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Abstract

Bond Yield curve is an important indicator of the borrowing costs
and lending returns, is also one of the most observed indicator by
traders in fixed income trading desk among investment banks. The
shape of the yield curve can be normal, flat or inverted. In most
cases, bond yield curve is concavely shaped. There are theories to
explain the economical meaning for a normal, flat or inverted yield
curve. However, there is a lack of explanation for the concave shape
of the yield curve. We in this article try to provide an explanation by
constructing arbitrage portfolio under the assumption that the yield
curve moves in parallel. We can show that under this assumption,
zero coupon bond yield curve should be concavely shaped. We will
also reach the same conclusion for swap curves. In this process, we
also discover some interesting properties which were never discussed
in the literature.

In fixed income sector, the yield curve is probably the most observed
indicators by traders and economists. A yield curve plots interest rates
across different contract maturities from the short end to the long end. For
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each currency, the corresponding curve shows the relationship between the
level of the interest rates (or cost of borrowing) and the time to maturity.
For example, the U.S. dollar interest rates paid on U.S. Treasury securities
for various maturities are plotted as the US treasury curve.

The shape of the yield curve gives an idea of future interest rate changes
and economic activity. There are three main types of yield curve shapes:
normal, flat and inverted. A normal yield curve is one in which longer
maturity bonds have a higher yield compared to shorter-term bonds. An
inverted yield curve is one in which the shorter-term yields are higher than
the longer-term yields. In a flat or humped yield curve, the shorter-term
and longer-term yields are very close to each other.
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Figure 1: US Yield Curve as of 2018-08-15

There are various literatures on modeling yield curve. For example, Nel-
son and Siegel [7] was widely cited to give a parametric model to describe the
shape of the yield curve. In the model, they use the following parametriza-
tion to model the forward rates

f(t) = β1 + β2e
− t
τ + β3
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τ
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where τ is a nonlinear parameter and β1, β2, β3 are linear parameters of the
model.

Rezende and Ferreira [18] added a third hump to obtain five-factor model
as follows:

f(t) = β1 + β2e
− t
τ1 + β3

t
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Modeling the term structure of the yield curve has draw a lot of attention
as well. Vasicek [16] used the following Ornstein-Uhlenbeck process to model
the short rate

drt = λ(θ − rt)dt+ σdWt

The merit of this model is that short rate has mean - reversion property.
The Cox, Ingersoll and Ross [17] used a slightly different version

drt = κ(θ − rt)dt+ σ
√
rtdWt

One of the problem of Vasicek and CIR model is that they are not flexible
enough to fit into the initial yield curve. Ho and Lee [11] have been the first
to propose and exogenous term structure model.

drt = θ(t)dt+ σdWt

Hull and White [12] extended the Vasicek model by assuming the short
rate evolves under the risk neutral measure according to

drt = (θ(t)− κrt)dt+ σ(t)dWt

While the structure can successfully calibrate to the initial term structure, it
has to assume that the entire movement of the term structure are governed
by one source of risk. Eventually the Heath, Jarrow and Morton [14] gave
the arbitrage free dynamics of the forward rate.

df(t, T ) = α(t, T )dt+ σ(t, T )dWT (t)

where

α(t, T ) = σ(t, T )

∫ T

t

σ(t, s)ds

All these models are trying to describe the future movements of the interest
rate, but none of these models tries to answer the question: why the yield
is usually concavely shaped.

3

Electronic copy available at: https://ssrn.com/abstract=3232697



 Electronic copy available at: https://ssrn.com/abstract=3232697 

In another direction, Letterman and Scheinkman [19] found that the term
structure is driven by a small number of common factors by using principal
components analysis. It is commonly known that the yield curve has mainly
three components, level, slope and convexity.

The paper by Litterman, Scheinkman and Weiss [20] was among the
first to suggest that there is a direct link between interest rate volatility and
the shape of the yield curve. In that paper they show that there is a high
correlation between implied volatility from bond options and yield spreads
on certain butterfly combinations. Using a simple binomial term-structure
model, they trace the relationship between volatility and the butterfly spread
to the convexity of the bond prices (as functions of yields).

In an empirical study, Brown and Schaefer [22] document that the ter-
m structure of long-term forward rates is downward sloping. Specifically,
they consider the spread between the 25-year and the 15-year instantaneous
forward rates. A theoretical explanation for this result is the downward con-
vexity bias, which also explains the relationship between volatility and the
curvature of the yield curve.

In a one-factor model, Brown and Schaefer [21] show that the second
derivative of the forward rate with respect to a kind of duration function is
equal to the short-rate volatility. Brown and Schaefer [22] use this result to
calculate an implied volatility from the shape of the yield curve.

Even the yield curve can be flat, upward or downward (inverted), how-
ever, yield curve is generally concave. There is a lack of explanation of the
concavity of the yield curve shape from economics theory. We offer in this
article an explanation of the concavity shape of the yield curve from trading
perspectives.

Our main argument is to construct an investment portfolio consisting
fixed income instruments and demonstrate that if the yield curve is not con-
cave, an arbitrage will emerge. Our results also depend on an assumption
that yield curve moves up and down in parallel or proportional. This as-
sumption is not precisely true but should be approximately acceptable in
reality, in particular from statistical point of view.

1 Zero Coupon Bonds and Arbitrage Strat-

egy

Our main results depend on the following well known results:
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Convexity Inequality The function f(x), x ∈ R is a convex function, then
it should satisfy the following inequality. For any λ1 > 0, λ2 > 0 which
λ1 + λ2 = 1 and a, b ∈ R, we should have

f(λ1a+ λ2b) ≤ λ1f(a) + λ2f(b)

We now set up our securities. We have three zero coupon bonds, calling
them B1, B2, B3 corresponds to three maturities T1 < T2 < T3. Their yields
to maturity are y1, y2, y3. So far we impose no conditions on these yields as
long as the implied forward is positive. We now construct a trading portfolio
by purchasing λ1 dollar amount of B1, λ3 dollar amount of B3 and short λ2
dollar amount of B2. We choose quantities λ1 > 0, λ2 > 0, λ3 > 0 by the
following rules

λ1 + λ3 = λ2

and
λ1T1 + λ3T3 = λ2T2.

We notice that by combining the two equations, we have

λ1(T2 − T1) = λ3(T3 − T2)

In fact by linear algebra, the solutions of λi is unique up to a scalar

λ1 = T3 − T2, λ2 = T3 − T1, λ3 = T2 − T1

As a consequence
λ1
λ2

+
λ3
λ2

= 1

We claim that portfolio we have constructed has zero cost. Zero cost
is obvious given the rule that λ1 − λ2 + λ3 = 0. After the yields move by
amount a instantaneously, our portfolio value becomes

P (a) = λ1e
−aT1 + λ3e

−aT3 − λ2e−aT2

But we will show that this function P (a) is always positive which is equiv-
alent to

λ1e
−aT1 + λ3e

−aT3 ≥ λ2e
−aT2

But this is true by applying our convexity inequality f(x) = ex which is
clearly a convex function.

λ1
λ2
e−aT1 +

λ3
λ2
e−aT3 ≥ e

−a
λ1
λ2

T1−a
λ3
λ2

T3 = e−aT2
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due to the fact that

T3 − T2
T3 − T1

T1 +
T2 − T1
T3 − T1

T3 = T2

This proves our statement.
However this is only true instantaneously. As time marches on, we need

to deal with carry cost as well. It turns out we need to impose an additional
sufficient condition: The yields y1, y2, y3 as a function of time to maturity
T1, T2, T3 is convex, i.e.

(T3 − T2)y1 + (T2 − T1)y3 ≥ (T3 − T1)y2 (1)

Theorem 1. If yields y1, y2, y3 as a function of time to maturity T1, T2, T3
is convex, i.e.

(T3 − T2)y1 + (T2 − T1)y3 ≥ (T3 − T1)y2 (2)

the portfolio we constructed admits an arbitrage.

Proof. Now we assume yields move by the same amount a and time moves
forward by t, therefore our portfolios new value becomes

P (a, t) = λ1e
−a(T1−t)+y1t + λ3e

−a(T3−t)+y3t − λ2e−a(T2−t)+y2t

We want to show that this quantity is positive i.e.

λ1
λ2
e−a(T1−t)+y1t +

λ3
λ2
e−a(T3−t)+y3t ≥ e−a(T2−t)+y2t

By the convexity inequality we have

λ1
λ2
e−a(T1−t)+y1t +

λ3
λ2
e−a(T3−t)+y3t

≥ e
−a

λ1
λ2

(T1−t)−a
λ3
λ2

(T3−t)+
λ1
λ2

y1t+
λ3
λ2

y3t

= e−a(T2−t)e
λ1
λ2

y1t+
λ3
λ2

y3t

But if the yield yi are convex, by definition we have

λ1
λ2
y1 +

λ3
λ2
y3 ≥ y2

therefore
λ1e

−a(T1−t)+y1t + λ3e
−a(T3−t)+y3t ≥ λ2e

−a(T2−t)+y2t

is true.
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We have completed our argument that arbitrage exists by construction
a zero cost portfolio consisting of three zero coupon bonds. The argument
is valid for any three maturities as long as corresponding yields are convex
and the yields move by the same amount. The entire argument is based on
the convexity inequality. We have proved so far:

1. Under parallel movement in yields, we can construct zero cost portfolio
and achieve positive profit instantaneously.

2. If Yields are convex with respect to time, we construct zero cost port-
folio and achieve positive profit at any future time.

In fact if we consider our proof carefully, we will realize that duration free
construction of the bond portfolio by longing one short-term and one long-
term bond meanwhile shorting one intermediate term bond will achieve in-
stantaneous profit. However, if the three bond yields are concave as well,
the same position can give us positive carry as well. This is the essence of
this proof.

2 Nonparallel Movement

We now extend the results in the previous sections to nonparallel movemen-
t. For this purposes, we assume that three yields move not necessarily in
parallel, but the movements are proportional to three amounts li. When all
li are identical, this is equivalent to parallel movements. The bond yields
moves by ai = λli with the same scalar λ. We now prove the following result.

Theorem 2. If the three point

(l1T1, y1), (l2T2, y2), (l3T3, y3)

are concave, we can construct an arbitrage zero coupon bond portfolio.

Proof. We set up the portfolio weights. We require zero cost

λ1 + λ3 = λ2

and zero duration
λ1l1T1 + λ3l3T3 = λ2l2T2.
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As a consequence we have up to a scalar

λ1 = l3T3 − l2T2
λ2 = l3T3 − l1T1
λ3 = l2T2 − l1T1

As before, we first check the instantaneous result. The Portfolio value after
the yield movement becomes

P (a1, a2, a3) = λ1e
−a1T1 + λ3e

−a3T3 − λ2e−a2T2

By convexity inequality

λ1
λ2
e−a1T1 +

λ3
λ2
e−a3T3 ≥ e

−λ1
λ2

a1T1−λ3
λ2

a3T3 = e−a2T2

Secondly, we let time march forward by amount t, the new portfolio
becomes

λ1e
−a1(T1−t)+y1t + λ3e

−a3(T3−t)+y3t − λ2e−a2(T2−t)+y2t

and we hope to demonstrate

λ1
λ2
e−a1(T1−t)+y1t +

λ3
λ2
e−a3(T3−t)+y3t ≥ e−a2(T2−t)+y2t

Given the assumption that (liTi, yi) are convex on the plane, for sufficiently
small λ, the three points

(l1T1, y1 + λl1), (l2T2, y2 + λl2), (l3T3, y3 + λl3)

must be convex as well. Again by applying the convex inequality,

λ1
λ2
e−a1(T1−t)+y1t +

λ3
λ2
e−a3(T3−t)+y3t

≥ e
−λ1
λ2

a1(T1−t)+
λ1
λ2

y1t−λ3
λ2

a3(T3−t)+
λ3
λ2

y3t

≥ e−a2(T2−t)+y2t

which proved the theorem.

3 Summary

In this paper, we have proved that under mild assumptions, the zero coupon
bond yield curve should be concavely shaped. With much more careful
derivation, we also reach the same conclusion for swap curves.
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