gives a final PL that depends on the Gammas encountered
- Perform instead a "business time" delta hedge: the payoff is replicated as long as the quadratic variation is not exhausted

### Trader's Puzzle


- You <u>know</u> in advance that the total realized historical volatility over the quarter will be 10%
- You sell a 3 month Put at 15% implied
- Are you sure you can make a profit?

#### Answers

• <u>Naïve answer:</u> YES

 $\Delta$  hedging with 10% replicates the Put at a lower cost  $\rightarrow$ Profit = Put(15%) - Put(10%)

 <u>Classical answer:</u> NO Big moves close to the strike at maturity incur losses because Γ<< 0.</li>



• <u>Correct answer:</u> YES Adjust the  $\Delta$  hedge according to realized volatility so far  $\rightarrow$  Profit = Put(15%) – Put(10%)

# Delta Hedging

• Extend f(x) to f(x,v) as the Bachelier (normal BS) price of f for start price x and variance v: . . . 2

$$f(x,v) \equiv E^{x,v}[f(X)] \equiv \frac{1}{\sqrt{2\pi v}} \int f(y) e^{-\frac{(y-x)^2}{2v}} dy$$

- with f(x,0) = f(x)• Then,  $f_{v}(x,v) = \frac{1}{2} f_{xx}(x,v)$
- We explore various delta hedging strategies

# Calendar Time Delta Hedging

• Delta hedging with constant vol: P&L depends on the path of the volatility and on the path of the spot price.

$$df(X_{t},\sigma^{2}.(T-t)) = f_{x}dX_{t} - \sigma^{2}f_{v}dt + \frac{1}{2}f_{xx}dQV_{0,t}$$

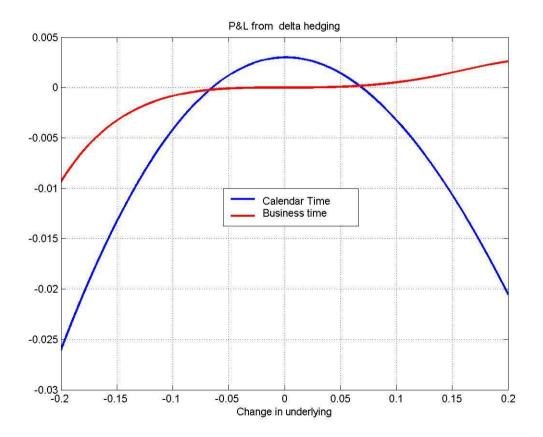
$$= f_{x} dX_{t} + \frac{1}{2} f_{xx} (dQV_{0,t} - \sigma^{2} dt)$$

- Calendar time delta hedge: replication cost of  $f(X_t, \sigma^2 . (T-t))$  $f(X_0, \sigma^2 . T) + \frac{1}{2} \int_0^t f_{xx} (dQV_{0,u} - \sigma^2 du)$
- In particular, for sigma = 0, replication cost of  $f(X_t)$

$$f(X_0) + \frac{1}{2} \int_0^t f_{xx} dQ V_{0,u}$$

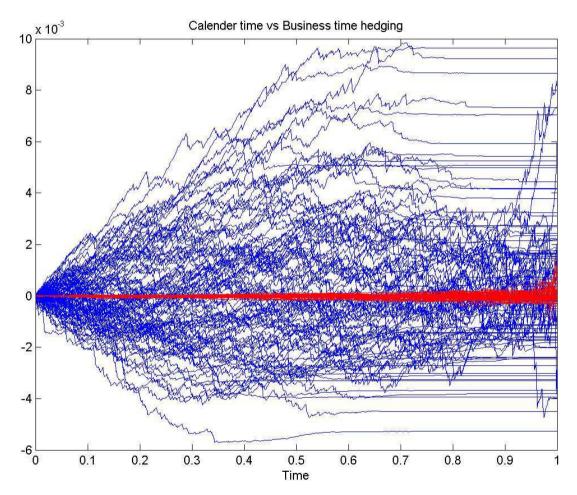
# Business Time Delta Hedging

• Delta hedging according to the quadratic variation: P&L that depends <u>only</u> on quadratic variation and spot price


$$df(X_{t}, L-QV_{0,t}) = f_{x}dX_{t} - f_{v}dQV_{0,t} + \frac{1}{2}f_{xx}dQV_{0,t} = f_{x}dX_{t}$$

• Hence, for  $QV_{0,T} \leq L$ ,

$$f(X_t, L - QV_{0,t}) = f(X_0, L) + \int_0^t f_x(X_u, L - QV_{0,u}) dX_t$$


And the replicating cost of  $f(X_t, L-QV_{0,t})$  is  $f(X_0, L)$  $f(X_0, L)$  finances exactly the replication of f until  $\tau: QV_{0,\tau} = L$ 

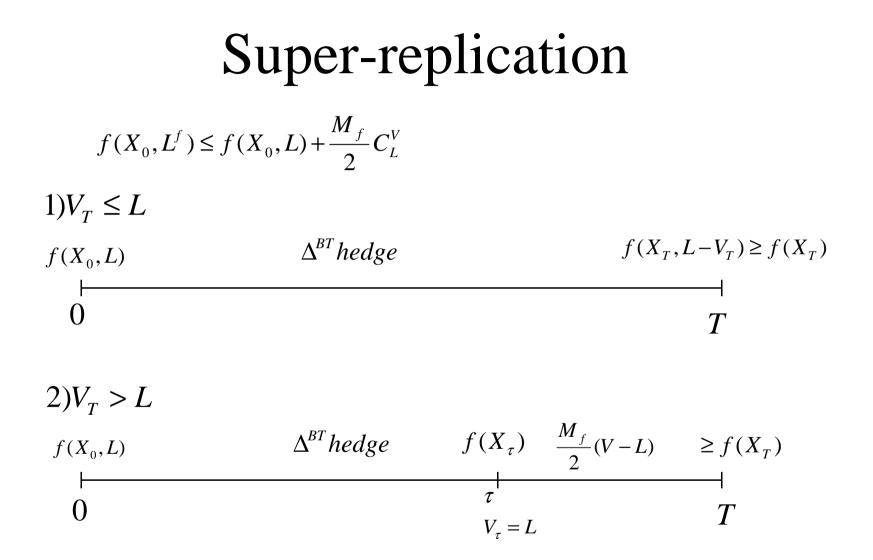
### Daily P&L Variation



Bruno Dupire

### Tracking Error Comparison




## Hedge with Variance Call

- Start from  $f(X_0, L)$  and delta hedge f in "business time"
- If V < L, you have been able to conduct the replication until T and your wealth is  $f(X_T, L-V) \ge f(X_T)$
- If V > L, you "run out of quadratic variation" at  $\tau$  < T. If you then replicate f with 0 vol until T, extra cost:

$$\frac{1}{2} \int_{\tau}^{T} f''(X_{t}) dQV_{t} \leq \frac{M_{f}}{2} \int_{\tau}^{T} dQV_{t} = \frac{M_{f}}{2} (V - L)$$

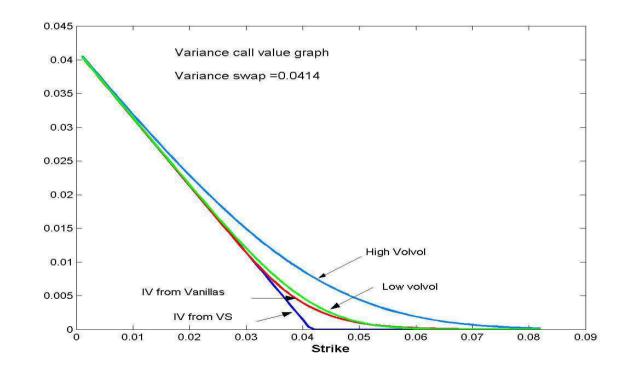
where  $M_f \equiv \sup\{f''(x)\}$ 

• After appropriate delta hedge,  $f(X_0, L) + \frac{M_f}{2} Call_L^V$ dominates  $f(X_T)$  which has a market price  $f(X_0, L^f)$ 



### Lower Bound for Variance Call

- $C_L^V$  : price of a variance call of strike L. For all f,  $C_L^V \ge \frac{2}{M_f} (f(X_0, L^f) - f(X_0, L))$
- We maximize the RHS for, say,  $M_f \le 2$
- We decompose f as


 $f(x) = f(X_0) + (x - X_0)f'(X_0) + \int f''(K) Vanilla_K(x) dK$ 

Where  $Vanilla_{K}(x) \equiv K - x$  if  $K \leq X_{0}$  and x - K otherwise Then,  $C_{L}^{V} \geq \int f''(K)(Van_{K}(L^{K}) - Van_{K}(L)) dK$ 

Where  $Van_{K}(L^{K})$  is the price of  $Vanilla_{K}(x)$  for variance v and  $L^{K}$  is the market implied variance for strike K

#### Lower Bound Strategy

- Maximum when f'' = 2 on  $A \equiv \{K : L^K \ge L\}$ , 0 elsewhere
- Then,  $f(x) = 2\int_{A} Vanilla_{K}(x) dK$  (truncated parabola) and  $C_{L}^{V} \ge 2\int_{A} (Van_{K}(L^{K}) - Van_{K}(L)) dK$



# Arbitrage Summary

- If a Variance Call of strike L and maturity T is below its lower bound:
- 1) at t = 0,
  - Buy the variance call
  - Sell all options with implied vol  $\geq \sqrt{\frac{L}{T}}$
- 2) between 0 and T,
  - Delta hedge the options in business time
  - If  $\tau < T$ , then carry on the hedge with 0 vol
- 3) at T, sure gain

# IV Conclusion

- Skew denotes a correlation between price and vol, which links options on prices and on vol
- Business time delta hedge links P&L to quadratic variation
- We obtain a lower bound which can be seen as the real intrinsic value of the option
- Uncertainty on V comes from a spot correlated component (IV) and an uncorrelated one (TV)
- It is important to use a model calibrated to the whole smile, to get IV right and to hedge it properly to lock it in