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Historical Volatility Products

• Historical variance:

• OTC products:
– Volatility swap

– Variance swap

– Corridor variance swap
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– Corridor variance swap

– Options on volatility/variance

– Volatility swap again

• Listed Products
– Futures on realized variance



Implied Volatility Products

• Definition
– Implied volatility: input in Black-Scholes formula to recover 

market price:

– Old VIX: proxy for ATM implied vol
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– New VIX: proxy for variance swap rate

• OTC products
– Swaps and options

• Listed products
– VIX Futures contract

– Volax



I VIX Futures Pricing



Vanilla Options
Simple product, butcomplex mix of underlying and volatility:

Call option has :

� Sensitivity to S : ∆

� Sensitivity to σ : Vega
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� Sensitivity to σ : Vega

These sensitivities vary through time, spot and vol :



Volatility Games
To play pure volatility games (eg bet that S&P vol goes up, no 
view on the S&P itself):

�Need of constant sensitivity to vol;

�Achieved by combining several strikes;
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�Achieved by combining several strikes;

�Ideally achieved by a log profile : (variance swaps)
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Under BS: dS = σS dW, 

For all S,

The log profile is decomposed as:
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In practice, finite number of strikes        CBOE definition:
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Option prices for one maturity
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Perfect Replication of 2
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We can buy today a PF which gives VIX2
T1 at T1:

buy T2 options and sell T1 options.

[ ]PFprice t=



Theoretical Pricing of VIX 
Futures FVIX before launch

• FVIX
t: price at t of receiving 

at T1 .
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•The difference between both sides depends on the variance 
of PF (vol vol), which is difficult to estimate.



Pricing of FVIX after launch
Much less transaction costs on F than on PF (by a factor of at 
least 20)

⇒Replicate PF by F 

instead of F by PF!
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instead of F by PF!
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Bias estimation
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1TFVar can be estimated by combining the historical 

volatilities of F and Spot VIX. 
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volatilities of F and Spot VIX. 

Seemingly circular analysis : 

F is estimated through its own volatility!



VIX Fair Value Page
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Behind The Scene
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VIX Summary
�VIX Futures is a FWD volatility between future dates T1 and T2.

�Depends on volatilities over T1 and T2.

�Can be locked in by trading options maturities T1 and T2.
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�2 problems :

�Need to use all strikes (log profile)

�Locks in    , not             need for convexity adjustment and 
dynamic hedging.

2σ σ



II Volatility Modeling
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Volatility Modeling
• Neuberger (90): Quadratic variation can be replicated by 

delta hedging Log profiles

• Dupire (92): Forward variance synthesized from European 
options. Risk neutral dynamics of volatility to fit the 
implied vol term structure. Arbitrage pricing of claims on 
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implied vol term structure. Arbitrage pricing of claims on 
Spot and on vol

• Heston (93): Parametric stochastic volatility model with 
quasi closed form solution

• Dupire (96), Derman-Kani (97): non parametric stochastic 
volatility model with perfect fit to the market (HJM 
approach)



Volatility Modeling 2

• Matytsin (99): Parametric stochastic volatility model with 
jumps to price vol derivatives

• Carr-Lee (03), Friz-Gatheral (04): price and hedge of vol 
derivatives under assumption of uncorrelated spot and vol 
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derivatives under assumption of uncorrelated spot and vol 
increments

• Duanmu (04): price and hedge of vol derivatives under 
assumption of volatility of variance swap

• Dupire (04): Universal arbitrage bounds for vol derivatives 
under the sole assumption of continuity



Variance swap based approach
(Dupire (92), Duanmu (04))

• V = QV(0,T) is replicable with a delta hedged log profile 
(parabola profile for absolute quadratic variation)

– Delta hedge removes first order risk

– Second order risk is unhedged. It gives the quadratic 
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– Second order risk is unhedged. It gives the quadratic 
variation

• V is tradable and is the underlying of the vol derivative, 
which can be hedged with a position in V

• Hedge in V is dynamic and requires assumptions on

][][ ,.0 Tttttt QVEQVVEV +=≡



Stochastic Volatility Models

• Typically model the volatility of volatility (volvol). 
Popular example: Heston (93)
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• Theoretically: gives unique price of vol derivatives (1st

equation can be discarded), but does not provide a natural 
unique hedge 

• Problem: even for a market calibrated model, 
disconnection between volvol and real cost of hedge.

tS

tttt dZvdtvvdv ακ +−= ∞ )(



Link Skew/Volvol

• A pronounced skew imposes a high spot/vol correlation 
and hence a high volvol if the vol is high

• As will be seen later, non flat smiles impose a lower bound 
on the variability of the quadratic variation
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• High spot/vol correlation means that options on S are 
related to options on vol: do not discard 1st equation 
anymore

From now on, we assume 0 interest rates, no dividends and V 
is the quadratic variation of the price process (not of its log 
anymore)



Skew�volvol

To make it simple:
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Carr-Lee approach
• Assumes

– Continuous price

– Uncorrelated increments of spot and of vol

• Conditionally to a path of vol, X(T) is normally 
distributed, (g: normal sample)

• Then it is possible to recover from the risk neutral density 

gVX += 0
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• Then it is possible to recover from the risk neutral density 
of X(T) the risk neutral density of V

• Example: 

• Vol claims priced by expectation and perfect hedge

• Problem: strong assumption, imposes symmetric smiles 
not consistent with market smiles

• Extensions under construction
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III Lower Bound
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Spot Conditioning

• Claims can be on the forward quadratic variation

• Extreme case:          where       is the instantaneous variance 
at T

• If f is convex,

21,TTQV
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• If f is convex,

Which is a quantity observable from current option prices
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X(T) not normal => V not constant

• Main point: departure from normality for X(T) enforces 
departure from constancy for V, or:

smile non flat  => variability of V

• Carr-Lee: conditionally to a path of vol, X(T) is gaussian
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• Carr-Lee: conditionally to a path of vol, X(T) is gaussian

• Actually, in general, if X is a continuous local martingale

– QV(T) = constant => X(T) is gaussian

– Not: conditional to QV(T) = constant, X(T) is gaussian

– Not: X(T) is gaussian => QV(T) = constant 



The Main Argument

• If you sell a convex claim on X and delta hedge it, the risk 
is mostly on excessive realized quadratic variation

• Hedge: buy a Call on V!

• Classical delta hedge (at a constant implied vol) gives a 
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• Classical delta hedge (at a constant implied vol) gives a 
final PL that depends on the Gammas encountered

• Perform instead a “business time” delta hedge: the payoff 
is replicated as long as the quadratic variation is not 
exhausted



Trader’s Puzzle

• You knowin advance that the total realized historical 
volatility over the quarter will be 10%

• You sell a 3 month Put at 15% implied
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• You sell a 3 month Put at 15% implied

• Are you sure you can make a profit?



Answers
• Naïve answer:YES
∆ hedging with 10% replicates the Put at a lower cost �

Profit = Put(15%) - Put(10%)

• Classical answer:NO
Big moves close to the 
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Big moves close to the 

strike at maturity incur 

losses because Γ<< 0.

• Correct answer:YES
Adjust the ∆ hedge according to realized volatility so far

� Profit = Put(15%) – Put(10%)



Delta Hedging

• Extend f(x) to f(x,v) as the Bachelier (normal BS) price of 
f for start price x and variance v:

with f(x,0) = f(x)
∫
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with f(x,0) = f(x)

• Then,

• We explore various delta hedging strategies
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Calendar Time Delta Hedging
• Delta hedging with constant vol: P&L depends on the path 

of the volatility and on the path of the spot price.
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• Calendar time delta hedge: replication cost of

• In particular, for sigma = 0, replication cost of 
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Business Time Delta Hedging

• Delta hedging according to the quadratic variation: P&L 
that depends onlyon quadratic variation and spot price
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• Hence, for 

And the replicating cost of is

finances exactly the replication of f until

2
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Daily P&L Variation
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Tracking Error Comparison
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Hedge with Variance Call

• Start from and delta hedge f in “business time”
• If V < L, you have been able to conduct the replication 

until T and your wealth is

• If V > L, you “run out of quadratic variation” at τ < T. If 

),( 0 LXf

)(),( TT XfVLXf ≥−
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• If V > L, you “run out of quadratic variation” at τ < T. If 
you then replicate f with 0 vol until T, extra cost:

where
• After appropriate delta hedge,
dominates which has a market price 
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Super-replication
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Lower Bound for Variance Call

• : price of a variance call of strike L. For all f,

• We maximize the RHS for, say, 

• We decompose f as
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• We decompose f as

Where if and otherwise

Then,

Where  is the price of for variance v 
and is the market implied variance for strike K
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Lower Bound Strategy
• Maximum when f” = 2 on , 0 elsewhere

• Then, (truncated parabola)
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Arbitrage Summary

• If a Variance Call of strike L and maturity T is below its 
lower bound:

• 1) at t = 0,
– Buy the variance call
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– Buy the variance call

– Sell all options with implied vol

• 2) between 0 and T,
– Delta hedge the options in business time

– If          , then carry on the hedge with 0 vol

• 3) at T, sure gain

T

L≥

T<τ



IV Conclusion

• Skew denotes a correlation between price and vol, which 
links options on prices and on vol

• Business time delta hedge links P&L to quadratic variation

• We obtain a lower bound which can be seen as the real 

Bruno Dupire 41

• We obtain a lower bound which can be seen as the real 
intrinsic value of the option

• Uncertainty on V comes from a spot correlated component 
(IV) and an uncorrelated one (TV)

• It is important to use a model calibrated to the whole smile, 
to get IV right and to hedge it properly to lock it in


