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A partial rough path space for rough volatility
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Abstract

We develop a variant of rough path theory tailor-made for the
analysis of a class of financial asset price models, the so-called rough
volatility models. As an application, we prove a pathwise large de-
viation principle (LDP) for a certain class of rough volatility models,
which in turn describes the limiting behavior of implied volatility for
short maturity under those models. First we introduce a partial rough
path space and an integration map on it, and then investigate several
fundamental properties including local Lipschitz continuity of the in-
tegration map from the partial rough path space to a rough path space.
Second we construct a rough path lift of a rough volatility model. Fi-
nally, an LDP on the partial rough path space is proved and the LDP
for rough volatility then follows by the continuity of the solution map
of rough differential equations (RDE).

1 Introduction

A rough volatility model is a stochastic volatility model for an asset price
process with volatility being rough, meaning that the Hölder regularity of
the volatility path is less than half. Recently such a model has been at-
tracted attention in mathematical finance because of its unique consistency
to market data. The rough volatility models are indeed the only class of con-
tinuous price models that are consistent to a power law of implied volatility
term structure typically observed in equity option markets, as shown by
[13]. Not only to derive a power law but also to seek a precise approxima-
tion formula, an LDP under rough volatility models has been extensively
investigated by many authors [7, 3, 2, 9, 10, 22, 23, 24, 27, 25, 28].

Under rough volatility models, the volatility of an asset price has a lower
Hölder regularity than the asset price process. The stochastic integrands
are therefore not controlled by the stochastic integrators in the sense of [20].
Hence, a rough volatility model is beyond the scope of the rough path the-
ory, which motivated [2] to develop a regularity structure for rough volatil-
ity. For classical stochastic differential equations, the Freidlin-Wentzell LDP
can be obtained as a consequence of the continuity of the solution map (the
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Lyons-Itô map) that is the core of the rough path theory. In [2], the LDP for
rough volatility models is obtained using the continuity of Hairer’s recon-
struction map. We takes a similar to [2] in spirit but different approach in
this paper. In stead of embedding a rough volatility model into the abstract
framework of regularity structure, we develop a minimal extension of the
rough path theory to incorporate rough volatility models. The advantage
of our approach is, besides its relatively elementary construction, is that we
can prove the continuity of the integration map between rough path spaces.
This enables us to treat a more general model than in [2] using the simple
fact that the composition of continuous maps is continuous.

We focus on a model of the following form:

d(C = �((C , C) 5 (-̂C)d-C , (0 ∈ R, (1.1)

where - is a 3-dimensional Brownian motion and -̂ is a one dimensional
Riemann-Liouville fractional Brownian motion with the Hurst parameter
� ∈ (0, 1/2]. The stochastic integration is in the Itô sense. From empirical

evidences, we are particularly interested in the case where -̂ is correlated
with - and � < 1/4 [18, 4, 17, 5]. The rough Bergomi model introduced by
[1] and its SABR-type extension (the rough SABR model) [15, 29, 16, 14] are

of the form (1.1) with 5 being an exponential function. Notice that -̂ is not
controlled by - due to its lower regularity. Note also that a rough path lift

of (-, -̂) requires to consider iterated integrals of -̂, which is problematic
when � < 1/4 as is well-known in the rough path literature. Our idea,
inspired by [2], is to consider a partial rough path space where we lack of

the iterated integrals of -̂ but are still able to treat (1.1).
Here we argue how such a partial rough path space should be. Suppose

that G : [0, )] → R3 (3 ≧ 1), Ĝ : [0, )] → R, and 5 : R→ R are good enough.
By the Taylor expansion, for B < C (which are close enough),

∫ C

B

5 (ĜA)dGA ≈ 5 (ĜB)(GC − GB) +
=∑
8=1

1

8!
∇8 5 (ĜB)

[∫ C

B

(ĜA − ĜB)8dGA
]
,

and∫ C

B

(∫ A

B

dHD

)
⊗ dHA

≈
∑

0≦ 9+:≦=

1

9!:!
∇ 9 5 (ĜB)∇: 5 (ĜB)

[∫ C

B

(ĜA − ĜB):
(∫ A

B

(ĜD − ĜB)9dGD
)
⊗ dGA

]
,

where HC :=
∫ C

0
5 (ĜA)dGA . Therefore, if we could define

-
(8)
BC :=

1

8!

∫ C

B

(ĜA − ĜB)8dGA , X
(9:)
BC :=

1

:!

∫ C

B

(ĜA − ĜB):- (9)
BA ⊗ dGA ,
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we would be able to define a rough path integral
∫
5 (ĜA)dGA . By the linear-

ity of the integration and the binomial theorem, - (8) and X(9:) satisfy the
following formula respectively: for any 8 , 9 , : ≧ 0, and B ≦ D ≦ C,

-
(8)
BC = -

(8)
BD +

8∑
?=0

1

(8 − ?)! (-̂BD)
8−?-

(?)
DC , (1.2)

and

X
(9:)
BC = X

(9:)
BD +

:∑
@=0

1

(: − @)! (-̂BD)
:−@-

(9)
BD ⊗ - (@)

DC

+
9∑

?=0

:∑
@=0

1

(9 − ?)!(: − @)! (-̂BD)
9+:−?−@X

(?@)
DC .

(1.3)

These should play the role of Chen’s identity for our partial rough path

space. We remark that essential in avoiding iterated integrals of -̂ is the

assumption that -̂ is one-dimensional.
In Section 2, we formulate such a partial rough path space and state

some fundamental properties including the continuity of the integration
map. In Section 3, we construct a rough path lift of our rough volatility
model and state an LDP. Proofs are relegated to Section 4.

2 A partial rough path space

2.1 Definition

Throughout this article, we fix  ∈ (1
3 ,

1
2 ], � ∈ (0, 1

2 ) and denote

Δ) := {(B, C)|0 ≦ B ≦ C ≦ )}, � := {8 ∈ Z+ |8� +  ≦ 1},

and
� := {(9 , :) ∈ Z+ × Z+ |(9 + :)� + 2 ≦ 1},

where Z+ is the set of the nonnegative integers. Extending the notion of
-Hölder rough path in the rough path theory, here we define an (, �)
rough path.

Definition 2.1. An (, �) rough path X =

(
-̂ , - (8),X(9:)

)
8∈� ,(9,:)∈�

is a triplet

of functions onΔ) satisfying the following conditions; for any 8 ∈ � , (9 , :) ∈ �
and B ≦ D ≦ C,

(i) -̂ is R-valued, - (8) is R3-valued, and X(9:) is R3 ⊗ R3-valued.
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(ii) Modified Chen’s relation: -̂BC = -̂BD + -̂DC, and - (8) and X(9:) satisfy (1.2)
and (1.3) respectively.

(iii) Hölder regularity:

|-̂BC | . |C − B |� , |- (8)
BC | . |C − B | 8�+ , |X(9:)

BC | . |C − B |(9+:)�+2 .

Let Ω(,�)-Hld denote the set of the (, �) rough paths. We define a metric
function 3(,�) onΩ(,�)-Hld and a homogeneous norm | | |X| | |(,�) respectively
by

3(,�)(X,Y)
:= | |-̂ − .̂ | |�-Hld +

∑
8∈� ,(9,:)∈�

| |- (8) −.(8) | | 8�+-Hld + ||X(9:) − Y(9:) | |(9+:)�+2-Hld ,

and

| | |X| | |(,�)

:= | |-̂ | |�-Hld +
∑

8∈� ,(9,:)∈�

(
| |- (8) | | 8�+-Hld

)1/(8+1)
+

(
| |X(9:) | |(9+:)�+2-Hld

)1/(9+:+2)
,

where ‖ · ‖�-Hld is the usual �-Hölder norm for � ∈ (0, 1].

Remark 2.2. Note that the modified Chen’s relation and the Hölder regu-
larity of - (8) and X(9:) are, as explained in Introduction, from the following
correspondence:

-
(8)
BC ↔ 1

8!

∫ C

B

(
-̂BA

) 8
d-

(0)
A , X

(9:)
BC ↔ 1

:!

∫ C

B

(
-̂BA

) :
-

(9)
BA ⊗ d-

(0)
A

when - (0) and -̂ have the Hölder regularity  and � respectively. Note
also that

(
- (0),X(00)) is an -Hölder rough path with the first level - (0) and

the second level X(00) in the usual rough path terminology. An (, �) rough

path has two first level paths: - (0) and -̂.

Remark 2.3. Our modified Chen’s relation is a particular form of the alge-

braic structure of branched rough paths studied in [21]. However, since -̂
is not a controlled path of - , the novel framework of (, �) rough path is
essential to establish the rough path integral stated introduction.

2.2 (, �) rough path integration

Extending the rough path integration, here we introduce an integration
with respect to an (, �) rough path.
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Definition 2.4. Fix X ∈ Ω(,�)-Hld. We define.(1) and .(2) as follows if exist;

.
(1)
BC := lim

|P |ց0

#∑
?=1

∑
8∈�

∇8 5 (ĜC?−1)-
(8)
C?−1C?

,

.
(2)
BC := lim

|P |ց0

#∑
?=1

©«
.
(1)
C0C?−1

⊗ .(1)
C?−1C?

+
∑

(9,:)∈�
∇ 9 5 (ĜC?−1)∇: 5 (ĜC?−1)X

(9:)
C?−1C?

ª®¬
,

where ĜB := -̂0B , and P = {B = C0 < C1 < ... < C# = C} is a partition of the
interval [B, C]. The mesh size |P| is defined by |P| = max 9 |C 9 − C 9−1 |. If they

exist on Δ) , we denote (.(1) , .(2)) by
∫
5 (X̂)dX, and call it the (, �) rough

path integral of 5 .

Denote by Ω-Hld the -Hölder rough path space, and denote by 3 the
metric function on Ω-Hld; see e.g., [11]. Here we state our first main result.
The proof is given in Section 4.1.

Theorem 2.5. Let = := max � and assume that 5 : R→ R is �=+1.

(i) For any X ∈ Ω(,�)-Hld, the (, �) rough path integral
∫
5 (X̂)dX is

well-defined, and
∫
5 (X̂)dX ∈ Ω-Hld.

(ii) The integration map
∫

: Ω(,�)-Hld → Ω-Hld is locally Lipschitz con-

tinuous. More precisely, for any " > 0, the map
∫
|ℰ" , restricted on

the set
ℰ" :=

{
X ∈ Ω(,�)-Hld | | | |X| | |(,�) ≦ "

}
is Lipschitz continuous, that is, there exists a positive constant � > 0
such that,

3

(∫
5 (V̂)dV,

∫
5 (Ŵ)dW

)
≦ �3(,�) (V,W) , V,W ∈ ℰ" .

3 Large Deviation

3.1 A lift to the partial rough path space

We now construct an (, �) rough path, which plays an important role in
this paper. The proof is defered to Section 4.2.

Proposition 3.1. Let (Ω, ℱ , P, {ℱC}C≧0) be a filtered probability space, and
let � ∈ (0, 1/2). Suppose that - = (-1, ..., -3) is a 3-dimensional (possibly
correlated) Brownian motion, and, is a one-dimensional Brownian motion
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possiblly correlated to - . Using the Itô integration, define -̂, - (8), and X(9:)

as

-̂BC :=

∫ C

0

:�(C − A)d,A −
∫ B

0

:�(B − A)d,A , -
(8)
BC :=

1

8!

∫ C

B

(
-̂BA

) 8
d-A ,

X
(9:)
BC :=

1

:!

∫ C

B

(
-̂BA

) :
-

(9)
BA ⊗ d-A , :�(A) :=

1

Γ(� + 1/2) A
�−1/2

for (B, C) ∈ Δ) . Then we have the following.

(i) For a.s. $ ∈ Ω, X($) :=
(
-̂($), - (8)($),X(9:)($)

)
8∈� ,(9,:)∈�

is an (, �)
rough path for any � < �.

(ii) It holds (∫
5 (X̂)dX

) (1)
0C

=

∫ C

0

5 (-̂0A)d-A , 0.B.

where the left-hand-side is the first level of the (, �) rough path
integral and the right-hand-side is the Itô integral.

3.2 The large deviation principle on Ω(,�)-Hld

We now discuss about the LDP on Ω(,�)-Hld. Following [27, 25], we use
Garcia’s theorem [19]. Let (,,,⊥) be a two dimensional standard Brown-
ian motion and - := �, +

√
1 − �2,⊥ , � ∈ [−1, 1]. Define -̂ , - (8) ,X(9:) as

in Proposition 3.1 with 3 = 1. We state our second main result. The proof
is given in Section 4.3.

Theorem 3.2. Let X = (-̂ , - (8),X(9:)) be the random variable taking value
on (Ω(,�)-Hld , 3(,�)) defined as above. Then, the sequence of triplets:

X
& :=

(
&� -̂ , &(8+1)�- (8) , &(9+:+2)�X(9:)

)
satisfies the LDP on (Ω(,�)-Hld , 3(,�)) with speed &−2� with good rate func-
tion

�##(Ĝ , G(8) , x(9:))
:= inf

{
�#(D, E)

��D, E ∈ �[0,)], E ∈ BV, (Ĝ , G(8) , x(9:)) = L(D, E)
}
,

where BV is the set of the functions of bounded variation on [0, )], and

L(D, E) := (�D, D · E, D ∗ E), D, E ∈ �[0,)] , E ∈ BV,

D · E = (D ·8 E), D ∗ E = (D ∗9: E), (�D)BC := DC − DB , and

(D ·8 E)BC :=

∫ C

B

(DA − DB)8dEA , (D ∗9: E)BC :=

∫ C

B

(D ·9 E)BA(DA − DB):dEA .

6



Here, �# is the same as in [25]:

�#(D, E) :=

{
1
2 | |(D, E)| |2ℋΨ

, (D, E) ∈ ℋΨ ,

∞, otherwise,

where ℋΨ :=
{
ℐΨ6; 6 ∈ !2([0, )],R2)

}
with inner product

〈ℐΨ61 ,ℐΨ62〉 := 〈61 , 62〉!2 ,

and ℐΨ : !2([0, )],R2) → !2([0, )],R2) is defined by

ℐΨ6 :=

∫ ·

0

Ψ(· − D)6(D)dD, 6 ∈ !2([0, )],R2),

with Ψ : R+ → R2×2 defined by

Ψ :=

(
:� 0

�
√

1 − �2

)
.

Theorem 3.3. The sequence of the processes
{
.& :=

∫
5 (X̂&)dX&

}
&≧0

satisfies

the LDP on (Ω-Hld , 3) with speed &−2� with good rate function

�###(H) := inf

{
�##(X)

���� X ∈ Ω(,�)-Hld, H =

∫
5 (X̂)dX

}

= inf

{
�#(D, E)

���� D, E ∈ �[0,)] , E ∈ BV, H =

∫
5 (L̂(D, E))dL(D, E)

}
.

where �## is defined in Theorem 3.2.

Proof. By Theorems 2.5 and 3.2 together with the contraction principle, we
have the claim. �

3.3 RDE driven by an (, �) rough path integral and the Freidlin-
Wentzell LDP

We now discuss about the following type of RDE (in Lyons’ sense; see e.g.,
Section 8.8 of [11]):

(̄C =

∫ C

0

�̄((̄D , D)d.D , . :=

∫
5 (X̂)dX ∈ Ω-Hld([0, )],R3), (3.1)

where (̄C = (C − (0, �̄(B, C) = �((0 + B, C).

Theorem 3.4. Let � ∈ �3
1
.
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(i) RDE (3.1)driven by. =
∫
5 (X̂)dX has the unique solution. Moreover,

the solution map Φ;

Φ : Ω-Hld([0, )],R3) × R→ Ω-Hld([0, )],R3+1)

is locally Lipschitz continuous with respect to 3.

(ii) The first level of the solution to RDE (3.1) is the solution to the Itô SDE
(1.1).

Proof. See Appendix B. �

Theorem 3.5. Let � ∈ �3
1

and (̄& := Φ(.&), where Φ is the solution map of

Theorem 3.4. Then the sequence of the processes {(̄&}&≧0 satisfies the LDP
on Ω-Hld with speed &−2� with the good rate function �

�(B̄) := inf
{
�###(.)

�� . ∈ Ω-Hld, B̄ = Φ(.)
}

= inf

{
�#(D, E)

���� D, E ∈ �[0,)] , E ∈ BV, B̄ =

∫
�̄(B̄ , ·) 5 (L̂(D, E))dL(D, E)

}
.

Proof. Since the solution map Φ is continuous, Theorem 3.4 and the con-
traction theorem imply the claim. �

3.4 Short time asymptotics

By the scaling property of the Riemann-Liouville fractional Brownian mo-

tion -̂ and the standard Brownian motion - , we have

-̂&C ∼ &� -̂C , -&C ∼ &1/2-C .

This implies

.̃&
C := &�−1/2

∫ &C

0

5 (-̂D)d-D ∼
∫ C

0

5 (-̂ &
D)d- &

D ,

where (-̂ & , - &) = &�(-̂ , -), of which the rough path lift is X& of Theo-
rem 3.2. Let

(̃&C =
(&C − (0

&1/2−� , �̃&(B, C) = �((0 + &1/2−� B, &C).

Then,

(̃&C =

∫ C

0

�̃&((̃&D , D)d.̃&
D

and we can derive an LDP for (̃& by an extended contraction principle [30].
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Theorem 3.6. Let � ∈ �3
1
. Then, {(̃&}0<&≦1 satisfies the LDP on Ω-Hld as

& → 0 with speed &−2� with good rate function

�(B̃)

:= inf

{
�#(D, E)

���� D, E ∈ �[0,)] , E ∈ BV, B̃ = �((0, 0)
∫

5 (L̂(D, E))dL(D, E)
}
.

Proof. Denote by Φ& the solution map of the RDE (3.1) with �̄ = �̃&. We are
going to show that Φ& is locally equicontinuous. Since

| |∇8 �̃& | |∞ ≦ (1 + &)8 | |∇8� | |∞ ≦ 28 | |∇8� | |∞,

the local Lipschitz constants ofΦ& can be taken uniformly in & (as clearly seen
from the proof of Theorem 3.4 in Appendix B). ThereforeΦ& is equicontinu-
ous on bounded sets, and we conclude Φ&(.&) → Φ0(.) for any converging
sequence .& → . for any . with �###(.) < ∞. Then by Theorem 3.3 and
an extended contraction principle [30][Theorem 2.1], we have the desired
results. �

Remark 3.7. By using usual arguments, adding the drift term to above RDE
is straightforward. Theorem 3.6 generalizes the preceding LDP results for
the case � = 1 called rough Bergomi model in [7, 2, 22, 27, 25]:

d-C = −1

2
5 2(-̂C)dC + 5 (-̂C)d-C .

Indeed, an LDP for the marginal distribution (̃&
1

follows from the con-
traction principle, and the corresponding one-dimensional rate function
extends the one first obtained by [7] as follows.

Theorem 3.8. Assume � ∈ �3
1

and |�| < 1. Then, C�−1/2(̄C satisfies the LDP

as C → 0 with speed C−2� with good rate function

�̄(I) := inf
6∈!2([0,1])


1

2

∫ 1

0

|6A |2dA +

{
I − ��((0, 0)

∫ 1

0
5
(
 � 6(A)

)
6AdA

}2

2(1 − �2)�((0, 0)2
∫ 1

0
5 ( � 6(A))2dA


,

where  � 6(C) =
∫ C

0
:�(C − A)6AdA.

Proof. See Appendix C. �

4 Proofs of Main Theorems

4.1 Proof of Theorem 2.5

Proof. By a localizing argument, we can assume without loss of generality
that the derivatives of 5 are bounded. To shorten, let  := | | 5 | |�=+1

1
, and
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" := | | |X| | |(,�). Let

�
(1)
BC :=

∑
8∈�

∇8 5 (ĜB)- (8)
BC , �

(2)
BC :=

∑
(9,:)∈�

∇ 9 5 (ĜB)∇: 5 (ĜB)X(9:)
BC .

Below we follow the standard argument of the rough path theory with
Chen’s identity replaced by our modified version (1.2), (1.3).

(Claim 1) The first level of (, �) rough path integral .
(1)
BC is well-defined,

and has the following inequality;

|.(1)
BC | ≦  �1 |C − B | , (4.1)

where

�1 :=
{
1 + 2(=+1)�+�((= + 1)� + )

}
(= + 1)(1 +")=+1(1 + ))=+1.

and �(A) :=
∑∞
?=1

1
?A .

Proof. By Taylor expansion, we have

∑
8∈�

∇8 5 (ĜD)- (8)
DC =

∑
8∈�



=−8∑
?=0

1

?!
∇8+? 5 (ĜB)

(
-̂BD

)?
-

(8)
DC + '8




=

∑
8∈�

∇8 5 (ĜB)



8∑
?=0

1

(8 − ?)!
(
-̂BD

) 8−?
-

(?)
DC



+

∑
8∈�

'8 .

(4.2)

where

'8 :=

(∫ 1

0

(1 − �)=−8
(= − 8)! ∇=+1 5 (ĜB + �-̂BD)d�

)
(-̂BD)=+1−8- (8)

DC . (4.3)

By the modified Chen’s relation (1.2) and (4.2), for any B ≦ D ≦ C,

�
(1)
BD + �(1)DC − �(1)BC
=

∑
8∈�

∇8 5 (ĜB)
(
-

(8)
BD − - (8)

BC

)
+

∑
8∈�

∇8 5 (ĜD)- (8)
DC

= −
∑
8∈�

∇8 5 (ĜB)



8∑
?=0

1

(8 − ?)!
(
-̂BD

) 8−?
-

(?)
DC



+

∑
8∈�

∇8 5 (ĜD)- (8)
DC

=

∑
8∈�

'8 . (4.4)
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Since for all 8 ∈ �

|'8 | ≦  
���(-̂BD)=+1−8- (8)

DC

��� ≦  "=+1−8 |C − B |(=+1)�+ ,

we have ����(1)BD + �(1)DC − �(1)BC
��� ≦  (= + 1)(1 +")=+1 |C − B |(=+1)�+ .

For any partition P = {B = C0 < C1 < ... < C# = C}, let �
(1)
BC (P) :=∑#

?=1 �
(1)
C?−1C?

, then for some integer ? which satisfies the condition of

Lemma �.1, we have����(1)BC (P) − �(1)BC
(
P\{C?}

) ���
=

����(1)C?−1C?
+ �(1)C? C?+1

− �(1)C?−1C?+1

���
≦  (= + 1)(1 +")=+1 |C?+1 − C?−1 |(=+1)�+

≦  (= + 1)(1 +")=+1

(
2

# − 1

) (=+1)�+
|C − B |(=+1)�+ ,

and this implies (note that (= + 1)� +  > 1),����(1)BC (P) − �(1)BC
���

≦  (= + 1)(1 +")=+12(=+1)�+�
(
(= + 1)� + 

)
|C − B |(=+1)�+ (4.5)

This inequality shows that {�(1)BC (P)} is a Cauchy sequence with |P| ց
0. Therefore .

(1)
BC is well-defined. Furthermore, by (4.5), we have

|.(1)
BC | ≦ |�(1)BC | + |.(1)

BC − �(1)BC | ≦  �1 |C − B |.

We finish to prove the statement of (Claim 1). �

(Claim 2) Let < := max(9,:)∈� | 9 + : |. Then the second level of (, �) rough

path integral .
(2)
BC is well-defined, and has the following inequality;

|.(2)
BC | ≦  2�2 |C − B |2 ,

where

�2 := <2" +
(
�̃2 + �2

1)
=−<

)
2(<+1)�+2�

(
(< + 1)� + 2

)
,

and
�̃2 := (=2 + 2<)(1 +")2<+3(1 + ))<+1.

In particular, we have
∫
5 (X̂)3X ∈ Ω-Hld.
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Proof. By the modified Chen’s relation (1.3), for all B ≦ D ≦ C,

�
(2)
BD + �(2)DC + �(1)BD ⊗ �(1)DC − �(2)BC
= �

(1)
BD ⊗ �(1)DC
+

∑
(9,:)∈�

[
∇ 9 5 (ĜB)∇: 5 (ĜB)

(
X
(9:)
BD − X

(9:)
BC

)
+ ∇ 9 5 (ĜD)∇: 5 (ĜD)X(9:)

DC

]

= (1 + (2,

where

(1 := �
(1)
BD ⊗�(1)DC −

∑
(9,:)∈�

∇ 9 5 (ĜB)∇: 5 (ĜB)
©«

:∑
@=0

1

(: − @)!
(
-̂BD

) :−@
-

(9)
BD ⊗ - (@)

DC

ª®¬
,

and

(2 :=
∑

(9,:)∈�
∇ 9 5 (ĜD)∇: 5 (ĜD)X(9:)

DC

−
∑

(9,:)∈�
∇ 9 5 (ĜB)∇: 5 (ĜB)

©«
9∑

?=0

:∑
@=0

1

(9 − ?)!(: − @)!
(
-̂BD

) 9+:−?−@
X
(?@)
DC

ª®¬
.

By Taylor expansion, we have∑
(9,:)∈�

∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)
BD ⊗ - (:)

DC

=

∑
(9,:)∈�



<−9−:∑
?=0

1

?!
∇ 9 5 (ĜB)∇:+? 5 (ĜB)(-̂BD)?- (9)

BD ⊗ - (:)
DC + '(1)

9:




=

∑
(9,:)∈�



∇ 9 5 (ĜB)∇: 5 (ĜB)

©«
:∑
@=0

1

(: − @)!
(
-̂BD

) :−@
-

(9)
BD ⊗ - (@)

DC

ª®¬
+ '(1)

9:



,

where

'
(1)
9:

:=

(∫ 1

0

(1 − �)<−9−:

(< − 9 − :)! ∇
9 5 (ĜB)∇<+1−9 5 (ĜB + �-̂BD)d�

)

× (-̂BD)<+1−9−:-
(9)
BD ⊗ - (:)

DC .

12



Hence

�
(1)
BD ⊗ �(1)DC

=
©«
∑
9∈�

∇ 9 5 (ĜB)- (9)
BD

ª®¬
⊗

(∑
:∈�

∇: 5 (ĜD)- (:)
DC

)

=

∑
9∈�

∑
:∈�

∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)
BD ⊗ - (:)

DC

=

∑
(9,:)∈�

∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)
BD ⊗ - (:)

DC +
∑

(9,:)∈�×�\�
∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)

BD ⊗ - (:)
DC ,

implies that

(1 = �
(1)
BD ⊗ �(1)DC −

∑
(9,:)∈�

∇ 9 5 (ĜB)∇: 5 (ĜB)
©«

:∑
@=0

1

(: − @)!
(
-̂BD

) :−@
-

(9)
BD ⊗ - (@)

DC

ª®¬
=

∑
(9,:)∈�

'
(1)
9:

+
∑

(9,:)∈�×�\�
∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)

BD ⊗ - (:)
DC , (4.6)

and

|(1 | ≦
∑

(9,:)∈�

���'(1)
9:

��� + ∑
(9,:)∈�×�\�

���∇ 9 5 (ĜB)∇: 5 (ĜD)- (9)
BD ⊗ - (:)

DC

���
≦ =2 2(1 +")<+3(1 + ))< |C − B |(<+1)�+2. (4.7)

By Taylor expansion again, we have

∑
(9,:)∈�

∇ 9 5 (ĜD)∇: 5 (ĜD)X(9:)
DC =

∑
(9,:)∈�



<−9−:∑
?=0

∇ 9+? 5 (ĜB)(-̂BD)? + '(2)
9:




×


<−9−:∑
@=0

∇:+@ 5 (ĜB)(-̂BD)@ + '(2)
: 9




X
(9:)
DC ,

where

'
(2)
9:

:=

(∫ 1

0

(1 − �)<−9−:

(< − 9 − :)! ∇
<+1−: 5 (ĜB + �-̂BD)d�

)
(-̂BD)<+1−9−: .

Therefore we have
(2 =

∑
(9,:)∈�

'
(3)
9:

X
(9:)
DC , (4.8)
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where

'
(3)
9:

:=
©«
<−9−:∑
?=0

∇ 9+? 5 (ĜB)(-̂BD)?'(2)
: 9

ª®¬
+ ©«

<−9−:∑
@=0

∇:+@ 5 (ĜB)(-̂BD)@'(2)
9:

ª®¬
+ '(2)

9:
'
(2)
: 9
.

Since for all ? = 0, 1, 2..., < − 9 − :,���∇ 9+? 5 (ĜB)(-̂BD)?'(2)
: 9

X
(9:)
DC

��� ≦  2(1 +")2<+2(1 + ))<+1 |C − B |(<+1)�+2 ,

and ���'(2)
: 9
'
(2)
9:

X
(9:)
DC

��� ≦  2(1 +")2<+3(1 + ))<+1 |C − B |(<+1)�+2 ,

we have

|(2 | ≦ 2< 2(1 +")2<+3(1 + ))<+1 |C − B |(<+1)�+2. (4.9)

By (4.7) and (4.9), we have����(2)BD + �(2)DC + �(1)BD ⊗ �(1)DC − �(2)BC
��� ≦ |(1 | + |(2 |

≦  2�̃2 |C − B |(<+1)�+2.

where �̃2 = (=2 + 2<)(1 + ")2<+3(1 + ))<+1. Moreover, by (4.1) and
(4.5), we have���.(1)

BD ⊗ .(1)
DC − �(1)BD ⊗ �(1)DC

��� ≦ ���.(1)
BD

��� ���.(1)
DC − �(1)DC

��� + ���.(1)
BD − �(1)BD

��� ���.(1)
DC

���
≦  2�2

1 |C − B |(=+1)�+2 .

Let �
(2)
BC (P) :=

∑=
?=1.

(1)
C0C?−1

⊗.(1)
C?−1C?

+ �(2)C?−1C?
. Then, above discussions and

Lemma�.1 imply that (note that since (=+1)�+ > 1, (=+1)�+2 > 1
and the minimality of <, we have < ≦ =)����(2)BC (P) − �(2)BC (P\{C? })

��� ≦ ����(2)C?−1C?
+ �(2)C? C?+1

+.(1)
C?−1C?

⊗ .(1)
C? ,C?+1

− �(2)C?−1C?+1

���
≦

����(2)C?−1,C?
+ �(2)C? C?+1

+ �(1)C?−1C?
⊗ �(1)C? C?+1

− �(2)C?−1C?+1

���
+

���.(1)
C?−1C?

⊗ .(1)
C? C?+1

− �(1)C?−1C?
⊗ �(1)C? C?+1

���
≦  2�̃2 |C?+1 − C?−1 |(<+1)�+2 +  2�2

1 |C?+1 − C?−1 |(=+1)�+2

≦  2
(
�̃2 + �2

1)
=−<

) (
2

# − 1

) (<+1)�+2

|C − B |(<+1)�+2.
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This implies that (note that (< + 1)� + 2 > 1)

|�(2)BC (P) − �(2)BC |

≦  2
(
�̃2 + �2

1)
=−<

)
2(<+1)�+2�

(
(< + 1)� + 2

)
|C − B |(<+1)�+2.

This shows that {�(2)BC (P)}P is a Cauchy sequence when |P| ց 0. Hence

.
(2)
BC is well-defined. Also take �2 big enough, we have

|.(2)
BC | ≦ |�(2)BC | + |.(2)

BC − �(2)BC |
≦ <2 2" |C − B |2

+  2
(
�̃2 + �2

1)
=−<

)
2(<+1)�+2�

(
(< + 1)� + 2

)
|C − B |(<+1)�+2

≦  2�2 |C − B |2.

Next we prove that
∫
5 (X̂)dX satisfies the Chen’s relation. Fix & > 0

and B < D < C. By taking a partition P = {B = C0 < C1 < ... < C# = C}
of [B, C] small enough (which has the point C" = D), we have���.(1)

BC −.(1)
BD −.(1)

DC

���
≦

������.(1)
BC −

#∑
?=1

�
(1)
C?−1C?

������ +
������.(1)
BD −

"∑
?=1

�
(1)
C?−1C?

������ +
������.(1)
DC −

#∑
?="+1

�
(1)
C?−1C?

������
≦ 3&

and so the first level of
∫
5 (X̂)dX satisfies Chen’s relation. This result

implies that

#∑
@=1

.
(1)
C0C@−1

⊗ .(1)
C@−1C@

=

∑
0<?<@≦#

.
(1)
C?−1C?

⊗ .(1)
C@−1C@

.

Also,

©«
"∑
?=1

�
(1)
C?−1C?

ª®¬
⊗ ©«

#∑
@="+1

�
(1)
C@−1C@

ª®¬
=

∑
0<?<@≦#

�
(1)
C?−1C?

⊗ �(1)C@−1C@
−

∑
0<?<@≦"

�
(1)
C?−1C?

⊗ �(1)C@−1C@
−

∑
"<?<@≦#

�
(1)
C?−1C?

⊗ �(1)C@−1C@
,

and so we have���.(2)
BC −.(2)

BD −.(2)
DC −.(1)

BD ⊗ .(1)
DC

���
≦

���.(2)
BC − SBC

��� + ���.(2)
BD − SBD

��� + ���.(2)
DC − SDC

���
≦ 3&,
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where

SBC :=

#∑
?=1

©«
.
(1)
C0C?−1

⊗ .(1)
C?−1C?

+
∑

(9,:)∈�
∇ 9 5 (ĜC?−1)∇: 5 (ĜC?−1)X

(9:)
C?−1C?

ª®¬
,

SBD :=

"∑
?=1

©«
.
(1)
C0C?−1

⊗ .(1)
C?−1C?

+
∑

(9,:)∈�
∇ 9 5 (ĜC?−1)∇: 5 (ĜC?−1)X

(9:)
C?−1C?

ª®¬
,

SDC :=

#∑
?="+1

©«
.
(1)
C" C?−1

⊗ .(1)
C?−1C?

+
∑

(9,:)∈�
∇ 9 5 (ĜC?−1)∇: 5 (ĜC?−1)X

(9:)
C?−1C?

ª®¬
.

Therefore the second level of
∫
5 (X̂)dX also satisfies Chen’s relation.

Above argument prove that the statement (1) of Theorem 2.5. �

(Claim 3) Suppose that there exist " > 0 and & > 0 such that

|+̂BC | ∨ |,̂BC | ≦ " |C − B |� , |+ (8)
BC | ∨ |, (8)

BC | ≦ " |C − B | 8�+ ,

|V(9:)
BC | ∨ |W(9:)

BC | ≦ " |C − B |(9+:)�+2 , |+̂BC − ,̂BC | ≦ & |C − B |� ,
and

|+ (8)
BC −, (8)

BC | ≦ & |C − B | 8�+ , |V(9:)
BC − W

(9:)
BC | ≦ & |C − B |(9+:)�+2 .

Then, �����
(∫

5 (V̂)dV
) (1)
BC

−
(∫

5 (Ŵ)dW
) (1)
BC

����� ≦  &�3 |C − B | , (4.10)

where

�3 := (= + 1)"(1 + ))=

+ 2(= + 1)(1 +")=+2(1 + ))2(=+1)�+�((= + 1)� + ))(=+1)� .

Proof. By the assumption and the mean value theorem, we have���(1)(V)BC − �(1)(W)BC
��

=

�����
∑
8∈�

∇8 5 (ÊB)+ (8)
BC −

∑
8∈�

∇8 5 (F̂B), (8)
BC

�����
≦

∑
8∈�

{
|∇8 5 (ÊB) − ∇8 5 (F̂B)| |+ (8)

BC | + |∇8 5 (F̂B)| |+ (8)
BC −, (8)

BC |
}

≦  &(= + 1)"(1 + ))= |C − B |. (4.11)
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By (4.3), (4.4) and the mean value theorem, for all B ≦ D ≦ C,���(1)(V)BD + �(1)(V)DC − �(1)(V)BC − {
�(1)(W)BD + �(1)(W)DC − �(1)(W)BC

}��
≦

∑
8∈�

|'8(V) − '8(W)|

≦  &(1 + ))(1 +")=+2 |C − B |(=+1)�+

+  &2(= + 1)(1 +")=+1 |C − B |(=+1)�+

≦  &2(= + 1)(1 +")=+2(1 + ))|C − B |(=+1)�+ .

By this result and Lemma �.1, we have���(1)(V)BC(P) − �(1)(V)BC(P\{C? }) −
{
�(1)(W)BC(P) − �(1)(W)BC

(
P\{C?}

) }��
=

�����(1)(V)C?−1C? + �(1)(V)C? C?+1 − �(1)(V)C?−1C?+1

−
{
�(1)(W)C?−1C? + �(1)(W)C? C?+1 − �(1)(W)C?−1C?+1

} ����
≦  &2(= + 1)(1 +")=+2(1 + ))|C?+1 − C?−1 |(=+1)�+

≦  &2(= + 1)(1 +")=+2(1 + ))
(

2

# − 1

) (=+1)�+
|C − B |(=+1)�+ .

This implies that (note that (= + 1)� +  > 1)���(1)(V)BC(P) − �(1)(V)BC − {�(1)(W)BC(P) − �(1)(W)BC}
��

≦  &2(= + 1)(1 +")=+2(1 + ))2(=+1)�+�((= + 1)� + )|C − B |(=+1)�+ .
(4.12)

Therefore by (4.11) and (4.12), we conclude that���(1)(V)BC(P) − �(1)(W)BC(P)
��

≦
���(1)(V)BC − �(1)(W)BC

��
+

���(1)(V)BC(P) − �(1)(V)BC −
{
�(1)(W)BC(P) − �(1)(W)BC

}��
≦ &(= + 1)"(1 + ))= |C − B |

+  &2(= + 1)(1 +")=+2(1 + ))2(=+1)�+�((= + 1)� + )|C − B |(=+1)�+

≦  &�3 |C − B |.

Take |P| ց 0, we prove (4.10). �

(Claim 4) Suppose that there exist " > 0 and & > 0 such that

|+̂BC | ∨ |,̂BC | ≦ " |C − B |� , |+ (8)
BC | ∨ |, (8)

BC | ≦ " |C − B | 8�+ ,
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|V(9:)
BC | ∨ |W(9:)

BC | ≦ " |C − B |(9+:)�+2 , |+̂BC − ,̂BC | ≦ & |C − B |� ,
and

|+ (8)
BC −, (8)

BC | ≦ & |C − B | 8�+ , |V(9:)
BC − W

(9:)
BC | ≦ & |C − B |(9+:)�+2 .

Then �����
(∫

5 (V̂)dV
) (2)
BC

−
(∫

5 (Ŵ)dW
) (2)
BC

����� ≦  2&�4 |C − B |2 , (4.13)

where

�4 := "(1 + )2�) + (1 + )=−<)(�̃4 + 4�1�3)2(<+1)�+2�((< + 1)� + 2).

In particular, the integration map is Lipschitz continuous.

Proof. By the assumption and mean value theorem imply that���(2)(V)BC − �(2)(W)BC
��

≦

∑
(9,:)∈�

���∇ 9 5 (ÊB)∇: 5 (ÊB)V(9:)
BC − ∇ 9 5 (F̂B)∇: 5 (F̂B)W(9:)

BC

���
≦  2&"(1 + )2�)|C − B |(9+:)�+2 . (4.14)

On the other hand, by (4.6) and (4.8), we can calculate

|(1(V) − (1(W)| ≦  2&(2= + 3)(1 +")<+3(1 + ))2= |C − B |(<+1)�+2 ,

and

|(2(V) − (2(W)|
≦  2&(<2 + 4< + 2)(1 +")2<+3(1 + ))<+2(1 + 2))|C − B |(<+1)�+2.

Therefore we have

|Σ(V)BDC − Σ(W)BDC | ≦ |(1(V) − (1(W)| + |(2(V) − (2(W)|
≦  2&�̃4 |C − B |(<+1)�+2.

where
ΣBDC := �

(2)
BD + �(2)DC + �(1)BD ⊗ �(1)DC − �(2)BC , B ≦ D ≦ C ,

and

�̃4 = (2= + 3)(1 +")<+3(1 + ))2=

+ (<2 + 4< + 2)(1 +")2<+3(1 + ))<+2(1 + 2)).
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Let
ΓBDC := .

(1)
BD ⊗ .(1)

DC − �(1)BD ⊗ �(1)DC , B ≦ D ≦ C.

Then by (4.1),(4.5), (4.10) and (4.12), we have

|Γ(V)BDC − Γ(W)BDC |
≦

��.(1)(V)BD ⊗ (.(1)(V)DC − �(1)(V)DC)
−.(1)(W)BD ⊗ (.(1)(W)DC − �(1)(W)DC)

��
+

��(.(1)(V)BD − �(1)(V)BD) ⊗ �(1)(V)DC
− (.(1)(W)BD −.(1)(W)BD) ⊗ �(1)(W)DC

��
≦

��.(1)(V)BD
�� ��.(1)(V)DC − �(1)(V)DC −.(1)(W)DC + �(1)(W)DC

��
+

��.(1)(V)BD −.(1)(W)BD
�� ��.(1)(W)DC − �(1)(W)DC

��
+

��.(1)(V)DC − �(1)(V)DC −.(1)(W)DC + �(1)(W)DC
�� ���(1)(V)DC ��

+
��.(1)(W)DC − �(1)(W)DC

�� ���(1)(V)DC − �(1)(W)DC
��

≦  2&4�1�3 |C − B |(=+1)�+2 .

Therefore by Lemma �.1, we have���(2)(V)BC(P) − �(2)(V)BC(P\{C? }) −
{
�(2)(W)BC(P) − �(2)(W)BC(P\{C? })

}��
≦

��Σ(V)C?−1C? C?+1 − Σ(W)C?−1C? C?+1

�� + ��Γ(V)C?−1C? C?+1 − Γ(V)C?−1C? C?+1

��
≦  2&�̃4 |C8+1 − C8−1 |(<+1)�+2 +  2&4�1�3 |C8+1 − C8−1 |(=+1)�+2

≦  2&(1 + )=−<)(�̃4 + 4�1�3)
(

2

# − 1

) (<+1)�+2

|C − B |(<+1)�+2.

This implies that (note that (< + 1)� + 2 > 1)���(2)(V)BC(P) − �(2)(V)BC −
{
�(2)(W)BC(P) − �(2)(W)BC

}��
≦  2&(1 + )=−<)(�̃4 + 4�1�3)2(<+1)�+2�((< + 1)� + 2)|C − B |(<+1)�+2.

(4.15)

Therefore by (4.14) and (4.15), we conclude that���(2)(V)BC(P) − �(2)(W)BC(P)
��

≦
���(2)(V)BC − �(2)(W)BC

��
+

���(2)(V)BC(P) − �(2)(V)BC − {�(2)(W)BC(P) − �(2)(W)BC}
��

≦  2&�4 |C − B |2.

Take |P| ց 0, we have (4.13).

For any V,W ∈ ℰ" , take & := 3(,�)(V,W). Then we have

|+̂BC | ∨ |,̂BC | ≦ " |C − B |� , |+ (8)
BC | ∨ |, (8)

BC | ≦ " |C − B | 8�+ ,
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|V(9:)
BC | ∨ |W(9:)

BC | ≦ " |C − B |(9+:)�+2 , |+̂BC − ,̂BC | ≦ & |C − B |� ,
and

|+ (8)
BC −, (8)

BC | ≦ & |C − B | 8�+ , |V(9:)
BC − W

(9:)
BC | ≦ & |C − B |(9+:)�+2 .

Therefore by (4.10), (4.13), we conclude that

3

(∫
5 (V̂)dV,

∫
5 (Ŵ)dW

)
≦  �3& +  2�4&

≦  (�3 +  �4)3(,�)(V,W), V,W ∈ ℰ" .

�

(Claim1) to (Claim4) complete the proof of Theorem 2.5. �

4.2 Proof of Proposition 3.1

Lemma 4.1 ([26] Corollary 9.7). Let . belong to the <-th Wiener chaos and
? ≧ 2. Then we have

| |. | |? ≦
√
< + 1(? − 1)</2 | |. | |2.

proof of Proposition 3.1. (i) The modified Chen’s relation follows from the
binomial theorem as illustrated in Introduction. For the Hölder property,
by Proposition A.2 (a version of Kolmogorov’s continuity theorem), it is
sufficient to prove the following inequalities;

| |- (8)
BC | |? ≦ � |C− B |

8�+1/2, | |X(9:)
BC | |? ≦ � |C− B |(9+:)�+1 , ? ≧ 2, (B, C) ∈ Δ) .

Fix A > B and let /ABD :=
∫ D

0
:�(A − C1) − :�(B − C1)1[0,B](C1)d,C1 , D ∈ [0, A). By

Itô formula, we have

(/ABD)8 = 8

∫ D

0

(/ABE)8−1d/ABE +
8(8 − 1)

2

∫ D

0

(/ABE)8−2d 〈/AB.〉E .

Also by Itô formula, we have(∫ F

0

�Ed/
A
BE

) (∫ F

0

�Dd 〈/AB.〉D
)
=

∫ F

0

{∫ D

0

�Ed 〈/AB.〉E
}
�Dd/ABD+

∫ F

0

{∫ D

0

�Ed/
A
BE

}
�Dd 〈/AB.〉D ,

Using these formulae inductively, we have

(/ABD)8 =
∑

0≦@≦⌊8/2⌋

8!

2@
�
(8−2@)
D �

(@)
D ,
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where

�
(?)
D :=

∫ D

0

∫ C?

0

...

(∫ C2

0

d/ABC1

)
...d/ABC? , �

(@)
D :=

∫ D

0

∫ �@

0

...

(∫ �2

0

d 〈/AB.〉�1

)
...d 〈/AB.〉�@ ,

since

(/ABD)8 = 8

∫ D

0

(/ABE)8−1d/ABE +
8(8 − 1)

2

∫ D

0

(/ABE)8−2d 〈/AB.〉E

=

∑
0≦@≦⌊(8−1)/2⌋

8!

2@

∫ D

0

�
(8−1−2@)
E �

(@)
E d/ABE +

∑
0≦@≦⌊(8−2)/2⌋

8!

2@+1

∫ D

0

�
(8−2−2@)
E �

(@)
E d 〈/AB.〉E

= 8!

∫ D

0

�
(8)
E d/ABE

+
∑

1≦@≦⌊(8−1)/2⌋

8!

2@

∫ D

0

�
(8−1−2@)
E �

(@)
E d/ABE +

∑
1≦@≦⌊8/2⌋

8!

2@

∫ D

0

�
(8−2@)
E �

(@−1)
E d 〈/AB.〉E

=

∑
0≦@≦⌊8/2⌋

8!

2@
�
(8−2@)
D �

(@)
D .

Take D → A, we have

(-̂BA)8 = (/ABA)8 =
∑

0≦@≦⌊8/2⌋

8!

2@
�
(8−2@)
A �

(@)
A ,

and so

-
(8)
BC =

∑
0≦@≦⌊8/2⌋

8!

2@

∫ C

B

�
(8−2@)
A �

(@)
A d-A .

Therefore by Lemma 4.1, we have

| |- (8)
BC | |? ≦

∑
0≦@≦⌊8/2⌋

8!

2@

����
����
∫ C

B

�
(8−2@)
A �

(@)
A d-A

����
����
?

≦
©«

∑
0≦@≦⌊8/2⌋

8!

2@
ª®¬
?(8+1)/2 |C−B | 8�+1/2.

(4.16)
By the same argument, we have

| |X(9:)
BC | |? ≦ �?(9+:+2)/2 |C − B |(9+:)�+1. (4.17)

(ii) By (i) and Theorem 2.5, for a.s. $, the limit

(∫
5 (X̂)dX

) (1)
BC

= lim
#→∞

#∑
@=1

∑
8∈�

∇8 5 (-̂C@−1)-
(8)
C@−1C@

exists. Since ∫ C

B

5 (-̂A)d-A = lim
#→∞

#∑
@=1

5 (-̂C@−1)-
(0)
C@−1C@
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in the sense of the convergence in probability, it is sufficient to prove for all
8 ∈ �\{0},

lim
#→∞

#∑
@=1

∇8 5 (-̂C@−1)-
(8)
C@−1C@

= 0,

in probability. Fix 8 ∈ �\{0}. We can assume 5 ∈ �=+1
1

without loss of
generality. By the result (i), we have

E

[(
-

(8)
BC

)2
]
= � |C − B |28�+1 < ∞,

and so take  := | | 5 | |�= , we conclude that

E


©«
#∑
@=1

∇8 5 (ĜC@ )-
(8)
C@−1 ,C@

ª®¬
2

=

#∑
@=1

E

[ (
∇8 5 (ĜC@ )-

(8)
C@−1C@

)2
]

≦  2
#∑
@=1

|C@ − C@−1 |28�+1

=  2

(
sup

|C−B |≦ |P |
|C − B |

)28�

)

→ 0 (0B |P| → 0),

and this indicates the !2 convergence. �

4.3 Proof of Theorem 3.2

Denote by �[0,)] the set of the R-valued continuous functions on [0, )]
equipped with the uniform topology. Let �Δ) be the set of continuous
functions on Δ) , taking values in R� , equipped with the uniform topology
for the metric

3(-,.) := sup
(B,C)∈Δ)

|-BC −.BC | , - , . ∈ �Δ) .

We use the same notation�Δ) for different dimensions�. More specifically,
any one of � = 1, � = max � or � = max{ 9 + :; (9 , :) ∈ �}. Let S0 be the set
of the R-valued {ℱC}-adapted simple processes on [0, )] ×Ω and

S :=

{
/ ∈ S0

����� sup
C∈[0,)]

|/C | ≦ 1

}
.
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Definition 4.2 ([19]). Let {.=} be a sequence of R-valued semimartingales
on [0, )] ×Ω . We say that the sequence is Uniformly Exponentially Tight
(UET) if for every ) > 0 and every 0 > 0 there is  ),0 such that

lim sup
=→∞

1

=
log sup

/∈S=

P

[
sup
C∈[0,)]

|(/− · .=)C | ≧  ),0

]
≦ −0, (4.18)

where /− · . is the Itô integral of / with respect to .;

(/− · .)C :=

∫ C

0

/A−d.A .

For a one-dimensional Brownian motion, , .= = =−1/2, is an example
of UET sequences; see Lemma 2.4 of [19].

Theorem 4.3. Let {.=} be a UET sequence of R-valued semimartingales
and {-=} a sequence of R-valued continuous adapted processes. Assume
that the sequence {(-= , .=)} satisfies the large deviation principle (LDP) on
�[0,)] × �[0,)] with speed =−1 and good rate function �#. Then the sequence
{(-= , .= , (-= ⊙8 .=)8∈� )} satisfies the large deviation principle on �[0,)] ×
�[0,)] × �Δ) with speed =−1 and good rate function

�##(D, E, G) :=



�#(D, E), ∀8 ∈ � , G(8) = D ⊙8 E, E ∈ BV,

∞, ∃8 ∈ � s.t. G(8) ≠ D ⊙8 E, E ∈ BV,

∞, E ∉ BV.

= inf
{
�#(D, E)

�� ∀8 ∈ � , G(8) = D ⊙8 E, D, E ∈ �[0,)], E ∈ BV
}
,

(4.19)

where G = (G(8))8∈� ∈ �Δ) and

(D ⊙8 E)BC :=

∫ C

B

(DA − DB)8dEA .

Proof. By the assumption and contraction principle, {(-= , .= , ((-=)8)8∈� )}
satisfies the LDP with good rate function

Λ1(D, E, !) = inf
{
�#(D, E)

�� ∀8 ∈ � , !(8)
= D 8

}
.

Therefore, by [19][Theorem1.2], we have {(-= , .= , ((-=)8 , -= ·8 .=)8∈� )} sat-
isfies the LDP with good rate function

Λ2(D, E, !, G)
= inf

{
�#(D, E)

��(!(8) , G(8)) = (D 8 , D ·8 E), D, E ∈ �[0,)] , E ∈ BV
}
,
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where (D ·8 E)C = (D ⊙8 E)0C . Note that by the modified Chen’s relation (1.2),
we have

(G ⊙8 H)BC = (G ·8 H)C − (G ·8 H)B −
8−1∑
?=0

1

(8 − ?)! (GB − G0)8−? (G ⊙? H)BC .

Hence by the contraction principle again with the aid of induction, we
see that {(-= , .= , (-= ⊙8 .=)8∈� )} satisfies the LDP with good rate function
(4.19). �

Theorem 4.4. Under the same conditions as in Theorem 4.3, the sequence
{(�-= , �.= , (-= ⊙8 .=)8∈� , (-= ⊛9: .

=)(9,:)∈� )} satisfies the large deviation

principle on �Δ) × �Δ) × �Δ) with speed =−1 with good rate function

�(Ĝ , G, x)

= inf

{
�#(D, E)

�����∀8 ∈ � ,∀(9 , :) ∈ � , (Ĝ , G
(8) , x(9:)) = (�D, D ⊙8 E, D ⊛9: E)

D, E ∈ �[0,)], E ∈ BV

}
,

(4.20)

where (�D)BC := DC − DB and

(D ⊛9: E)BC :=

∫ C

B

(D ⊙9 E)BA(DA − DB):dEA ,

Proof. By the modified Chen’s relation (1.3), we have

(-=
⊛9: .

=)BC = (-= ∗9: .=)C − (-= ∗9: .=)0B

−
:∑
@=0

1

(: − @)! (-
=
0B):−@(-= ⊙9 .=)0B ⊗ (-= ⊙@ .=)BC

−
∑

?+@< 9+:

1

(9 − ?)!(: − @)! (-
=
0B)9+:−?−@ (-=

⊛?@ .
=)BC ,

where (- ∗9: .)C = (- ⊛9: .)0C .

First Step. By Theorem 4.3 and the contraction principle, the sequence{(
-= , .= , (-= ⊙8 .=)8∈� , ((-= ·9 .=)(-=):)(9,:)∈�

)}
satisfies the LDP with good rate function

Λ1(D, E, G, !)
= inf

{
�#(D, E)

��(G(8) , !(9:)) = (D ⊙8 E, (D ·9 E)E:), D, E ∈ �[0,)], E ∈ BV
}
.
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Therefore, by [19][Theorem1.2], we have{(
-= , .= , (-= ⊙8 .=)8∈� , (-= ∗9: .=)(9,:)∈�

)}
satisfies the LDP with good rate function

Λ2(D, E, G, !)
= inf

{
�#(D, E)

��(G(8) , !(9:)) = (D ⊙8 E, D ∗9: E), D, E ∈ �[0,)], E ∈ BV
}
.

By the contraction principle, we conclude that
{"= := (-= , .= , -= ⊙8 .= , (-= ∗9: .=), ((-= , .=))} satisfies the LDP
with good rate function

Λ3(D, E, G, !,#)

= inf

{
�#(D, E)

�����(G
(8) , !(9:) ,#(9:)) =

(
D ⊙8 E, (D ∗9: E)C , ((D, E)

)
D, E ∈ �[0,)], E ∈ BV

}
,

where

((D, E)BC :=

:∑
@=0

1

(: − @)!D
:−@
B (D ⊙9 E)0B ⊗ (D ⊙@ E)BC .

Second Step: To shorten, set

condition A :=

[
(G(8) , !(9:) ,#(9:)) =

(
D ⊙8 E, (D ∗9: E)C , ((D, E)

)
,

D, E ∈ �[0,)], E ∈ BV

]
.

By the modified Chen’s relation (1.3), we have (D ⊛00 E)BC = (D ⊛00 E)C −
(D⊛00 E)0B−EB ⊗(EC−EB), and similar for D⊛01 E and D⊛10 E. Therefore,
by the contraction principle, we conclude that {("= , -

=⊛00.
= , -=⊛01

.= , -= ⊛10 .
=)} satisfies the LDP with good rate function

inf
{
�#(D, E)

�� cond. A, (x(00) , x(01) , x(10)) = (D ⊛00 E, D ⊛01 E, D ⊛10 E)
}
.

In particular, {(-= , .= , -= ⊙8 .= , -= ⊛00 .
= , -= ⊛01 .

= , -= ⊛10 .
=)}

satisfies the LDP with good rate function

Λ4(D, E, G, x(00), x(01) , x(10))

= inf

{
�#(D, E)

�����(G
(8) , x(00) , x(01) , x(10))

= (D ⊙8 E, D ⊛00 E, D ⊛01 E, D ⊛10 E)

}
.

Hence, by the contraction principle and mathematical induction, we
conclude that {(�-= , �.= , -=⊙8.= , -=⊛9:.

=)} satisfies the LDP with
good rate function (4.20).
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�

Lemma 4.5 ([12] Lemma A.18). Let/ be a real valued non-negative variables
such that there exists 21 > 0 such that for all ? ∈ [1,∞),

| |/ | |? ≦
1

21

√
? < ∞.

Then there exists 22 > 0 such that

E[exp (22/
2)] < ∞.

Lemma 4.6. (i) The (, �) rough path X of Theorem 3.2 has exponential
integrability, i.e., there exists 2 > 0 such that

E

[
exp

{
2 | | |X| | |2(,�)

}]
< ∞.

(ii) Assume that the family of random variables

X
&
= (&� -̂ , &(8+1)�- (8) , &(9+:+2)�X(9:))

taking values in Ω(,�)-Hld satisfies the LDP on �Δ) × �Δ) × �Δ) (with
the uniform topology). Then,X& satisfies the LDP on Ω(,�)-Hld (in the
3(,�) topology) with the same good rate function.

Proof. (i) Let / := | | |X| | |(,�). By Lemma 4.5, it is enough to prove that there
exists 2 > 0 such that

| |/ | |? ≦
1

2

√
?, ? ∈ [1,∞). (4.21)

By the inequality (4.16), (4.17), we have

| |- (8)
BC | |? ≦ ?(8+1)/2 |C − B | 8�+1/2 , | |X(9:)

BC | |? ≦ ?(9+:+2)/2 |C − B |(9+:)�+1 ,

and this inequality and Proposition A.2 imply that for all ? ∈ [1,∞),������| |-̂ | |�-Hld

������
?
≦ 2

√
?,

����| |- (8) | | 8�+-Hld

����
?
≦ 2?(8+1)/2 ,

and ����| |X(9:) | |(9+:)�+2-Hld

����
?
≦ 2?(9+:+2)/2 ,

and so the Hölder inequality implies����
����( | |- (8) | | 8�+-Hld

)1/(8+1)
����
����
?

≦ E

[(
| |- (8) | | 8�+-Hld

)?/(8+1)]1/?

≦ E

[(
| |- (8) | | 8�+-Hld

)?]1/?(8+1)

≦
����| |- (8) | | 8�+-Hld

����1/(8+1)
?

≦ 2
√
?,
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and similarly, ����
����
(
| |X(9:) | |(9+:)�+2-Hld

)1/(9+:+2)
����
����
?

≦ 2
√
?.

Therefore we conclude (4.21) by the definition of the homogeneous norm.

(ii) We adapt the argument of [12][Proposition 13.43]. By the inverse
contraction principle (see Theorem 4.2.4 of [6]), it is sufficient to prove that
X

& is exponentially tight on Ω(,�)-Hld. By (i), there exists 2 > 0 such that

P
[
| | |X| | |(′,�′) > ;

]
≦ exp (−2;2),

for any ′ ∈ (, 1/2) and �′ ∈ (�, �), and this implies that for all " > 0,
there exists a precompact set

 " =

{
- ∈ Ω(,�)-Hld

��� | | |X| | |(′,�′) ≦
√
"/2

}
on Ω(,�)-Hld such that

&2� log P

[
X

& ∈  2"
]
= &2� log P

[
| | |X& | | |(′,�′) >

√
"

2

]

= &2� log P

[
| | |X| | |(′,�′) >

√
"

2&2�

]
≦ −",

from which we conclude. �

As mentioned earlier, - & = &�- is UET by Lemma 2.4 of [19] with

= = &−2� . The LDP for &�(-̂ , -) has been proved in [7] with speed &−2�

and good rate function �#. Therefore by Lemma 4.6 (ii) and Theorem 4.4
(regarding as = = &−2� ), we have proved Theorem 3.2.

A Some Lemmas

Lemma A.1 ([26] Proposition1.6). Let $ be a control function; i.e.

$(B, D) + $(D, C) ≦ $(B, C), 0 ≦ B ≦ D ≦ C ≦ ),

and P = {B = C0 < C1 < ... < C# = C} be a partition on [B, C] (# ≧ 2). Then
there exists an integer 8(1 ≦ 8 ≦ #) such that;

$(C8−1 , C8+1) ≦
2

# − 1
$(B, C)
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Proof. By definition of $, we have

#−1∑
?=1

$(C8−1 , C8+1) =
∑
8:odd

$(C8−1 , C8+1) +
∑
8:even

$(C8−1 , C8+1) ≦ 2$(B, C).

Therefore there exists such 8 that satisfies the desired inequality. �

Proposition A.2 (Kolmogorov’s continuity theorem). Let - be a process on
Δ) and assume that there exists ? ≧ 1, 2 , & > 0 such that

| |-BC | |? ≦ 2 |C − B |&+2/? , (B, C) ∈ Δ)

Then there exists a modification -̂ of - such that for all � ∈ [0, &),�����
����� sup
(B,C)∈Δ)

|-̂BC |
|C − B |�

�����
�����
?

≦
22

2−� − 2−&
(6
√

2)&+2/? .

Proof. Let �< := Δ) ∩ 2−<Z2, and � := ∪<�< . Let Δ< := {(B, C) ∈ �2
< ; |B −

C | ≦ 2−<}, then we have #Δ< ≦ (2< + 1)232 ≦ 22<62. Let

 < := sup
(B,C)∈Δ<

|-BC | ,

then by assumption, we have

E
[
 
?
<

]
≦

∑
(B,C)∈Δ<

E [|-BC |?] ≦ 22<622?(
√

22−<)2+?& = 2?622(2+?&)/22−<?& .

Then for all B, C ∈ �, there exists a sequence {B=}, {C=} such that

• B= ∈ �= , B= ≦ B=+1, and B= → B (same as C=).

• 0 < C= − B= ≦ 2−= .

Therefore, for all (B, C) ∈ � with |C − B | ≦ 2−< , we conclude

|-BC | ≦
∞∑
8=<

��-B8+1C8+1 − -B8 C8
�� + |-B<C< | ≦ 3

∞∑
8=<

��-B8C8 �� ≦ 3

∞∑
8=<

| 8 | .

Let

"� := sup
(B,C)∈�∩Δ)

|-BC |
|C − B |� .

Since for all (B, C) ∈ � ∩ Δ) , there exists < ∈ Z+ such that 2−<−1 < |C − B | ≦
2−< ,

"� ≦ sup
<∈Z+

{
2(<+1)� sup

|B−C |≦2−<
|-BC |

}
≦ 3·2� sup

<∈Z+

{
2<�

∞∑
8=<

 8

}
≦ 3·2�

∞∑
8=0

28� 8 ,
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and this implies that for all � ∈ [0, &), by Minkowski’s inequality,

| |"� | |? ≦ 3 · 2�
∞∑
8=0

28� | | 8 | |? ≦ 3 · 2�262/?2(&+2/?)/2
∞∑
8=0

28(�−&)

=
3 · 2�262/?2(&+2/?)/2

1 − 2�−&
.

This implies that "� < ∞ a.e. and - is uniformly continuous on �. Then

there exists a continuous process -̂ such that- = -̂ on�. By the continuity

of -̂, we have

sup
(B,C)∈Δ)

���-̂BC ���
|C − B |� = sup

(B,C)∈Δ)

|-BC |
|C − B |� = "� ,

which completes the proof. �

B Proof of Proposition 3.4 (i)

The notation in this section is independent from the other parts of this paper
and follows the standard in the rough path theory. Namely, we are going
to show the continuity of the solution map . = Φ(-) for the RDE

. =

∫
�0(.)d-, �0 = �(· + 0)

for � : R4 → Mat(4 , 3) and - ∈ Ω-Hld, where  ∈ (1
3 ,

1
2 ]. Therefore .BC

in Proposition 3.4 is replaced by -BC and ((̄BC , C − B) is replaced by .BC with
0 = ((0, 0). The proof below originates from [26], where the corresponding
result is proved under the framework of geometric rough path. Although
- is not a geometric rough path, the argument remains valid, and here we
give the details for the readers’ convenience. Note that to simplify, we do
not use a control function argument and this point is different from [26].

Lemma B.1 ([26] Lemma 1.16). For ? ≧ 1, # ∈ N, and 01, 02, ..., 0# ≧ 0, we
have

(01 + ... + 0# )? ≦ # ?−1(0?1 + ... + 0?
#
).

Proof. The claim is equivalent to

( 01 + ... + 0#
#

)?
≦
0
?

1
+ ... + 0?

#

#
,

and so by the convexity of the function 5 (G) = G? , G ∈ [0,∞), we have the
desired result. �

Lemma B.2 ([26] Lemma 4.11). Let,, ,̂ ∈ Ω-Hld([0, )],R<) and 0 = �0 <
�1 < ... < �# = ) be a partition of [0, )].
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(i) Assume that for all 9 = 1, 2..., # ,

|, (8)
BC | ≦ |C − B | 8 , (B, C) ∈ Δ[�9−1,�9], 8 = 1, 2, (B.1)

where Δ[(,(′] := {(B, C)|( ≦ B < C ≦ (′}. Then we have

|, (8)
BC | ≦ #

8(1−) |C − B | 8 , (B, C) ∈ Δ) , 8 = 1, 2.

(ii) Fix & > 0. Assume that for all 9 = 1, 2, ..., # , , and ,̂ satisfy (�.1)
and

|, (8)
BC − ,̂ (8)

BC | ≦ & |C − B | 8 , (B, C) ∈ Δ[�9−1,�9], 8 = 1, 2.

Then we have

|, (8)
BC − ,̂ (8)

BC | ≦ &# 8(1−) |C − B | 8 , (B, C) ∈ Δ) , 8 = 1, 2.

Proof. The most difficult case is when B ∈ [�0, �1] and C ∈ [�#−1, �#], so we
prove under this condition. Let C0 = B, C# = C, C 9 = �9 (1 ≦ 9 ≦ # − 1). By

Chen’s relation, ,
(1)
BC =

∑#
9=1,

(1)
C 9−1C 9

, and so by Lemma B.1 (take ? = 1
 ), we

have

|, (1)
BC | ≦

#∑
9=1

|C 9 − C 9−1 | ≦ #1− |C − B |.

By the same argument as above, we have the inequality of |, (1)
BC − ,̂ (1)

BC |.
By Chen’s relation again, we have ,

(2)
BC =

∑#
9=1,

(2)
C 9−1C 9

+ ∑
1≦:< 9≦# ,

(1)
C:−1C:

⊗
,

(1)
C 9−1C 9

, and so by Lemma B.1, we have

|, (2)
BC | ≦

#∑
9=1

|C 9 − C 9−1 |2 +
∑

1≦:< 9≦#

|C: − C:−1 | |C 9 − C 9−1 |

≦




#∑
9=1

|C 9 − C 9−1 |



2

≦ #2(1−) |C − B |2

By the same argument as above, we have the inequality of |, (2)
BC − ,̂ (2)

BC |. �

Proof of Proposition 3.4. Fix - ∈ Ω-Hld([0, )],R3) and let

�1 : Ω-Hld([0, )],R3+4) → Ω-Hld([0, )],R3)

�2 : Ω-Hld([0, )],R3+4) → Ω-Hld([0, )],R4)
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be the projection map on the rough path space Ω-Hld([0, )],R3+4). For
/ ∈ Ω-Hld([0, )],R3+4) satisfying with �1/ = - , we define . = �2/,
�[-,.] and �[., -] as follows;

/
(1)
BC =

(
-

(1)
BC

.
(1)
BC

)
, /

(2)
BC =

(
-

(2)
BC �[-,.]BC

�[., -]BC .
(2)
BC

)
.

For ' > 0 and [(, (′] ⊂ [0, )], we define

�',[(,(′]

:=

{
/ ∈ Ω-Hld([(, (′],R3+4)

�����
�1/ = - |Δ[(,(′] ,

and Z has the following inequalities (B.2)

}
,

|- (8)
BC | ≦ |C − B | 8 , |.(8)

BC | ≦ '8 |C − B | 8 , (B.2)

|�[-,.]BC | ∨ |�[., -]BC | ≦ ' |C − B |2 , (B, C) ∈ Δ[(,(′] 8 = 1, 2.

Take a metric function on �',[(,(′] as

3̃(/, /̂) := '−1 | |.(1) − .̂(1) | |-Hld,[(,(′] ∨ '−2 | |.(2) − .̂(2) | |2-Hld,[(,(′]

∨ '−1 | |�[-,.]BC − �[-, .̂]BC | |2-Hld,[(,(′]

∨ '−1 | |�[., -]BC − �[.̂, -]BC | |2-Hld,[(,(′] ,

then �',[(,(′] is a complete metric space in 3̃. Let � : Ω-Hld([0, )],R3+4) →
Ω-Hld([0, )],R3+4) as

�(/) :=

∫
�̃0(/)d/, / ∈ Ω-Hld

where �̃0(I){I′} :=

(
Id 0

�0(H) 0

)
{I′}, I =

(
G
H

)
, I′ ∈ R3+4 and Id is the identity

matrix. Note that by assumption of Proposition, � : R4 → Mat(4 , 3) is in
�3
1
.

(Claim 1) RDE;

.C =

∫ C

0

�0(.D)d-D , (B.3)

has a solution on some subinterval [0, )1].
Let  := | |� | |�3

1
and fix ' >  . First we prove that there exists

(1 ∈ (0, )] such that if 0 < ( ≦ (1, then �(�',[0,(]) ⊂ �',[0,(].

Fix 0 < A < 1 and ' >  . Take ( such that ( ≦ A'−1. Let 2 be a
positive constant only depending on . Let also �(1) := �̃0(IB)/(1)

BC +

31



∇�̃0(IB)/(2)
BC , �

(2)
BC := �̃0(IB) ⊗ �̃0(IB)/(2)

BC and � := (�(1) , �(2)), where IB :=

/
(1)
0B . By Chen’s relation and Taylor expansion, we have

�
(1)
BC =

(
-

(1)
BC

�0(HB)- (1)
BC + ∇�0(HB){�[., -]BC}

)
,

�
(2)
BC =

(
-

(2)
BC Id ⊗ �0(HB){- (2)

BC }
�0(HB) ⊗ Id{- (2)

BC } �0(HB) ⊗ �0(HB){- (2)
BC }

)
,

where HB = .
(1)
0B

. By the condition (B.2), for / ∈ �',[0,(] and (B, C) ∈ Δ(,
we have

|�2{�(1)BC }| ≦ |�0(HB)- (1)
BC | + |∇�0(HB){�[., -]BC}|

≦  |C − B | +  ' |C − B |2

≦ (1 + A) |C − B |.

By the same argument as before, we have

|�1 ⊗ �2{�(2)BC }| = |Id ⊗ �0(HB){- (2)
BC }| ≦  |C − B |2 ,

|�1 ⊗ �2{�(2)BC }| = |�0(HB) ⊗ Id{- (2)
BC }| ≦  |C − B |2 ,

|�1 ⊗ �2{�(2)BC }| = |�0(HB) ⊗ �0(HB){- (2)
BC }| ≦  2 |C − B |2.

By Chen’s relation and Taylor expansion, we have

�2{�(1)BD + �(1)DC − �(1)BC }

=

(∫ 1

0

(1 − �)∇2�0(HB + �.
(1)
BC )d�

) {
.
(1)
BD ⊗ .(1)

BD ⊗ - (1)
DC

}

+
(∫ 1

0

∇2�0(HB + �.
(1)
BC )d�

) {
.
(1)
BD ⊗ �[., -]DC

}
, (B.4)

and by using the condition (B.2), we have����2{�(1)BD + �(1)DC − �(1)BC }
��� ≦ 2 '2 |C − B |3.

Therefore, we have����2{�(/)(1)BC − �(1)BC }
��� ≦ 23�(3)2 '2 |C − B |3 ,

and we conclude

|�2{�(/)(1)BC }| ≦
{
 +  '( + 23�(3)2 '2(2

}
|C − B |

≦ (1 + 2A) |C − B | , (B, C) ∈ Δ( .
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Next we calculate the second level of �(/). Same argument as the
first level path of �, by Taylor expansion and Chen’s relation, for
(:, ;) = (2, 1), (1, 2), (2, 2), we have

|�: ⊗ �;{�(/)(2)BC }| ≦ (1 + 2A) :+;−2 |C − B |2 , (B, C) ∈ Δ( .

Take A small enough, we can check that for / ∈ �',[0,(], �(/) satisfies
the condition (B.2). Therefore we have �(�',[0,(]) ⊂ �',[0,(].

Next we prove that there exists )1 ∈ (0, (1] such that if 0 < ( ≦ )1 and

/, /̂ ∈ �',[0,(], then

3̃(�(/), �(/̂)) ≦ 1

2
3̃(/, /̂).

Take � = 3̃(/, /̂) and A ∈ (0, 1) small enough. By the definition of 3̃,
we have

|�[-,.]BC − �[-, .̂]BC | ∨ |�[., -]BC − �[.̂, -]BC | ≦ '� |C − B |2

|.(8)
BC − .̂(8)

BC | ≦ '8� |C − B | 8 , (B, C) ∈ Δ( , 8 = 1, 2.

First we calculate the first level path of �. For (B, C) ∈ Δ( (note that
( ≦ A'−1),

|�2{�(1)BC − �̂(1)BC }| ≦ |�0(HB) − �0(ĤB)| |- (1)
BC | + |∇�0(HB)| |�[., -]BC − �[.̂, -]BC |

+ |∇�0(HB) − ∇�0(ĤB)| |�[.̂, -]BC |
≦  '�( |C − B | +  '� |C − B |2 +  '2�( |C − B |2

≦ �{2A + A2} |C − B |

≦ 3�A |C − B |.

Next, we calculate

�
(1)
BD + �(1)DC − �(1)BC − { �̂(1)BD + �̂(1)DC − �̂(1)BC }.
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By (B.4) and the boundedness of �0 , we have����2

{
�
(1)
BD + �(1)DC − �(1)BC − (�̂(1)BD + �̂(1)DC − �̂(1)BC )

}���
≦

∫ 1

0

(1 − �)
����∇2�0(HB + �.

(1)
BD )(.(1)

BD ⊗ .(1)
BD ⊗ - (1)

DC )

− ∇2�0(ĤB + �.̂
(1)
BD )(.̂(1)

BD ⊗ .̂(1)
BD ⊗ - (1)

DC )
����d�

+
∫ 1

0

����∇2�0(HB + �.
(1)
BD )(.(1)

BD ⊗ �[., -]DC)

− ∇2�0(ĤB + �.̂
(1)
BD )(.̂(1)

BD ⊗ �[.̂, -]DC)
����d�

≦ �2{ '3( +  '2}|C − B |3

≦ �2 '2 |C − B |3.

This implies����2

{
�(/)(1)BC − �(1)BC − (�(/̂)(1)BC − �̂(1)BC )

}��� ≦ �2 '2 |C − B |3 ,

and so����2

{
�(/)(1)BC − �(/̂)(1)BC

}��� ≦ ����2

{
�(/)(1)BC − �(1)BC − (�(/̂)(1)BC − �̂(1)BC )

}���
+ |�2{�(1)BC − �̂(1)BC }|
≦ �{3A + 2'2(2} |C − B |

≦ �2A |C − B |

≦ 2A' |C − B |.

Same argument as the first level path of �(/), for (:, ;) = (2, 1), (1, 2), (2, 2),
we have����: ⊗ �;

(
�(/)(2)BC − �(/̂)(2)BC

)��� ≦ �2A':+;−2 |C − B |2 , (B, C) ∈ Δ(.

Therefore by taking A small enough, we have 3̃(�(/), �(/̂)) ≦ 1
2 3̃(/, /̂).

Therefore we conclude that there exists a solution of (B.3) on subin-
terval [0, )1].

(Claim 2) RDE solution has the unique time-global solution.

Let 0 ≦ �0 < �1 < �2 ≦ ) and

,(9) := (1,,(9)(1) ,,(9)(2)) ∈ �(Δ[�9−1,�9],R ⊕ R< ⊕ R<2)
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satisfies Chen’s relation on [�9−1 , �9] (9 = 1, 2). Then we define ,
as a concatenation between ,(1) and ,(2) as follows; for (B, C) ∈
[�0, �1] × [�1, �2],

,
(1)
BC :=,(1)(1)B�1

+,(2)(1)�1 C
,

,
(2)
BC :=,(1)(2)B�1

+,(2)(2)�1 C
+,(1)(1)B�1

⊗,(2)(1)�1 C
.

Then if,(9) is an -Hölder rough path on Δ[�9−1,�9], then, is also an
-Hölder rough path on Δ[�0 ,�2].

Let 5 : R< → Mat(4 , <) be �3
1

and 50 = 5 (0 + ·), 0 ∈ R4 . For
, ∈ Ω-Hld([�0 , �2],R<), let ,(9) be the restriction of Δ[�9−1,�9] and

+(1) :=
∫
50(,(1))d,(1) and +(2) :=

∫
50̂(,(2))d,(2), where 0̂ :=

0 + +(1)(1)�0�1
. Then we have +(9) ∈ Ω-Hld([�9−1 , �9],R4) and we can

prove that the concatenation between+(1)and+(2) is equal to
∫
50(,)d, .

Let * := (A'−1) 1
 and take a partition {0 = )0 < )1 < ... < )# = )} of

[0, )] as follows;

* = |)1 | = |)2 − )1 | = ... ≧ |)# − )#−1 |.

Note that (# − 1)* =
∑#−1
8=1 |)8 − )8−1 | ≦ ). By (Claim 1), we have

a solution / on [0, )1]. On [)1, )2], by changing an initial value 0

to 0 + .(1)
0)1

, we have a solution on [)1, )2]. By concatenating these

rough paths by the above way, we have a rough path on [0, )2], and
by the remark of the concatenating of rough path integral, this is a
solution on [0, )2]. By the same argument, we have a solution on
subinterval [):−1 , ):], and by concatenating these solutions, we have a
time-global solution on [0, )]. Since 8-th level of a solution on [):−1 , ):]
is 8−Hölder continuous, so by Lemma B.2, we have

|.(1)
BC | ≦ '#1− |C − B | ≦ '(1 + )*−1)1− |C − B | , (B, C) ∈ Δ)

and for (:, ;) = (2, 1), (1, 2), (2, 2),

|�: ⊗ �;{/(2)
BC }| ≦ ':+;−2(1 + )*−1)2(1−) |C − B |2 , (B, C) ∈ Δ)

and hence /(8) is 8-Hölder continuous (8 = 1, 2). To prove the
uniqueness of the time-global solition, let / and /̃ be time-global
solutions with respect to (0, -). By taking ' large enough, we have
/, /̃ ∈ �',[0,(]. Therefore a solution of (B.3) is unique on [0, )].

(Claim3) The solution map is locally Lipschitz continuous.

Let /, /̂ be the unique solution with respect to (-, 0), (-̂ , 0̂). Let
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&′ := |0 − 0̂ | and & := max8=1,2 | |- (8) − -̂ (8) | | 8-Hld. For ' > 0 and
[(, (′] ⊂ [0, )], let

3̄(/, /̂) := '−1 | |.(1) − .̂(1) | |-Hld,[(,(′] ∨ '−2 | |.(2) − .̂(2) | |2-Hld,[(,(′]

∨ '−1 | |�[-,.]BC − �[-̂ , .̂]BC | |-Hld,[(,(′]

∨ '−1 | |�[., -]BC − �[.̂, -̂]BC | |-Hld,[(,(′].

First we prove that there exists *1 ∈ (0, )1] and � > 0 such that if
0 < * ≦ *1, then

|.(1)
0*

− .̂(1)
0*

| ≦ & + &′,

and also on subinterval [0, *], the following inequality is true;

3̄(/, /̂) ≦ �(& + &′).

Take ' >  and let � = 3̄(/, /̂). Then

|�[-,.]BC − �[-̂ , .̂]BC | ∨ |�[., -]BC − �[.̂, -̂]BC | ≦ '� |C − B |2 ,

|.(8)
BC − .̂(8)

BC | ≦ '
8� |C − B | 8 , (B, C) ∈ Δ* , 8 = 1, 2.

Note that for 9 = 0, 1, 2, (B, C) ∈ Δ* , and � ∈ [0, 1], we have

|∇ 9�0(HB + �.
(1)
BD ) − ∇ 9�0̂(ĤB + �.̂

(1)
BD )|

≦ | |∇ 9+1� | |∞(|0 − 0̂ | + sup
0≦B≦*

|HB − ĤB |)

≦  (&′ + '�*).

Then for all (B, C) ∈ Δ* ,

|�2{�(1)BC − �̂(1)BC }| ≦ |�0(HB)- (1)
BC − �0̂(ĤB)-̂ (1)

BC |
+ |∇�0(HB)�[., -]BC − ∇�0̂(ĤB)�[.̂, -̂]BC |
≦ |�0(HB)| |- (1)

BC − -̂ (1)
BC | + |�0(HB) − �0̂(ĤB)| |-̂ (1)

BC |
+ |∇�0(HB)| |�[., -]BC − �[.̂, -̂]BC |
+ |∇�0(HB) − ∇�0̂(ĤB)| |�[.̂, -̂]BC |
≦ { & +  (&′ + '�*)}|C − B |

+ { � +  (&′ + '�*)}' |C − B |2

≦ {& + 2&′ + 3A�}' |C − B |.
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Also for 0 ≦ B ≦ D ≦ C ≦ * , by (B.4), we have

|�2{�(1)BD + �(1)DC − �(1)BC − (�̂(1)BD + �̂(1)DC − �̂(1)BC )}|

≦

∫ 1

0

(1 − �)|∇2�0(HB + �.
(1)
BD )(.(1)

BD ⊗ .(1)
BD ⊗ - (1)

BC )

− ∇2�0̂(ĤB + �.̂
(1)
BD )(.̂(1)

BD ⊗ .̂(1)
BD ⊗ -̂ (1)

BC )|d�

+
∫ 1

0

|∇2�0(HB + �.
(1)
BD )(.(1)

BD ⊗ �[., -]BC)

− ∇2�0̂(ĤB + �.̂
(1)
BD )(.̂(1)

BD ⊗ �[.̂, -̂]BC)|d�
≦ (& + 2&′ + 6�) '2 |C − B |3 ,

and so we have

|�2(�(/)(1)BC − �(1)BC − (�(/̂)(1)BC − �̂(1)BC ))| ≦ 2(& + 2&′ + 6�) '2 |C − B |3.

Therefore we have

|�2{�(/)(1)BC − �(/̂)(1)BC }| ≦ |�2(�(/)(1)BC − �(1)BC − (�(/̂)(1)BC − �̂(1)BC ))|
+ |�2{�(1)BC − �̂(1)BC }|
≦ 2(& + &′ + A�)' |C − B |. (B.5)

By the same argument as the first level of path �(/), for (:, ;) =

(2, 1), (1, 2), (2, 2), we have

|�: ⊗ �;(�(/)(2)BC − �(/̂)(2)BC )| ≦ 2(& + &′ + A�)':+;−2 |C − B |2 (B, C) ∈ Δ* .
(B.6)

Hence by (B.5) and (B.6), we have

3̄(/, /̂) = � ≦ 2(& + &′ + A�).

Fix 2 > 0 and take A > 0 small enough (A2 ≦ 1
3 ). Then we have

* ≦ A'−1 ≦ (3'2)−1 and so

|.(1)
0*

− .̂(1)
0*

| ≦ 3

2
2(& + &′)'*

≦ & + &′,

and we have the desired result.

Next take a partition 0 = *0 < *1 < ... < *# = ) of [0, )] as follows;

(A'−1)1/ = *1 = |*2 −*1 | = ... = |*# −*#−1 |.

Note that # − 1 ≦ )(A'−1)−1/ . For each subinterval [*8 , *8+1], take

the unique solution / and /̂ with respect to an initial value 0 + .(1)
0*8

and 0̂ + .̂(1)
0*8

respectively. Then we have���0 +.(1)
0*8

− (0̂ + .̂(1)
0*8

)
��� ≦ −& + 28(& + &′),
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and hence on each subinterval [*8 , *8+1],

3̄(/, /̂) ≦ �28(& + &′) ≦ �2#(& + &′).

Therefore by Lemma B.2, we have

|.(1)
BC − .̂(1)

BC | ≦ '�2#(& + &′)#1− |C − B | , (B, C) ∈ Δ)

and for (:, ;) = (2, 1), (1, 2), (2, 2), we have

|�: ⊗ �;(/(2)
BC − /̂(2)

BC )| ≦ ('):+;−2�2#(& + &′)#1− |C − B |2 , (B, C) ∈ Δ) .

Therefore since # ≦ 1 +  1/)
A1/ , we have the claim.

�

C Proof of Theorem 3.8

Proof. To shorten, let � := �((0, 0). Since (̃&
1
∼ (̃1

&, by Theorem 3.6, C�−1/2(̄C
satisfies the LDP with speed C−2� with good rate function

�(B̃)

:= inf

{
�#(D, E)

����� D, E ∈ �[0,)], E ∈ BV, B̃ =

(
�

∫
5 (L̂(D, E))dL(D, E)

)(1)
01

}
.

Letℋ be the Cameron-Martin space. We can calculate that for 6 = (ℎ1 , ℎ2) ∈
ℋ ×ℋ ,

(ℐΨ6)C =
(∫ C

0
:�(C − A) ¤ℎ1

AdA

�ℎ1
C +

√
1 − �2ℎ2

C

)
=

(
DC
EC

)
,

and
1

2
| |ℐΨ6 | |2ℋΨ =

1

2

∫ 1

0

{
| ¤ℎ1
A |2 + | ¤ℎ2

A |2
}

dA.

Then

B̃ =

(
�

∫
5 (L̂(D, E))L(D, E)

) (1)
01

= �

∫ 1

0

5

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
d

(
�ℎ1

C +
√

1 − �2ℎ2
C

)

= ��

∫ 1

0

5

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
dℎ1

C

+
√

1 − �2�

∫ 1

0

5

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
dℎ2

C ,
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and so

B̃ − ��
∫ 1

0
5
(∫ C

0
:�(C − A) ¤ℎ1

AdA
)

dℎ1
C√

1 − �2
= �

∫ 1

0

5

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
dℎ2

C .

(C.1)
Fix ℎ1 ∈ ℋ , and minimize 1

2 | |ℐΨ6 | |2ℋΨ
with respect to ℎ2 ∈ ℋ under the

condition (�.1). Let ℎ̃ be the minimizer. Take & > 0 and ℎ̂ ∈ ℋ , and
consider ℎ̃ + & ℎ̂. Since ℎ̃ satisfies the condition (�.1),∫ 1

0

5

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
dℎ̂C = 0. (C.2)

Since ℎ̃ is the minimizer, we have

d

d&

����
&=0

1

2

∫ 1

0

( ¤̃ℎA + &
¤̂
ℎA)2dA = 0,

we have ∫ 1

0

¤̃
ℎA

¤̂
ℎAdA = 0

for any ℎ̂ with (C.2). Therefore there exists 2 ∈ R such that

¤̃
ℎ = 2 5

(∫ ·

0

:�(· − A) ¤ℎ1
AdA

)
.

Hence

B̃ − ��
∫ 1

0
5
(∫ C

0
:�(C − A) ¤ℎ1

AdA
)

dℎ1
C√

1 − �2
= 2�

∫ 1

0

5 2

(∫ C

0

:�(C − A) ¤ℎ1
AdA

)
dC.

and we calculate that

�(B̃) = �#(D, E) = 1

2
| |ℐΨ6 | |2ℋΨ

=
1

2

∫ 1

0

| ¤ℎ1
A |2dB +

{
B̃ − ��

∫ 1

0
5
(∫ C

0
:�(C − A) ¤ℎ1

AdA
)

dℎ1
C

}2

2(1 − �2)�2
∫ 1

0
5 2(

∫ C

0
:�(C − A) ¤ℎ1

AdA)dC
, (D, E) = ℐΨ6.

�
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