
Performance: the response time should be as good as possible. To this end,
we could consider efficient random number generators, clever C++ data
structures and use of Halton and Sobol sequences, for example.
Furthermore, we would expect the performance to be a hundred times bet-
ter than a corresponding application written in VBA.

Having defined our objectives, we now turn our attention to describing
how we realized them using modern software design techniques.

High Level Architecture
The first author has produced a generic software architecture and it has
been applied to option pricing models using both the binomial and finite
difference methods as discussed in previous editions of Wilmott. The archi-
tectures are based on the generic design principles in Duffy 2004. In this
article we adopt the same approach by partitioning the problem into a net-
work of loosely coupled subsystems and classes.

In general, we use a number of small-grained patterns and we connect them
to form a larger configuration as shown in the figure below. In particular, we
have implemented the following patterns:
Whole/Part and Aggregation Structures: in general, we partition large,
complex objects (‘whole’) into smaller and specialized objects (‘parts’). This
approach promotes reusability and maintainability of the software. An
example from the figure is the class representing an option. This has two
main parts, namely a payoff and a cash flow structure.
Mediator: objects that act as intermediaries between a number of other
objects. These communicating objects have no direct knowledge of each
other. Instead, they must interface with the mediator which is this case
plays the role of a façade. An example in the figure is the mediator class
that relates the option class with the main Monte Carlo class MCMethod.
Delegation Mechanism: Classes operate on a client-server basis: the client
class calls a member function in a server class. Server classes are specialized
to carry out certain tasks such as random number generation, calculation
of the mean and variance of statistical distribution functions. Examples can
be seen in the figure where we see classes for random number generation
and statistical distributions.

42 Wilmott magazine

W
e describe how we have designed and implemented a soft-
ware architecture in C++ to model one-factor and multi-
factor option pricing problems. We pay attention to the
fact that different kinds of applications have their own
specific accuracy, performance and functional require-
ments. To this end, we apply the design patterns that we

have discussed in previous editions of Wilmott. In this way we ensure that the
software can be customized to suit new and changing requirements.

The software has been written in C++ and it makes extensive use of GOF
design patterns, Standard Template Library (STL) and template classes. We apply
the software to the pricing of three well known benchmark examples, namely a
plain vanilla call, an arithmetic Asian option and an up-and-out call option.

Goals
The Monte Carlo method is a popular method that is widely used to price a
range of derivative products (see Boyle 1977). There are a number of good
references on the method, for example Glassermann 2004 and Jaeckel 2002.
For a discussion of numerical solutions to stochastic differential equations
see Kloeden 1997). In this article we describe how we have applied the Monte
Carlo method to produce a software system that is able to price a range of
one-factor and multi-factor options. In order to reduce the scope of this arti-
cle, we examine only one-factor models.

It is worth mentioning at the outset what the goals of this article are. In
general, we are interested in producing a software product that is robust, flexi-
ble and that performs well at run-time. In particular, we quantify these general
requirements by listing a number of features that the software should have:
Suitability: the MC solver is able to model a wide range of one-factor and
multi-factor derivative types. In fact, it would be nice if the solver knew as
little as possible of the derivative products that it is modeling because it
allows users to ‘plug’ their models into the solver without having to write
new code.
Accuracy: it is well-known that the MC method gives us a convergent solu-
tion in general, albeit slowly. The solver that we write in C++ must reflect
this accuracy.

Monte Carlo Methods in
Quantitative Finance Generic
and Efficient MC Solver in C++

Daniel Duffy
and Joerg Kienitz

Implementing the Design in C++
Having designed the problem as shown in the figure we now must imple-
ment the classes in C++. To this end, we give some representative examples
to give the reader a flavour of how we actually constructed the software.

The class that stores the values of the evolved asset is the Monte Carlo
path class. This is a simple implementation of a C++ array class. The inter-
face is given by:

class MCPath
{
private:

double* ValuesPtr;
double* EndPtr;

unsigned long Size;
unsigned long Capacity;

public:
//constructor
explicit MCPath(unsigned long size=0);
MCPath(const MCPath& original);

//destructor
virtual ~MCPath();

//operator overloading
MCPath& operator=(const MCPath& original);
MCPath& operator=(const double& val);

inline double operator[](unsigned long i) const;
inline double& operator[](unsigned long i);

inline unsigned long size() const;
void resize(unsigned long newSize);

double last() const;
double nth(unsigned long nthelement) const;

...
};

The classes for discrete and continuous probability distri-
butions have been taken from Duffy 2004A. They have func-
tionality that is needed in the current application. The classes
for continuous distributions are placed in a class hierarchy
whose base class is given by:

template <class Domain, class Range> class
ContinuousDistribution

: public ProbabilityDistribution<Domain, Range>
{ // Abstract base class for continuous
probability distributions

private:

public:
// Constructors
ContinuousDistribution();
ContinuousDistribution(const
ContinuousDistribution<Domain, Range>& d2);

Virtual ~ContinuousDistribution();

// Selector member functions
virtual Range pdf(const Domain& x) const = 0;
//density
virtual Range cdf(const Domain& x) const = 0;
//cumulative density
virtual Range invcdf(const Domain& x) const = 0;
//inverse cumulative density

//Selectors
virtual Range expected() const = 0;
virtual Range variance() const = 0;
virtual Range std() const {return :: sqrt(variance());}

virtual ContinuousDistribution<Domain, Range>*

Wilmott magazine 43

^

MC Director

MC Path Generator

MC Output
MC Path Evolver

MC Random

MC Distribution

MC Path

MC Underlying

MC Option

MC Method

MC
NumScheme

DiscreteDistribution ContinuousDistribution

Normal

…

Ran0
Ran1

MersenneTwister
Halton
Sobol

…

MC PathStructure

Cash Flow

MC Stats

MC PayOff

44 Wilmott magazine

clone() const = 0;
};

Finally, we derive all random number class from the one base class as follows:

class Random
{

private:
unsigned long Dimensionality;
ContinuousDistribution<double, double>* cndist;

//Strategy

public:
// Constructor and default Constructor
Random(unsigned long Dimensionality,
ContinuousDistribution<double, double>& cndist);
Random(){};

// Destructor
virtual ~Random();

//Copy constructor
virtual Random* clone() const=0;

// virtual functions
virtual GenerateUniforms(MCPath& variates)=0;
virtual Skip(unsigned long NumberOfPaths)=0;
virtual void SetSeed(unsigned long Seed)=0;

virtual void GenerateDueToDistribution(MCPath& variates,
ContinuousDistribution<double,double>& cndist);
virtual void Reset()=0;
virtual void ResetDimensionality(unsigned long
NewDimensionality); //for given dim
virtual void
SetDistribution(ContinuousDistribution<double,
double>& newcndist);
//for given distribution

inline unsigned long GetDimensionality() const;
};

The above design enables us to use pseudo random numbers as well as
quasi random numbers because the base class implements all common
functionality pertaining to random number generators and quasi random
number sequence generators.

The heart of a Monte Carlo simulation is the path generator. The variable
is evolved due to a numerical recipe taking into account the given stochastic

dynamic and the current state Xt=x at time t starting at time t=0. The out-
come of this procedure is the variable Xt+1 at time t+1. To this end we actual-
ly have to use a variate sampled from the probability distribution P(Xt+1| Xt).
For more details, Kienitz 2005.

Summarising, we have implemented the classes from the figure. We
have linked them into a library that can be used in actual computations.

Test Cases and Benchmarking
To illustrate the applicability of our design we study some examples, namely a
simple plain vanilla Up and Out call and an arithmetic Asian call.

A European plain vanilla call has payoff max(ST - K,0) at maturity T. We
give the convergence table calculated via our setup with parameters Spot =
C= 100, Strike = C= 100, Maturity = 1 year, Volatility = 25%, riskless rate r = 3%.
The generator in this case uses the Sobol low discrepancy numbers. We did
32 batches with 8192 samples.

The first exotic option we examine ia a standard Up and Out option. This
option has the same payoff as a plain vanilla call but only if the assets price
stays below a barrier level at certain discretely chosen times up to maturity.
We consider the parameters Spot = C= 150, Strike = C= 136, Maturity = 4.5 year,
Volatility = 15%, riskless rate r = 2% and Barrier = C= 164 with monthly moni-
toring. To evolve the assets path we use the congruential generator Ran1
again with 32 batches of 8192 samples. The results are:

To get an idea of the accuracy we compare our computed price with the
approximations developed in (Merton 1973) and further refined in (Reiner,
Rubinstein 1991). For the above option we compute a price of 0.5221.

The last example is the case of an Arithmetic Asian call. In contrast to a
geometric Asian option a closed form pricing formula is not available. The
payoff is given by

max

(
1

N

N∑
i=1

Sti
− K, 0

)
.

The parameters are chosen to be Spot = C= 100, Strike = C= 95, Maturity = 2
year, Volatility = 42.5%, riskless rate r = 3% and N=12. The random number
generator used is the Marlene Twister, see (Matsumoto 1998) again with 32

DANIEL DUFFY

Number of Paths Value St. Error

262144 0.5042 0.0035

253952 0.5047 0.0036

16384 0.5002 0.0142

8192 0.4954 0.0202

^

Number of Paths Value St. Error Rel. Difference

To BS

262144 11.3480 0.04 0.00%

253952 11.3483 0.04 0.00%

...

16384 11.3433 0.14 0.05%

8192 11.3400 0.20 0.07%

is a significant speed-up when using the C++ implementation. The genera-
tion of certain quasi-random numbers such as Halton or Sobol numbers is a
hundred times faster than using the same algorithm in a VBA setting.

The comparison with analytic formulas and with approximate formulae
proves the accuracy of the method. Furthermore, we would like to stress
that for the one dimensional case the results are stable with respect to the
random number generator that we used.

We thank Mr. Andrea Germani (Banca Popolare Italiana) for important comments
regarding the contents of this article.

batches of 8192 samples.

Again, since analytical formulas are not available we compare our prices
with well known approximations for arithmetic Asian options, namely with
the methods developed in (Kemna 1990), (Turnbull 1991) and (Levy 1992).
For the above option we computed an approximate value of 17.27 which
underestimates the price of the option. The reason for this discrepancy is
that the approximate formula assumes continuous observations while our
MC method assumes that we observe the price every month. In general, the
price of an arithmetic Asian option is a decreasing function of the number
of observations.

Reflection : what have we achieved?
We have implemented a flexible and extendable Monte Carlo engine. There

■ Acklam, P.J. (2000), An algorithm for computing the inverse normal cumulative distribution func-
tion, University of Oslo, Statistics Division. http://www.math.uio.no/jacklam/notes/invnorm.
■ Boyle, P.P. (1977) Options: a Monte Carlo approach, Journal of Financial Economics4:323-338
■ Duffy, D. J.(2004), Domain Architectures: Models and Architectures for UML Application, John
Wiley and Sons
■ Duffy, D. J. (2004A), Financial Instrument Pricing using C++, John Wiley and Sons
■ Glassermann, P. (2004), Monte Carlo Methods in Financial Engineering, Springer
■ Joshi, M. (2004), C++ Design Patterns and Derivatives Pricing, Cambridge University Press
■ Jaeckel, P. (2002), Monte Carlo Methods in Finance, John Wiley and Sons
■ Kemna, A. G. Z., Vorst, A. C. F. (1990) A Pricing Method for Options Based on Average Asset
Values, Journal of Banking and Finance, 14, 113-129
■ Kienitz, J. (2005), Stochastic Dynamics, Lecture Notes, University of Bonn
■ Kloeden, P., Platen E. (1999), Numerical Solution of Stochastic Differential Equations, Springer
3rd edition
■ Levy, E. (1992), Pricing European Average Rate Currency OptionsJournal of International Money and
Finance, 14, 474-491
■ Matsumoto, M, Nishimura, T. (1998), Mersenne Twister: a 623-dimensionally equidistributed
uniform pseudorandom number generator, ACM Transactions on Modeling and Computer
Simulation, 8(1): 3-30
and http://www.math.keio.ac.jp/~matsumoto/emt.html
■ Merton, R. (1973), Theory of Rational Option Pricing, Bell Journal of Economics & Management
■ Reiner, E., Rubinstein M. (1991), Breaking Down the Barriers, Risk4, 8, pp. 28-35

REFERENCES

Value convergence Plain Vanilla Call

11.339

11.340

11.341

11.342

11.343

11.344

11.345

11.346

11.347

11.348

11.349

11.350

0 50000 100000 150000 200000 250000
No of Samples

Va
lu

e

0.00

0.05

0.10

0.15

0.20

0.25

Value BS Price St. Error

Value convergence Up and Out Call

0.4920

0.4940

0.4960

0.4980

0.5000

0.5020

0.5040

0.5060

0.5080

0 50000 100000 150000 200000 250000
No of Samples

Va
lu

e

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

Value St. Error

Value convergence Arithmetic Asian Call

17,200

17,300

17,400

17,500

17,600

17,700

17,800

0 50000 100000 150000 200000 250000
0,0000

0,0500

0,1000

0,1500

0,2000

0,2500

0,3000

0,3500

0,4000

No of Samples

Va
lu

e

Value St. Error

46 Wilmott magazine

DANIEL DUFFY

W

Number of Paths Value St. Error

262144 17.6714 0.0611

253952 17.6847 0.0621

...

16384 17.5318 0.2432

8192 17.2734 0.3415

