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1. Introduction

Since its birth in the 1980s, pairs trading have been popular as
a statistical arbitrage strategy among major investment banks
and hedge funds. Despite the high average annualized excess
return, which has been as high as 11%, the idea behind the
strategy is simple. If the two prices of a pair of stocks move
together in the past, they are likely to continue in the future.
So when the prices diverge, a trader can simply take a short
position with the over-priced stock and a long position with
the under-priced one, and wait for the prices to converge in the
future. When they do, the trader clears the positions and makes
a profit.

For practitioners, the common practice of pairs trading can
be summarized in three steps: (1) select a pair of stocks and
calculate the mean and standard deviation of the price ratio
for the pair; (2) when the ratio deviates from the mean by
two standard deviations, short the over-priced stock and long
the under-priced one; and (3) when the ratio reverts to the
mean, clear the positions to make a profit. Note that there
are alternative quantities to price for triggering transactions,
such as the squared Euclidean norm and the log difference

∗Corresponding author. Email: cglee@mie.utoronto.ca

of the prices. Also, the investor may not have to follow the
rule of two standard deviations in the second step, but can
strategically change the trigger point according to the mar-
ket conditions and the actual movement of the pair. Simi-
larly, it is not a fixed rule to clear positions exactly when
the spread reverts back to the mean. The investor might want
to wait longer to gain larger profit, but then also bears more
risk.

Various quantitative methods have been developed and
applied to pairs trading in the literature. Three commonly used
techniques are: distance method, co-integration and stochastic
spread. The distance method is mostly used by practition-
ers. Nath (2003) used the 15th percentile of the distribution
of distance as a trigger for trading and the 5th percentile as
the stop-loss barrier. Gatev et al. (2006) selected pairs and
generated trading signals based on this method. Despite its
model-free feature that prevents misestimation of parameters,
the distance method provides little help in forecasting
according to Do et al. (2006). Instead, Vidyamurthy (2004)
developed a framework for forecasting using the co-integration
method, and analysed the mean reversion of the residuals.
The method of co-integration was further applied by Lin
et al. (2006) to develop a loss protection for pairs trading,
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and Puspaningrum et al. (2010) to develop algorithms to es-
timate trade duration and find optimal preset boundaries. The
stochastic spread method, on the other hand, models the mean
reverting process of pairs trading as an Ornstein–Uhlenbeck
(OU) process. Elliott et al. (2005) provided an analytic frame-
work of pairs trading, which laid the ground for prediction and
decision-making based on the hidden OU process. Ekström
et al. (2011) explored optimal liquidation of pairs trading in
the framework of the OU process and analysed the sensitivity
of the model parameters. Vladislav (2004) and Boguslavsky
and Boguslavskaya (2004) also based their research on the OU
process. Bertram (2010) argued strongly for the role of time and
derived analytic formula for the thresholds of a synthetic asset
whose price is assumed to follow an OU process. He showed
that the optimal thresholds were symmetric around the mean
both for maximizing the return per unit time and the Sharpe
ratio. However, he did not allow short selling of the synthetic
asset.

To maximize the expected profit per unit time in the long run,
the investor should choose the right entry and exit thresholds.
If the thresholds are narrow, then the time it needs to complete
a trade is small, but so is the profit in each trade. On the other
hand, if thresholds are too wide, the profit in each trade is larger,
but so is the total time needed to complete a trade. The interplay
between the profit per trade and the length of a trade gives rise
to an interesting optimization problem, which, to the best of
our knowledge, has not been previously studied. Therefore, the
main objective of this paper is to find the optimal thresholds
as functions of the transaction cost and parameters of the OU
process for the objective of maximizing the long run expected
average profit.

This paper contributes both to theory and practice. From a
theoretical point of review, we derive a polynomial expres-
sion for the expectation of the first-passage time of an OU
process with two-sided boundary. Though derivation of the
optimal thresholds using the Laplace transform is still possible
theoretically, our expression can greatly simplify the proof
and calculation. This polynomial expression can be easily ap-
plied in other research problems. From a practical point of
view, we obtain the analytic formula of optimal thresholds for
pairs trading, and the results are counter-intuitive. To compare
with common practice, we also show a step-by-step proce-
dure on the daily data of Coca-Cola and Pepsi. Results show
that the new optimal strategy developed in this paper per-
forms better than the common practice. Also useful to prac-
titioners is a profitability indicator measuring theoretical
return of a pair, by which investors can identify more profitable
pairs.

The structure of this paper is as follows. Section 2 dis-
cusses the model of pairs trading and derives the objective
functions for long-run profit per unit time. In section 3, we
give a brief overview of the first-passage time over a one-
sided boundary and derive the expectation of the two-sided
boundary first-passage time. In section 4, we present the op-
timal thresholds and compare the return with the optimized
conventional pairs trading strategy. Section 5 uses the opti-
mal trading strategy on real data and discusses the results.
Section 6 concludes the paper and propose topics for future
research.

2. Model description

In Avellaneda and Lee (2010), the co-integration is modelled
as:

ln(Pt )−ln(P0) = α(t−t0)+β[ln(Qt )−ln(Q0)] + εt , t ≥ 0,

(1)
where Pt and Qt are the stock prices of a pair of assets at time
t . Notice that the drift rate α is usually ignorable compared
to fluctuation of the residual εt . The above model suggests
that if we take a long position of 1 dollar in stock P at time
t , we should short Q for β dollars, and vice versa. In this
paper, we continue to use the relationship above and assume
that the mean reverting process εt follows an OU process. For
simplicity, define Xt = εt + ln(P0)−β ln(Q0) in equation (1).
Note that Xt is still an OU process since ln(P0) − β ln(Q0) is
only a constant. A trading signal is generated when Xt reaches
a preset threshold. We have the following two equations for
the correlation of the pair and the dynamics of the residual
Xt :

ln(Pt ) − β ln(Qt ) = Xt , (2)

d Xt = θ(μ − Xt )dt + σdWt , (3)

where θ is the mean reversion rate, μ is the mean of Xt , Wt is
the standard Wiener process, and σ is the standard deviation
for the Wiener process in equation (3).

Similar to Bertram (2010), we can transform equation (3)
into the dimensionless system by τ = θ t and Yτ =

√
2θ
σ

(Xt − μ). Hence, we have:

dYτ = −Yτ dτ + √
2dWτ (4)

We call equation (4) dimensionless system because Yτ is
not dependent on the model parameters. Notice that the above
transformation is linear, so that each value of Xt corresponds
to a unique value of Yτ .

We generate trading signals when Yτ reaches a preset thresh-
old. For example, when Yτ1 = a (a > 0), we short 1 dollar
of stock P and long β dollars of stock Q, and when Yτ2 =
b (b < a), we clear positions and make profit. The profit
on P is r1 = Pτ2−Pτ1

Pτ1
, or r1 = ln(Pτ1) − ln(Pτ2) in terms

of the continuous compound rate of return. Similarly, r2 =
β[ln(Qτ2) − ln(Qτ1)]. From equation (2), we can express the
return as r = r1+r2 = X1− X2 = ã−b̃, where ã = a σ√

2θ
+μ

and b̃ = b σ√
2θ

+ μ. Assume the transaction cost is c̃ and let

c = c̃
√

2θ
σ

be the transaction cost in the dimensionless system,
so the net profit for each transaction is ã − b̃− c̃, or a −b−c in
the dimensionless system. Similarly, if we trade in at Yτ1 = −a,
at which we go long 1 dollar of P and short β dollars of stock
Q, then we trade out at Yτ2 = −b. As one can compute, the
net profit in each trade in the dimensionless system is again
a −b − c. Without loss of generality, we will assume positions
are first taken at Yτ1 = a. It is intuitive that b ∈ [−a, a]. If
b > a, then the trader will always lose since a − b − c < 0 for
any c ≥ 0. To rule out the case b < −a, a rigorous analysis
will be given in section 4.

Each trading cycle is composed of two parts: the first part
is from taking positions to clearing positions, and the second
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Feature 1883

part is simply waiting until the next trading opportunity. Notice
that the profit is made only in the first part. Let t1 and t2 be the
durations of the two parts, and τ1 and τ2 be the corresponding
time in the dimensionless system. Similar to Bertram (2010),
τ1 is the first-passage time from a to b, whereas, τ2 is the time
it takes from b to escape the range [−a, a]. Mathematically, τ1
and τ2 are defined as follows:

τ1 = inf
{

t; Yt = b
∣∣∣ Y0 = a

}
(5)

τ2 = inf
{

t; |Yt | = a
∣∣∣ Y0 = b

}
(6)

The total time for each trading cycle is T = τ1+τ2. Suppose
there are Nτ transactions completed in [0, τ ], so the net profit
is N Pτ = (a −b − c)Nτ . By the elementary renewal theorem,
the expected profit per unit time is given by

μ = lim
τ→∞

E[N Pτ ]
τ

= (a −b−c) lim
τ→∞

E[Nτ ]
τ

= a − b − c

E[T ] ,

(7)
where E[T ] = E[τ1]+E[τ2].Also, we know that the expected
time of one cycle in the real system is E[T̃ ] = E[T ]

θ
. In this

paper, our objective is to find optimal thresholds to maximize
the expected return per unit time μ.

Notice that the expected return per unit time in real sys-

tem is μ̃ = ã−b̃−c̃
E[T̃ ] = σ

√
θ√

2
a−b−c

E[T ] =
√

θ
2 σμ. The coefficient

σ
√

θ/2 is only determined by the prices of the pairs, and is
a constant once the model parameters are known. Therefore,
maximizing the real return is the same as maximizing the return
in the dimensionless system. The constant σ

√
θ/2 contains

intuitive and important information: a larger mean reversion
rate θ means a higher trading frequency, and a larger σ means
a bigger fluctuation of Xt , both leading to a higher profit in
each trade.

Since both the time and scale are linearly transformed into
the dimensionless system, we can first obtain the optimal
thresholds in the dimensionless system and then transform back
to the real system. For simplicity, we will only write in the
notation of the dimensionless system afterwards.

3. First-passage times

It is crucial to find the expectation of the first-passage time over
one-sided and two-sided boundaries in order to find the optimal
thresholds. In this section, we will give a brief review on the
first-passage time over one-sided boundary, and derive the
expectation of the first-passage time over two-sided bound-
aries. A major contribution of this model lies in finding a
polynomial form of the expectation over two-sided boundary.

3.1. First-passage time over a one-sided boundary

For one-sided boundary, Thomas (1975), Sato (1977) and
Ricciardi and Sato (1988) expressed the expectation as an
infinite sum of polynomials. To summarize, for x > 0 and
y > 0, the expectation of Tx,0, the first-passage time from x to
0 is:

E[Tx,0] = 1

2

∞∑
k=1

(−1)k+1 (
√

2x)k

k! �

(
k

2

)
, (8)

and the expectation of T0,y , the first-passage time from 0 to y
is:

E[T0,y] = 1

2

∞∑
k=1

(
√

2y)k

k! �

(
k

2

)
. (9)

Hence, the expectation E[Ta,b] for the case a > 0 can be
written as:

E[Ta,b] =
{

E[Ta,0] − E[Tb,0], for b > 0
E[Ta,0] + E[T0,−b], for b ≤ 0

(10)

By symmetry of an OU process, we can also get the expec-
tation for the case a < 0 by E[Ta,b] = E[T−a,0] + E[T0,b]
for b > 0 and E[Ta,b] = E[T−a,0] − E[T−b,0] for b < 0.
Similarly, there are explicit results for the variance of the first-
passage time over a one-sided boundary (shown in section 1).
One can find the variance of this type of first-passage time
between any two points by the symmetric property of an OU
process.

3.2. First-passage time over a two-sided boundary

For the first-passage time over a two-sided symmetric bound-
ary, Darling and Siegert (1953) derived the Laplace transform
of T−a,a,b, the first-passage time from b to cross the boundary
(−a, a) as given by

E
[
e−λT−a,a,b

]
= D−λ(b) + D−λ(−b)

D−λ(a) + D−λ(−a)
exp

(
b2 − a2

4

)
,

(11)
where D−λ(b) is the Weber function, which can be shown as:

D−λ(x) =
√

2

π
exp

(
x2

4

)∫ ∞

0
t−λ exp

(
− t2

2

)

× cos

(
xt + λπ

2

)
dt, for λ < 1. (12)

Define m(λ, x) = D−λ(x) + D−λ(−x). We have the fol-
lowing from the Weber function (12)

m(λ, x)|
λ=0 = 2

√
2

π
exp

(
x2

4

)∫ ∞
0

exp

(
−t2

2

)
cos(xt)dt

= 2 exp

(
− x2

4

)
, (13)

∂m(λ, x)

∂λ
|
λ=0

= −2

√
2

π
exp

(
x2

4

)∫ ∞
0

ln(t) exp

(
− t2

2

)

× cos(xt)dt. (14)

To get equation (13), we need to use the fact that
∫∞

0 y2n

exp(− y2

a2 )dy = √
π

(2n)!
n! ( a

2 )2n+1 for n = 1, 2, 3, . . . . There-
fore, if we let y = xt in equation (13) and use Taylor expansion
on cos(xt), we can get:∫ ∞

0
exp

(−t2

2

)
cos(xt)dt

= 1

x

∫ ∞

0
exp

(
− y2

2x2

)
cos(y)dy

= 1

x

∫ ∞

0
exp

(
− y2

2x2

) ∞∑
n=0

(−1)n y2n

(2n)!dy
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1884 Feature

= 1

x

∞∑
n=0

(−1)n

(2n)!
∫ ∞

0
exp

(
− y2

2x2

)
y2ndy

=
√

π

2

∞∑
n=0

(−1)n

n!

(√
2x

2

)2

=
√

π

2
exp

(
− x2

2

)
Hence we have equation (13). Taking the first derivative on
both sides of equation (11) and setting λ = 0, we have:

E[−T−a,a,b]

=
∂m(λ,b)

∂λ
|
λ=0

m(λ, a)|
λ=0 − ∂m(λ,a)

∂λ
|
λ=0

m(λ, b)|
λ=0

(m(λ, a)|
λ=0)

2

× exp

(
b2 − a2

4

)
By using equations (13) and (14), and multiplying both sides

by −1, we can get the expectation of T−a,a,b as follows:

E[T−a,a,b] =
√

2

π
[h(b) − h(a)], (15)

where

h(x) = exp

(
x2

2

)∫ ∞

0
ln(t) exp

(
− t2

2

)
cos(xt)dt. (16)

The following proposition will further simplify the expression
and make it handy to find the optimal thresholds in the next
section.

Proposition 3.1 The integral form of h(x) shown above can
be expressed as an infinite sum of polynomials and a constant:

h(x) = −1

2

√
π

2

∞∑
n=1

(
√

2x)2n

(2n)! �(n) + C, (17)

where C = ∫∞
0 ln(t) exp

(
− t2

2

)
dt.

Proof see Appendix A.

From equations (15) and (17), we can simplify the expecta-
tion as

E[T−a,a,b] = 1

2

∞∑
n=1

(
√

2a)2n − (
√

2b)2n

(2n)! �(n) (18)

Similarly, we can find the second moment of T−a,a,b, which
is used in computing the variance per unit time in section 4.
We have:

∂2m(λ, x)

∂λ2
|
λ=0

= 2

√
2

π
exp

(
x2

4

)∫ ∞

0
ln(t)2 exp

(
− t2

2

)

× cos(xt)dt − π2

2
exp

(
− x2

4

)
,

and the expectation of the second moment becomes:

E[T 2−a,a,b] = exp

(
b2 − a2

4

)
[g1(a, b) − g2(a, b)]

where

g1(a, b)

=
∂2m(λ,b)

∂λ2 |
λ=0

m(λ, a)|
λ=0 − ∂m(λ,a)

∂λ
|
λ=0

∂m(λ,b)
∂λ

|
λ=0

(m(λ, a)|
λ=0)

2

and

g2(a, b)

=
∂2m(λ,a)

∂λ2 |
λ=0

m(λ, b)|
λ=0 + ∂m(λ,a)

∂λ
|
λ=0

∂m(λ,b)
∂λ

|
λ=0

(m(λ, a)|
λ=0)

2

− 2

(
∂m(λ,a)

∂λ
|
λ=0

)2
m(λ, b)|

λ=0(
m(λ, a)|

λ=0

)3
Unlike the first moment, the integral form cannot be sim-

plified to the polynomial form, leaving the second moment
difficult to use. The variance can be found by the first two
moments, but only in a very complicated integral form.

4. Optimal thresholds

With the polynomial form of the expectation in section 3, we
are now ready to find the optimal thresholds for pairs trading.
The main goal is to maximize the expected return per unit
time. As explained in section 2, we take positions when Yτ

reaches the opening threshold a (or −a), clear positions when
it reaches the closing threshold b (or −b) and wait for the next
opportunity until Yτ reaches an opening threshold again. In this
section, we will discuss three cases with the values of a and
b. Throughout this section, we assume a ≥ 0. Since the OU
process is symmetric, the case for a < 0 will be exactly the
same.

Case 1 0 ≤ b ≤ a

From equation (7), our objective function is given by f (a, b) =
a−b−c

E[τ1]+E[τ2] , where E[τ1] and E[τ2] are explicitly shown by
equations (10) and (18). In order for f (a, b) to be non-negative,
we have to restrict a − b − c ≥ 0. The optimization problem
is:

Max
a,b

f (a, b)

= a − b − c

E[τ1] + E[τ2]
= a − b − c

1
2

∑∞
n=0

(
√

2a)2n+1−(
√

2b)2n+1

(2n+1)! �
(

2n+1
2

)
subject to 0 ≤ b ≤ a − c (19)

To find the optimal solution in the domain 0 ≤ b ≤ a − c,
we need to use the fact that ∂ f (a,b)

∂b < 0 for any a in the domain.
To prove this, we have

∞∑
n=0

(
√

2a)2n+1 − (
√

2b)2n+1

(2n + 1)! �

(
2n + 1

2

)

=
∞∑

n=0

(
√

2a − √
2b)

∑2n
k=0(

√
2a)2n−k(

√
2b)k

(2n + 1)! �

(
2n + 1

2

)

≥ √
2(a − b − c)

∞∑
n=0

∑2n
k=0(

√
2a)2n−k(

√
2b)k

(2n + 1)! �

(
2n + 1

2

)

≥ √
2(a − b − c)

∞∑
n=0

(2n + 1)(
√

2b)2n

(2n + 1)! �

(
2n + 1

2

)

D
ow

nl
oa

de
d 

by
 [

O
nd

ok
uz

 M
ay

is
 U

ni
ve

rs
ite

si
ne

] 
at

 0
1:

22
 1

1 
N

ov
em

be
r 

20
14

 



Feature 1885

= √
2(a − b − c)

∞∑
n=0

(
√

2b)2n

(2n)! �

(
2n + 1

2

)

The first inequality is due to the fact that c ≥ 0 and the
second inequality is due to the fact that a ≥ b ≥ 0. With the
above inequality, we can get

∂ f (a, b)

∂b
=

− 1
2

∑∞
n=0

(
√

2a)2n+1−(
√

2b)2n+1

(2n+1)! �
(

2n+1
2

)
+ (a − b − c)

√
2

2

∑∞
n=0

(
√

2b)2n

(2n)! �
(

2n+1
2

)
(

1
2

∑∞
n=0

(
√

2a)2n+1−(
√

2b)2n+1

(2n+1)! �
(

2n+1
2

))2
≤ 0

Equality only holds when a = b and c = 0. So for any
given a and c, the optimal value of b is b∗ = 0. Therefore, the
original maximization problem is now:

f (a) = f (a, 0) = a − c
1
2

∑∞
n=0

(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

)
Setting d f (a)

da = 0, we can find the optimal value a∗ by
solving the equation:

1

2

∞∑
n=0

(
√

2a)2n+1

(2n + 1)! �

(
2n + 1

2

)

= (a − c)

√
2

2

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)
(20)

The existence and uniqueness of the solution to equation
(20) can be easily shown. When c = 0, a = 0 is a solution.
When c > 0, if we let a → c, we will have

1

2

∞∑
n=0

(
√

2a)2n+1

(2n + 1)! �

(
2n + 1

2

)

> (a − c)

√
2

2

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)

If we let a → ∞, we will have

1

2

∞∑
n=0

(
√

2a)2n+1

(2n + 1)! �

(
2n + 1

2

)

< (a − c)

√
2

2

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)
,

which proves the existence of the solution. To prove the unique-
ness, we take derivative of both sides of equation (20) with
respect to a. We have

c′(a) =
(a − c)

∑∞
n=1

(
√

2a)2n−1

(2n−1)! �
(

2n+1
2

)
√

2
2

∑∞
n=0

(
√

2a)2n

(2n)! �
(

2n+1
2

) > 0

Since c(a) is an increasing function of a, there is a unique value
of a that satisfies equation (20) for any given c > 0.

To see that a∗ is the maximizer rather than the minimizer,
we let a → c and a → ∞. For any c > 0, when a → c, it is
easy to see that f (a) → 0. Similarly, when a → ∞, we will
have:

f (a) = a − c
1
2

∑∞
n=0

(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

)
= 1 − c

a√
2

2

∑∞
n=0

(
√

2a)2n

(2n+1)! �
(

2n+1
2

) → 0

because 0 ≤ 1− c
a < 1 and

√
2

2

∑∞
n=0

(
√

2a)2n

(2n+1)! �
(

2n+1
2

)
→ ∞.

Also we know that for any c ≤ a < ∞, f (a) ≥ 0. Therefore
we conclude that for c > 0, a∗ maximizes f (a).

When c = 0, we have

f (a) = a

1
2
∑∞

n=0
(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

) =
√

2∑∞
n=0

(
√

2a)2n

(2n+1)! �
(

2n+1
2

)
is a decreasing function of a. When a → 0, we have f (a) →√

2
π

. In this case, by solving equation (20), we can still get
a∗ = 0.

Remark The optimal solutions in this case are exactly the op-
timal thresholds for the conventional way of the pairs trading:
take positions when the spread widens (Yt = a∗) and clear
positions when the spread reverts to the mean (Yt = b∗ = 0).
Note that when there is no transaction cost (c = 0), the gap
between a and b should be infinitely close to 0, which means
that the trader should constantly adjust his positions to make
as many trades as possible to in a given time. In this case, the
trader values the trading frequency more than the profit per
trade. This is also consistent with Bertram (2010).

Case 2 −a ≤ b ≤ 0

Here, we do not exclude b = 0 for the feasibility of our optimal
solution. For b ≤ 0, the optimization problem is written as:

Max
a,b

f (a, b)

= a − b − c

E[τ1] + E[τ2] = a − b − c

1
2
∑∞

n=0
(
√

2a)2n+1−(
√

2b)2n+1

(2n+1)! �
(

2n+1
2

)
subject to − a ≤ b ≤ min {0, a − c} (21)

Here, we require a ≥ c
2 for feasibility. Notice that f (a, b)

is bounded inside the domain. First of all, for any a, f (a, b)

is boundary since b is bounded and f (a, b) is continuous in b.
To prove f (a, b) is bounded in a, we discuss two cases: c > 0
and c = 0. When c > 0, if we let a → c

2 , then b → − c
2 in the

domain. So we will have f (a, b) → 0. If we let a → ∞, we
will get f (a, b) → 0 for any b in the domain. When c = 0, if

we let a → 0, we will have b → 0, and f (a, b) →
√

2
π

.Again,
if we let a → ∞ when c = 0, we will get f (a, b) → 0 for any
b in the domain. So for both cases, f (a, b) is bounded in a and
the minimal value f (a, b) → 0 appears when a approaches
its boundary. Since f (a, b) is continuous in both a and b, the
maximal value exists on the closed set of the domain.
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Setting the gradient of f (a, b) to 0, we have:

E[τ1] + E[τ2] = (a − b − c)

(
∂ E[τ1]

∂a
+ ∂ E[τ2]

∂a

)

E[τ1] + E[τ2] = −(a − b − c)

(
∂ E[τ1]

∂b
+ ∂ E[τ2]

∂b

)
Therefore, we have:

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)
=

∞∑
n=0

(
√

2b)2n

(2n)! �

(
2n + 1

2

)
(22)

Since g(x) = ∑∞
n=0

(
√

2x)2n

(2n)! �
(

2n+1
2

)
is an increasing func-

tion, for equation (22) to hold, we must have a2 = b2. Since
−a ≤ b ≤ min {0, a − c}, the optimal solution can only be
b∗ = −a∗, where a∗ can be found by solving the equation:

1

2

∞∑
n=0

(
√

2a)2n+1

(2n + 1)! �

(
2n + 1

2

)

=
(

a − c

2

) √
2

2

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)
(23)

With the same argument in case 1, we can show the existence,
uniqueness of the solution a∗ in equation (23).

However, we still have to check that b∗ = −a∗ is the global
maximal by showing that f (a∗, b∗) ≥ f (a, b) for any a, b on
the boundary. For any b = −a, we can prove that f (a, b) ≤
f (a∗, b∗) by the same argument as in case 1. For any b → a−c
where c > 0, we have f (a, b) → 0 < f (a∗, b∗). When
c = 0, we have a∗ = b∗ = 0 and it is easy to check that
f (a∗, b∗) ≥ f (a, b) for any b → a − c. When b → 0, we can
show that maxa≥ c

2
f (a, b) ≤ f (a∗, b∗) by Proposition 4.1.

Remark The only difference between equations (23) and (20)
is the term of c. Equation (23) will be the same as equation
(20) if the transaction cost in equation (20) is reduced to a half.
Therefore, we can expect case 2 to have a higher return than
case 1 for a given value of c. A formal statement and rigorous
proof is given by Proposition 4.1 at the end of this section.

Case 3 b < −a

In this case, one may expect more profit in each trading cycle,
but the expected time in each cycle is longer. Different from the
two earlier cases, only the first-passage time over the one-sided
boundary is used. The optimization problem is:

Max
a,b

f (a, b)

= a − b − c

E[τ1] + E[τ2] = a − b − c∑∞
n=0

(−√
2b)2n+1

(2n+1)! �
(

2n+1
2

)
subject to b < −a (24)

where τ1 and τ2 are both first-passage times over a one-sided
boundary.

This time, the expected time for one trading cycle E[τ1] +
E[τ2] = ∑∞

n=0
(−√

2b)2n+1

(2n+1)! �
(

2n+1
2

)
does not depend on a. For

a given value of b, the objective function f (a, b) =
a−b−c∑∞

n=0
(−√

2b)2n+1
(2n+1)! �

(
2n+1

2

) is a linearly increasing function of a. To

maximize f (a, b), a should be as large as possible. In this case,
since b < −a, the largest a tends to the boundary a∗ = −b
for any fixed value of b. If b > 0, the optimal solution will be

infeasible since we restrict a ≥ 0. When b ≤ 0, the problem
goes back to case 2 and we only need to solve equation (23) to
get the value of a∗ and thus get b∗ by b∗ = −a∗.

Out of the three cases, we have seen two different optimal
rules which gives two different values of a∗ and b∗. We call
the optimal rule in case 1 the ‘Conventional Optimal Rule’
since it clears position exactly when the spread reverts to the
mean at b∗ = 0, which is consistent with the common practice.
In contrast, we call the rule in case 2 the ‘New Optimal Rule’,
which basically allows no waiting time between the two trades.
Since the ‘New Optimal Rule’cuts the transaction costs in a half
compared to the ‘Conventional Optimal Rule’, it is intuitive
that the ‘New Optimal Rule’ performs better than the ‘Con-
ventional Optimal Rule’. Formally, we state the proposition
below:

Proposition 4.1 When there is no transaction cost (c = 0),
the maximal return in case 1 is the same as the maximal return
in case 2. When transaction cost exists (c > 0), the maximal
return in case 1 is strictly smaller than the maximal return in
case 2.

Proof see Appendix B.

Graphically, the comparison between the two rules in the
theoretical level are shown in figure 1. The ‘New Optimal Rule’
(red curve) is always better than the ‘Conventional Optimal
Rule’ (blue curve). The advantage is more apparent when the
transaction cost increases, despite the fact that the expected
returns for both rules decrease as the transaction cost increases.

The comparison is only made in terms of the profit per unit
time since it is our objective in this paper. So ‘better’ only
means more profit per unit time. For traders who are more
concerned about the risk, we show the variance per unit time
for these two methods in figure 2. Naturally, the risk of ‘New
Optimal Rule’is always higher than the ‘Conventional Optimal
Rule’ since the expected return is higher. To take risk into
account, Sharpe ratio or the mean-variance optimization can
be considered. In figure 2, we can see that when the transaction
cost increases to a very large value, the change of variances
of both rules is small, but the change of the expected return is
relatively large. Even when we consider the risk, ‘New Optimal
Rule’ can be more preferable when transaction cost is large
enough. However, in this paper, we will only focus on the
expected return per unit time.

5. Numerical examples

In this section, we will apply the two optimal rules derived in
section 4 and compare them with the common practice using
actual daily data. Comparison is made in two aspects. Firstly,
for the same pair of stocks, we compare the profitability for
different trading rules. Secondly, we compare the profitability
among different pairs under the same rule.

5.1. Comparison of different trading rules

One of the most commonly used pairs is Coca-Cola (KO) and
Pepsi (PEP). We collected 756 daily prices of the pair KO-PEP
from Yahoo-Finance from 30 November 2009 to 29 November
2012. As shown in figure 3, their prices moved together.
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Figure 1. Comparison between the ‘Conventional Optimal Rule’ (case 1), and ‘New Optimal Rule’ (case 2). Optimal thresholds of the two
rules developed in this paper are dependent on the transaction cost, thus they are shown to be curves instead of straight lines.
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Figure 2. Comparison of the variance between the ‘Conventional Optimal Rule’ (case 1), and ‘New Optimal Rule’ (case 2).

Let the prices of PEP and KO be Pt and Qt , respectively.
Applying linear regression, we get ln(Pt ) − β ln(Qt ) = Xt ,
where β = 0.2187. The residual Xt is assumed to follow an
OU process d Xt = θ(μ − Xt )dt + σdWt . In this paper, we
use the Maximum-Likelihood (ML) method to estimate the
parameters based on Hu and Long (2007). The log likelihood
for the process Xt is given by:

L(X |μ, θ, σ ) = −n

2
− 1

2

n∑
i=1

ln(1 − e−2θ(ti −ti−1))

− θ

σ 2

n∑
i=1

Xti − μ − (Xti−1 − μ)e−θ(ti −ti−1)

1 − e−2θ(ti −ti−1)

Maximizing L(X |μ, θ, σ ), we get the estimation for the
parameters: μ = 3.4241, θ = 0.0237 and σ = 0.0081.
Assuming that the parameters are constant during the data
collection period, we can apply our optimal pairs trading rules.
We compare in figure 4 our ‘New Optimal Rule’ and ‘Con-

ventional Optimal Rule’ with two common practices, which
take positions at one standard deviation (we call it ‘1-σ Rule’)
or two standard deviations (‘2-σ Rule’) and clear positions
when the spread reverts back to the mean. Since thresholds of
common practices do not change with the transaction cost, the
total return should be straight lines. Similarly, since thresholds
of the two optimal rules vary with the transaction cost, the total
return should be curves.

As predicted in section 4, the ‘New Optimal Rule’ performs
best. There is a trend of decreasing profit for all of the rules as
the transaction cost c increases, but the ‘New Optimal Rule’
performs increasingly better as c increases. The ‘Conventional
Optimal Rule’ does not distinguish itself from the ‘1-σ Rule’
when the transaction cost is small, but tends to perform better as
c increases. However, the result is not exactly as we expected.
For example, there is a sudden drop in return at c = 0.006
dollars with both the ‘New Optimal Rule’ and ‘Conventional
Optimal Rule’, and their profits are even less than the ‘1-σ
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Figure 3. Actual adjusted daily prices of KO and PEP are shown in this graph. Time = 0 is the starting date on 30 November 2009.
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Figure 4. Comparison between the four rules in this paper using daily prices of KO and PEP. Generally, ‘New Optimal Rule’ performs best.
‘Conventional Optimal Rule’ performs slightly better than the ‘1-σ Rule’ when c is small, and significantly better when c is larger. ‘2-σ Rule’
performs worst.

Rule’. A possible cause might be that model parameters might
have been poorly estimated, and/or even that Xt might not have
been an OU process. To see the impact of model parameters, we
conduct sensitivity analysis with each of the three parameters
μ, θ, and σ , which is presented in Appendix D. We find the
return to be very sensitive to the mean of the spread but not to
the reversion rate θ nor to the standard deviation σ .

We also show the actual trading process for the ‘New
Optimal Rule’ in table 1 and figure 5. In each trade, we assume
that the transaction cost c = 0.02 dollars for each dollars in-
vested. We transform the transaction cost into the
dimensionless system and obtain the optimal thresholds as
a∗ = 0.991 and b∗ = −0.991. Then, we transform back to
get the real thresholds as ã∗ = a∗ σ√

2θ
+ μ = 3.4611 and

b̃∗ = b∗ σ√
2θ

+ μ = 3.3871. A trading is triggered

whenever Xt reaches ã∗ or b̃∗. The last trade is not counted

since positions cannot be cleared within our trading
period.

There have been a total of five trades over the three years
with an average earning per trade at 6% and the total earning
over the whole period at 33.33%.

5.2. Comparison between different pairs

We considered five pairs: Coca-Cola and Pepsi (KO_PEP),
Target and Wal-mart (TGT_WMT), Dell and Hewlet-Packard
(DELL_HPQ), RWE AG and E.On Se† (RWE_EOAN), and
Chevron and Exxon Mobile (CVX_XOM). We computed the
net returns of the five pairs under four trading rules given
the actual daily prices between 30 November 2009 and 29
November 2012. The profitability indicator σ

√
θ/2 and the

†RWE and E. On Se are German utility companies.
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Figure 5. Dynamics of the spread is shown in the blue curve. Dashed lines are the optimal trading thresholds a and b. Block points are the
day of opening and closing positions. They are not exactly on the dashed lines because trading is discrete. The graph shows that there are
more trading opportunities in the first year.

Table 1. Details of transaction for each trade.

Trades Status Date KO PEP Returns (%)

Prices($) Action Prices($) Action Total Net

Trade 1 Open 10 December 2009 29.290 Sell $0.22 61.84 Buy $1 8.67 6.67Close 15 March 2010 26.825 Clear positions 66.15 Clear positions

Trade 2 Open 15 March 2010 26.825 Buy $0.22 66.15 Sell $1 8.85 6.85Close 23 February 2011 31.955 Clear positions 62.93 Clear positions

Trade 3 Open 23 February 2011 31.955 Sell $0.22 62.93 Buy $1 9.08 7.08Close 28 April 2011 33.705 Clear positions 69.72 Clear positions

Trade 4 Open 28 April 2011 33.705 Buy $0.22 69.72 Sell $1 9.02 7.02Close 26 July 2011 34.595 Clear positions 64.07 Clear positions

Trade 5 Open 26 July 2011 34.595 Sell $0.22 64.07 Buy $1 7.72 5.72Close 26 July 2012 39.425 Clear positions 71.22 Clear positions

Table 2. Profitability indicator and returns for different pairs.

σ
√

θ/2 New (%) Conventional (%) 1-σ (%) 2-σ (%) Average (%)

RWE_EOAN 0.00142 39 38 39 23 35
TGT_WMT 0.00126 66 28 29 28 38
KO_PEP 0.00088 33 26 20 13 23
DELL_HPQ 0.00083 54 40 40 0 34
CVX_XOM 0.00071 32 26 26 26 28

Average 45 32 31 18 32

net returns for the five pairs under the four trading rules are
summarized in table 2.

The last row of table 2 is the average return of the trading
rules. It is clear that the ‘New Optimal Rule’ out-performs the
rest. Moreover, if we invest only on the two most profitable
pairs – RWE_EOAN and TGT_WMT – according to σ

√
θ/2,

the average return will increase significantly. That is, if the
investor invests only on RWE_EOAN and TGT_WMT, the
return under the “New Optimal Rule” would have been 52.5%
(= (39% + 66%)/2), an increase of 7.5% over the average
45% shown in the last row of table 2. The increases under

other trading rules are 1.0% for the ‘Conventional Optimal
Rule’, 3.0% for the ‘1-σ Rule’ and 7.5% for the ‘2-σ Rule’.
This demonstrates that the profitability indicator σ

√
θ/2 can

be used as a guideline to select a profitable pair for trading.

6. Conclusions

In this paper we derived a polynomial form of the expectation
of the first-passage time over two-sided boundaries,which al-
lows relatively straightforward optimization of pairs trading
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strategies. The main focus of the paper is the maximization of
the expected return per unit time in the long run. The log returns
of a pair are co-integrated, and we assume the co-integration
residuals follow an OU process. Contrary to common practice,
we show that it is optimal to set the trading thresholds sym-
metric around the mean of the residuals Xt . In other words, it
is optimal for the trader to take the opposite positions exactly
when she used to clear the positions under the conventional
trading rule.

We discussed four trading rules in this paper, and compared
their maximum expected returns. In theory, we showed that the
‘New Optimal Rule’ outperforms the ‘Conventional Optimal
Rule’. Both rules proposed in this paper perform better than
the common practice, especially when the transaction cost is
high. We also proposed the quantity σ

√
θ/2 as a measure for

potential profit.
There are limitations to these results, which we leave for

future studies. While the strategies we developed are directly
applicable, the application is limited since we have assumed the
model
parameters are constant. Though model parameters may
remain unchanged in a short period of time, it is unrealistic to
apply the strategies in the long run. The parameters are subject
to various factors such as the overall market states and internal
management issues within individual firms. It remains to be
investigated how the changing model parameters impact on
the optimal thresholds.
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Appendix A. Proof of proposition 4.1

Proof We use the symbolic calculation from Mathematica to get the
following results:

exp

(
x2

2

)∫ ∞
0

ln(t)

(
− t2

2

)
cos(xt)dt

= − 1

2

√
π

2

[
γ + ln(2) + H ypergeometric1 F{1,0,0}

1

(
0,

1

2
,

x2

2

)]

where γ = ∫∞
0 exp(−t) ln(t)dt is the Euler constant. Since the defi-

nite integral
∫∞

0 exp(−x2) ln(x)dx = −
√

π
4 [γ + 2 ln(2)], it is easy

to verify that C = ∫∞
0 ln(t)

(
− t2

2

)
dt = − 1

2

√
π

2 [γ + 2 ln(2)]. The
polynomial form of the Kummer confluent hypergeometric function
is H ypergeometric1 F1(a, b, z) = ∑∞

k=0
(a)k
(b)k

zk

k! , where (x)n =
x(x + 1)(x + 2) . . . (x + n − 1). By the chain rule we have d(x)n

dx =
(n − 1)! at x = 0. Therefore it is easy to verify that:

H ypergeometric1 F{1,0,0}
1

(
0,

1

2
,

x2

2

)
=

∞∑
n=1

2n(n − 1)!
(2n)! x2n

Therefore, we get:

exp

(
x2

2

)∫ ∞
0

ln(t)

(
− t2

2

)
cos(xt)dt

= −1

2

√
π

2

∞∑
n=1

(
√

2x)2n

(2n)! �(n) +
∫ ∞

0
ln(t)

(
− t2

2

)
dt

�

Appendix B. Proof of proposition 4.2

Let f i (ai , bi ) be the maximal expected return per unit time in case i
with the optimal thresholds ai and bi , for i = 1, 2. We only have to
show:

f 1(a1, b1) = f 2(a2, b2), for c = 0 (B1)

f 1(a1, b1) < f 2(a2, b2), for c > 0 (B2)

Proof In both case 1 and case 2, the expected times of one trading

cycle are both E[T ] = 1
2
∑∞

n=0
(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

)
− 1

2
∑∞

n=0
(
√

2b)2n+1

(2n+1)! �
(

2n+1
2

)
. In case 1, since b1 = 0, the objective function

is given by:

F1(a, c) = a − c

1
2
∑∞

n=0
(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

) (B3)

and the optimal function for case 2 is:

F2(a, c) = a − c
2

1
2
∑∞

n=0
(
√

2a)2n+1

(2n+1)! �
(

2n+1
2

) (B4)

Obviously, when c = 0, we have F1(a, c) = F2(a, c) for any value
of a. Therefore B1 is proved.

To prove B2, we make use of the fact that the optimal values of a1
and a2 satisfy the equations (20) and (23), respectively. Therefore, in
the optimal solution we have:
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F1(a1, c) = a1 − c

1
2
∑∞

n=0
(
√

2a1)
2n+1

(2n+1)! �
(

2n+1
2

)
= 1√

2
2
∑∞

n=0
(
√

2a1)
2n

(2n)! �
(

2n+1
2

) (B5)

and similarly

F2(a2, c) = 1√
2

2
∑∞

n=0
(
√

2a2)
2n

(2n)! �
(

2n+1
2

) (B6)

Since 1√
2

2

∑∞
n=0

(
√

2x)2n
(2n)! �

(
2n+1

2

) is a decreasing function of x , to prove

F2(a2, c) > F1(a1, c), we only need to prove a2 < a1. Let a(x)
satisfy the following equation:

1

2

∞∑
n=0

(
√

2a)2n+1

(2n + 1)! �

(
2n + 1

2

)

= (a − x)

√
2

2

∞∑
n=0

(
√

2a)2n

(2n)! �

(
2n + 1

2

)

It is easy to see that a(x) > x for any x > 0. Obviously, a2 = a( c
2 )

and a1 = a(c). Since c > 0, all we need is to prove a(x) is a strictly
increasing function. Taking the derivative of x on both sides of the
equation above, we get:

a′(x) =
√

2
2
∑∞

n=0
(
√

2a)2n

(2n)! �
(

2n+1
2

)
(a − x)

∑∞
n=1

(
√

2a)2n−1

(2n−1)! �
(

2n+1
2

) > 0

Appendix C. Comparison of simulation and analytic
solution

We have obtained the polynomial form for the expectation of first-
passage time over two-sided boundaries in section 3. Now we want
to verify these results by comparing it with simulations. For given a
and b, we simulate 106 paths and for each path we get a τ2 defined
in section 2. Then we calculate E[τ2] by taking the average of all the
simulated values of τ2. On the other hand we calculate the expectation
directly from the polynomial form. Comparison is shown in figures
C1 and C2.

The blue lines are the simulation results and thus vibration is
expected. The red lines are the results from the polynomial form and
therefore it is very smooth. The simulation and the polynomial form
are very close, which verify our polynomial form.

Appendix D. Sensitivity analysis

Fix θ and σ and we impose a small shock on μ, we find the sensitivity
analysis for μ in table D1 and figure D1.
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Figure C1. The red curve is from our polynomial form of the expectation in (18), and the blue curve is from the simulation. We fix the upper
at a = 0.8 and lower boundaries at −a = −0.8. For any starting point b ∈ (−0.8, 0.8) inside the boundaries, we can get the expected time
for the OU process to reach the boundaries either by simulation or using our polynomial form.
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Figure C2. The red curve is from our polynomial form of the expectation in (18), and the blue curve is from the simulation. We fix our
starting point at b = 0.1 and let the upper boundary a ∈ (0.1, 0.6).
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Table D1. Sensitivity analysis for μ.

Mean μ 3.36 3.37 3.39 3.41 3.42 3.44 3.45 3.475477 3.49
Percentage of change −2% −1.50% −1% −0.50% 0% 0.50% 1% 1.50% 2%

Total Return 0.12 0.12 0.14 0.24 0.33 0.32 0.21 0 0
Percentage of change −65% −64% −59% −27% 0% −5% −38% −100% −100%
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Figure D1. Sensitivity analysis for μ. The black spot is the estimated value of μ.

Table D2. Sensitivity analysis for θ .

Reversion rate θ 0.014 0.017 0.019 0.021 0.024 0.026 0.028403 0.031 0.033
Percentage of change −40% −30% −20% −10% 0% 10% 20% 30% 40%

Total Return 0.23 0.37 0.36 0.34 0.33 0.33 0.32 0.31 0.28
Percentage of change −31% 12% 8% 3% 0% −1% −3% −7% −15%
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Figure D2. Sensitivity analysis for θ . The black spot is the estimated value of θ .

Table D3. Sensitivity analysis for σ .

Standard deviation σ 0.0049 0.0057 0.0065 0.0073 0.0081 0.0089 0.0098 0.011 0.011
Percentage of change −40% −30% −20% −10% 0% 10% 20% 30% 40%

Total Return 0.26 0.26 0.28 0.31 0.33 0.36 0.37 0.23 0.23
Percentage of change −21% −21% −17% −6% 0% 8% 12% −31% −31%
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Figure D3. Sensitivity analysis for σ . The black spot is the estimated value of σ .

For a small change of μ, the change for the return is very large.
Therefore, it is crucial to have a very accurate estimation of μ. In our
example of KO and PEP, we have a relatively accurate estimation of
μ since the change in each direction results in a huge loss.

Then we fix μ and σ and conduct sensitivity analysis for θ shown
in table D2 and figure D2.

The change of return is relatively inactive to the change of the
reversion rate θ . In fact, small changes of θ does not affect the return

at all. It only affects the return when the change of θ is large enough.
From figure D2, we can see that a smaller value of θ actually gives a
higher return.

Lastly, we show the sensitivity analysis for σ in table D3 and figure
D3.

Similar as θ , the change of σ is not influential to the change of the
total return. A larger value of σ may result in a higher value in our
example.
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