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The econometric challenge of finding sparse mean reverting portfolios based on a subset of a large
number of assets is well known. Many current state-of-the-art approaches fall into the field of co-
integration theory, where the problem is phrased in terms of an eigenvector problem with sparsity
constraint. Although a number of approximate solutions have been proposed to solve this NP-
hard problem, all are based on relatively simple models and are limited in their scalability. In this
paper, we leverage information obtained from a heterogeneous simultaneous graphical dynamic lin-
ear model (H-SGDLM) and propose a novel formulation of the mean reversion problem, which is
phrased in terms of a quasi-convex minimisation with a normalisation constraint. This new formula-
tion allows us to employ a cyclical coordinate descent algorithm for efficiently computing an exact
sparse solution, even in a large universe of assets, while the use of H-SGDLM data allows us to
easily control the required level of sparsity. We demonstrate the flexibility, speed and scalability of
the proposed approach on S&P500, FX and ETF futures data.
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JEL Classifications: C11, C32, G11

1. Introduction

Finding a linear combination of stocks that mean revert is an
econometric problem that has been captivating researchers for
years, since such portfolios with reasonably predictable short
term behaviour can be used for developing systematic trading
strategies. When applied to two assets, this is often referred
to as looking for trading pairs. Such combinations however
may be hard to find due to non-stationarity and combinato-
rial considerations, especially for baskets of more than two
assets. Furthermore, finding a mean reverting portfolio is not
sufficient in itself; indeed, to be viable the effect must per-
sist over a long enough time horizon and be strong enough to
overcome trading costs.

Currently, the classic approach to this problem relies on
cointegration theory (see Johansen 2005 for an overview),
which tries to find a linear combination of non-stationary
processes that is stationary. These methods usually rely on
statistical tests to check that the time series are cointegrated.
However, as stated in Johansen (2005) such tests strongly
depend on the modelling assumptions of the data. In this
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paper, we are interested in the case of choosing a sparse sub-
set of more than two assets from a much larger universe of
assets. Recent advances in this area have proposed a new
formulation of the problem (d’Aspremont 2010, Cuturi and
d’Aspremont 2013, 2015), which relies on a characterisation
of portfolio predictability (Box and Tiao 1977). With this
definition, a mean reverting portfolio (MRP) is characterised
by a low predictability, in contrast to a momentum portfo-
lio which has high predictability. In these three papers, the
authors reformulated the MRP definition as an optimisation
problem with constraints and compared it to other methods,
such as minimising the portmanteau test or minimising the
crossing statistic. They emphasised the importance of a good
MRP to be sparse and argued in favour of an additional mini-
mum variance constraint to select a portfolio with a variance
high enough for the effect to be tradable.

The approach of d’Aspremont (2010), Cuturi and
d’Aspremont (2013, 2015) relies on the hypothesis of Box
and Tiao (1977), which requires a model for the price pro-
cess st conditional on all previous information. The authors
assumed that the assets follow a vector autoregressive model,
VAR(p), of order p and that the covariance matrix of the
portfolio be stationary. In d’Aspremont (2010), and subse-
quently Sipos and Levendovszky (2013) and Fogarasi and
Levendovszky (2013), they also assumed that the resulting
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portfolio follows an Orstein-Uhlenbeck process and made the
parallel between the mean reversion parameter and the pre-
dictability variable. In order to solve this optimisation, Box
and Tiao (1977) rewrote the problem as a generalised eigen-
value problem, to which d’Aspremont (2010), Cuturi and
d’Aspremont (2013, 2015) then added a sparsity constraint,
making this combinatorial problem NP-hard, and proposed
to solve this minimisation with a semi-definite relaxation
approach. As an alternative, Sipos and Levendovszky (2013)
and Fogarasi and Levendovszky (2013) proposed a simu-
lated annealing algorithm to find the solution. Both meth-
ods produce approximations of the solution, are expensive
to compute and lack scalability. Finally, given the result-
ing MRP, Cuturi and d’Aspremont (2013, 2015) followed
a strategy introduced by Jurek and Yang (2007) to trade a
stationary autoregressive processes, whereas Sipos and Lev-
endovszky (2013) and Fogarasi and Levendovszky (2013)
assumed the portfolio follows an Ornstein-Uhlenbeck pro-
cess and thus used decision theory to implement their trading
strategy.

In this paper, we extend the approach of d’Aspremont
(2010), Cuturi and d’Aspremont (2013, 2015) by character-
ising a sparse mean reverting portfolio according to its pre-
dictability but without assuming a VAR(p) process. Instead
we will leverage the results of a heterogeneous simultane-
ous graphical dynamic linear model (H-SGDLM) to set up the
MRP optimisation problem for assets following time varying
autoregressive TVAR(p) processes. The H-SGDLM builds
a sparse covariance matrix which is not assumed stationary
and our new formulation of the MRP minimisation problem
with normalisation constraint allows us to use an efficient
optimisation to compute the global minimum.

The H-SGDLM of Griveau-Billion and Calderhead (2019),
Gruber and West (2016) and Corsi (2004) models the entire
investment environment by decomposing each time series,
and thus the whole market, into economically-meaningful
variables. This decomposition creates different groups of vari-
ables representing the endogenous and exogenous influences
on the behaviour of each asset. Many different signals are
created by this model; for this paper we are mainly inter-
ested in the graph of connections between the different assets
and the resulting sparse covariance matrix and autoregres-
sive coefficients. These variables will allow us to propose
a new formulation of the sparse mean reverting portfolio
optimisation problem.

While the previous approaches of d’Aspremont (2010),
Cuturi and d’Aspremont (2013, 2015) and Sipos and Leven-
dovszky (2013), Fogarasi and Levendovszky (2013) obtained
approximations of the solution to a constrained optimisation
problem, we propose a new algorithm that finds the global
minimum. We employ a cyclical coordinate descent (CCD)
algorithm which is fast and efficient in large-scale problems.
Furthermore, Tseng (2001) proved the convergence to the
global minimum of cyclical coordinate descent algorithms
when the the utility function can be written as the combination
of a convex differentiable function and a non-differentiable
but additively separable one.

Building on this result, Yen and Yen (2014) used the CCD
algorithm to solve the mean variance portfolio with an elastic-
net constraint. In addition, Griveau-Billion et al. (2013) used

this CCD method to solve the non-convex equal risk contri-
bution portfolio optimisation problem, where it was observed
to be faster than the Newton algorithm in large environments.
We follow the direction of these approaches and derive a CCD
algorithm to solve the sparse MRP minimisation problem with
a normalisation constraint. The algorithm we propose can be
applied to compute a MRP from any predicted covariance
matrix. However, we focus in this paper on the predictions
obtained from the H-SGDLM model.

Using this new MRP solution we can then consider a num-
ber of different trading strategies. Hence we will numerically
compare the approaches proposed by Jurek and Yang (2007),
Sipos and Levendovszky (2013) and Fogarasi and Leven-
dovszky (2013), as well as a combination of the two. In
order to assess the performance and robustness of our solution
we computed the sparse MRP and implemented the trading
strategy on three different datasets: stocks from the S&P500,
futures on FXs and futures on ETFs. All of the backtests we
obtained exhibit a linear growth throughout the time under
study, which includes the financial crisis of 2008. While in
some environments the backtests are smoother than others,
the fact that none has a particularly large draw-down, and they
are all roughly linear through time, highlights the robustness
of our proposed approach.

Section 2 will recall the sparse mean reversion optimisation
problem and briefly review the current approaches for solving
it. Section 3 will then detail the H-SGDLM model and the
novel formulation of the MRP problem it allows. The CCD
algorithm and its application to solve the new MRP optimi-
sation are detailed in Section 4. Once the optimal solution is
found we consider possible trading strategies, as detailed in
Section 5. Finally, in Section 6 we present results for different
assets classes.

2. Description of the sparse MRP optimisation problem

2.1. The MRP as a constraint minimisation problem

In this paper we build on the approach introduced by
d’Aspremont (2010), Cuturi and d’Aspremont (2013, 2015)
for characterising a mean reverting portfolio. The authors
used the predictability ratio defined for stationary processes
by Box and Tiao (1977) and extended it by adding a car-
dinality constraint and a minimum variance constraint, in
d’Aspremont (2010), Cuturi and d’Aspremont (2013, 2015),
respectively. Let us assume a univariate model such that the
asset st follows the process st = ŝt + εt, where εt ∼ N (0, σ 2

ε )

represents i.i.d. noise, and ŝt is an estimator for xt, which can
use all the information available up to t − 1. With this formu-
lation, Box and Tiao (1977) used the variance σ 2 = σ̂ 2 + σ 2

ε

to define the predictability as the ratio of the variance of the
estimator over the variance of the asset:

ν = σ̂ 2

σ 2
.

The interpretation motivating the use of this ratio is as fol-
lows: if the variance of the estimator σ̂ 2 is higher than that
of the asset σ 2, then the dependence on the past dominates
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the noise and thus the predictability is high, while if ν is
small then the noise dominates the prediction. It is straightfor-
ward to extend this definition to a multivariate model where
ν becomes the ratio of the variances of two portfolios. The
Box and Tiao (1977) procedure requires us to define a model
for the price process; in d’Aspremont (2010), Cuturi and
d’Aspremont (2013, 2015) the authors considered the prices
to follow a VAR(1) process:

St = ASt−1 + εt.

where St is a vector of prices, A the autoregressive coefficient
and εt ∼ N (0, �) the noise with covariance matrix �. For
the multivariate case, we use a weight vector xt to form the
portfolio xT

t St and obtain the predictability ratio:

ν = xT
t AT�Axt

xT
t �xt

.

Box and Tiao (1977) showed that minimising the predictabil-
ity is equivalent to solving the generalised eigenvalue prob-
lem, det(ν� − AT�A) = 0. d’Aspremont (2010), Cuturi and
d’Aspremont (2013, 2015) highlighted the fact that we only
need to find the extremal generalised eigenvalues to rewrite
the problem as a minimisation. They used this new for-
mulation as an optimisation problem to introduce a sparse
constraint on the weight vector, however the resulting com-
binatorial problem has been proven to be a NP-hard. We
can write this minimisation problem with normalisation and
sparse constraint as:

minxt

xT
t AT�Axt

xT
t �xt

subject to: ‖x‖2 = 1, (1)

‖x‖0 = k. (2)

In Cuturi and d’Aspremont (2013, 2015) the authors reformu-
lated this optimisation to include a constraint on the minimum
variance of the portfolio and proposed the use of two other
utility functions, which have fewer constraining assumptions:
the Portmanteau statistic, which tests if a process is white
noise, and the crossing statistic, which represents the fre-
quency at which a process crosses its mean. In this paper
however we will focus solely on the predictability ratio, since
its formulation is suited for the H-SGDLM model and the
CCD algorithm.

Sipos and Levendovszky (2013), Fogarasi and Leven-
dovszky (2013) followed the idea of d’Aspremont (2010) but
considered the inverse problem. Indeed, they assumed the
portfolio follows an Ornstein-Uhlenbeck process and consid-
ered the coefficient representing the mean reversion speed of
the portfolio to be directly proportional to the predictability
variable, as defined by Box and Tiao (1977). Hence they max-
imised the predictability instead of minimising it. In a second
paper Sipos and Levendovszky (2013) proposed replacing
the generalised eigenvalue maximisation problem introduced
by d’Aspremont (2010) with a maximisation of the average
return. This seems to highlight the fact that they compute the
inverse of a mean reverting portfolio and, as explained by
d’Aspremont (2010), by maximising the predictability they
obtained a momentum portfolio. For this reason we follow

the approach of Box and Tiao (1977), d’Aspremont (2010),
Cuturi and d’Aspremont (2013, 2015) in the rest of this paper.

Since d’Aspremont (2010), Cuturi and d’Aspremont (2013,
2015) modelled the price process as a VAR(1) process,
the authors had to estimate A, the autoregressive coeffi-
cient, and �, the covariance matrix, in order to use the
Box and Tiao (1977) formulation of predictability. Box
and Tiao (1977) considered the least squares estimate for
A and plugged this into their general eigenvalue prob-
lem. On the other hand, d’Aspremont (2010), Cuturi and
d’Aspremont (2013, 2015) added an L1 penalty to obtain more
stable estimates and highlight the dependencies between St

and St−1. Hence, they used a likelihood with L1 penalty to
compute the covariance matrix and replaced the least squares
estimate of A with a LASSO-based estimate. In Cuturi and
d’Aspremont (2013, 2015) the lag − k covariance matrices
were computed according to their empirical estimates and the
minimisation problem was reformulated with those variables.

2.2. Previous techniques used to solve this optimisation

Since the MRP optimisation problem is non-convex
and includes a cardinality constraint, the classic min-
imisation algorithms will not work. In their papers,
d’Aspremont (2010), Cuturi and d’Aspremont (2013, 2015)
solve the constraint optimisation problem using semi-definite
programming. In particular they relax the problem into a
convex semi-definite optimisation programme (SDP), which
they then solve with a minimum eigenvalue solver. However,
this relaxation only provides a sub-optimal solution. Indeed,
while they proved that in special cases the relaxed problem is
tight, i.e. gives the exact solution, in general the equivalence
is not guaranteed. Nonetheless, when the correspondence is
not exact, the solution of this semi definite relaxation can be
deflated to produce a good approximation. In order to do so,
the authors used a sparse PCA method which takes the SDP
solution and converts it into a sparse vector of weights by
recovering the leading sparse eigenvectors.

While we do not fully agree on the utility function pro-
posed by Sipos and Levendovszky (2013) and Fogarasi and
Levendovszky (2013), the methods the authors use to solve
the resulting optimisation problem are nonetheless interesting.
Indeed, they proposed two techniques: a simulated annealing
(SA) approach and a feed forward neural network (FFNN)
algorithm. In their paper the authors also compared them
with exhaustive search methods on small enough problems,
before using them to tackle bigger ones where those greedy
approaches are too expensive to run. For the SA method they
converted the problem into a combinatorial one by consid-
ering only integer values for the weights x. Thus, they run
the SA algorithm on a discrete grid whose dimension corre-
sponds to the number of assets. As a stochastic optimisation
procedure this is not guaranteed to find the optimal solu-
tion, however, and its performance depends heavily on the
choice of the initial vector. For the FFNN they first consid-
ered the problem in a smaller dimension and computed some
optimal portfolio via exhaustive search to create a training
dataset. Once the network has been trained with classic back-
propagation on this sub-problem they run it on the large one
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to obtain a weight vector, again with no guarantees of conver-
gence. The results of the FFNN algorithm were also used as
an initialisation procedure to select the weight vector for the
simulated annealing steps.

These different approaches incorporate the cardinality con-
straint at different steps of the algorithm to obtain the closest
approximation to the optimal solution of this non-convex
problem. Unfortunately all of these methods provide only an
approximation of the optimal weight vector and are expensive
to compute. Furthermore, only the SDP technique can prove
an optimal convergence in some special cases. In the com-
ing section we will introduce a novel formulation of the MRP
optimisation problem and a procedure to compute the weight
vector which is guaranteed to converge and works efficiently
even in a large environment.

3. New formulation of the MRP with H-SGDLM

3.1. Description of the H-SGDLM model

The Bayesian multivariate modelling of the market, H-
SGDLM model of Griveau-Billion and Calderhead (2019),
Gruber and West (2016), Corsi (2004) gives interesting
insights on the behaviour of each asset and the rest of the
market. The letters of H-SGDLM stands for heterogeneous
simultaneous graphical dynamic linear model. This model
extended the previously introduced SGDLM model of Gru-
ber and West (2016) and HAR-RV model of Corsi (2004)
to decompose the moves of the time series into different
economically-meaningful variables which can be grouped
into endogenous and exogenous ones. In addition, it does
not assume stationarity of the time series and sequentially
updates its parameters with each newly available data point
thus producing new signals on the evolution of the differ-
ent factors. Furthermore, the flexibility of this model makes
it straightforward to extend it to fit our particular problem.

The H-SGDLM models each time series independently and
then combines them to form a complete multivariate model of
the market hence its matrix formulation:

St ∼ N (Htμt, �t) ,

With: Ht = (I − �t)
−1 ,

�t = �−1 = (I − �t)
T �t (I − �t) .

Where �t is the diagonal precision matrix with λj,t on its
diagonal, �t is the matrix of the exogenous state coefficients,
and μj,t = ej,tφj,t the mean vector. Thus, �t corresponds to
the sparse precision matrix and �t the corresponding sparse
covariance matrix.

The endogenous group of variables represents the influ-
ence of the previous information of this time series while
the exogenous one represents the influence of the rest of the
market. Hence, the endogenous variables include, among oth-
ers, the leverage effect and the influence of lower frequencies
on the current evolution. On the other hand, the exogenous
variables combine an evolving set of assets from the market
which have been selected for their influence on the time series.
While in the paper Griveau-Billion and Calderhead (2019)

they mainly used the H-SGDLM to model and predict the
variance of individual time series and the market, in this paper
we will apply it directly on the logarithm of stock prices
to obtain the variables needed to solve the mean reversion
portfolio optimisation.

For asset j the time series of prices sj,t is modelled as
a function of the state variables; both assuming a Normal
Inverse-Gamma model. Let us denote by θj,t the state vector,
Fj,t the vector of variables and Gj,t the state evolution matrix;
the model reads:

sj,t = Fjtθj,t + vj,t,

θj,t = Gj,tθj,t−1 + ωj,t,

with:vj,t ∼ N (0, λ−1
j,t ),

ωj,t ∼ N (0, Wj,t).

Where the variance of the states Wj,t and of the observations
λ−1

j,t , are both assumed to follow an Inverse-Gamma distri-
bution. The vectors of variables Fj,t = (ej,t, rspt(j),t) and states
θj,t = (φj,t, γj,t) are composed of two subsets representing the
endogenous and exogenous variables and coefficients, respec-
tively. The endogenous variables represent the influence of the
past information of asset j on its future behaviour. In order to
model the influence of the past prices on the future evolution
of the time series we include the past returns and the aver-
age of the past prices over three different frequencies: day,
week and month. In addition, because we work at the daily
frequency we want to include information from higher fre-
quency behaviours. When available, we use the open, high,
low and close prices as summaries of the day’s movement.
More specifically, we use three variables constructed from
these prices. Let us denote the different versions of the daily
price of asset j at time t by stest

j,t where test specifies the metric,
for example open for the price at the open. Thus, the selected
variables representing the intra day moves are:

rlow
t = log(slow

t ) − log(slow
t−1),

CHt = shigh
t − sclose

t

shigh
t − slow

t

− 0.5,

COHLt = sclose
t − sopen

t

shigh
t − slow

t

.

where r represents the log-return. In addition to those vari-
ables we will include the leverage effect representing the
asymmetric influence of previous positive or negative daily,
weekly and monthly return on the future move. Thus the
complete vector of endogenous variable is:

ej,t = (1, asd
j,t, asw

j,t, asm
j,t,

rd
j,t, rw

j,t, rm
j,t,

rlow
j,t , CHj,t, COHLj,t,

r(d)+
j,t , r(d)−

j,t , r(w)+
j,t , r(w)−

j,t , r(m)+
j,t , r(m)−

j,t )T .

Where for each variable the exponent represents the differ-
ent frequencies: daily, weekly and monthly; asf represents the
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averaged price over the frequency f ; rf is the past log-return
at frequency f. Hence the variables of the endogenous vector
ej,t represent different economic factors influencing the next
price movement.

The exogenous variables are composed of a selected group,
spt(j), of assets which move simultaneously to stock j. This
part is composed of two steps. The first step proposes can-
didates for inclusion in spt(j), which are then included for a
certain time period in the vector of variables. After this time
period we look at their signal to noise ratio to decide whether
to include it in the group of parents spt(j) or not. Once the par-
ents with the highest influence are selected, they are included
in the vector of exogenous variables rspt(j),t. The coefficients
θj,t of the variables Fj,t are then learned sequentially with each
new data point following the classic state-space update.

3.2. Sparsity with the H-SGDLM

As explained by d’Aspremont (2010), Cuturi and d’Aspremont
(2013, 2015) sparsity is an important factor to take into
account when building mean reverting portfolios. The previ-
ously introduced H-SGDLM model constructs a sparse repre-
sentation of the whole market. Indeed, instead of the classic
covariance matrix the cross series relationships are modelled
by the exogenous variables; in each individual DLM the
exogenous variables inform the mean of the distribution and
are sequentially selected and updated for each asset. When
combining these individual DLMs to obtain a multivariate
distribution, the exogenous coefficients inform both the mean
and variance of the multivariate normal through the matrix
�. As described previously, the selection of these variables
follows a two-step process: first filtering with the Wishart
covariance matrix, then testing for its capacity to explain the
evolution of the current price given its signal to noise ratio.
The number of parents allowed for each DLM is a parameter
to be chosen; the smaller this number the greater the sparsity
of the resulting multivariate distribution.

Thanks to this two steps process, the cross-series rela-
tionships are modelled as asymmetric. While some stocks
might not be present in any core-group other might be in
many. In other words, some assets influence the behaviour
of many others in the market while others are mostly fol-
lowers. These cross-series relationships are represented in the
sparse covariance matrix �. Because the number of allowed
parents is chosen small, the resulting covariance matrix �

is sparse. And, thanks to its construction the non-zeros ele-
ments represent stocks with simultaneous behaviours. Thus,
any mean reverting portfolio should be constructed within
one of these subsets build from the stocks with the highest
non-zero coefficient in the sparse covariance matrix �.

3.3. MRP reformulated with H-SGDLM data

We follow the approach of d’Aspremont (2010) and Cuturi
and d’Aspremont (2013, 2015) to minimise the predictability
as defined in optimisation problem 2, but instead of using the

ratio we will work with the difference:

minxt xT
t AT�Axt − xT

t �xt subject to: ‖x‖1 = 1,

‖x‖0 = k.

While d’Aspremont (2010) and Cuturi and d’Aspremont
(2013, 2015) modelled the price process by a VAR(1) model
(i.e. with stationary autoregressive coefficient A and station-
ary covariance matrix �), here we use the outputs from the
H-SGDLM thereby relaxing this condition of stationarity. By
considering the price process st to follow a time varying
autoregressive process TVAR(1) we can express the portfo-
lio by: Pt = xT

t St = xT
t AtSt−1 + xT

t εt, where the prediction of
St assuming all the data up to t − 1 known is denoted by
Ŝt = AtSt−1. We recall that the motivation for the Box and
Tiao (1977) predictability ratio was to compare the variance
of the prediction to the measured one and see if the prediction
dominates the noise, implying that the process is predictable.
Thus the ratio of the predicted portfolio variance over the
measured one is:

νt = σ̂ 2
t

σ 2
t

= E[xT
t AtSt−1ST

t−1AT
t xt|Dt]

E[xT
t StST

t xt|Dt]
= xT

t At�̃t−1AT
t xt

xT
t �̃txt

.

Where �̃t corresponds to the empirical covariance matrix
measured with prices up to t. Therefore, this ratio corresponds
to the the predicted covariance matrix using the autoregressive
coefficient At over the measured portfolio variance at t. But
since our model can actually infer the next covariance matrix
�t we could use instead:

νt = xT
t �txt

xT
t �̃txt

.

The H-SGDLM model gives us the autoregressive coefficient
At, and sparse predicted covariance matrix �t. Therefore the
predictability ratio could be computed in different ways using
either one of these outputs. Since for the optimisation prob-
lem we work with the difference instead of the ratio, possible
utility functions include:

U1(x) = xT
(

At�̃t−1AT
t − �̃t

)
x,

U2(x) = xT
(
�t − �̃t

)
x,

U3(x) = xT
(

At�̃t−1AT
t − �t

)
x.

Let us detail the different options. U1 uses the measured
covariance matrices at t − 1 and t and computed autoregres-
sive coefficient At. U2 compares the sparse covariance matrix
at t inferred with data up to t − 1 to the measured covariance
matrix using prices up to t. U3 compares a prediction of the
variance using the covariance matrix measured with data up
to t − 1 and the computed autoregressive coefficients to the
predicted covariance matrix �t. Now since we assumed all
the data up to t is known for computing the predictability
ratio at t, we could do the same computation as U3 but using
the data available at t, i.e. compare the t + 1 predictions.
However, this option (as with U3) does not respect the pre-
dictability as defined by Box and Tiao (1977) since it would
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compare two predictions instead of a predicted versus a mea-
sured value; for this reason we work with U1 and U2. With
this set-up we can either use the predicted covariance matrix
or the predicted autoregressive coefficient. Let us denote the
minimisation of the covariance differences as problem PC and
the other one as problem PA. Further, let us denote the utility
function by xT (Dt − �̃t)x, where Dt is the predicted covari-
ance matrix. Then, for PC we have Dt = �t, while for PA it is
Dt = At�̃t−1AT

t .

4. Solving the minimisation problem with CCD

4.1. The CCD algorithm for non-convex function

Coordinate descent algorithms work by optimising one direc-
tion at a time instead of all of them simultaneously as
classical descent algorithms do. The main drawback for this
type of algorithm is their requirement for the utility func-
tion to be strictly convex and differentiable. Tseng (2001)
proved that the convergence can be extended to a specific type
of non-convex and non-differentiable function. In particular
they considered a non-convex objective function that can be
decomposed into a quasi-convex and differentiable function
f0 and a non-differentiable but additively separable one fk:

f (w) = f0(w) +
m∑

k=1

fk(wk).

If a function can be written in such a way, then a block
coordinate descent algorithm applied on this function will
converge to the global minimum of f with respect to w.
More specifically, the convergence is guaranteed according to
theorem 5.1 of Tseng (2001) if the functions respect the fol-
lowing conditions: f0 must be continuous, f is quasi-convex
and hemivariate in each coordinate block and the functions
fk are left side continuous ∀k. In addition, Tseng (2001) made
assumptions on the domain of f0, for which we refer the reader
to the original paper.

The coordinate descent algorithm works by iteratively
updating the weight vector wr. At each step it updates the
value of the weights wr

i for all i ∈ [1, N] by minimising f
assuming all the other weights wr

j �=i fixed: wr
i = minwr

i
f (wr).

Then, it minimises the next weights using the updated val-
ues of the other weights. Once the entire vector wr has been
updated the iteration starts again until convergence: ‖wr −
wr−1‖ ≤ ε.

Subsequently, Yen and Yen (2014) used this algorithm to
solve the minimum variance portfolio optimisation with elas-
tic net constraints since it naturally fits in the formulation of
Tseng (2001). The Lagrangian of this problem is:

L (W , γ , �, β, α)

= W T�W + β
(
α‖W‖l1 + (1 − α) ‖W‖2

l2

)

− γ
(
W T 1 − 1

)
,

where β is the penalty parameter, α the weight balancing the
importance of the L1 and L2 terms, γ the Lagrange multiplier

and W the weights vector. Fixing γ , we can solve the KKT
conditions with respect to the weight wi to obtain:

wi = ST (γ − zi, βα)

2
(
σ 2

i + β (1 − α)
) ,

zi = 2
N∑

j �=i

wjσi,j,

where σi,j corresponds to the covariance between weights
i and j, and ST(x, y) = sign(x)max(|x| − y, 0) is the soft-
threshold function. The CCD algorithm recursively updates
each weight wi with this equation until the vector w con-
verges. The following section will detail the application of the
CCD algorithm to solve the sparse mean reverting portfolio
optimisation problem.

4.2. The CCD algorithm applied to sparse mean reverting
portfolios

Instead of the cadinality constraint used by d’Aspremont
(2010) and Cuturi and d’Aspremont (2013, 2015) to fix the
number of non-zeros weights to a pre-selected value, we use
the graphical structure learned by the H-SGDLM model to
select a group of assets of size k. While in this paper we use the
predicted covariance matrix Dt obtained from the H-SGDLM
model, the CCD algorithm we propose in this section could
be applied using any other covariance matrix prediction, how-
ever we note that without the H-SGDLM sparsity selection, an
L1 regularisation coefficient would be needed to impose spar-
sity. Since we work with the difference instead of the ratio
we add a L2 regularisation factor to the utility function. The
minimisation problem becomes:

minxt xT
t

(
Dt − �̃t

)
xt + β‖xt‖2

2, subject to: ‖xt‖1 = 1,

(3)
where β is the weight of the L2 norm. With this formulation
only the normalisation constraint remains. We use the L1 norm
of the weight as the normalisation constraint because we want
to take into account the full exposure of the portfolio. Hence,
the normalisation takes into account the short positions in the
total weight. In addition to its smoothness property, the L2 reg-
ularisation term here guarantees the positive semi-definiteness
of the problem. Indeed, although Dt and �t are positive
semi-definite covariance matrices, their difference is not guar-
anteed to be. We circumvent this issue with the addition of
an L2 weight, which acts as a matrix regularisation coeffi-
cient to keep the difference within the positive semi-definite
domain.

This approach is not perfect however, since the L2 con-
straint adds a bias to the solution. Therefore we want to select
the smallest possible coefficient β that guarantees the positive
semi-definiteness of the matrix M = Dt − �̃t + βI, where I
corresponds to the identity matrix. We select a value β = β0

and at each time t compute the optimal solution, then we
check for the positivity of the resulting utility function. In
case of negativity, we increase the value of β by 10−5 until
the function becomes positive, but only for a maximum of
10 steps. If the maximum number of iterations is reached we
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increase the step-size to 10−1 and start again. This incremental
approach is computationally feasible due to the speed of the
CCD algorithm, although we have to take care with choice
of β0; if it is chosen too small it will end up in the loop step
too often, while if chosen too big it adds an unnecessary bias.
In addition, if the value of the MRP part becomes negligible
compared to the value of the L2 constraint then the optimisa-
tion algorithm will just minimise the L2 norm of the weight
and thus produce the equal weighted portfolio. We detail in
Section 6 a pragmatic selection of values for the problems
considered.

With the parameter β selected as the smallest value
that guarantees the positive semi-definiteness of the matrix
M = Dt − �̃t + βI. When the matrix M is singular we incre-
mentally increase the value of the parameter β to shift M
into the positive semi-definite space. There are different ways
to prove that such shrinkage method is guaranteed to bring
the matrix M into the positive semi-definite space by adding
positive elements to the diagonal. For example, if β tends
to infinity, all non-diagonal elements of the matrix M will
become negligible compared to the diagonal values, β. Thus,
M ∼ βI becomes a diagonal matrix with strictly positive ele-
ments on its diagonal and thus strictly positive determinant.
Which proves its positive semi-definiteness.

For the sake of clarity, since we consider all the data up
to t known and assume all the variables in the optimisation
problem are taken at time t, we drop the subscript t in the
following expressions. The Lagrangian of our minimisation
problem (3) follows as:

L(x, γ ) = xT
(

D − �̃ + βI
)

x + γ (‖x‖1 − 1) , (4)

This function satisfies the convergence requirements defined
by Tseng (2001) since we can write the problem as the
combination of a differentiable, quasi-convex term and a
non-differentiable but additively separable one. Thus, we can
follow a coordinate descent to find the global optimum. With-
out loss of generality we will fix the Lagrange coefficient to
zero and renormalise the weight vector at the end of each
loop. Let us denote the elements of matrix D by di,j and of
� by σi,j. Then, the line i of the matrix (D − �̃ + βI)x can
be written (D − �̃ + βI)x|i = (d2

i − σ 2
i + β)xi + �j �=i(di,j −

σi,j)xj. Where σ 2
i = σi,i and d2

i = di,i are the diagonal elements
of D and � respectively. Thus, the gradient of the Lagrangian
in Equation (4) with respect to xi is:

∇xiL(x, γ ) = 2
(
d2

i − σ 2
i + β

)
xi + 2�j �=i

(
di,j − σi,j

)
xj,

Therefore, for the gradient to be zero each weight xi must
follow:

xi = −2�j �=i
(
di,j − σi,j

)
xj

2
(
d2

i − σ 2
i + β

) . (5)

The coordinate descent algorithm iteratively updates the
weights with Equation (5) until convergence. While we did
not include an L1 norm on the weights because we enforce
sparsity directly using the results from the H-SGDLM model,
it is straightforward to include one. Indeed, with an L1 regu-
larisation term and coefficient λ1, the numerator of Equation 5
simply becomes ST (2�j �=i(di,j − σi,j)xj, λ1), where ST(., .) is
the soft-thresholding function.

4.3. Complexity analysis

Let us consider an environment with k different time series,
i.e. dim(xt) = k, and limit the number of iterations of the
CCD algorithm to mmax. Thus, the computational complexity
of solving Equation (3) for a fix β value is 0(mmaxk(k − 1)).
Then, the algorithm perform a line search of growing β values
to find the first β for which that the matrix M becomes posi-
tive semi-definite. Let us assume the algorithm needs B steps
to find β, the complexity of solving Equation (3) including
the β search is O(Bmmaxk(k − 1)). Let us compare the com-
putational complexity of two increments: iβ versus iβ,s = iβ/s
with s > 0. Using the smaller increment, iβ,s, increases the
computational complexity of solving Equation (3) over the
bigger increment, iβ , by O(sBmmaxk(k − 1)).

5. Trading a mean reverting portfolio

5.1. Jurek and Yang trading strategy

In the papers Cuturi and d’Aspremont (2013, 2015) used the
Jurek and Yang (2007) strategy to trade the mean reversion
of the obtained MRP portfolios. This strategy considers the
portfolio to follow a stationary VAR(1) process Pt = ρPt−1 +
σεt, with |ρ| < 1 and mean μ, where the parameters were
obtained using a least squares estimate. Let us denote by wt

the investment weight of portfolio Pt, at t, which the authors
define by wt = (μ − pt)ρ/σ 2. In their paper from 2013 the
authors considered trading swaps and concluded that the gains
are too small to create a profitable strategy in practice, since
the transaction costs cancelled all arbitrage opportunities. On
the other hand, in the 2015 paper they built baskets of options
to trade implied volatility and with added constraints they
obtained performances robust to costs.

5.2. Ornstein-Ulhenbeck based trading strategy

In their papers, Fogarasi and Levendovszky (2013), Sipos
and Levendovszky (2013) assumed the portfolio to follow an
Ornstein-Ulhenbeck process Pt ∼ N (μ,

√
σ 2/2ρ) and con-

sidered three scenarios. Either the portfolio is in a stationary
state and no investment is made, or it is outside a threshold
and a position is entered. The authors define a threshold ε such
that:

• H1: P(pt < μ − α) = ε/2, the portfolio’s value is
bellow its long term mean and they buy it.

• H2: P(pt ∈ [μ − α, μ + α]) = ε, the portfolio is in
its stationary state and thus they stay neutral.

• H3: P(pt > μ + α) = ε/2, the portfolio’s value is
above its long term mean and they sell it.

Once a position is entered, they keep it until the portfo-
lio comes back to its stationary state. In this strategy based
on O-U thresholds the maximum amount is always invested,
in contrast to the original strategy of Jurek and Yang (2007)
where the portfolio’s weight can take any real number.
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Figure 1. This figure shows the performance of the MRP portfolio computed for 371 stocks from the S&P500. On this figure we can observe
the mean reversion of the obtained portfolio.

5.3. Mixed mean reversion trading strategy

We could also use a combination of those two ideas. Instead
of always investing an amount corresponding to the distance
from the mean (as in Jurek and Yang 2007), we could instead
adopt this approach only when the move is larger than a
threshold, resulting in the strategy:

• H1: Wt = (ρ/σ 2)((μ − α) − Pt),
• H2: Wt = 0,
• H3: Wt = (ρ/σ2)((μ + α) − Pt),

For the rest of this paper we will refer to this strategy as the
mixed JY − OU strategy.

6. Results

6.1. US stocks from the S&P500

In order to test our algorithm on stocks, we selected the 371
stocks from the S&P500 with data available since 2001. This
dataset consists of the OHLCV data for each stock at the end
of each trading day. However, instead of using daily time
points we worked on weekly time points, i.e. we selected one
data every 5 time points. Hence, the one-step ahead infer-
ence on which the H-SGDLM learns corresponds to a one
week ahead forecast. Since the H-SGDLM takes some time
to converge we study the results between 2003 and 2018. The
vector of variables includes the OHLC data as described in
Section 3.1. The size of the core parent group was fixed to 10
with an update every 10 time steps and due to the memory
limit of the GPU card the number of Monte-Carlo samples
was fixed to 500.

For the parametrisation step we selected half the dataset,
from 2011 to 2018. We used the second half of the dataset to
avoid fitting the parameters over the 2008 crisis, as we wanted
our out-of-sample to test the robustness of the parameters over
this crisis period. The MRP algorithm has two parameters, β

the L2 weight and λ the coefficient of the exponential weight-
ing we use to compute the empirical covariance matrix �̃.
Since we use two different optimisation problems, PA and PC,
we allow the parameters to be different for each one. To find
the acceptable range of values for those parameters we com-
pared the computed MRP portfolios to the equally weighted
one. Once this range was found, we selected the value that
created the most mean-reverting portfolio over this time win-
dow. As an example figure 1 shows the resulting portfolio
obtained over the whole dataset with β = 10−5 and λ = 0.9.
Since we want a sparse portfolio, we fixed the size of the
portfolio to 50 different assets following the methodology
described in (3.2) that uses the matrix of parents’ coefficients
�. We then selected β = {10−3, 10−4, 10−5, 106}, λPA = 0.98
and λPC = 0.85. For the trading part we have to select the
length, Ttr of the time window on which the different trading
parameters will be computed at each time t. We looked at the
performances of the backtests and chose Ttr = 50. We then
compared the different trading strategies described in (5). For
each strategy we averaged the results obtained for the different
β values and the different PA and PC problems. The figures 2
and 3 show the results for the Jurek and Yang (2007) and O-U
based strategies respectively. Interestingly on this dataset the
mixed JY − OU one had worse performance then the other
two. Even though the backtests do not include any costs it is
interesting to observe the steady performance even during the
2008 crisis.
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Figure 2. This plot shows the performance of the Jurek and Yang (2007) trading strategy applied on the MRP portfolio computed on an
evolving set of 50 stocks from the S&P500.

Figure 3. This plot shows the performance of the O-U based trading strategy applied on the MRP portfolio computed on an evolving set of
50 stocks from the S&P500.

6.2. FX futures

In this section we test our algorithm on exchange rates data
with a dataset consisting of 22 different FX-futures between
2006 and 2018. For this environment, the H-SGDLM used
the average of the past 40 daily-, weekly-, monthly-log-
returns. This average used an exponential weighting with a

coefficient of 0.98. The size of the parent group was fixed at
5 and the updates happened every 10 time steps. Just like in
the previous example, we used a weekly time point dataset,
such that the parent selection corresponded to an update
every 50 days. Furthermore, we used 2000 Monte-Carlo
samples.
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Figure 4. This plot shows the performance of the Jurek and Yang (2007) trading strategy applied on the MRP portfolio computed on an
evolving set of 10 FX-futures.

Figure 5. This plot shows the performance of the mixed JY − OU trading strategy applied on the MRP portfolio computed on an evolving
set of 10 FX-futures.

We followed the same methodology to find the param-
eters as the one described for S&P500 data. Hence, the
parametrisation step used half the dataset, from 2012 to 2018
and the number of asset of the portfolio, or sparsity con-
straint, is fixed to 10. The exponential weighting coefficient
is chosen to be the same for both problems PA and PC,
i.e. λPA = λPC = 0.8. But, the L2 coefficients are different:
βPA = {10−1, 10−2, 10−3} and βPC = {10−2, 10−4, 10−5}. For

the trading strategies the time window was fixed to Ttr = 10
time points equal to 50 trading days. figure 4 shows the
backtest performance using the Jurek and Yang (2007) trad-
ing strategy while figure 5 corresponds to the backtest of
the mixed JY − OU strategy. As with the previous backtest
on stocks it is interesting to observe the algorithm’s steady
performance. In this case however, contrary to the backtest on
stocks, the mixed JY − OU strategy performed slightly better
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Figure 6. This plot shows the performance of the Jurek and Yang (2007) trading strategy applied on the MRP portfolio computed on an
evolving set of 20 ETF-futures.

Figure 7. This plot shows the performance of the O-U based trading strategy applied on the MRP portfolio computed on an evolving set of
20 ETF-futures.

than the O-U based one, hence we only show the performance
of the mixed one.

6.3. ETF futures

Finally we considered the dataset of futures on ETFs, in par-
ticular 75 different futures with OHLCV data from 2008 to

2018. Hence, the H-SGLDM learns on log-prices with the
variables described in section 3.1. As for the previous datasets
we used weekly time points instead of daily ones. The size of
the core parent group is fixed to 10 with an update every 10
time steps and we computed 2000 Monte-Carlo samples.

We followed the same methodology as before to find
the MRP parameters. The sparsity variable was fixed to 20



12 T. Griveau-Billion and B. Calderhead

futures, while the time window used for parametrisation was
2013 to 2018. We selected exponential weighting coefficients
of λPA = 0.85 and λPC = 0.98, and L2 coefficients: βPA =
{10−5, 10−6} and βPC = {10−3, 10−4}. As with FX-futures the
time window for the trading strategies was fixed to Ttr = 10
time points. As for the dataset on stocks, the mixed JY − OU
strategy performed worse than the other two. Figure 6 shows
the backtest of the Jurek and Yang (2007) trading strategy and
figure 7 corresponds to the performance of the O-U based
approach. While these backtests are more volatile than the
those on FX-futures and US-stocks they still have a relatively
steady growth highlighting the robustness of this portfolio
construction.

7. Conclusion

In this paper, we presented a new approach for computing a
sparse mean reverting portfolio within a large environment.
The goal was to find an efficient procedure that is able to
find a sparse subset of series from a large environment of
time series, for which we could compute a linear combina-
tion exhibiting the mean-reverting property. Furthermore, the
solution had to work on the more complicated problem of
subsets larger than two assets. Given such a mean-reverting
portfolio the performance of our solution was numerically
evaluated by performing backtests in different investment
environments.

The solution we proposed in this paper leveraged the data
obtained by the newly introduced H-SGDLM model. Indeed,
we were able to reformulate the MRP problem as a quasi-
convex optimisation problem with a normalisation constraint.
In addition, the sparsity constraint was moved away from the
minimisation formulation and instead we used the matrix of
core parents from the H-SGDLM to select the subset of time
series on which to compute the MRP. Using different vari-
ables from the H-SGDLM model we obtained two different
formulations of the problem, PA and PC, using the matrix
of the regression coefficients and the predicted sparse covari-
ance matrix, respectively. This new formulation is perfectly
suited for a cyclical coordinate descent (CCD) algorithm.
Hence, once the data from the H-SGDLM is available the
CCD optimisation step finds the global solution of the MRP
minimisation problem.

As a result of this formulation it is possible to compute the
optimal MRP at each time t even on environments involv-
ing hundreds of time series. We then evaluated different
trading strategies to take advantage of this mean-reversion.
We performed backtests on three different datasets: stocks

from the S&P500, FX-futures and ETF-futures. All the result-
ing backtests exhibited steady performances through time
even on the out-of-sample part of the backtest that included
the financial crisis, suggesting a certain robustness of our
proposed solution.
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