Drift and volatility estimation in discrete time

Article in Journal of Economic Dynamics and Control • February 1998
DOI: 10.1016/S0165-1889(97)00052-3

CITATIONS	
46	

Robert J. Elliott
University of Adelaide
597 PUBLICATIONS 11,425 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Bank economics View project

Hawkes Processes in Finance View project

Drift and volatility estimation in discrete time

Robert J. Elliott ${ }^{\text {a,* }}$, William C. Hunter ${ }^{\text {b }}$, Barbara M. Jamieson ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2 Gl
${ }^{\mathrm{b}}$ Federal Reserve Bank, 230 South La Salle St. Chicago, IL 60604, USA

Received 14 February 1995; accepted 7 January 1997

Abstract

In discrete time the increment of the logarithm of the price of a risky asset is supposed to involve two parameters which may be thought of as the 'drift' and 'volatility'. It is assumed these parameters take finitely many values, and that they change value like a Markov chain on this state space. Filtering and parameter estimation techniques from Hidden Markov Models are then applied to obtain recursive estimates of the 'drift' and 'volatility'. Further, all parameters in the model can be estimated. The method is illustrated by applying the results to two series of prices.

Keywords: Filtering; Hidden Markov Models; Parameter estimation; Volatility JEL classification: C4; G0

1. Introduction

In a recent paper (Elliott and Rishel, 1994), the filtering and parameter estimation techniques of Hidden Markov Models are used to estimate the implicit interest rate of a risky asset whose price dynamics are described in continuous time by the usual log-normal stochastic differential equation. Techniques used in that paper included the Girsanov theorem and expectation maximization (EM) algorithm. The Girsanov theorem changes the drift (or interest rate), by a change of probability measure. The EM algorithm is then used to filter the logarithm of the Girsanov density, and the optimal estimate for the drift is obtained as the value which maximizes this filtered logarithm of the density. Unfortunately

[^0]this technique cannot be used in continuous time to estimate the volatility, because the probability measures corresponding to diffusions with different diffusion coefficients (volatilities) are singular.

In discrete time, however, our method will work. We consider a multiplicative model for the evolution of the price of a risky asset. The increment of the logarithm of the price involves a Gaussian noise and parameters which we suppose evolve as a finite state Markov chain. The filtering and estimation techniques for Hidden Markov Models developed in our paper (Elliott, 1994) are then applied. See also the book (Elliott et al., 1994). This enables us to obtain not only the best estimate of the state of the chain (that is, the coefficients), given the observations of the increments of the logarithm of the price, but also estimate all parameters of the model.

2. Price process

Consider a price process in discrete time, $S_{n}, n \in Z^{+}$. Suppose S_{n} evolves according to the dynamics $S_{n+1}=S_{n} \exp Y_{n+1}$ where $Y_{n+1}=g_{n}+\gamma_{n} b_{n+1}$. Here, $\left\{b_{n}\right\}, n \in Z^{+}$, is a sequence of i.i.d. $\mathrm{N}(0,1)$ random variables.

Suppose (g_{n}, γ_{n}) takes values in a finite set $B=\left\{\left(g_{i}, \gamma_{i}\right), i=1, \ldots, N\right\}$. Write g for the vector $\left(g_{1}, g_{2}, \ldots, g_{N}\right)$ and γ for $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right)$. Suppose $\left(g_{n}, \gamma_{n}\right)$ evolves as a Markov chain with state space B.

We can identify B with

$$
\Sigma=\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}
$$

where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{\prime} \in R^{N}$. Suppose $\phi: B \rightarrow \Sigma$ gives this bijection, so for each $k, 1 \leq k \leq N, e_{k}=\phi\left(\left(g_{k}, \gamma_{k}\right)\right)$. Write

$$
X_{n}=\phi\left(g_{n}, \gamma_{n}\right)
$$

Then

$$
g_{n}=\left\langle g, X_{n}\right\rangle
$$

and

$$
\gamma_{n}=\left\langle\gamma, X_{n}\right\rangle .
$$

Our processes are defined on a probability space (Ω, \mathscr{F}, P) and we suppose X_{n} is a Markov chain with state space Σ.
(We could have g_{n} and γ_{n} each behaving as independent Markov chains on their state spaces; (g_{n}, γ_{n}) is then the (tensor) product Markov chain. See Remarks 3.1.)

Suppose X_{n} has transition probabilities given by

$$
P\left(X_{n}=e_{j} \mid X_{n-1}=e_{i}\right)=a_{f i}
$$

Note $\sum_{j=1}^{N} a_{j i}=1$, and write A for the transition matrix $\left(a_{j i}\right), 1 \leq i, j \leq N$. We do not observe the Markov chain X; instead we observe the logarithmic increments of the price process:

$$
\begin{aligned}
Y_{n+1} & =\log \frac{S_{n+1}}{S_{n}} \\
& =g_{n}+\gamma_{n} b_{n+1} \\
& =\left\langle g, X_{n}\right\rangle+\left\langle\gamma, X_{n}\right\rangle b_{n+1} .
\end{aligned}
$$

Write $\left\{G_{n}\right\}, n \in Z^{+}$, for the complete filtration generated by the X and Y processes; $\left\{Y_{n}\right\}, n \in Z^{+}$, will denote the complete filtration generated by the Y process.

Write

$$
\begin{aligned}
& \phi(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right), \\
& \Gamma^{i}\left(Y_{n}\right)=\phi\left(\frac{Y_{n}-g_{i}}{\gamma_{i}}\right) / \gamma_{i} \phi\left(Y_{n}\right), \\
& a_{i}=A e_{i} .
\end{aligned}
$$

3. Estimation

For the price process S_{n} defined in Section 2, having coefficients $\left(g_{n}, \gamma_{n}\right)=$ ($\left\langle g, X_{n}\right\rangle,\left\langle\gamma, X_{n}\right\rangle$) which behave like a Markov chain, we can define the following filtering and estimation problem. First note that X_{n} can be written with dynamics

$$
\begin{equation*}
X_{n}=A X_{n-1}+M_{n} \tag{1}
\end{equation*}
$$

where $\mathrm{E}\left[M_{n} \mid G_{n-1}\right]=0$, so that M is a sequence of martingale increments.
The observation process Y has dynamics

$$
Y_{n+1}=\left\langle g, X_{n}\right\rangle+\left\langle\gamma, X_{n}\right\rangle b_{n+1}
$$

We are, therefore, in the situation discussed in the paper of Elliott (1994) (see also the book of Elliott et al., 1994). Following Elliott (1994), recall that the analysis takes place under a probability measure \bar{P} for which the $\left\{Y_{\ell}\right\}$ are i.i.d. $\mathrm{N}(0,1)$ random variables. In fact, suppose we have a probability measure \bar{P} on (Ω, \mathscr{F}) such that under \bar{P} :
(a) $X_{\ell}, \ell \in Z^{+}$, is a Markov chain with transition matrix A, so that

$$
X_{n}=A X_{n-1}+M_{n},
$$

where $\bar{E}\left[M_{n} \mid G_{n-1}\right]=0$, and
(b) $Y_{\ell}, \ell \in Z^{+}$, is a sequence of $\mathrm{N}(0,1)$ i.i.d. random variables. Write

$$
\begin{aligned}
& \bar{\gamma}_{\ell}=\frac{\phi\left(\left(Y_{\ell}-\left\langle g, X_{\ell-1}\right\rangle\right) /\left\langle\gamma, X_{\ell-1}\right\rangle\right)}{\left\langle\gamma, X_{\ell-1}\right\rangle \phi\left(Y_{\ell}\right)} \\
& \bar{\Lambda}_{n}=\prod_{\ell=1}^{n} \bar{\gamma}_{\ell} \quad \text { for } n \geq 1
\end{aligned}
$$

and define P in terms of \bar{P} by putting $\mathrm{d} P /\left.\mathrm{d} \bar{P}\right|_{G_{n}}=\bar{\Lambda}_{n}$.
Then under P, we still have

$$
X_{n}=A X_{n-1}+M_{n}
$$

where $\mathrm{E}\left[M_{n} \mid G_{n-1}\right]=0$ but now $b_{n}, n \in Z^{+}$, is a sequence of i.i.d $\mathrm{N}(0,1)$ random variables, where

$$
b_{n}:=\frac{Y_{n}-\left\langle g, X_{n-1}\right\rangle}{\left\langle\gamma, X_{n-1}\right\rangle}
$$

That is, under P

$$
Y_{n}=\left\langle g, X_{n-1}\right\rangle+\left\langle\gamma, X_{n-1}\right\rangle b_{n},
$$

so under P, Y is given by the 'real-world' dynamics. However, it is easier mathematically to work under \bar{P}.

If $\left\{H_{\ell}\right\}$ is any $\left\{G_{\ell}\right\}$ adapted sequence we write

$$
\sigma_{n}\left(H_{n}\right)=\overline{\mathrm{E}}\left[\bar{\Lambda}_{n} H_{n} \mid Y_{n}\right] .
$$

A version of Bayes' theorem (see Elliott et al., 1994) implies that

$$
\begin{aligned}
E\left[H_{\ell} \mid Y_{\ell}\right] & =\frac{\overline{\mathrm{E}}\left[\bar{\Lambda}_{\ell} H_{\ell} \mid Y_{\ell}\right]}{\overline{\mathrm{E}}\left[\overline{\Lambda_{\ell}} \mid Y_{\ell}\right]} \\
& =\frac{\sigma_{\ell}\left(H_{\ell}\right)}{\sigma_{\ell}(1)} \quad \text { say }
\end{aligned}
$$

where

$$
\sigma_{\ell}\left(H_{\ell}\right)=\overline{\mathrm{E}}\left[\bar{\Lambda}_{\ell} H_{\ell} \mid Y_{\ell}\right]
$$

is an unnormalized conditional expectation of H_{ℓ} given Y_{ℓ}.
Applying the results of Elliott (1994), we have the following recursive expressions. First, for the state of the Markov chain:

$$
\begin{equation*}
\sigma_{n}\left(X_{n}\right)=\sum_{i=1}^{N}\left\langle\sigma_{n-1}\left(X_{n-1}\right), e_{i}\right\rangle \Gamma^{i}\left(Y_{n}\right) a_{i} \tag{2}
\end{equation*}
$$

Suppose

$$
N_{n}^{r s}=\sum_{\ell=1}^{n}\left\langle X_{\ell-1}, e_{r}\right\rangle\left\langle X_{\ell}, e_{s}\right\rangle
$$

so $N_{n}^{r s}$ is the number of jumps from e_{r} to e_{j} in time n. Then

$$
\begin{align*}
\sigma_{n}\left(N_{n}^{r s} X_{n}\right)= & \sum_{i=1}^{N}\left\langle\sigma_{n-1}\left(N_{n-1}^{r s} X_{n-1}\right), e_{i}\right\rangle \Gamma^{i}\left(Y_{n}\right) a_{i} \\
& +\left\langle\sigma_{n-1}\left(X_{n-1}\right), e_{r}\right\rangle a_{s r} \Gamma^{r}\left(Y_{n}\right) e_{s} \tag{3}
\end{align*}
$$

With $J_{n}^{r}=\sum_{\ell=1}^{n}\left\langle X_{\ell-1}, e_{r}\right\rangle$, the occupation time in e_{r},

$$
\begin{align*}
\sigma_{n}\left(J_{n}^{r} X_{n}\right)= & \sum_{i=1}^{N}\left\langle\sigma_{n-1}\left(J_{n-1}^{r} X_{n-1}\right), e_{i}\right\rangle \Gamma^{i}\left(Y_{n}\right) a_{i} \\
& +\Gamma^{r}\left(Y_{n}\right)\left\langle\sigma_{n-1}\left(Y_{n-1}\right), e_{r}\right\rangle a_{r} \tag{4}
\end{align*}
$$

With $f(Y)$ a function of Y and

$$
\begin{align*}
& G_{n}^{r}(f)=\sum_{\ell=1}^{n}\left\langle X_{\ell-1}, e_{r}\right\rangle f\left(Y_{\ell}\right) \\
& \sigma_{n}\left(G_{n}^{r}(f) X_{n}\right)= \sum_{i=1}^{n}\left\langle\sigma_{n-1}\left(G_{n-1}^{r}(f) X_{n-1}\right), e_{i}\right\rangle \Gamma^{i}\left(Y_{n}\right) a_{i} \\
&+\Gamma^{r}\left(Y_{n}\right)\left\langle\sigma_{n-1}\left(X_{n-1}\right), e_{r}\right\rangle f\left(Y_{n}\right) a_{r} \tag{5}
\end{align*}
$$

For any process H_{n}

$$
\begin{aligned}
\sigma_{n}\left(H_{n}\right) & =\left\langle\sigma_{n}\left(H_{n} X_{n}\right), \mathbf{1}\right\rangle \\
& =\sigma_{n}\left(H_{n}\left\langle X_{n}, \mathbf{1}\right\rangle\right)
\end{aligned}
$$

where $1=(1,1, \ldots, 1)^{\prime}$. As noted in Elliott (1994), we consider $\sigma_{n}\left(H_{n} X_{n}\right)$ for $H=N, J, G$, because, unlike $\sigma_{n}\left(H_{n}\right)$, closed-form recursions are obtained. Also, $\sigma_{n}(1)=\left\langle\sigma_{n}\left(X_{n}\right), 1\right\rangle=\overline{\mathrm{E}}\left[\bar{\Lambda}_{n} \mid Y_{n}\right]$.

Following Elliott (1994), the above expressions can be used to estimate the parameters of the model. The transition probabilities in the matrix A can be estimated as

$$
\begin{equation*}
\hat{a}_{s r}(n)=\frac{\sigma_{n}\left(N_{n}^{r s}\right)}{\sigma_{n}\left(J_{n}^{r}\right)} \tag{6}
\end{equation*}
$$

The components of the \hat{g} vector are re-estimated as

$$
\begin{equation*}
\hat{g}_{r}(n)=\frac{\sigma_{n}\left(G_{n}^{r}(Y)\right)}{\sigma_{n}\left(J_{n}^{r}\right)} \tag{7}
\end{equation*}
$$

and the components of the volatility vector $\hat{\gamma}$ re-estimated as

$$
\begin{equation*}
\hat{\gamma}_{r}(n)=\frac{\left(\sigma_{n}\left(G_{n}^{r}\left(Y^{2}\right)\right)-2 g_{r} \sigma_{n}\left(G_{n}^{r}(Y)\right)+g_{r}^{2} \sigma_{n}\left(J_{n}^{r}\right)\right)}{\sigma_{n}\left(J_{n}^{r}\right)} \tag{8}
\end{equation*}
$$

Remarks 3.1. If the probabilistic behaviour of the 'drift' g and 'volatility' γ are independent the model could be modified as follows. Suppose g_{n} takes values in a finite set $B_{1}=\left\{g_{1}, g_{2}, \ldots, g_{N(1)}\right\}$ and γ_{n} takes values in $B_{2}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N(2)}\right\}$. Then there are bijections ϕ_{1} (resp. ϕ_{2}) of B_{1} (resp. B_{2}) with the set of unit vectors $\Sigma_{1}=\left\{e_{1}, e_{2}, \ldots, e_{N(1)}\right\}$ of $R^{N(\cdot)}$, (resp. the set of unit vectors $\Sigma_{2}=\left\{f_{1}, f_{2}, \ldots\right.$, $\left.f_{N(2)}\right\}$ of $\left.R^{N(2)}\right)$.

Write

$$
X_{n}^{1}=\phi_{1}\left(g_{n}\right) \in R^{N(1)}
$$

and

$$
X_{n}^{2}=\phi_{2}\left(\gamma_{n}\right) \in R^{N(2)} .
$$

Suppose X_{n}^{i} behaves like a Markov chain on its state space Σ_{i} with transition matrix A_{i}, so that

$$
\begin{equation*}
X_{n}^{i}=A_{i} X_{n-1}^{i}+M_{n}^{i} \tag{9}
\end{equation*}
$$

where M^{i} is a martingale increment.
If we define $X_{n}=X_{n}^{1} \otimes X_{n}^{2}$, where \otimes denotes the tensor, or Kronecker, product, then we can identify X_{n} with a unit vector in $R^{N}, N=N(1) N(2)$. From (9)

$$
X_{n}=A X_{n-1}+M_{n},
$$

where $A=A_{1} \otimes A_{2}$ and

$$
M_{n}=A_{1} X_{n-1}^{1} \otimes M_{n}^{2}+M_{n}^{1} \otimes A_{2} X_{n-1}^{2}+M_{n}^{1} \otimes M_{n}^{2}
$$

so $\mathrm{E}\left[M_{n} \mid G_{n-1}\right]=0$.
Minor modifications to the algebra allow the results of the first part of this section to be applied, so obtaining recursive estimates for X_{n} (and so g_{n} and γ_{n}), and estimates for the parameters of the model.

4. Implementation

The proposed procedure is quite general. The only quantity not estimated here is the size of the state space of the Markov chain. Suppose we choose this to be N.

Then for any price process $S_{n}, n \in Z^{+}$, the steps are:
(1) calculate the sequence of logarithmic increments:

$$
Y_{n+1}=\log \frac{S_{n+1}}{S_{n}}
$$

(2) initially consider any set of values $\left\{\left(g_{i}, \gamma_{i}\right), i=1, \ldots, N\right\}$,
(3) initially assume the elements of the transfer matrix A have any values $\left(a_{i j}\right), 1 \leq i, j \leq N, \sum_{i=1}^{N} a_{i j}=1, \quad a_{i j} \geq 0$,
(4) after n values of Y have been observed, calculate new estimates for $\left(a_{i j}\right), g$ and γ from Eqs. (6)-(8),
(5) use these values after further observations to re-estimate $\left(a_{i j}\right), g$ and γ. The EM algorithm implies the estimates improve monotonically, in the sense that the expected log-likelihood increases with each re-estimation. Consequently, the model is 'self-tuning'.

5. Applications

The results of the paper were applied in two examples using a program that was written to implement the estimation procedure discussed in the paper.

In the first example, the program was run on a data set consisting of 248 monthly observations on the price of IBM stock. The sample period was from June 1975 to January 1996. The prices were processed in eight groups of 31 prices each; at the end of each pass through the data, parameter estimates were updated using the formulas given in the paper. In the analysis, the size, N, of the state space of the Markov chain was taken to be four.

Table 1 gives the initial values that were assumed for the conditional distribution of the state of the Markov chain, that is, for $\mathrm{E}\left[X_{n}, Y_{n}\right]$, the transition matrix A, and the vectors g and γ. It also gives the re-estimated values of these parameters after the sixth and seventh passes.

To assess the predictive performance of the model, predicted prices for the period February 1991-June 1993 were calculated using the formula:

$$
\mathrm{E}\left[S_{k+1} \mid Y_{k}\right]=S_{k} \sum_{i=1}^{N} \mathrm{e}^{g_{i}} \mathrm{e}^{\sigma_{i}^{2} / 2} \frac{\left\langle q_{k}, e_{i}\right\rangle}{\left\langle q_{k}, 1\right\rangle}, \quad k=1,2, \ldots .
$$

The formula was evaluated using estimated values of the vectors g, γ, and $q_{k}(k=1,2, \ldots)$ after the seventh pass through the data. We then regressed the actual prices for the period on the predicted prices according to the following model:

$$
\text { Actual price }=\alpha+\beta^{*} \text { Predicted price }+\varepsilon .
$$

Table 1
Parameter estimates, IBM stock prices

Initial values:

$$
\mathrm{E}\left[X_{n} / Y_{n}\right] \text { vector: } \quad(0.25,0.25,0.25,0.25)
$$

A matrix:
$\left[\begin{array}{llll}0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right]$

```
g vector: (1.0,0.0,1.0,0.0)
\gamma \text { vector: (0.25,0.25,0.25,0.25)}
```

After the sixth pass:

$$
\mathrm{E}\left[X_{n}, Y_{n}\right] \text { vector: } \quad(0.1841012,0.3158988,0.1841012,0.3158988)
$$

A matrix:
$\left[\begin{array}{llll}0.1832102 & 0.1846181 & 0.1832102 & 0.1846181 \\ 0.3167898 & 0.3153819 & 0.3167898 & 0.3153819 \\ 0.1832102 & 0.1846181 & 0.1832102 & 0.1846181 \\ 0.3167898 & 0.3153819 & 0.3167898 & 0.3153819\end{array}\right]$

$$
\begin{array}{ll}
g \text { vector: } & (-0.0009364133,-0.0009366155,-0.0009364133,-0.0009366155) \\
\gamma \text { vector: } & (5.883248 e-07,5.876560 e-07,5.883248 e-07,5.876560 e-07)
\end{array}
$$

After the seventh pass:

$$
\mathrm{E}\left[X_{n} / Y_{n}\right] \text { vector: }(0.1840997,0.3159003,0.1840997,0.3159003)
$$

A matrix:
$\left[\begin{array}{llll}0.1832102 & 0.1846181 & 0.1832102 & 0.1846181 \\ 0.3167898 & 0.3153819 & 0.3167898 & 0.3153819 \\ 0.1832102 & 0.1846181 & 0.1832102 & 0.1846181 \\ 0.3167898 & 0.3153819 & 0.3167898 & 0.3153819\end{array}\right]$
g vector: $(-0.02572465,-0.02572307,-0.02572465,-0.02572307)$
y vector: $(0.007575561,0.007575205,0.007575561,0.007575205)$

The regression results obtained were assessed on the basis of the 3 criteria for a good model proposed by Fama and Gibbons (1984): (1) conditional unbiasedness, that is, an intercept, α, close to zero, and a regression coefficient, β, close to one; (2) serially uncorrelated residuals; and (3) a low residual standard error. The second column of Table 2 gives the results for IBM stock. These results

Table 2
Within-sample regressions of actual prices on predicted prices

Parameter	IBM Stock	Gold
α	0.85	70.97
β	(5.89)	(49.51)
	0.99	0.80
R-squared	(0.07)	(0.14)
Durbin-Watson	0.945	0.783
D statistic	1.954	1.921
s	7.46	13.89

Note: The numbers in parentheses are the standard errors of the corresponding parameter estimates. ' s ' denotes the residual standard error.
indicate that at the significance level of 0.05 , we may conclude that the intercept, α, equals zero (although its standard error is quite large) and that the regression coefficient, β, equals one. Also, on the basis of the Durbin-Watson test, we may conclude that the residuals do not display first-order serial correlation.

In the second example, a data set of 100 monthly observations on the price of gold was analyzed. In this case, the sample period was January 1988 to April 1996. The prices were processed in four groups of 25 prices each. Again, the size, N, of the state space of the Markov chain was taken to be four.

Table 3 gives the initial and re-estimated values of the model parameters.
We again regressed actual prices for the period May 1992-March 1994 on the corresponding predicted prices, according to the model stated earlier. Predicted prices were calculated using the estimated values of the g, γ and q_{k} vectors after the third pass though the data. The third column of Table 2 gives the regression results for gold. They support the conclusions that the intercept is zero, the slope is one, and residuals are serially uncorrelated.

6. Conclusion

A multiplicative model for the evolution of the price of a risky asset is considered, in discrete time. The increment of the logarithm of the price involves a Gaussian noise and parameters which we suppose evolve like a finite state Markov chain. The estimation techniques of Hidden Markov models are then applied to obtain not only the best estimate of the chain (that is the coefficients), but also re-estimates of all parameters of the model.

Repetition of the estimation procedures ensures that the model and estimates improve with each iteration.

Table 3
Parameter estimates, gold prices

Initial values:
$\mathrm{E}\left[X_{n} / Y_{n}\right]$ vector: $(0.25,0.25,0.25,0.25)$
A matrix:
$\left[\begin{array}{llll}0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25\end{array}\right]$

```
g vector: (1.0,0.0,1.0,0.0)
\gamma vector: (0.25,0.25,0.25,0.25)
```

After the second pass:
$\mathrm{E}\left[X_{n}, Y_{n}\right]$ vector: $(0.2044194,0.2955806,0.2044194,0.2955806)$
A matrix:
$\left[\begin{array}{llll}0.2071409 & 0.2015815 & 0.2071409 & 0.2015815 \\ 0.2928591 & 0.2984185 & 0.2928591 & 0.2984185 \\ 0.2071409 & 0.2015815 & 0.2071409 & 0.2015815 \\ 0.2928591 & 0.2984185 & 0.2928591 & 0.2984185\end{array}\right]$
g vector: $(-0.006556683,-0.007771985,-0.006556683,-0.007771985)$
γ vector: $\quad(5.456238 e-05,4.970828 e-05,5.456238 e-05,4.970828 e-05)$
After the third pass:
$\mathrm{E}\left[X_{n} / Y_{n}\right]$ vector: $(0.203848,0.296152,0.203848,0.296152)$
A matrix:
$\left[\begin{array}{llll}0.2071409 & 0.2015815 & 0.2071409 & 0.2015815 \\ 0.2928591 & 0.2984185 & 0.2928591 & 0.2984185 \\ 0.2071409 & 0.2015815 & 0.2071409 & 0.2015815 \\ 0.2928591 & 0.2984185 & 0.2928591 & 0.2984185\end{array}\right]$
g vector: ($0.003540311,0.003544279,0.003540311,0.003544279)$
γ vector: ($0.001359767,0.001359923,0.001359767,0.001359923$)

References

Elliott, R.J., 1994. Exact adaptive filters for Markov chains observed in Gaussian noise. Automatica 30, 1399-1408.
Elliott, R.J., Aggoun, L., Moore, J.B., 1994. Hidden Markov models: estimation and control. In: Applications of Mathematics, vol. 29, Springer, New York.
Elliott, R.J., Rishel, R.W., 1994. Estimating the implicit interest rate of a risky asset. Stochastic Processes and Applications 49, 199-206.
Fama, E.F., Gibbons, M.R., 1984. A comparison of inflation forecasts. Journal of Monetary Economics 13, 327-348.

[^0]: * Corresponding author. Email: relliott@maths.adelaide.edu.au

 Robert Elliott wishes to thank SSHRC for its support, and also the Federal Reserve Bank for its hospitality in October 1994.

