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Abstract

Regular vine distributions which constitute a flexible class of multivariate de-
pendence models are discussed. Since multivariate copulae constructed through
pair-copula decompositions were introduced to the statistical community, inter-
est in these models has been growing steadily and they are finding successful
applications in various fields. Research so far has however been concentrating
on so-called canonical and D-vine copulae, which are more restrictive cases of
regular vine copulae. It is shown how to evaluate the density of arbitrary regular
vine specifications. This opens the vine copula methodology to the flexible mod-
eling of complex dependencies even in larger dimensions. In this regard, a new
automated model selection and estimation technique based on graph theoretical
considerations is presented. This comprehensive search strategy is evaluated in
a large simulation study and applied to a 16-dimensional financial data set of
international equity, fixed income and commodity indices which were observed
over the last decade, in particular during the recent financial crisis. The analysis
provides economically well interpretable results and interesting insights into the
dependence structure among these indices.

Keywords: minimum spanning tree, model selection, multivariate copula,
regular vines

1. Introduction

The most popular statistical dependence model is the multivariate Gaus-
sian distribution. However there is a growing demand for non-Gaussian models
especially in finance (Cherubini et al., 2004) but also in climate research (e.g.,
Schölzel and Friederichs (2008)), environmental sciences (Salvadori et al. (2007)
and Kazianka and Pilz (2011)), medicine (e.g., Beaudoin and Lakhal-Chaieb
(2008)) and physics (e.g., Sato et al. (2010)) to name a few areas. With the
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availability of large samples of multivariate data it is possible to investigate
non-Gaussian dependency models and to estimate parameters efficiently. The
backbone for such models is the famous theorem by Sklar (1959), which al-
lows to construct general multivariate distributions from copulae and marginal
distributions. The specification of the copula can be done independently from
the margins. While there is a multitude of bivariate copulae (see the books
of Joe (1997) and Nelsen (2006)), the class of multivariate copulae was quite
restricted until recently. Especially two copula classes received attention, the
class of elliptical copulae (Fang et al. (2002), Frahm et al. (2003)) and the class
of Archimedean copulae (Nelsen, 2005). Typical elliptical copulae are the sym-
metric Gaussian and Student-t copulae (see for example Demarta and McNeil
(2005)), while the class of Archimedean copulae includes the tail-asymmetric
Clayton and Gumbel copulae.

For financial applications a flexible modeling of tails is vital to assess the
most common risk measure Value-at-Risk (VaR) (for a definition see McNeil et al.
(2005)). In particular the Gaussian copula does not allow for heavy tails and the
approach suggested by Li (2000) was blamed by many for contributing to the
recent financial crisis (see Salmon (2009)). This shows that there is a growing
need for more flexible copulae. While the Student-t copula allows for symmetric
tail dependence as measured by the tail dependence coefficient or tail depen-
dence function (see for example Joe et al. (2010)) it has only a single parameter
to control tail dependence of all pairs of variables. Standard Archimedean mul-
tivariate copulae may be tail-asymmetric, but are governed only by a single
parameter. There has been effort to extend the class of Archimedean copu-
lae (see Joe (1997), Savu and Trede (2010), and Hofert (2011)), however these
models require additional parameter restrictions.

These problems were noted by Aas et al. (2009), who started to utilize a
wider class of multivariate copulae. This class is constructed using only bivari-
ate copula specifications as dependency models for the distribution of certain
pairs of variables conditional on a specified set of variables. These independent
building blocks are called pair-copulae and were used to construct multivariate
distributions. This approach dates back to Joe (1996) and was investigated and
organized systematically by Bedford and Cooke (2001, 2002). The identifica-
tion of the needed pairs of variables and their corresponding set of conditioning
variables is facilitated by a sequence of trees (see for example Chapter 4 of
Kurowicka and Cooke (2006)). They called these trees regular vines (R-vines)
and the corresponding multivariate distribution an R-vine distribution. For an
n-dimensional R-vine distribution, the first tree identifies n − 1 pairs of vari-
ables, whose distribution is modeled directly. The second tree identifies n − 2
pairs of variables, whose distribution conditional on a single variable is modeled
by a pair-copula. The conditioning variable is also determined in the second
tree. The next tree again identifies pairs of variables, whose conditional distri-
bution is specified by a pair-copula. Here the conditioning set has dimension 2
and is also determined. Proceeding in this way the last tree determines a single
pair of variables, whose distribution conditional on all remaining variables is de-
fined by a last pair-copula. Recent developments and applications are discussed
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in Kurowicka and Joe (2011). Czado (2010) provides a current survey about
these statistical model classes and Joe et al. (2010) investigate and discuss tail
dependence properties of vine distributions.

Aas et al. (2009) popularized two subclasses of regular vines, canonical vines
(C-vines) and drawable vines (D-vines). C-vines possess star structures in their
tree sequence, while D-vines have path structures. Kurowicka and Cooke (2006)
focused on vine distributions with Gaussian pair-copulae, but Aas et al. (2009)
allowed for different pair-copula families, such as the bivariate Student-t copula,
bivariate Gumbel and bivariate Clayton copula. While D-vine based models are
started to be used in many applications (Fischer et al. (2009), Min and Czado
(2010), Chollete et al. (2009), Hofmann and Czado (2010), Mendes et al. (2010),
Salinas-Gutiérrez et al. (2010), Erdorf et al. (2011), Mercier and Frison (2009),
Smith et al. (2010)), C-vines are less commonly used (Heinen and Valdesogo
(2009), Czado et al. (2010)); Nikoloulopoulos et al. (2012) consider both classes.

Estimation in C- and D-vine copula models is often facilitated using max-
imum likelihood. Since this will require optimization with respect to at least
n(n − 1)/2 parameters, it is important to provide good starting values for the
optimization. For this purpose a fast sequential estimation procedure was sug-
gested and implemented in Aas et al. (2009), whose asymptotic properties are
investigated in Hobæk Haff (2011). Since bootstrapping or inversion of high di-
mensional Hessian matrices are required to obtain interval estimates, Bayesian
approaches have been followed for parameter estimation (Min and Czado, 2010)
and pair-copula selection in specified D-vine copula models (Min and Czado
(2011) and Smith et al. (2010)).

However the class of R-vine distributions is much larger than the class of
D- and C-vine distributions and currently there are very few applications of
R-vines. One reason for this is the enormous number of possible R-vine tree
sequences (see Morales-Nápoles et al. (2010)) to choose from. The importance of
a good selection choice has also been noted by Garcia and Tsafack (2009). This
provides the starting point of this paper. We develop an automated strategy
of jointly searching for an appropriate R-vine tree structure, the pair-copula
families and the parameter values of the chosen pair-copula families. It is a
sequential approach starting by identifying the first tree, its pair-copula families
and estimating their parameters. Based on this the specification of the second
tree utilizes transformed variables. The applied transformations depend on the
choices made in the first tree. In this manner all trees together with their
choice of pair-copula families and corresponding parameters are made. For each
tree selection we use a maximum spanning tree algorithm, where edge weights
are chosen appropriately to reflect large dependencies. Pair-copulae are chosen
independently. Here we use the Akaike information criterion (Akaike, 1973),
which performs well in this context (see Brechmann (2010, Chapter 5)). Finally
the corresponding pair-copula parameter estimation follows the same sequential
estimation approach as suggested for D- and C-vine copula distributions in
Aas et al. (2009).

With this automated search strategy we identify for multivariate data on
the n-dimensional cube [0, 1]n useful multivariate copula models, as we show
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in a large simulation study and meaningful models arise for the application
considered later.

Once an appropriate R-vine distribution is found for a data set we perform
maximum likelihood estimation for the parameters using the sequential esti-
mates as starting values. We also like to perform this task in an automated
setup. This requires an efficient storage of the R-vine tree specification, its
pair-copula families and the corresponding parameters. This is facilitated in
a set of lower triangular matrices and we proof how the corresponding joint
density making up the likelihood can be evaluated recursively. This setup is
also used to provide an algorithm for simulating from an R-vine distribution.
Pseudo code for the corresponding algorithms is given.

Finally we like to note that the developed search strategies are able to work
not only in an automated fashion but also for higher dimensional problems.
Before full maximum likelihood estimation was implemented for problems in at
most 10 dimension. In our 16-dimensional application to financial data we show
the usefulness of our approach and demonstrate that R-vine distributions pro-
vide better fit than C- and D-vines for this data set. These results have already
spawned new research on finding more parsimonious specifications, which re-
place higher pair-copulae by independence copulae. See Brechmann et al. (2012)
for details. This allows us to extend the implementation to higher dimensions,
which are especially needed for the risk assessment of larger financial portfolios.

To summarize, our contributions: We develop novel algorithms for evaluating
an R-vine density and simulating from specified R-vines. That is we effectively
provide statistical inference techniques for R-vines. We further propose an in-
novative R-vine selection and estimation method and thus, for the first time,
allow to actually select and fit arbitrary non-Gaussian R-vines to data. This is
exploited to analyze the returns of important financial indices.

The paper is organized as follows: Section 2 introduces R-vine distributions
and copulae. Necessary background from graph theory can be found in Diestel
(2006). Then the efficient storage of the R-vine specification and its statistical
inference are developed. Selection of the R-vine tree structure, the pair-copula
families and its parameters are tackled in Section 3. This includes a simulation
study presented in Appendix A and shows that the proposed models by the
search strategy are reasonable. The search and estimation algorithm is then
successfully applied to a 16-dimensional financial data set involving daily equity,
fixed income and commodity indices. In addition to sequential estimates full ML
estimates are also provided. The paper closes with a summary and discussion.

2. Parametric regular-vine distributions

2.1. Regular vines

We begin this section with the theoretical background of a regular vine (R-
vine), we then give its representation as a matrix and show how the R-vine cop-
ula density can be written in a convenient way using this matrix form. The fol-
lowing summarizes some definitions and results from Bedford and Cooke (2001),
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Bedford and Cooke (2002, Part 4) and Kurowicka and Cooke (2006, Chapter
4.4), where a tree is a graph in which each two nodes are connected by a unique
sequence of edges.

Definition 2.1 (R-vine). V = (T1, . . . , Tn−1) is an R-vine on n elements if

(i) T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.

(ii) For i = 2, . . . , n− 1, Ti is a tree with nodes Ni = Ei−1 and edge set Ei.

(iii) For i = 2, . . . , n− 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} it
must hold that #(a ∩ b) = 1 (proximity condition).

In other words, an R-vine on n elements is a nested set of n − 1 trees such
that the edges of tree j become the nodes of tree j+1. The proximity condition
insures that two nodes in tree j+1 are only connected by an edge if these nodes
share a common node in tree j. We notice that the set of nodes in the first tree
contains all indices 1, ..., n, while the set of edges is a set of n− 1 pairs of these
indices. In the second tree the set of nodes contains sets of pairs of indices and
the set of edges is built of pairs of pairs of indices, etc.

To further study properties of R-vines we define three sets associated with
its edges. The complete union of an edge is a set of all indices that this edge
contains. If two nodes a and b are joined by an edge, then the conditioned and
conditioning sets of this edge are the symmetric difference and the intersection
of the complete unions of a and b, respectively.

Definition 2.2 (Complete union, conditioning and conditioned sets of an edge).
The complete union of an edge ei ∈ Ei is the set Uei = {n ∈ N1|∃ej ∈ Ej , j =
1, . . . , i − 1,with n ∈ e1 ∈ e2 ∈ . . . ∈ ei−1 ∈ ei} ⊂ N1. For ei = {a, b} ∈ Ei,
a, b ∈ Ei−1, i = 1, . . . , n−1, the conditioning set of an edge ei is Dei = Ua∩Ub,
and the conditioned sets of an edge ei are Cei,a = Ua \ Dei , Cei,b = Ub \ Dei

and Cei = Cei,a ∪Cei,b = Ua△Ub, where A△B := (A \B)∪ (B \A) denotes the
symmetric difference of two sets.

The complete union of the edge a between (1, 2) and (2, 3) in tree T2 shown
in Figure 1 is {1, 2, 3}, since for instance 1 ∈ {1, 2} ∈ {{1, 2}, {2, 3}} = {a, b}
and 3 ∈ {2, 3} ∈ {{1, 2}, {2, 3}} = {a, b}, and the complete union of the edge b
between (2, 3) and (3, 6) is {2, 3, 6}. The conditioning and the conditioned sets
of the edge joining a and b are {2, 3} and {1, 6}, respectively.

The conditioned and conditioning sets of all edges of V are collected in a set
called constraint set. Each element of this set is composed of a pair of indices
corresponding to the conditioned set and a set containing indices corresponding
to the conditioning set.

Definition 2.3 (Constraint set). The constraint set for V is a set:

CV =
{
({Ce,a, Ce,b}, De)|e ∈ Ei, e = {a, b}, i = 1, . . . , n− 1

}
.
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1 2 3 4

5 6 7

1, 2 2, 3 3, 4

2, 5 3, 6
6, 7

(T1)

1, 2 2, 3 3, 6 6, 7

2, 5 3, 4

1, 3|2 2, 6|3 3, 7|6

2, 4|3

3, 5|2

(T2)

2, 4|3 1, 3|2 2, 6|3 3, 7|6

3, 5|2

1, 6|23 2, 7|36

1, 5|23

1, 4|23

(T3)

1, 4|23 1, 5|23 1, 6|23 2, 7|36
5, 6|1234, 5|123 1, 7|236

(T4)

4, 5|123 5, 6|123 1, 7|236
4, 6|1235 5, 7|1236

(T5)

4, 6|1235 5, 7|1236
4, 7|12356

(T6)

Figure 1: An example R-vine on seven variables. At each edge e = {a, b} ∈ Ei, the terms
Ce,a and Ce,b are separated by a comma and given to the left of the ‘|’ sign, while De appears
on the right.

It is convenient to enumerate nodes of the trees in an R-vine using their
conditioned and conditioning sets. In Figure 1 each edge of the R-vine has been
assigned with its conditioned sets printed before ‘|’ and the conditioning set
shown after ‘|’. Moreover we notice that the constraint set of an R-vine CV
contains all necessary information needed to distinguish it from other R-vines.

Two special types of R-vines namely the canonical (C-) and the D-vine have
been used extensively in the literature. A D-vine is an R-vine for which the first
tree has nodes with degree two or less (path structure). A C-vine is an R-vine
which contains a node with maximal degree in each tree (star structure). It is
convenient to work with these two R-vine types as the first tree (D-vine) and
the ordering of the root nodes (C-vine) determine their structure completely.

R-vines have many interesting properties that can be found in Bedford and Cooke
(2002) and Kurowicka and Joe (2011).

2.2. Regular vine copulae

The graphical structure of R-vines is used to specify necessary copulae for
a so-called pair-copula construction, where a copula is a multivariate distribu-
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tion on the unit hypercube [0, 1]n with uniform marginal distributions (see Joe
(1997) and Nelsen (2006)). To build an R-vine copula one must specify n − 1
unconditional bivariate copulae between variables indexed by the conditioned
sets of the edges in the first tree of the R-vine. For the second tree of the R-vine
one needs to specify the bivariate copulae between variables indexed by the con-
ditioned sets conditional on variables indexed by the conditioning sets of edges
of R-vine. We formally define the R-vine copula specification corresponding to
an R-vine as in Bedford and Cooke (2002).

Definition 2.4 (R-vine copula specification). (F ,V , B) is an R-vine cop-
ula specification if F = (F1, . . . , Fn) is a vector of continuous invertible distribu-
tion functions, V is an n-dimensional R-vine and B = {Be|i = 1, . . . , n− 1; e ∈
Ei} is a set of copulae with Be being a bivariate copula, a so-called pair-copula.

A joint distribution F of a random vector (X1, . . . , Xn) is said to realize
an R-vine copula specification (F ,V , B) or exhibit R-vine dependence if, for
each e ∈ Ei, i = 1, . . . , n − 1, e = {a, b}, Be is the bivariate copula of XCe,a

and XCe,b
given XDe

= {Xi|i ∈ De}, where it is assumed that this condi-
tional copula is independent of the conditioning variables XDe

(see Aas et al.
(2009) and Hobæk Haff et al. (2010)). We call such a distribution also an R-
vine distribution. Additionally, the marginal distribution of Xj has to be Fj

for j = 1, . . . , n. We denote the copula density of the copula Be for the edge
e = {a, b} as cCe,a,Ce,b|De

.
For the R-vine from Figure 1 we need to assign six unconditional copulae

c1,2, c2,3, c3,4, c2,5, c3,6 and c6,7 in the first tree, five conditional copulae in the
second tree c1,3|2, c2,6|3, c3,7|6, c3,5|2 and c2,4|3, etc. All copulae can be of a
different type and their parameters can be specified independently from each
other. However, since the copulae specified in a tree will affect the conditioned
variables used in later trees the choice of the different copulae will influence each
other.

The density of an R-vine copula specified through assigning appropriate
bivariate copulae to edges of the R-vine has been shown in Bedford and Cooke
(2001, 2002) to be equal to the product of conditional and unconditional copulae
assigned to its edges.

Theorem 2.5. Let (F ,V , B) be an R-vine copula specification on n elements.
There is a unique distribution F that realizes this R-vine copula specification
with density

f1...n(x) =

n∏

k=1

fk(xk)

n−1∏

i=1

∏

e∈Ei

cCe,a,Ce,b|De

(
FCe,a|De

(xCe,a|xDe
), FCe,b|De

(xCe,b|xDe
)
)
,

(1)

where x = (x1, . . . , xn), e = {a, b} and xDe
stands for the variables in De, i.e.,

xDe
= {xi|i ∈ De}. Moreover fi denotes the density of Fi for i = 1, . . . , n.
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Notice that the copulae in (1) are indexed by elements of the set CV (see
Definition 2.3). To obtain the conditional distributions FCe,a|De

(xCe,a
|xDe

) and
FCe,b|De

(xCe,b
|xDe

) let Ei ∋ e = {a, b}, a = {a1, a2}, b = {b2, b2} be the edge
which connects Ce,a with Ce,b given the variables De. Joe (1996) showed that

FCe,a|De
(xCe,a

|xDe
) =

∂CCa|Da
(FCa,a1

|Da
(xCa,a1

|xDa
), FCa,a2

|Da
(xCa,a2

|xDa
))

∂FCa,a2
|Da

(xCa,a2
|xDa

)

=: h(FCa,a1
|Da

(xCa,a1
|xDa

), FCa,a2
|Da

(xCa,a2
|xDa

)),

(2)

where FCa,a1
|Da

(xCa,a1
|xDa

) and FCa,a2
|Da

(xCa,a2
|xDa

)) have to be obtained
recursively as shown in the next section. The notation of the h-function is
introduced for convenience.

Similarly, we obtain FCe,b|De
(xCe,b

|xDe
). We call FCe,a|De

(xCe,a
|xDe

) and
FCe,b|De

(xCe,b
|xDe

) transformed variables.
For C- and D-vines the density (1) can be rewritten in a more convenient

way. For more information on how to exploit the structure of C- and D-vines
see Berg and Aas (2009), Min and Czado (2010, 2011) and Czado et al. (2010).

2.3. Matrix representation of regular vines

To develop statistical inference algorithms for R-vines we need a convenient
way of representing an R-vine. Storing the nested set of trees is too expensive
and does not allow for an easy way to describe inference algorithms.

Morales-Nápoles (2008) uses a lower triangular matrix to store an R-vine.
The idea is to store the constraint set of an R-vine in columns of an n-dimensional
lower triangular matrix. We hence specify how the information from the lower
triangular matrix should be read by defining a constraint set for the matrix.
In the next section we introduce a way how the structure of R-vine matrices
can be used to encode corresponding pair-copula types and parameters. While
Morales-Nápoles (2008) used the matrix representation of R-vines for counting
the number of different R-vines, we will subsequently exploit this structure for
likelihood computation and a sampling procedure.

Definition 2.6 (Matrix constraint set). Let M = (mi,j)i,j=1,...n be a lower
triangular matrix. The i-th constraint set for M is

CM (i) =
{
({mi,i,mk,i}, D)|k = i+ 1, . . . , n,D = {mk+1,i, . . . ,mn,i}

}
(3)

for i = 1, . . . , n − 1. If k = n we set D = ∅. The constraint set for matrix M
is the union CM = CM (1) ∪ . . .∪ CM (n− 1). For the elements of the constraint
set ({mi,i,mk,i}, D) ∈ CM we call {mi,i,mk,i} the conditioned set and D the
conditioning set.

Every element of the constraint set is made up of an diagonal entry mi,i, an
entry in the same column below the diagonal mk,i and all the elements following
in that column {mk+1,i, . . . ,mn,i}, k = i+ 1, . . . , n, i = 1, . . . , n.
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To demonstrate this idea, we can compare the constraint sets defined by the
example matrix M∗ with the constraint sets of the R-vine in Figure 1.

M∗ =




7
4 4
5 6 6
1 5 5 5
2 1 1 1 1
3 2 2 3 3 3
6 3 3 2 2 2 2




. (4)

In the first column of M∗ we have the diagonal entry m1,1 = 7 and the
element m4,1 = 1 in the fourth row. According to the definition above this
gives ({7, 1}, {2, 3, 6}) ∈ CM∗ which corresponds to the constraint set of the
rightmost edge of T4 in the R-vine in Figure 1.

Before we formally define an R-vine matrix (that will be shown to code all
information included in an R-vine) we need two sets that will help us characterize
the matrix form and will ensure the proximity condition required for R-vines
(see Definition 2.1). For a lower triangular matrix M = (mi,j)i,j=1,...n set for
i = 1, ..., n− 1,

BM (i) :=
{
(mi,i, D)|k = i+ 1, . . . , n;D = {mk,i, . . . ,mn,i}

}
,

B̃M (i) :=
{
(mk,i, D)|k = i+ 1, . . . , n;D = {mi,i} ∪ {mk+1,i, . . . ,mn,i}

}
.

Now we can define an R-vine matrix.

Definition 2.7 (R-vine matrix). A lower triangular matrix M = (mi,j)i,j=1,...n

is called an R-vine matrix if for i = 1, . . . , n− 1 and for all k = i+ 1, . . . , n− 1
there is an j in i+ 1, . . . , n− 1 with

(mk,i, {mk+1,i, . . . ,mn,i}) ∈ BM (j) or ∈ B̃M (j). (5)

It can be shown that the following two properties follow from (5):

(i) {mi,i, . . . ,mn,i} ⊂ {mj,j, . . .mn,j} for 1 ≤ j < i ≤ n,

(ii) mi,i 6∈ {mi+1,i+1, . . . ,mn,i+1} for i = 1, . . . , n− 1.

Condition (i) states that every column contains all the entries that a column
to the right contains, while condition (ii) assures that there is a new entry on
the diagonal in every column. Condition (5) is the essential counterpart to the
proximity condition in the definition of an R-vine (see Definition 2.1). Note
that Morales-Nápoles (2008) used a different condition to ensure the proximity
condition.

As an example, one may check that M∗ given in (4) fulfills condition (5) and
is in fact an R-vine-matrix.

The following simple properties of an R-vine matrix can be seen directly
from the definition.

Properties 2.8. (i) All elements in a column are different.
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(ii) Deleting the first row and column from an n-dimensional R-vine matrix
gives an (n− 1)-dimensional R-vine matrix.

We have seen that the matrix M∗ codes all information needed to represent
the R-vine in Figure 1. The proof that there is an equivalent R-vine-matrix
with the same constraint set for every R-vine and vice versa can be found in
Dißmann (2010). In the proof it is shown that the constraint set CV of an R-vine
is in fact equal to the constraint set CM of a corresponding R-vine matrix M .
Note however that the matrix corresponding to an R-vine is not unique. As a
simple example consider the matrix obtained after an exchange of the elements
2 and 3 in the lower right 2 by 2 corner of M∗. It defines the same R-vine as
M∗.

2.4. Evaluation of the joint regular vine density

We now use the matrix representation for R-vines presented in the previous
section to make more visible which copulae have to be used to build a density
of the R-vine distribution. In particular, we provide a novel algorithm on how
to efficiently evaluate the conditional distribution functions of an arbitrary R-
vine copula. This is a non-trivial task, since the order of the conditioning
variables required is not obvious. For this purpose we require an R-vine matrix
that codes information about conditioned and conditioning variables. Let M =
(mi,j)i,j=1,...,n be an R-vine matrix corresponding to the R-vine V .

The R-vine distribution is a product of copulae indexed by CV which is equal
to CM defined in (3). Hence the R-vine distribution density is:

f1...n =

n∏

j=1

fj

1∏

k=n−1

k+1∏

i=n

cmk,k,mi,k|mi+1,k,...,mn,k

(
Fmk,k|mi+1,k,...,mn,k

, Fmi,k|mi+1,k,...,mn,k

)
,

(6)

where arguments of all functions have been omitted to shorten the notation.
We now have to show how the conditional distributions which are arguments

of bivariate copulae in (6) are obtained. We will show this in the algorithm below
where the evaluation of the fully parametrical form of an R-vine distribution
is described. For this purpose we first need to specify two additional square
matrices T = (ti,j)i,j=1,...,n and P = (pi,j)i,j=1,...,n that will contain information
about types and parameters of the bivariate copulae in (6).

Since for all j = 1, . . . , n− 1, i = j + 1, . . . , n the entry mi,j of M codes the
copula of the variables indexed by mj,j and mi,j conditional on the variables
indexed by {mi+1,j , . . . ,mn,j} we let ti,j describe the type of this copula (e.g.,
Normal, Clayton, etc.) and let pi,j contain parameters of this copula (note
that some copulae require more than one parameter; we can store them, e.g.,
in additional matrices or using a multi-dimensional array instead of a matrix).
An example of such a specification for M∗ (see (4)) is shown in Figure 2.
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M∗ = T ∗ = P ∗ =

4

7 5

6 7 1

5 6 7 7

1 1 6 2 6

2 3 3 3 2 2

3 2 2 6 3 3 3

t2,1

t3,1 t3,2

t4,1 t4,2 t4,3

t5,1 t5,2 t5,3 t5,4

t6,1 t6,2 t6,3 t6,4 t5,5

t7,1 t7,2 t7,3 t7,4 t7,5 t7,6

p2,1

p3,1 p3,2

p4,1 p4,2 p4,3

p5,1 p5,2 p5,3 p5,4

p6,1 p6,2 p6,3 p6,4 p6,5

p7,1 p7,2 p7,3 p7,4 p7,5 p7,6

Figure 2: The copula with conditioned variables indexed by {4, 5} and conditioning variables
indexed by {1, 2, 3}, i.e., c4,5|123, is of the type t4,1 with parameter p4,1. The copula c7,6 is
of the type t7,4 and has the parameter p7,4.

Next, we find a recursive algorithm to calculate the conditional distribu-
tions. For convenience we will assume that the diagonal entries of M are or-
dered from n to 1, i.e., mk,k = n − k + 1. Note that the reordered matrix is
equivalent to the original matrix which means it induces the same R-vine but
with relabeled indices. The copula type and parameter matrices are unaffected
by this reordering. To proceed, we introduce the maximum matrix of M de-
noted by M. It is M = (mi,k)i,k=1,...,n with mi,k = max{mi,k, . . . ,mn,k} for
all k = 1, . . . , n and i = k, . . . , n. In words, mi,k is the maximum of all entries
in the k-th column of M from the bottom up to the i-th element. Note that
mn,k = mn,k for all k = 1, . . . , n, since mn,k is the maximum over only one
element and since the element on the diagonal is a new element in each column,
it is mk,k = mk,k = n− k + 1 for all k = 1, . . . , n.

Algorithm 2.1 shows how to compute the density for a given R-vine copula
specification, where h(·, ·|ti,k, pi,k) in Line 15 denotes the h-function (2) for the
copula type ti,k with parameters pi,k and the matrices V direct and V indirect are
introduced to store the arguments of the bivariate copulae in (6), where their
notation is due to the order of the arguments in Line 15.

The outer for-loop of the algorithm iterates over the columns of M from
right to left, starting with n − 1. The inner for-loop iterates over the rows
from the bottom up to one element below the diagonal entry of M . Therefore,
Line 14 of Algorithm 2.1 is executed once for every edge of the R-vine with the
corresponding copula type and parameters.

Note that we do not need to initialize (vindirectn,1 , vindirectn,2 , . . . , vindirectn,n ) because

it is mn,k = mn,k for all k = 1, . . . , n− 1 and hence, we always select a vdirect

in Line 9 for i = n.
The crucial point in the algorithm is how the conditional distributions that

are arguments of bivariate copulae in (6) denoted as z
(1)
i,k and z

(2)
i,k are selected.

Therefore, we show that z
(1)
i,k = Fmk,k|{mi+1,k,...,mn,k}(xmk,k

|xmi+1,k
, . . . , xmn,k

)

and z
(2)
i,k = Fmi,k|{mi+1,k,...,mn,k}(xmi,k

|xmi+1,k
, . . . , xmn,k

) for k = n − 1, . . . , 1
and i = n, . . . , k + 1.
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Algorithm 2.1 Density of an R-vine specification.

Input: R-vine specification in matrix form, i.e., M , T , P , where mk,k = n −
k + 1, k = 1, ..., n.

Output: Density of the R-vine distribution at (x1, . . . xn) for the given R-vine
specification.

1: Set F = 1.
2: Let V direct = (vdirecti,k |i, k = 1, . . . , n).

3: Let V indirect = (vindirecti,k |i, k = 1, . . . , n).

4: Set (vdirectn,1 , vdirectn,2 , . . . , vdirectn,n ) = (Fn(xn), Fn−1(xn−1), . . . , F1(x1)).
5: Let M = (mi,k|i, k = 1, . . . , n) with mi,k = max{mi,k, . . . ,mn,k} for all

k = 1, . . . , n and i = k, . . . , n.
6: for k = n− 1, . . . , 1 do {Iteration over the columns of M}
7: for i = n, . . . , k + 1 do {Iteration over the rows of M}

8: Set z
(1)
i,k = vdirecti,k

9: if mi,k = mi,k then

10: Set z
(2)
i,k = vdirecti,(n−mi,k+1).

11: else
12: Set z

(2)
i,k = vindirecti,(n−mi,k+1).

13: end if
14: Set F = F · c(z

(1)
i,k , z

(2)
i,k |ti,k, pi,k).

15: Set vdirecti−1,k = h(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k) and vindirecti−1,k = h(z

(2)
i,k , z

(1)
i,k |ti,k, pi,k).

16: end for
17: end for
18: return F

We argue by induction and start with i = n and k arbitrary in 1, . . . , i.

It is z
(1)
n,k = vdirectn,k = Fn−k+1(xn−k+1) = Fmk,k

(xmk,k
), and since mn,k =

mn,k, it is z
(2)
n,k = vdirectn,n−mn,k+1 = Fmn,k

(xmn,k
). Thereby, the statement is valid

for i = n.
We assume that for all n ≥ i > I for an I > 2, i.e., for all k = i, . . . , 1 it is

vdirecti−1,k = Fmk,k|{mi,k,mi+1,k,...,mn,k}(xmk,k
|xmi,k

, xmi+1,k
, . . . , xmn,k

) (7)

and

vindirecti−1,k = Fmi,k|{mk,k,mi+1,k,...,mn,k}(xmi,k
|xmk,k

, xmi+1,k
, . . . , xmn,k

). (8)

If we proceed with step I, the algorithm selects z
(1)
I,k = vdirectI,k in Line 8. By

Equation (7) it is z
(1)
I,k = Fmk,k|{mI+1,k,...,mn,k}(xmk,k

|xmI+1,k
, . . . xmn,k

) which

proves that the algorithm selects the correct entry for z
(1)
I,k.

By Definition 2.7, Property (iii) we know that there exists a j in k+1, . . . , n−
1 with

(mI,k, {mI+1,k, . . . ,mn,k}) ∈ BM (j) ∪ B̃M (j). (9)
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Let (x,D) ∈ BM (j), then x and D consist of elements of the j-th column of

M. Thus, max{x,maxD} = mj,j . This is also true for (x,D) ∈ B̃M (j). If we
take the maximum over all elements on the left and right side of (9), it must
hold that mI,k = mj,j , and since mj,j = n−j+1 we know that j = n−mI,k+1.
This explains the indexation of v in Lines 10 and 12.

Now we distinguish between the cases (mI,k, {mI+1,k, . . . ,mn,k}) ∈ BM (j)
and
(mI,k, {mI+1,k, . . . ,mn,k}) ∈ B̃M (j). For (mI,k, {mI+1,k, . . . ,mn,k}) ∈ BM (j)
it is

(mI,k, {mI+1,k, . . . ,mn,k}) = (mj,j , {mI+1,j, . . . ,mn,j}) ∈ BM (j). (10)

Hence, it follows mI,k = mj,j = mI,k. Thus, it is mI,k = mI,k in Line 9 of the

algorithm, and the algorithm defines z
(2)
I,k = vdirectI,(n−mI,k+1) = vdirectI,j . Using the

induction assumption (7) it follows

z
(2)
I,k = Fmj,j |{mI+1,j ,mI+2,j ,...,mn,j}(xmj,j

|xmI+1,j
, xmI+2,j

, . . . xmn,j
),

and by (10)

z
(2)
I,k = FmI,k|{mI+1,k,...,mn,k}(xmI,k

|xmI+1,k
, . . . xmn,k

).

The argumentation for (mI,k, {mI+1,k, . . . ,mn,k}) ∈ B̃M (j) is similar. This
proves the statement.

2.5. Inference of regular vines

Having now established Algorithm 2.1 to evaluate a given R-vine copula
density, the determination of the corresponding log likelihood expression L is
straightforward by substituting Line 1 through “L = 0” and Line 14 through

“L = L + log c(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k)”, and by returning L instead of F in the last

line. The log likelihood can then be used, for example, for maximum likelihood
estimation of the pair-copula parameters.

For vines there is a second estimation procedure which is typically used in
the literature, namely sequential estimation. This method exploits the tree by
tree structure of vines by separately estimating the parameter(s) of each pair-
copula in the first tree, then computing the transformed variables for the second
tree using h-functions, again separately estimating the conditional pair-copulae
in the second tree, and so on. In doing so, only bivariate estimation is required
and hence this method is quite fast. Moreover, the estimated parameters are
typically good starting values for joint maximum likelihood estimation.

With regard to Algorithm 2.1, this means that we only have to insert a new
line before Line 14, where the copula parameter pi,k is estimated based on the

observations z
(1)
i,k and z

(2)
i,k and for copula family ti,k.

Furthermore, sampling from R-vine specifications can be performed using
the inverse probability integral transform (see Devroye (1986)). E.g., in the
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Algorithm 2.2 Simulation of an R-vine specification.

Input: R-vine specification in matrix form, i.e., M , T , P , where mk,k = n −
k + 1, k = 1, ..., n.

Output: Random observations (x1, . . . , xn) from the R-vine specification.
1: Let u1, . . . , un be independent uniform samples.
2: Let V direct = (vdirecti,k |i, k = 1, . . . , n).

3: Let V indirect = (vindirecti,k |i, k = 1, . . . , n).

4: Set (vdirectn,1 , vdirectn,2 , . . . , vdirectn,n ) = (u1, u2, . . . un).
5: Let M = (mi,k|i, k = 1, . . . , n) with mi,k = max{mi,k, . . . ,mn,k} for all

k = 1, . . . n− 1 and i = k, . . . , n.
6: x1 = vdirectn,n

7: for k = n− 1, . . . , 1 do {Iteration over the columns of M}
8: for i = k + 1, . . . , n do {Iteration over the rows of M}
9: if mi,k = mi,k then

10: Set z
(2)
i,k = vdirecti,(n−mi,k+1).

11: else
12: Set z

(2)
i,k = vindirecti,(n−mi,k+1).

13: end if
14: Set vdirectn,k = h−1(vdirectn,k , z

(2)
i,k |ti,k, pi,k)

15: end for
16: xn−k+1 = vdirectn,k

17: for i = n, . . . , k + 1 do {Iteration over the rows of M}

18: Set z
(1)
i,k = vdirecti,k

19: Set vdirecti−1,k = h(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k) and vindirecti−1,k = h(z

(2)
i,k , z

(1)
i,k |ti,k, pi,k).

20: end for
21: end for
22: return (x1, . . . , xn)

bivariate case, let C be the copula under consideration and let v1 and v2 be two
independent uniform samples. Using the inverse of the h-function as defined in
(2), u = (u1, u2)

′ given by

u1 = v1, and u2 = h−1(v2, u1) = F−1
2|1 (v2|u1),

then is a sample from the copula C with uniform margins.
This idea can be generalized to R-vines and the corresponding algorithm

is given in Algorithm 2.2, where we again assume that entries of the R-vine
matrix are ordered from n to 1, and in particular the selection of the different

z
(1)
i,k and z

(2)
i,k is the same as in Algorithm 2.1. More details on this can be found

in Dißmann (2010, Section 5.3).
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3. Selecting regular vine distributions

Fitting an R-vine copula specification to a given dataset requires the follow-
ing separate tasks:

(a) Selection of the R-vine (structure), i.e., selecting which unconditioned and
conditioned pairs to use.

(b) Choice of a bivariate copula family for each pair selected in (a).

(c) Estimation of the corresponding parameter(s) for each copula.

Since all three steps are needed for an R-vine copula specification, one way of
finding the “best” model is to accomplish steps (b) and (c) for all possible R-
vine constructions. Since the number of possible R-vines on n variables increases

very rapidly with n (n!/2 × 2(
n−2

2 ) as shown in Morales-Nápoles et al. (2010)),
this is not feasible. In addition to the fast growing number of possible R-vines,
some methods to decide which bivariate copula family to use depend on the
interpretation of plots, e.g., K- or Chi-Plots (see Genest and Favre (2007)), and
therefore need manual interaction. On the one hand, we do not use such methods
to obtain objectivity and, on the other hand, this again is not feasible to do for
every possible copula in every possible R-vine decomposition. In particular, in
Section 4 we will fit a model to a 16-dimensional dataset leaving 120 copulae to
select. This is not practicable to do manually.

Therefore, we developed a sequential, heuristic method to select the tree
structure of the R-vine. Since our proposed method for (a) depends on the
copulae selected in (b) and estimated in (c), copula selection is covered in Section
3.2. A simulation study to evaluate our approach is presented in Appendix A.

In Section 4 we will apply the techniques.

3.1. Sequential method to select an regular vine copula specification based on
Kendall’s tau

To select one possible R-vine for a given dataset it is necessary to decide for
which pairs of variables we want to specify copulae. We proceed sequentially,
starting by defining the first tree T1 = (N1, E1) for the R-vine, continuing with
the second tree, and so on. The trees are selected in such a way that the chosen
pairs model the strongest pairwise dependencies present (more details below).
Later, we will refer to this method as the sequential method. Since we examine
every tree separately, it is not guaranteed to find a global optimum, where global
optimum is meant in terms of model fit, e.g., higher likelihood, smaller AIC/BIC
or superior in terms of the likelihood-ratio based test for comparing non-nested
models proposed by Vuong (1989). However, we think this sequential approach
is reasonable because

• the copula families specified in the first tree of the R-vine often have the
greatest influence on the model fit.

• it is more important to model the dependence structure between ran-
dom variables that have high dependencies correctly, because most copula
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families can model independence and the copulae distribution functions
for parameters close to independence are very similar.

• this approach minimizes the influence of rounding errors in later trees,
which pairs with strong pairwise dependence are most prone to, e.g., when
assessing the joint tail behavior of two variables. For pairs of variables
close to independence, such issues are less relevant.

• for real applications it is natural to assume that randomness is driven
by the dependence of only some variables and not all. Therefore, if you
choose the copulae with high dependence in the first trees, the transformed
variables for the later trees will often be rather independent. We exem-
plify this using the multivariate normal distribution, since we can easily
compute conditional dependence for multivariate normal distributions us-
ing well known properties of the normal distribution (see, e.g., Anderson
(2003)).

For example consider the following three jointly normal distributed ran-
dom variables.




X1

X2

X2


 ∼ N






0
0
0


 ,




1 ρ1,2 ρ1,3
ρ1,2 1 ρ2,3
ρ1,3 ρ2,3 1




 ,

with pairwise correlations ρ1,2, ρ1,3 and ρ2,3.

For the normal distribution we know that the correlation of X1 and X2

given X3 can be calculated as following

ρ1,2|3 := ρ (X1|X3, X2|X3) =
ρ1,2 − ρ1,3ρ2,3√
1− ρ21,3

√
1− ρ22,3

.

Defining ρ1,3 = ρ2,3 > ρ1,2 > 0 we have ρ1,2|3 = (ρ1,2 − ρ21,3)/(1 − ρ21,3) <
ρ1,2, since ρ1,2 ≤ 1, and ρ1,2|3 > 0 because of the positive-definiteness
of the correlation matrix. Hence, if we fit the dependence for the two
pairs with higher correlation first (assumption ρ1,3 = ρ2,3 > ρ1,2 > 0) the
remaining correlation of X1 and X2 becomes smaller given X3.

This is a desirable feature especially for datasets with a large number of
variables, because we can truncate the R-vine specification and assume
independence for the k last trees to reduce the number of parameters
needed. For more information on this see Section 4 and Brechmann et al.
(2012).

We use Kendall’s tau as a measure of dependence, since it measures de-
pendence independently of the assumed distribution and hence, is especially
useful when combining different (non-Gaussian) copula families. However the
described method works in the same way for every other measure of dependence
(see Brechmann (2010, Chapter 3) for an extensive discussion).
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Algorithm 3.1 Sequential method to select an R-vine model based on Kendall’s
tau.
Input: Data (xℓ1, . . . xℓn), ℓ = 1, ..., N (realizations of i.i.d. random vectors).
Output: R-vine copula specification, i.e., V , B.
1: Calculate the empirical Kendall’s tau τ̂j,k for all possible variable pairs

{j, k}, 1 ≤ j < k ≤ n.
2: Select the spanning tree that maximizes the sum of absolute empirical

Kendall’s taus, i.e.,

max
∑

e={j,k} in spanning tree

|τ̂j,k|.

3: For each edge {j, k} in the selected spanning tree, select a copula and es-

timate the corresponding parameter(s). Then transform F̂j|k(xℓj |xℓk) and

F̂k|j(xℓk|xℓj), ℓ = 1, ..., N, using the fitted copula Ĉjk (see (2)).
4: for i = 2, . . . , n− 1 do {Iteration over the trees}
5: Calculate the empirical Kendall’s tau τ̂j,k|D for all conditional variable

pairs {j, k|D} that can be part of tree Ti, i.e., all edges fulfilling the
proximity condition (see Definition 2.1).

6: Among these edges, select the spanning tree that maximizes the sum of
absolute empirical Kendall’s taus, i.e.,

max
∑

e={j,k|D} in spanning tree

|τ̂j,k|D|.

7: For each edge {j, k|D} in the selected spanning tree, select a conditional
copula and estimate the corresponding parameter(s). Then transform

F̂j|k∪D(xℓj |xℓk,xℓD) and F̂k|j∪D(xℓk|xℓj ,xℓD), ℓ = 1, ..., N, using the fit-

ted copula Ĉjk|D (see (2)).
8: end for

Kurowicka (2011) proposes another method to generate R-vines. She builds
the trees the other way around, starting with the last tree. By this method she
tries to generate an R-vine with the lowest dependencies in the top trees. This
method depends on the partial correlations which contradicts the fact that we
want to use other, non-Gaussian copulae. Partial correlations are used, since
they can be calculated without knowing the exact R-vine structure of the first
trees.

Our method is summarized in Algorithm 3.1. To select the tree that max-
imizes the sum of absolute empirical Kendall’s taus (Steps 2 and 6) we use
a maximum spanning tree (MST) algorithm such as the Algorithm of Prim
(Cormen et al., 2001, Section 23.2). Typically such algorithms are described in
a way to find a minimal spanning tree. But the algorithms work in both ways.
Also note that in Steps 2 and 6 we are looking for a tree. We could look for a
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star or a path instead, to obtain a C- or a D-vine structure, respectively. Note
that for a D-vine a Hamiltonian path has to found which corresponds to solving
a Traveling Salesman Problem. This is however NP-equivalent and therefore
rather inefficient to find a solution for, especially in higher dimensions.

Notice that an MST algorithm does not depend on the the actual values of
the edges, instead it only uses their rank. Therefore, the algorithm leads to the
same results if we transform the edge values by a monotone increasing function.
Hence, in our field of application, where we want to find a tree with maximal
values of taus we would get the same tree even if we took other weights like
squared taus or another monotone increasing transformation.

How to select a copula, i.e., Steps 3 and 7 of Algorithm 3.1 is explained in
more detail in Section 3.2. A proof that this algorithm creates an R-vine, i.e.,
that we always find a tree in Steps 2 and 6 and further explanations are given
in the following.

An MST algorithm always leads to a tree when the input graph is connected.
Therefore, we need to check this assumption to verify our method.

This is obviously true for T1, since we start with a complete graph. When
conducting the i-th step, we know that Ti−1 is a tree. The node set of tree Ti

is then given by Ni = Ei−1. Let E′
i be the set of all possible edges in Ti (see

Step 5 of Algorithm 3.1). This edge set is defined by

E′
i = {{a, b} ∈ N2

i |#(a ∩ b) = 1}. (11)

The requirement #(a∩ b) = 1 ensures the proximity condition of an R-vine. To
show that (Ni, E

′
i) is connected recall that connected means there is a path from

every single node to every other node. Let a, b ∈ Ni be arbitrary nodes. Further,
let n1, n2 ∈ Ni−1 be two nodes from the previous tree with n1 ∈ a and n2 ∈ b.
Since n1 and n2 are nodes of a tree, there is a path in Ti−1 from n1 to n2,
n1 ∈ e1 → . . . → el ∋ n2, e1, . . . , el ∈ Ei−1, l ≥ 1. We know that n1 ∈ a and
n1 ∈ e1. Without loss of generality we can assume that a = e1. Otherwise, if
e1 6= a, we can extend the path

el+1 = el
...

e2 = e1

e1 = a

l = l + 1.

Similarly we can assume b = el. Since e1, . . . , el induce a path, we know that
#(ei ∩ ei+1) = 1 for all i = 1, . . . , l − 1. Hence {ei, ei+1} ∈ E′

i for all i =
1, . . . , l − 1. Thus, we know that there is a path from e1 = a to el = b and
(Ni, E

′
i) is a connected graph. Table 1 shows a concrete example of this idea.

Finally, we give some more insight on how to calculate the empirical Kendall’s
taus and select copula families. Define E′

i like it was done in (11). For all
e ∈ E′

i we have to calculate the value of Kendall’s tau, and for some of them
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i Graph Description

1

1

2 3

4 5

Assume that we have 5 variables
N1 = {1, 2, 3, 4, 5}. The first graph is
always a complete graph, where we can
connect every node with every other node.
Let us assume the Algorithm of Prim
selects the solid edges. The concrete edge
values (Kendall’s taus) are not of interest
in this example.

2

1, 2

1, 4 4, 5

1, 3

All edges from the previous step are now
nodes. An edge is drawn whenever the
nodes share a common node in the
previous tree (dashed and solid). We see
that the graph is connected and select the
tree indicated by the solid edges.

3

2, 3|1 3, 4|1 1, 5|4
There are no options in this step. We need
all edges to form a tree. Note, as soon as a
graph has a D-vine structure, there are no
more options in the following trees because
they it uniquely determines all following
conditioned and conditioning sets.

Table 1: Exemplification of the model selection Algorithm 3.1.

(those selected in the MST) we need to fit a copula based on two conditioned
variables. If e ∈ E′

i, e = {a, b} connects variables xCe,a
with xCe,b

given the
variables xDe

, we hence need the transformed variables FCe,a|De
(xCe,a

|xDe
) and

FCe,b|De
(xCe,b

|xDe
) which are obtained as described in (2). For these it is then

straightforward to calculate the empirical Kendall’s tau and select a bivariate
copula family as outlined in the following section.

3.2. Selecting pair-copula families sequentially

Besides the steps described above we need to select a copula family for every
pair of variables. In the later application we take the following copula families
into consideration (some properties are given in brackets):

• Gaussian/Normal (tail-symmetric, no tail dependence),

• Student-t (tail-symmetric, tail dependence),
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• Gumbel (tail-asymmetric, upper tail dependence) and survival Gumbel
(tail-asymmetric, lower tail dependence),

• rotated Gumbel by 90 and 270 degrees (tail-asymmetric, no tail depen-
dence),

• Frank (tail-symmetric, no tail dependence).

In case of positive dependence this means that we can select among the Gaus-
sian, Student-t, (survival) Gumbel and Frank copulae, while rotated Gumbel
copulae can be used instead of Gumbel and survival Gumbel copulae when
modeling negative dependence. Further, we will not use a Student-t copula if
the maximum likelihood estimation leads to a degrees of freedom parameter
higher than 30 because then the Student-t copula is too close to the Gaussian
which can be used instead.

Given these options we still have to decide which copula fits “best”. We do
this using the AIC (Akaike, 1973) which corrects the log likelihood of a copula
for the number of parameters, i.e., the use of the Student-t copula is penalized
compared to the other copulae, since it is the only two parameter family under
consideration. Bivariate copula selection using the AIC has previously been in-
vestigated in Manner (2007) and Brechmann (2010, Section 5.4) who found that
it is a quite reliable criterion, in particular in comparison to alternative criteria
such as copula goodness-of-fit tests. Selection proceeds by computing the AIC’s
for each possible family and then choosing the copula with smallest AIC. We will
also include the independence copula in the selection by performing a prelimi-
nary independence test based on Kendall’s tau as described in Genest and Favre
(2007). If this test indicates independence, no further steps are taken and the
independence copula is chosen.

Given the wide range of bivariate copula families available the above list
of copulae clearly is not complete. For instance, we could also consider two
parameter copula families such as the BB1 or BB7 with different lower and
upper tail dependence. These have previously been used as building blocks of
C- and D-vine copulae by Czado et al. (2010) and Nikoloulopoulos et al. (2012).
While already including copula families able to account for very different types
of dependence, the above list can easily be extended by such families, which
however increases the computational burden of the copula selection step. Using
appropriate diagnostic tools for asymmetry and tail dependence as in the above
two references, the required computational time can however be reduced.

4. Modeling the residual dependency among daily returns of inter-
national financial indices

Copula based models are very commonly used in the area of multivariate
modeling of financial returns. Here first appropriate marginal time series models
are fitted to each financial return series and standardized residuals are formed.
The dependency among these residuals is then modeled using a multivariate
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copula after a transformation to marginally uniform data using either an empir-
ical or parametric probability integral transformation. There has been empirical
evidence that different asymmetric and tail dependencies are present for differ-
ent pairs of variables, which cannot be captured using a multivariate Gaussian
or Student-t copula with a common degree of freedom (see, amongst others,
Longin and Solnik (1995, 2001) and Ang and Bekaert (2002)). Especially D-
vines have been shown to be very successful in the modeling of such depen-
dency patterns (see Aas et al. (2009), Min and Czado (2010) and Mendes et al.
(2010)), but also C-vines have recently been successfully applied (Czado et al.,
2010). Mendes et al. (2010) however suggested that there should more research
on how to choose D-vines including both the choice of the order of the nodes as
well as how to choose the pair-copula families. This paper is exactly answering
these questions and in our application we will investigate whether R-vine cop-
ulae other than C- or D-vine and standard multivariate copulae are needed in
modeling the residual dependencies among financial returns.

For this we selected 16 international indices, including five equity, nine fixed
income (bonds) and two commodity indices observed daily from 12/29/2001 un-
til 12/14/2009 (2337 daily returns). All returns are unhedged against currency
fluctuations and quoted in their home currency except for global indices which
are stated in USD. In particular we choose the equity indices DAX, STOXX50,
S&P500, MSCI-World and MSCI-EE, the fixed income indices IBOXX-G-3-
5, IBOXX-G-7-10, IBOXX-E-1-3, IBOXX-E-5-7, IBOXX-E-10+, IBOXX-E-
A, IBOXX-E-AA, IBOXX-E-AAA, IBOXX-E-BBB and the commodity indices
Comm and Gold. For the bonds we selected maturities such that those of
the German and the Euro bonds are disjoint, since German bonds (IBOXX-G)
account for a large proportion of the Euro indices (IBOXX-E) giving rise to ex-
tremely high Pearson correlations which are also observed between consecutive
maturities (see the corresponding pairs in Figure 4 below). More information
about the selected indices can be found in Table 6.13 of Dißmann (2010).

For the first step we fitted univariate ARMA(1,1)-GARCH(1,1) models with
Student-t innovations using maximum likelihood estimation to all equity and
commodity indices and Gauss innovations for all bond indices, separate residual
analyses in Dißmann (2010, Section 6.3.1 and Appendix B.3) show no volatility
clusters and a good fit of the chosen innovation distribution for equity and com-
modity indices. For bond indices the innovation distributions are only reason-
able. Corresponding Ljung-Box tests indicate independence of the standardized
residuals. Since the sample size is large and there is always some uncertainty in
the innovation distribution we selected the empirical probability integral trans-
formation to obtain marginally uniform data. The resulting pair plots of the
resulting copula data (top triangular matrix) and their estimated Kendall’s tau
values (lower triangular matrix) for six representatives from the different in-
dices are given in Figure 3 indicating different strengths and signs of pairwise
dependencies.

For model selection we want to demonstrate the superior fit of R-vines with
individually chosen pair-copula families and assess the gain over R-vines with
only bivariate t or with only Gauss pair-copulae as well as over standard C- and
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Figure 3: Pairs-plots and Kendall’s taus for representatives of each index group.

D-vines. In particular we apply the selection algorithm of Section 3 to select
among five different R-vine classes given by

• mixed R-vine: R-vine with pair-copula terms chosen individually from
seven bivariate copula types (Gauss, Student-t, Gumbel, survival Gumbel,
rotated Gumbel (90 and 270 degrees), Frank).

• mixed C-vine: C-vine with pair-copula terms chosen individually from
seven bivariate copula types (see above).

• mixed D-vine: D-vine with pair-copula terms chosen individually from
seven bivariate copula types (see above).

• all t R-vine: R-vine with each pair-copula term chosen as bivariate
Student-t copula. If the degrees of freedom parameter of a pair is es-
timated to be larger than 30, we set the copula to the Gaussian.

• multivariate Gauss: R-vine with each pair-copula term chosen as bi-
variate Gaussian copula, i.e., this corresponds to a multivariate Gaussian
copula, where unconditional correlations can be obtained from conditional
ones by inverting a generalized version of Equation (3.1).
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Figure 4: T1 for an R-vine from the model selection algorithm.

The top tree is common to all R-vines (in contrast to the C- and D-vines
which are determined as maximal stars and paths as noted in Section 3), since
the selection of the top tree does not depend on the pair-copula choice (but
only on the empirical Kendall’s taus) and is given in Figure 4. The structure in
Figure 4 reflects expected relationships among the residuals of the indices. The
government bond indices are grouped so that consecutive maturities are con-
nected. Similarly corporate bond indices are aligned according to their ratings
from lowest (BBB) to highest (AAA). These two groups are connected by an av-
erage representative, i.e., IBOXX-E-5-7 and IBOXX-E-AA. Since STOXX50 is
a European equity index the residual dependency is highest to the predominant
Euro bond index (IBOXX-G-3-5).

For the copula family selection of each pair-copula term the AIC is used
as described in Section 3.2, where pair-copula parameters are estimated by
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maximum likelihood estimation. In applying the selection algorithm we also
observed that empirical Kendall’s tau values tend to be small for higher order
trees. In this cases it might be sufficient to replace the corresponding pair-
copula term by the independence copula. Therefore we also fitted an R-vine
using the preliminary independence test based on Kendall’s tau for each pair
(“indep. R-vine”). If the p-value of the test is larger than 5%, then we choose
the independence copula for this pair-copula term. The issue of large numbers of
independence copulae in later trees is further investigated in Brechmann et al.
(2012) who call an R-vine truncated if all pair-copulae in higher order trees are
set to bivariate independence copulae.

Applying the selection procedure to the R-vine mixed case 16 Gauss,
51 Student-t, 4 Gumbel, 7 survival Gumbel, 12 rotated Gumbel and 30 Frank
bivariate copula terms requiring 171 parameter estimates were chosen. If the
choice for a pairwise independence copula is allowed, the total number of param-
eters was significantly reduced to 108, since 55 copula terms were replaced by
an independence copula. These models correspond to the mixed/t scenario of
the simulation study in Appendix A and hence we can assume that our models
give rather adequate fits compared to the (unknown) “true” model.

Selection results for all models are summarized in Table 2. It shows the log
likelihood achieved for sequential estimates in the first row, while the second
row gives the log likelihood after joint optimization of the chosen regular vine
tree specification and copula types (see Section 2.5). The next rows indicate the
number of pair-copula types chosen and the final rows give the test statistics
together with the p-values in parentheses of a Voung test with and without
Akaike and Schwarz corrections, respectively, testing the R-vine mixed model
against the alternative indicated by the respective column. This shows that the
sequential log likelihood is quite close to the one obtained by joint maximization
for all model classes considered. Especially the top four ranks are maintained.
We also observe only small differences in the parameter estimates. The non-zero
number of (survival/rotated) Gumbel pair-copula terms shows non-symmetric
heavy tailed conditional dependencies present in the residual data. From the
Vuong tests we see that the mixed R-vine is to be preferred over the mixed
D-vine and the multivariate Gaussian copula. The difference to the all t R-vine
and to the mixed C-vine is also more pronounced when using the (parsimonious)
Schwarz correction, the mixed R-vine model is marginally superior in that case.
The choice of Gaussian copulae for Student-t copulae with too many degrees of
freedom means that the number of parameters in the all t R-vine is still close to
that of the mixed R-vine. If we chose Student-t copulae for all terms, the number
of parameters would be 240 and hence the influence of the corrections for the
number of parameters used would be stronger. Finally, the mixed R-vine model
reduced by independence pair-copula terms is preferred over the non-reduced
mixed R-vine model if a Schwarz correction is used, since the reduced model
has significantly less parameters to be estimated.

Overall this example demonstrates the usefulness of R-vine copulae with
individually chosen copula types for each pair-copula term. In addition the R-
vine tree selection procedure gives directly economically interpretable results for
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R-vine R-vine R-vine R-vine C-vine D-vine
mixed all t all Gauss indep. mixed mixed

Seq. log likelihood 36431 36417 30445 36331 36366 36300
Log likelihood 36514 36513 31784 36396 36476 36422

No. of parameters 171 179 120 108 178 176

N
o
.
o
f
co
p
u
la
e Indep. 0 0 0 55 0 0

Gauss 16 61 120 8 19 18
Student-t 51 59 0 43 58 56
Gumbel 4 0 0 1 8 7

Surv. Gumbel 7 0 0 1 8 6
Rot. Gumbel 12 0 0 2 11 9

Frank 30 0 0 10 16 24

V
u
o
n
g
te
st
s no correction 0.03 14.59 6.32 1.00 3.49

(0.97) (0.00) (0.00) (0.32) (0.00)
Akaike corr. 0.49 14.44 2.92 1.18 3.68

(0.63) (0.00) (0.00) (0.24) (0.00)
Schwarz corr. 1.79 13.98 -6.85 1.71 4.23

(0.10) (0.00) (0.00) (0.09) (0.00)

Table 2: Log likelihoods, numbers of parameters and of copulae for all models as well as results
of the Vuong tests (test statistics and p-values in parantheses) comparing the R-vine model
with mixed copulae to all other models. The positive values of Vuong test statistics indicate
that the test favors the R-vine model over the respective alternative model (inconclusive region
at the 5%-level: [−1.96, 1.96]).

this data set.
A note on the required computing time: In our implementation the sequen-

tial selection and estimation Algorithm 3.1 took only between 5 minutes for the
reduced mixed R-vine model and 9 minutes for the mixed C-vine on a Linux
cluster computer with 32 processing cores (AMD Opteron, 2.6Ghz). In contrast
the maximum likelihood estimation was computationally much more demand-
ing. While the computing time for the non-reduced mixed R-vine model was
only 1.5 hours, it increased to about 9 hours for the all t R-vine and the mixed
C- and D-vine models.

5. Summary and discussion

This paper provides a significant contribution towards making R-vine copu-
lae a standard building block for copula based models. While already the intro-
duction of C- and D-vine copulae provided flexibility in modeling dependencies,
R-vine copulae provide even more modeling capabilities. Before the availabil-
ity of such pair-copula constructions for multivariate copulae, the choices were
rather limited. With R-vine copulae together with different choices for individ-
ual choices of copula types for each pair-copula term, the problem of too few
modeling choices has shifted to the problem of too many choices to be investi-
gated.
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In this paper we provided a general selection approach to sequentially choose
the tree representation together with choosing the copula type for each copula
term from a large class of bivariate copula families and estimate the corre-
sponding parameters. The selection approach involves sequentially the use of
any graph theoretic algorithm which finds a maximum spanning tree. Absolute
empirical Kendall’s tau values are used as weights, but other weights are possi-
ble. In finance the use of empirical tail dependence or other measures of joint
tail behavior might be useful to investigate.

The output of the selection procedure gives an R-vine tree structure, their
corresponding pair-copula types and parameter estimates. These so-called se-
quential estimates can be used as starting values for determining the maximum
likelihood estimates (see also Hobæk Haff (2011) for more details on the asymp-
totic behavior of these estimates). The paper also uses a matrix representation
of an R-vine and provides a novel algorithm to evaluate the joint density for
any arbitrary R-vine copula. The selection procedure is completely operational,
it is implemented in the statistical software R and is capable to handle medium
sized dimensions of up to 20 dimensions.

As noted in Section 4 it might be worthwhile to replace pair-copula terms
by independence copula terms or simpler copula type choices in higher order
trees. This issue has been investigated in the related work by Brechmann et al.
(2012) who developed testing procedures to determine truncation after a certain
tree. This further balances the model flexibility with the desired parsimony
of the model and opens R-vines to applications in large dimensions (see also
Brechmann and Czado (2011)).

In future, we will also investigate the model selection problem described in
Section 3 more closely. This includes the choice of other weights than Kendall’s
tau as well as the selection of C- and D-vines. In particular, the selection of
the order in the first D-vine tree corresponds to a Traveling Salesman Problem
and therefore is NP-equivalent. Here, tailor-made approaches for the D-vine
methodology have to be considered.
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Smith, M., Min, A., Czado, C., Almeida, C., 2010. Modeling longitudinal data
using a pair-copula decomposition of serial dependence. Journal of the Amer-
ican Statistical Association 105 (492), 1467–1479.

Vuong, Q. H., 1989. Likelihood ratio tests for model selection and non-nested
hypotheses. Econometrica 57 (2), 307–333.

30



Appendix A. Simulation study

In order to evaluate the approach of sequentially selecting and estimating R-
vines proposed in Section 3, we set up a comprehensive simulation study based
on the R-vine shown in Figure 1. In total we simulated samples of size 500, 1000
and 2000 according to twelve different scenarios, i.e., twelve different choices of
pair-copula families and parameters. We repeated this 1000 times each. The
considered scenarios are:

• all Gaussian, all t, all Gumbel and all Frank R-vines: all pair-
copula families are chosen as Gaussian, Student-t, Gumbel and Frank
copulae, respectively. Degrees of freedom of the Student-t copula are
linearly increased by 1 for pair-copula terms in higher order trees and
start with 3 in the first tree.

• mixed R-vine: different families for each pair-copula term.

• t/mixed R-vine: Student-t copulae for pair-copulae in first two trees,
mixed copulae for remaining pairs. Degrees of freedom of the Student-t
copulae are also mixed.

In each of these scenarios, parameters are chosen according to two different
settings of Kendall’s taus (first, constant values per tree except for increased
values of the “central” copulae c2,3, c3,6 and c2,6|3, and second, mixed values;
see (A.1) and (A.2), respectively) so that we end up with twelve scenarios. While
the R-vine structure matrix is given by (4), corresponding matrices of Kendall’s
tau values as well as of copula types for the mixed and t/mixed R-vines are
shown in Appendix A.1 below.

Having simulated from the respective true model, we sequentially select and
estimate by maximum likelihood estimation an R-vine model as described above
and determine the following three quantities to evaluate the adequacy of our
selection and estimation approach:

• general tau-difference: we compute the mean absolute difference be-
tween pairwise empirical Kendall’s taus of simulated data from the true
and from the selected models. The mean over all repetitions is reported.

• lower and upper tau-difference: similarly we compute the mean ab-
solute difference between pairwise empirical lower and upper exceedance
Kendall’s taus which are defined for two variables U1 and U2 as (Brechmann,
2010, Section 3.1.3)

τ lower(U1, U2) := τ(U1, U2|U1 ≤ δ1, U2 ≤ δ2)

τupper(U1, U2) := τ(U1, U2|U1 > 1− δ1, U2 > 1− δ2),

and measure the strength of the joint tail behavior of U1 and U2. As
thresholds δ1 and δ2 we choose δ1 = δ2 = 0.2 as recommended by Brechmann
(2010). Again the means over all repetitions are reported.

31



Const. Kendall’s taus per tree Mixed Kendall’s taus
Scenario lower general upper lower general upper

tau-diff. tau-diff. tau-diff. tau-diff. tau-diff. tau-diff.
N

=
5
0
0

all Gauss 0.083 0.015 0.083 0.087 0.016 0.087
all t 0.077 0.019 0.078 0.080 0.020 0.082

all Gumbel 0.094 0.018 0.066 0.098 0.019 0.073
all Frank 0.101 0.014 0.100 0.102 0.015 0.101
mixed 0.090 0.019 0.090 0.090 0.021 0.090
t/mixed 0.079 0.018 0.080 0.086 0.018 0.084

N
=

1
0
0
0

all Gauss 0.058 0.010 0.057 0.061 0.011 0.060
all t 0.053 0.013 0.054 0.056 0.014 0.057

all Gumbel 0.066 0.013 0.048 0.068 0.014 0.050
all Frank 0.077 0.010 0.077 0.075 0.011 0.075
mixed 0.065 0.016 0.066 0.065 0.017 0.065
t/mixed 0.056 0.013 0.056 0.058 0.013 0.059

N
=

2
0
0
0

all Gauss 0.041 0.007 0.040 0.042 0.008 0.043
all t 0.038 0.009 0.037 0.040 0.010 0.039

all Gumbel 0.047 0.009 0.040 0.048 0.010 0.042
all Frank 0.062 0.008 0.062 0.058 0.008 0.058
mixed 0.049 0.013 0.050 0.048 0.013 0.048
t/mixed 0.039 0.010 0.039 0.041 0.010 0.041

Table A.3: Results of the simulation study. The second column indicates the respective
scenario for sample sizes of N = 500, N = 1000 and N = 2000. The results corresponding to
the first setting of Kendall’s tau values are shown in columns 3-5, while those for the second
setting are displayed in columns 6-8.

The results of the simulations are shown in Table A.3 and can be summarized
as follows.

In terms of all three criteria, the performance improves with increasing sam-
ple size due to a higher estimation accuracy and the smaller simulation error.
Across both settings of parameters (chosen according to Kendall’s tau values),
the performance is very similar and only slightly worse in the case of mixed
Kendall’s taus. According to the general tau-difference criterion, the (non-tail
dependent) all Gaussian and all Frank R-vines are identified best. The criteria
based on exceedance Kendall’s taus show that the all t and the t/mixed R-vines
as well as the upper tail of the all Gumbel R-vine are accurately modeled. That
is our selection and estimation approach appropriately takes into account the
characteristic properties of the copula models.

Comparing the all t, the t/mixed and the mixed scenarios, it is evident
that models with larger numbers of Student-t copulae (combined with mixed
copulae) can be identified very well. This is in particular true when Kendall’s
tau values are mixed, which is typical for practical applications.
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Appendix A.1. Setting of the simulation study

In the following we show the matrices of Kendall’s tau values for parameter
choice in the above simulation study as well as the copula type matrices for
the mixed and t/mixed scenarios. First, the two settings of Kendall’s taus are
specified as follows.

• Constant Kendall’s taus per tree:

τconst =




0.05
0.10 0.10
0.15 0.15 0.15
0.20 0.20 0.20 0.20
0.40 0.40 0.40 0.40 0.50
0.60 0.60 0.60 0.60 0.70 0.70




(A.1)

• Mixed Kendall’s taus:

τmixed =




0.05
0.10 0.10
0.15 0.15 0.15
0.20 0.20 0.20 0.20
0.25 0.30 0.35 0.40 0.45
0.50 0.55 0.60 0.65 0.70 0.75




(A.2)

Using abbreviations for copula types (N=Gaussian, t=Student-t, G=Gumbel,
SG=Survival Gumbel, F=Frank) the copula type matrices of the mixed and
t/mixed scenarios are given by:

• mixed R-vine:

Tmixed =




N
F N
N F N
G SG G SG
F N F N t
SG G SG G t t




• t/mixed R-vine:

Tt/mixed =




N
F N
N F N
G SG G SG
t t t t t
t t t t t t
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