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Abstract
In this paper we optimize mean reverting portfolios subject 
to cardinality constraints. First, the parameters of the corre-
sponding Ornstein-Uhlenbeck (OU) process are estimated by 
auto-regressive Hidden Markov Models (AR-HMM) in order 
to capture the underlying characteristics of the financial time 
series. Portfolio optimization is then performed according to 
maximizing the mean return by the means of the introduced AR-
HMM prediction algorithm. The optimization itself is carried 
out by stochastic search algorithms. The presented solutions 
satisfy the cardinality constraint thus providing a sparse port-
folios which minimizes the transaction costs and maximizes the 
interpretability of the results.

The performance has been tested on historical data obtained 
from S&P 500 and FOREX. The results demonstrate that a 
good average return can be achieved by the proposed AR-
HMM based trading algorithms in realistic scenarios. Further-
more, profitability can also be accomplished in the presence of 
secondary effects.

Keywords
mean reversion, Markov models, parameter estimation, finan-
cial time series, algorithmic trading

1 Introduction
Portfolio optimization was first investigated by Markowitz 

[22] in the context of diversification to minimize the associ-
ated risk and maximize predictability. Mean reversion is a good 
indicator of predictability, as a result, identifying mean revert-
ing portfolios has become a key research area [4,9,30].

The novel contribution lies in the following facts: (i) in this 
paper we maximize the average return (which is optimized by 
the underlying marginal probability density functions (PDFs)) 
instead of the predictability parameter; (ii) we use the auto-
regressive hidden Markov model (AR-HMM) approach, which 
is more general than the OU modeling. Furthermore, a multi 
state AR-HMM can be considered as a generalization of these 
PDFs, and also enables us to perform prediction based algorith-
mic trading on financial time series. HMMs are widely used for 
predictions [6,15,18,21].

Introducing cardinality constraints in order to minimize the 
transaction costs, which involves optimizing sparse portfolios, 
turns the original problem into NP hard [25]. In this paper, the 
sparse portfolio optimization was carried out by using stochas-
tic search algorithms [10].

Finally, trading is perceived as a walk in the “buy/sell” action 
space, which is then tested numerically on S&P500 series and 
FOREX rates, and the results exhibit good average returns.

The structure of the paper is as follows:
•	 in section 2, the motivations and the previous results are 

outlined;
•	 in section 3, the model and the notations are introduced;
•	 in section 4, the concept of AR-HMM is briefly summa-

rized, and its connection to the mean reverting processes 
is given;

•	 in section 5, we optimize the portfolio by maximizing the 
average prediction based return;

•	 in section 6, the computational model is mapped out;
•	 in section 7, a detailed performance analysis is given 

based on historical data;
•	 in section 8, some conclusions are drawn.
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2 Motivation
While trading with mean reverting portfolios, we need to 

make a decision on the fact whether the observed process 
exhibits mean reverting properties, or following a Brownian 
motion or even driven by mean aversion. Since these properties 
can change over time, a more flexible time dependent distribu-
tion model is needed.

In the previous works [30], linear regression based methods 
proved to be sufficient for OU parameter estimation. However, 
the shortcomings of this method that even a higher accuracy 
would be desired for the purpose of algorithmic trading, and 
also they are unstable under certain circumstances (e.g. when 
the level of mean reversion is low).

The novel approach introduced in this paper manages to 
overcome the abovementioned problems and provides a more 
general model which can handle heterogeneous time series, and 
gives more accurate and stable predictions for the future prices.

3 Model
In this section we describe the model and the concept of 

mean reverting portfolios.
The time series describing the prices of assets is denoted 

by ( )1, ,,...,T
t t n ts s=s  where si ,t is the price of asset i at time 

instant t. The portfolio vector is denoted by xT = (x1, ..., xN)
where xi gives the number of possessed quantity from asset 
i. The value of the portfolio at time t is denoted by p(t) and 
defined as

p t x sT
t i i t

i

n

( ) ,= =
=
∑x s
1

Our objective is to find the optimal portfolio xopt which 
maximizes a pre-defined objective function, such as average 
return (described in Section 5), subject to cardinality constraint 
which specifies that the number of non-zero components in 
xopt must not exceed a given number l. The optimal portfolio 
is sought under the assumption that the portfolio value p(t) 
exhibits mean reverting properties and follows an Ornstein-
Uhlenbeck (OU) process [26]. This is a frequent assumption in 
trading [7,20,26,27] which follows from the VAR(1) nature of 
the underlying asset process.

The OU process is characterized by the following stochastic 
differential equation

dp t p t dt dW t( ) ( ) ,= −( ) + ( )ϑ µ σ

where W(t) is a Wiener process and ϑ > 0 (mean reversion 
coefficient), μ (long-term mean) and σ > 0 (volatility) are con-
stants. By using the Itō-Doeblin formula [17], one can obtain 
the following solution:

p t p e e e dW st t t s
t

( ) = ( ) + −( ) + ( )− − − −( )∫0 1
0

ϑ ϑ ϑµ σ

which implies that

E p t p e et t( )( ) = ( ) + −( )− −0 1ϑ ϑµ

and asymptotically

lim ( ) ,
t
p t N

→∞









 µ σ

ϑ

2

2

Parameter ϑ determines the convergence speed of the pro-
cess towards the mean, and inversely indicating the level of 
uncertainty (via the standard deviation of the asymptotic 
Gaussian distribution (3.5)). Hence, for convergence trading, 
larger ϑ implies a better portfolio, as it quickly returns to the 
mean with a minimum amount of uncertainty.

4 Modeling OU processes with AR-HMMs
A Hidden Markov Model (HMM) [1] is a statistical model 

which is an extension of Markov chains. Such models are 
widely used in econometrics [13], especially for predictions 
[11,31]. In our case we use them to predict future values of 
financial time series. As a type of mixture models, having 
enough degree of freedom (number of hidden states) HMMs 
are capable of modeling a large class of distributions. By AR-
HMM we can capture both the long and short range dependen-
cies, as it combines a Markov chain on the hidden variables, 
and statistical dependencies on the observed variables [3].

In this model, the current state is no longer directly visible 
to the observer, but each state emits an observable output quan-
tity denoted by x = {p1 , p2 , ... , pT}. Unlike the standard HMM 
assumption, in the case of auto-regressive HMMs (AR-HMM) 
the emissions are conditionally not independent given the hidden 
state Q = {q1 , q2 , ... , qT} [24]. In our approach, the observable 
output was treated as a continuous value, described by a Gaussian 
probability density function. Then the probability of emitting a 
specific output is determined by the conditional probability

P p t p t q j N p t p tt j j j( ) −( ) =( ) = ( ) −( ) +( )1 1, , ,Θ ϕ µ σ

In other words, the observation depends on the hidden state, 
and on the previous observation through an additive autoregres-
sive component. (Note that the μ and σ symbols were already 
introduced in (3.2), however, in this case they are vector quan-
tities.) The transition probabilities of the underlying Markov 
chain, describing the jumping probabilities from one state to 
another is given by the transition probability matrix Aij = P( 

q(t + 1) = qi | q(t) = qj ), while πN denotes the initial distribution 
vector. The complete model then described by

Θ ={ }ππ ϕϕ σσ, , ,A

From the OU process, defined in (3.2), we can obtain [12]

E p t e p t et t( )( ) = −( ) + −( )− −ϑ ϑ µ∆ ∆1 1

(3.2)

(3.3)

(3.4)

(4.1)

(4.2)

(4.3)

(3.1)

(3.5)
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Including the standard deviation, the probabilistic model 
becomes

P p t p t

N p t e p t e et t
t

( ) −( )( )

= ( ) −( ) + −( ) −− −
−

1

1 1
1

2
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, , ,
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µ σϑ ϑ
ϑ

∆ ∆
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This equation describes the OU process in the same form 
as (4.1), where the conditional observation probability of an 
AR-HMM is defined. By carrying out the following mappings

ϕ µ µ σ σ
ϑ

ϑ ϑ
ϑ

0 0 0

2

1
1

2
= = −( ) =

−− −
−

e e et t
t

∆ ∆
∆

, and

we can consider a single state AR-HMM being equivalent as an 
OU process. However, this can be either a mean reverting or a 
mean averting process. Setting ϑ = 0 in (3.2) yields a Brownian 
motion (BM), more generally, an AR-HMM state can represent 
Brownian motion with a possible linear drift as well.

Based on this approach, a multi state AR-HMM can be con-
sidered as a generalization of the OU and BM SDEs. Further-
more, having multiple states brings even more flexibility into 
modeling the price distributions, and also captures if the pro-
cess is driven by different models over different intervals in 
time (often called as regimes [14]).

5 Portfolio optimization
In this section we discuss the optimal portfolio selection 

subject to an objective function, namely maximizing the aver-
age return [30]. This objective function can be one of the most 
important attributes of any portfolio selection, however, its solu-
tion does not land itself to analytical tractability. We identify 
AR-HMM model parameters for an observed process, and then, 
as a novel approach, we optimize the prediction based average 
return. Starting from the observed initial value of p(0), based on 
(3.4), the objective function can be expressed as follows:

Ψ x( ) = ( )( ) − ( )
≤
max ,
0

0
t
E p t p

where

E p t E p t
T

t t
T

t( )( ) = −( )( )( ) = −1 1ϕϕ µµ γγ γγ γγ+ and A

is described recursively, and E (p(0)) = p (0) = xT s0. Section 
6.2 describes methods for estimating Θ = {π, A, φ, μ, σ} and 
γ0. If the predicted process is divergent, E (p(∞)) = ± ∞, then 
the mean reverting assumption does not hold, hence we set
Ψ (x) = −∞.

In this way, portfolio optimization can be reduced to a con-
strainted optimization problem:

x x x
x

opt = ( ) ( ) ≤argmax , .Ψ card l

Including the bid-ask spread into this model can be done in a 
straightforward manner, the portfolio prices for fitting the AR-
HMM should be calculated as p(t) = x(long)

T st
bid + x(short)

T st
ask, 

while the current price in the objective function as p(0) = x(long)

T s0
ask + x(short)

T s0
bid, where ( ) , 0

0, 0
i ilong

i
i

x if x
x

if x
>

=  ≤
 and similarly 

( ) , 0
0, 0

i ishort
i

i

x if x
x

if x
<

=  ≥
. Negative values in the portfolio vector 

denote the ability to short sell assets.

6 Computational approach
The AR-HMM model parameter identification and the eval-

uation of prediction by calculating the expected return (5.1) is 
embedded into a stochastic search method, namely into simu-
lated annealing (see 6.1) forming an optimal portfolio selec-
tion. Then, the identified portfolio is converted to a trading sig-
nal for taking the appropriate trading actions. 

Our computational framework is shown on the following 
structural block diagram (Fig. 1) and detailed as follows:
•	 Generate a portfolio vector: driven by stochastic optimi-

zation (detailed in 6.1) a sparse portfolio candidate (xT = 
(x1, ..., xN) under the constraint card (x) ≤ l) is generated 
until the objective function is maximized;

•	 AR-HMM identification: model fitting (by using the 
learning algorithm described in section 6.2) based on a 
sliding window of observations;

•	 Evaluate objective function: using the identified model, 

(4.5)

Fig. 1 Computational approach

(4.4)

(5.1)

(5.2)

(5.3)
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a prediction for the future asset prices is calculated and 
evaluated by the objective function (see chapter 5);

•	 Trading strategy forming the trading signal: based on 
the identified portfolio, the trading strategy (section 6.3)  
should decide on which trading action is to be launched;

•	 Performance analysis: a framework for trading and test-
ing and evaluating various numerical indicators for the 
sake of comparison of the profitability of different meth-
ods (chapter 7 contains further details).

6.1 Simulated annealing
This section focuses on the portfolio optimization. In the 

absence of proper analytical solutions for the constrained opti-
mization problem posed in (5.3), we use simulated annealing 
for obtaining good quality heuristic solutions [10].

Simulated annealing [19] is a stochastic search method for 
finding the global optimum in a large search space. In this con-
text the energy function J (x) is the objective function maxi-
mizing the average return (5.1) for the selected portfolio:

J E p t p
t

x( ) = ( )( ) − ( )
≤
max .
0

0

With an appropriate neighbor function the cardinality con-
straint card (x) ≤ l is automatically fulfilled at each step of the 
algorithm. The neighbor function on each iteration makes two 
steps: first, with a certain probability randomly changes the l 
dimensional subspace. In the second step, increase or decrease 
the volume of a likewise randomly chosen asset. The algorithm 
takes care not to exceed to available cash neither with the long 
positions, and if short selling is enabled, nor the short positions. 
Let x be an arbitrary initialization vector, and then by calling 
a random number generation a vector x’ is generated subject 
to the abovementioned neighbor function. Accept the new 

vector if J (x’) > J (x), or otherwise with 
( ) ( )J J

Te
−

−
′x x

 probabil-
ity. Continue the sampling while decreasing the T until zero. 
The last state vector is now the identified optimal sparse port-
folio vector.

6.2 HMM parameter optimization
The model parameter estimation (learning) is a key aspect 

when we are using HMMs for prediction. 
First, we need to sample the portfolio price with a sliding 

window of length T:

X = − +{ }pi T ip1,...,

During training, the likelihood (or in practice, due to the small 
order of magnitude of such probabilities, the log-likelihood) of 
the model is maximized based on the given observations [28]:

Θ Θ
Θ

opt P= ( )argmax |X

The Baum-Welch expectation maximization (EM) algorithm 
[2] is a mechanism to iteratively update the model (4.2) starting 
from an arbitrary initial value and iterating until the likelihood 
of the model converges to a certain value. Since this is an itera-
tive method, which can use the forward-backward algorithm, 
implemented in an efficient way by dynamic programming 
[29], this algorithm is relatively fast. On the other hand, it may 
get stuck in one of the local minima. Compared to the stand-
ard HMM, in the case of an AR-HMM, the forward-backward 
algorithm remains unchanged, while in the EM algorithm only 
a slight modification needed [5].

We can also obtain the posterior state probabilities from this 
procedure, the conditional probabilities of being at state j at 
time instance t given the observation sequence:

γγ t
j

tP q j( ) = =( )X

6.2.1 Ornstein-Uhlenbeck parameter
estimation with AR-HMM

As it was detailed in section 4, the single state AR-HMM 
can be treated as a generalization of the OU process, hence 
it is suitable as a parameter estimation method. Estimating 
the long term mean (μ) of the process of portfolio valuations 
(3.1) is instrumental for mean reverting trading. For the sake of 
comparison with other estimation procedures [8,30], different 
methods were tested on artificially generated data.

Each observation was generated with the following param-
eters σ = 3, T = 8 and [ ]0, 0;100µ µ ∈ , respectively. The com-
parison was done independently for mean reversion coeffi-
cients in [ ]0.5;1ϑ∈ , and in each case the mean squared error 
was taken into account for 100 generated processes. The results 
are shown by Fig. 2.

As one can see, the newly proposed way of OU parameter 
identification gives the most precise estimations, outperform-
ing the traditional methods by an order of magnitude.

6.3 Trading strategy
In this section we describe the trading algorithm which is 

used to trade with the selected optimal portfolio based on the 
evaluation of the objective function [30]. In the proposed algo-
rithm, trading is described as a walk in a binary state space 
in which either we already have a portfolio at hand or cash at 
hand, while the transitions are only affected by the evaluations 
of the potentially owned and the newly identified portfolios by 
the using the objective function (see section 5). The trading 
strategy is formalized by a state chart (Fig. 3).

As of (5.1), positive evaluation indicates a profitable portfo-
lio, while negative evaluation indicates that the portfolio may 
produce a loss. Higher value in each objective function implies 
a better portfolio. Based on this, the agent buys a portfolio only 
if it has a positive evaluation. A new trading action is taken if a 

(6.1)

(6.3)

(6.2)

(6.4)



5Optimizing Sparse Portfolios by AR-HMMs 2015 59 1

newly identified portfolio (x_opt) has higher and also positive 
evaluation than the present one (x). In this case one can sell the 
owned portfolio and buy the new one with higher expectations 
instead. This approach treats the present portfolio as a sunk cost, 
thus only the future expectations are taken into consideration. 
Hence, we do not have to give up the best available portfolio in 
favor of a presently unfavorable portfolio. In the case that nei-
ther the owned nor the currently identified portfolio has positive 
evaluation then the agent closes the positions (Fig. 3).

7 Performance analysis
An extensive back-testing framework was created to handle 

trading actions on various input data sets and provide numeri-
cal results for the sake of comparing different methods on dif-
ferent financial data series.

In this section, we show the numerical results obtained on 
the following data sets:
•	 Daily closing prices of 500 stocks from the S&P 500 

(between July 2010 and July 2011) [33];
•	 FOREX bid and ask rates (EUR/USD, GBP/USD, AUD/

USD, NZD/USD, USD/CHF, USD/CAD from the year of 
2013 in daily resolution) [23].

For a detailed comparative analysis the following per-
formance measures were calculated for each simulation: (i) 

minimal value min 0
0

1 min tt T
G c

c ≤ ≤
= ; (ii) final value G c

cfinal
T=
0

;

(iii) maximal value max 0
0

1 max tt T
G c

c ≤ ≤
= ; (iv) average value 

10

1 1 T

avg t
t

G c
c T =

= ∑ , where ct denotes the sum of owned cash

and the market value of the owned portfolio at time instance t, 
while c0 denotes the initial cash (in each case the agent started 
with $10,000).

Regarding the sparsity constraint, 3 assets were selected in 
each transaction.

7.1 Trading results on S&P500
Due to the large number of assets, N=7 hidden states were 

used. Unfortunately, there is no analytical method known to 
find the optimal value of this parameter [16]. Figure 4 compares 
the results achieved with different lengths of sliding window. 
As a benchmark, these results are compared to the performance 
achieved by the same objective function and trading strategy, 
but using linear regression for parameter estimation instead of 
AR-HMM (denoted by LR, further details in [30,32]).

Fig. 2 Comparison of different mean estimation techniques

Fig. 3 Trading strategy
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As one can see, the novel AR-HMM method was profitable 
and outperforms the linear regression.

7.2 Trading results on FOREX
For back-testing on FOREX time series, we used the MetaT-

rader® 5 platform providing us a real environment with sec-
ondary effects including, like the bid-ask spread. The leverage 
was set to 10.

During the simulations T=50 days were used for model iden-
tification, while the effect of different number of hidden states 
in the trading results is shown in Fig. 5. Possibly because of the 
smaller number of available assets, less hidden states proved to 
be more favorable in this case. Also, the results are compared 
with the one achieved by linear regression parameter estima-
tion (denoted by LR on the chart, see [30,32]).

In this period, the FOREX rates had a slightly decreasing 
tendency, an equally weighted portfolio would gave us 97,76% 
of its initial price at the end of the year. The bar chart (Fig. 5) 
shows that the introduced methods with all settings beat this 
tendency, our methods achieved up to 110.12% yearly profit.

In the scenario when a longer (T=100) time window with 
N=5 hidden states were used, the trading was even more profit-
able with a 144.10% yearly profit including every secondary 
effects. However, considering longer sets of data, the training 
of the AR-HMM requires substantially longer computational 
time.

As it is shown in Fig. 6, using this strategy not only results 
in a favorable profit, without major drawdowns, the balance is 
almost monotonously increasing.

Fig. 4 Trading results on S&P 500 data

Fig. 5 Trading results on FOREX data
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8 Conclusions
In this paper we have proposed novel algorithms for OU 

parameter estimation and predicting future values of financial 
time series with AR-HMMs for portfolio optimization with car-
dinality constraints. The portfolio optimizations have been car-
ried out by stochastic search with maximizing the mean return 
as an objective function.

The proposed trading algorithms has proven to be profit-
able on real financial time series taking into account the bid ask 
spread as well. The performance analysis demonstrated that the 
prediction based on the novel parameter identification could 
increase the trading efficiency and the profit compared to the 
traditional linear regression based method. However, there is a 
room for further improvement on the trading strategy in order 
to take other factors (e.g. to avoid early sells) into considera-
tion, as well.
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