
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222640753

Drift and volatility estimation in discrete time

Article  in  Journal of Economic Dynamics and Control · February 1998

DOI: 10.1016/S0165-1889(97)00052-3

CITATIONS

46
READS

1,762

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Bank economics View project

Hawkes Processes in Finance View project

Robert J. Elliott

University of Adelaide

597 PUBLICATIONS   11,425 CITATIONS   

SEE PROFILE

William C. Hunter

University of Iowa

97 PUBLICATIONS   3,640 CITATIONS   

SEE PROFILE

All content following this page was uploaded by William C. Hunter on 06 February 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/222640753_Drift_and_volatility_estimation_in_discrete_time?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/222640753_Drift_and_volatility_estimation_in_discrete_time?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bank-economics?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hawkes-Processes-in-Finance?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Elliott-13?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Elliott-13?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Adelaide?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Elliott-13?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Hunter-17?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Hunter-17?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Iowa?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Hunter-17?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William-Hunter-17?enrichId=rgreq-6b944601f98d3593ba3c43901727e231-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0MDc1MztBUzo1OTExMjI4MTY1ODE2MzJAMTUxNzk0NjA3MDE4Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


ELSEVIER 
Journal of Economic Dynamics and Control 

22 (1998) 209-218 

Drift and volatility estimation in discrete time 

Robert J. Elliott”,*, William C. Hunterb, Barbara M. Jamieson” 

a Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, 
Canada T6G 2Gl 

‘Federal Reserve Bank, 230 South Lu Salle St. Chicago, IL 60604, USA 

Received 14 February 1995; accepted 7 January 1997 

Abstract 

In discrete time the increment of the logarithm of the price of a risky asset is supposed 
to involve two parameters which may be thought of as the ‘drift’ and ‘volatility’. It 
is assumed these parameters take finitely many values, and that they change value like 

a Markov chain on this state space. Filtering and parameter estimation techniques from 
Hidden Markov Models are then applied to obtain recursive estimates of the ‘drift’ and 
‘volatility’. Further, all parameters in the model can be estimated. The method is illustrated 
by applying the results to two series of prices. 

Keywords: Filtering; Hidden Markov Models; Parameter estimation; Volatility 
JEL classification: C4; GO 

1. Introduction 

In a recent paper (Elliott and Rishel, 1994), the filtering and parameter esti- 
mation techniques of Hidden Markov Models are used to estimate the implicit 
interest rate of a risky asset whose price dynamics are described in continuous 
time by the usual log-normal stochastic differential equation. Techniques used in 
that paper included the Girsanov theorem and expectation maximization (EM) 
algorithm. The Girsanov theorem changes the drift (or interest rate), by a change 
of probability measure. The EM algorithm is then used to filter the logarithm 
of the Girsanov density, and the optimal estimate for the drift is obtained as 
the value which maximizes this filtered logarithm of the density. Unfortunately 
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this technique cannot be used in continuous time to estimate the volatility, be- 
cause the probability measures corresponding to dillirsions with different diffusion 
coefficients (volatilities) are singular. 

In discrete time, however, our method will work. We consider a multiplicative 
model for the evolution of the price of a risky asset. The increment of the loga- 
rithm of the price involves a Gaussian noise and parameters which we suppose 
evolve as a finite state Markov chain. The filtering and estimation techniques for 
Hidden Markov Models developed in our paper (Elliott, 1994) are then applied. 
See also the book (Elliott et al., 1994). This enables us to obtain not only the 
best estimate of the state of the chain (that is, the coefficients), given the ob- 
servations of the increments of the logarithm of the price, but also estimate all 
parameters of the model. 

2. Price process 

Consider a price process in discrete time, S,,, n E Z+. Suppose S,, evolves 
according to the dynamics S,+i = S,, exp Y,+t where Y,,+i = gn + y,$,+i. Here, 
{b”}, n E Z+, is a sequence of i.i.d. N(0, 1) random variables. 

Suppose (gn, yn) takes values in a finite set B = {(gi, Y;), i = 1,. . . ,N}. Write g 
for the vector (gi,g2 ,..., gN) and y for (yi,y2 ,..., yN). Suppose (gn,yn) evolves 
as a Markov chain with state space B. 

We can identify B with 

where ei = (0,. . . ,O, l,O,. . . ,0)’ E RN. Suppose 4 : B -+ Z gives this bijection, so 
for each k, 1 5 k I N, ek = &(gk,yk)). Write 

x, = 4(9n,Yn). 

Then 

and 

Yn = (Y,xn). 

Our processes are defined on a probability space (8, .F,P) and we suppose X, 
is a Markov chain with state space z. 

(We could have g, and yn each behaving as independent Markov chains on their 
state spaces; (gn, y” ) is then the (tensor) product Markov chain. See Remarks 3.1. ) 

Suppose X, has transition probabilities given by 

P(X,=ej IXn-i =f?i)=gji. 
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Note Ey=r Uji = 1, and write A for the transition matrix (aji), 1 5 i, j 5 N. 
We do not observe the Markov chain A’; instead we observe the logarithmic 
increments of the price process: 

Y ntl - og - 
-1 S;+l 

n 

= gn + Ynbn+l 

= is,&> + (GG)bn+~. 

Write {G,,}, n EZ +, for the complete filtration generated by the X and Y 
processes; {Y,}, n E Z+, will denote the complete filtration generated by the Y 
process. 

Write 

4(x) = (2~r)-‘/~ exp (-x2/2), 

r’(Y,)=$ (v)/Yi$(K), 

ai = Aei. 

3. Estimation 

For the price process S,, defined in Section 2, having coefficients (gn,yn) = 
( (g,Xn), (y,X,,) ) which behave like a Markov chain, we can define the following 
filtering and estimation problem. First note that X, can be written with dynamics 

X, =AXn_l +I& (1) 

where E[M,,]G,-t ] = 0, so that A4 is a sequence of martingale increments. 
The observation process Y has dynamics 

r,+, = (s,Xn> + (Y,&)bn+l. 

We are, therefore, in the situation discussed in the paper of Elliott (1994) (see 
also the book of Elliott et al., 1994). Following Elliott (1994), recall that the 
analysis takes place under a probability measure P for which the {Yd} are i.i.d. 
N(0, 1) random variables. In fact, suppose we have a probability measure P on 
(C&9) such that under F: 
(a) Xl, G E Z+, is a Markov chain with transition matrix A, so that 

X, =AXn_l +M,,, 

where E[M, IGn_ t ] = 0, and 
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(b) Yt, 8 E Z+, is a sequence of N(0, 1) i.i.d. random variables. 
Write 

and define P in terms of p by putting dP/d& = xn. 
Then under P, we still have 

Xn = AX,-1 + M,,, 

where E[M,(G,+i] = 0 but now b,, n E Z+, is a sequence of i.i.d N(0, 1) random 
variables, where 

That is, under P 

Y, = b,Xn-1) + (GG-l)bn, 

so under P, Y is given by the ‘real-world’ dynamics. However, it is easier 
mathematically to work under P. 

If {Hl} is any { Gc} adapted sequence we write 
-- 

A version of Bayes’ theorem (see Elliott et al., 1994) implies that 

-- 
E[4f-Glr,l E[H/IYc] = - - 
E[&IYdl 

where 

is an unnormalized conditional expectation of Z+ given Yd. 
Applying the results of Elliott (1994), we have the following recursive expres- 

sions. First, for the state of the Markov chain: 

o&L)=~ (a,-l(X,-l),ei)Ti(Y,)ai. 

i=l 
(2) 
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Suppose 

so IV,” is the number of jumps from e, to ej in time n. Then 

u.(NSX&)=e (a,-l(N~IX,-l),ei)ri(Y”)a, 

i=l 

+ (5+1CL1),e~) hJ’(Y&. 

With J,’ = ca=, (X~_I, e,), the occupation time in e,, 

~.~J~~~=~(o.-l~J~-,X.-I),ei)ri~~)ui 
i=l 

+T’(Y,)(a,-~(Y,-l),e,)a,. 

With f(Y) a function of Y and 

G(f)=~{&-t,e,)f(4), 
C=l 

~,dGXf)x,)=~ (a,-l(G,‘-,(S)X,-l),ei)ri(Y,)ai 
i=l 

+T’(Y,)(an-~(X,-~),er)f(Y,)ar. 

For any process H, 

cr,(Hn) = (dHn&), 1) 

= on(Hn(Xn,l)), 

(3) 

(4) 

(5) 

where 1 =(I, I,..., 1)‘. As noted in Elliott (1994), we consider on(H,,Xn) for 
H =N,J, G, because, unlike a,(H,), closed-form recursions are obtained. Also, -- 
a,(l)= (GG),1> =E[A,lW 

Following Elliott (1994), the above expressions can be used to estimate the 
parameters of the model. The transition probabilities in the matrix A can be 
estimated as 

The components of the i vector are re-estimated as 

(6) 

R(n) = 
dGXY)) 

4J;) ’ 
(7) 
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and the components of the volatility vector F re-estimated as 

9,(n) = 
(an(G:tY2)) - %wntG;tY>) + &ntJ;>> 

dJ,r) (8) 

Remarks 3.1. If the probabilistic behaviour of the ‘drift’ g and ‘volatility’ y are 
independent the model could be modified as follows. Suppose gn takes values in 
a finite set Bi ={gi,gI,... ,g~(i)} and Y,, takes values in Bz={YI,Y~,...,YN(~)}- 
Then there are bijections $1 (resp. 42) of B1 (resp. B2) with the set of unit vectors 
Zi = {ei,ez,. . . ,eN(l)} of RN(‘), (resp. the set of unit vectors C2 = {fi,f2,. . . , 

fN$)(2jt~fRN(2))* 

x,' =$,(gn)ERN(l) 

and 

Suppose Xi behaves like a Markov chain on its state space Zi with transition 
matrix Ai, SO that 

Xi =AiXL_i + MA, (9) 

where M’ is a martingale increment. 
If we define X,, = Xi 8 X,‘, where 69 denotes the tensor, or Kronecker, product, 

then we can identify X, with a unit vector in RN, N =N( l)N(2). From (9) 

Xn =AX,,-I + Mm 

where A=Al @A2 and 

M,, =A,X,‘_, @M,z SM; @AzX,-, +M,’ @M,2, 

so E[Mn]G,_i] = 0. 
Minor modifications to the algebra allow the results of the first part of this 

section to be applied, so obtaining recursive estimates for X, (and so g,, and m), 
and estimates for the parameters of the model. 

4. Implementation 

The proposed procedure is quite general. The 
is the size of the state space of the Markov 
to be N. 

only quantity not estimated here 
chain. Suppose we choose this 
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Then for any price process S,,, n E Z+, the steps are: 

(1) 

(2) 
(3) 

(4) 

(5) 

_ 
calculate the sequence of logarithmic increments: 

Y 
S 

n+, = log y, 
n 

initially consider any set of values {(gi, ri), i = 1,. . . ,N}, 
initially assume the elements of the transfer matrix A have any values 
(aij), 1 5 i, _i IN, CLi Uij = 1, aij > 0, 

after n values of Y have been observed, calculate new estimates for (aij), g 
and y from Eqs. (6)-(8), 
use these values after further observations to re-estimate (au), g and y. The 
EM algorithm implies the estimates improve monotonically, in the sense that 
the expected log-likelihood increases with each re-estimation. Consequently, 
the model is ‘self-tuning’. 

5. Applications 

The results of the paper were applied in two examples using a program that 
was written to implement the estimation procedure discussed in the paper. 

In the first example, the program was run on a data set consisting of 248 
monthly observations on the price of IBM stock. The sample period was from 
June 1975 to January 1996. The prices were processed in eight groups of 3 1 
prices each; at the end of each pass through the data, parameter estimates were 
updated using the formulas given in the paper. In the analysis, the size, N, of the 
state space of the Markov chain was taken to be four. 

Table 1 gives the initial values that were assumed for the conditional distribu- 
tion of the state of the Markov chain, that is, for E[&, Y,], the transition matrix A, 
and the vectors g and y. It also gives the re-estimated values of these parameters 
after the sixth and seventh passes. 

To assess the predictive performance of the model, predicted prices for the 
period February 1991-June 1993 were calculated using the formula: 

( ei) E[S~+t]Y~]=Sk~eg~eui2’*-(?&, k= 1,2,... . 
i=l 

The formula was evaluated using estimated values of the vectors g, y, and 
qk (k = 1,2,. . .) after the seventh pass through the data. We then regressed the 
actual prices for the period on the predicted prices according to the following 
model: 

Actual price = a + @*Predicted price + E. 
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Table 1 
Parameter estimates, IBM stock prices 

Initial values: 

E[X,,/Y,,] vector: (0.25,0.25,0.25,0.25) 

A matrix: 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

g vector: (l.O,O.O, 1.0,O.O) 

y vector: (0.25,0.25,0.25,0.25) 

After the sixth pass: 

E[&, Y,] vector: (0.1841012,0.3158988,0.1841012,0.3158988) 

A matrix: 

0.1832102 0.1846181 0.1832102 0.1846181 

0.3167898 0.3153819 0.3167898 0.3153819 

0.1832102 0.1846181 0.1832102 0.1846181 

0.3167898 0.3153819 0.3167898 0.3153819 

g vector: (-0.0009364133, -0.0009366155, -0.0009364133, -0.0009366155) 

y vector: (5.883248e - 07,5.876560e - 07,5.883248e - 07,5.87656Oe - 07) 

After the seventh pass: 

E[X,,/Y,] vector: (0.1840997,0.3159003,0.1840997,0.3159003) 

A matrix: 

0.3167898 0.3153819 0.3167898 0.3153819 

0.1832102 0.1846181 0.1832102 0.1846181 1 0.1832102 0.1846181 0.1832102 0.1846181 

0.3167898 0.3153819 0.3167898 0.3153819 g vector: (-0.02572465, -0.02572307, -0.02572465, -0.02572307) 

y vector: (0.007575561,0.007575205,0.007575561,0.007575205) 

The regression results obtained were assessed on the basis of the 3 criteria for 
a good model proposed by Fama and Gibbons (1984): ( 1) conditional unbiased- 
ness, that is, an intercept, u, close to zero, and a regression coefficient, b, close 
to one; (2) serially uncorrelated residuals; and (3) a low residual standard er- 
ror. The second column of Table 2 gives the results for IBM stock. These results 
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Table 2 

Within-sample regressions of actual prices on predicted prices 

Parameter 

a 

fr 

R-squared 

Durbin-Watson 
D statistic 

s 

IBM Stock Gold 

0.85 70.97 

(5.89) (49.5 1) 
0.99 0.80 

(0.07) (0.14) 

0.945 0.783 

1.954 1.921 

7.46 13.89 

Note: The numbers in parentheses are the standard errors of the corresponding parameter estimates. 
‘s’ denotes the residual standard error. 

indicate that at the significance level of 0.05, we may conclude that the intercept, 
a, equals zero (although its standard error is quite large) and that the regression 
coefficient, /3, equals one. Also, on the basis of the Durbin-Watson test, we may 
conclude that the residuals do not display first-order serial correlation. 

In the second example, a data set of 100 monthly observations on the price 
of gold was analyzed. In this case, the sample period was January 1988 to 
April 1996. The prices were processed in four groups of 25 prices each. Again, 
the size, N, of the state space of the Markov chain was taken to be four. 

Table 3 gives the initial and re-estimated values of the model parameters. 
We again regressed actual prices for the period May 1992-March 1994 on the 

corresponding predicted prices, according to the model stated earlier. Predicted 
prices were calculated using the estimated values of the g, y and qk vectors after 
the third pass though the data. The third column of Table 2 gives the regression 
results for gold. They support the conclusions that the intercept is zero, the slope 
is one, and residuals are serially uncorrelated. 

6. Conclusion 

A multiplicative model for the evolution of the price of a risky asset is con- 
sidered, in discrete time. The increment of the logarithm of the price involves 
a Gaussian noise and parameters which we suppose evolve like a finite state 
Markov chain. The estimation techniques of Hidden Markov models are then ap- 
plied to obtain not only the best estimate of the chain (that is the coefficients), 
but also re-estimates of all parameters of the model. 

Repetition of the estimation procedures ensures that the model and estimates 
improve with each iteration. 
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Table 3 

Parameter estimates, gold prices 

Initial values: 

E[X./Y,] vector: (0.25,0.25,0.25,0.25) 

A matrix: 

9 vector: (l.O,O.O, 1.0,O.O) 

y vector: (0.25,0.25,0.25,0.25) 

After the second pass: 

E[&, Y,] vector: (0.2044194,0.2955806,0.2044194,0.2955806) 

A matrix: 

[ 0.2071409 0.2928591 0.2071409 0.2928591 0.2015815 0.2984185 0.2015815 0.2984185 0.2071409 0.2928591 0.2071409 0.2928591 0.2015815 0.2984185 0.2015815 0.2984185 

9 vector: (-0.006556683, -0.007771985, -0.006556683, -0.007771985) 

y vector: (5.456238e - 05,4.970828e - 05,5.456238e - 05,4.970828e - 05) 

After the thinl pass: 

E[X,/Y.] vector: (0.203848,0.296152,0.203848,0.296152) 

A matrix: 

[ 0.2071409 0.2928591 0.2071409 0.2928591 0.2015815 0.2984185 0.2015815 0.2984185 0.2071409 0.2928591 0.2071409 0.2928591 0.2015815 0.2984185 0.2015815 0.2984185 

g vector: (0.0035403 11,0.003544279,0.0035403 11,0.003544279) 

y vector: (0.001359767,0.001359923,0.001359767,0.001359923) 
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