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Abstract. We present some properties of the data from the recent mini flash crashes occurring in individual stocks 

of the Dow Jones Industrial Average. The top five are: 1) Gaussianity is absent in data; 2) the tail decay of the return 

distributions follow power laws; 3) chaos and logperiodicity cannot be dismissed at first; 4) chaos and logperiodicity 

are not good models for the data on second thoughts; and 5) a threshold GARCH fit can also describe the data well, 

but fails to detect the power law tail decay of most distributions of returns. 
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1. Introduction 

 

Recently, stock markets have been subjected to episodes of “flash crashes.” The first 

occurred on May 6, 2010 when the Dow Jones Industrial Average plunged by nearly 1,000 

points in a matter of minutes. A report from the Securities and Exchange Commission [1], the 

American financial regulator, concluded that, “on May 6, when markets were already under 

stress, the sell algorithm chosen by a large trader to only target trading volume, and neither price 

nor time, executed its sell program extremely rapidly in just 20 minutes. At a later date, the large 

fundamental trader executed trades over the course of more than six hours to offset the net short 

position accumulated on May 6.” The report then concluded, “one key lesson is that under 

stressed market conditions, the automated execution of a large sell order can trigger extreme 

price movements, especially if the automated execution algorithm does not take prices into 
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account.” The Securities and Exchange Commission then suggested a marketwide system of 

“circuit breakers,” which would require all exchanges to stop or slow down for a few minutes if 

the market experienced a certain threshold rate of decline. Of note, the SEC does not aim to act 

pre-emptively, but only to react in the aftermath. It is no surprise then that another flash crash 

occurred in the DJIA on April 22, 2013. The DJIA dropped about 150 points in a matter of 

seconds before bouncing back when traders realized that a tweet was false from a hacked 

Associated Press account. 

 Such rapid crashes occurred in individual stocks as well as in the stock index. Stocks that 

experienced “mini flash crashes,” or rapid plunges followed by rapid rebounds, on particular 

days in 2011 and 2012 were Abott Labs, Apple, Cisco Systems, Citigroup, Core Molding, Enstar, 

Jazz Pharmaceuticals, Micron, Progress Energy, Pfeizer, Pall Corporation, RLJ Equity Partners, 

Thermo Fischer Co., and Washington Post. Stock exchanges do not publicly release data about 

these mini crashes, but most active traders say there are currently at least a dozen a day [2]. This 

study collects data from the days of the crashes for the aforementioned stocks, with the aim of 

uncovering some of their properties. 

 The researcher familiar with complex systems is willing to correct the SEC report by 

adding that the DJIA had to be in a critical state on May 6 for that sell order to trigger the flash 

crash. Otherwise, the crisis never would have materialized. There are already claims that the first 

flash crash of the DJIA index showed the footprints of a complex system at work [3]. 

Furthermore, the build up of correlations brought by high-frequency trading [4] may shape the 

nature of the flash crashes as  “log-periodic phenomena” [5], in that after a critical time, a crash 

may suddenly occur without any earlier warning signs. For this reason, this study considers 

models of complexity, such as log-periodic and chaotic. 

 The remaining of this paper is organized as follows: Section 2 presents the data for the 

mini flash crashes, shows some descriptive statistics, and performs selected tests. Section 3 

concludes the study. 

 

2. Materials and methods 

 

The data were collected from a private database using Bloomberg. They were sampled at 

trade time (9:30 a.m. to 4 p.m. EST-USA) from the New York Stock Exchange. The tic-by-tic 
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frequency yielded roughly 370 daily observations. Table 1 shows sample size, time period, mean 

return and variance for each of the 14 stocks as well as the DJIA index. Figure 1 shows a plot of 

the time series, including the crash episodes, for both prices and returns. 

 A particular characteristic of the data is an excess kurtosis incompatible with a Gaussian 

distribution. Table 2 shows this measure for all the stocks experiencing the crashes are well 

above three. It varies from seven for Pfeizer to an amazing 473 for Jazz Pharmaceuticals. Table 2 

also shows the drawdowns, which refer to the largest accumulated drop in percentage terms 

(times 100). All these facts suggest departures from Gaussianity. 

 Table 3 shows Gaussianity is indeed rejected using Lilliefors, Cramer-Von Mises and 

Jarque-Bera tests. Figure 2 shows Q-Q plots of the stock returns, which track the two-tailed 

frequency distribution. The red lines show the Gaussian behavior for comparison. Tail decays 

following power laws are then expected. Figure 3 shows the estimated power laws for the stock 

returns. None shows the exponential decay typical of a Gaussian. The DJIA index along with the 

stocks of Cisco, Progress Energy, and Thermo Fischer show power law decays compatible with a 

Lévy-stable regime, where the scale factor  0,2 . The remaining stocks fall outside the Lévy 

regime, Washington Post is compatible with a cubic law and Enstar overshoots the scale factor of 

three. All the time series present non-Gaussian scaling ( 2   ). 

Figure 4 shows the largest Lyapunov exponents max  of the stock series. Stable plateaus 

occur for all of them. Table 4 shows all the largest exponents to be negative. Because such 

properties are not enough for concluding the presence of chaos [6], we apply a recent 

methodology [6] using a test of linear independence through ordinary least squares 

 

max 0 1( )
ii i TT T                                                                                           (1) 

 

for subsamples of several bootstrap block sizes 1,...,i nT T T n  , where 0  is a constant and the 

error term 2(0, )
iT N  . The stability of max ( )iT  takes place if 

1
ˆ 0  , and the null of chaos is 

rejected if 
1
ˆ 0  . We ran 250 regressions as in (1) for four subsamples iT  of each stock time 

series. Table 4 shows we cannot reject the null of chaos at the 5 percent significance level. 

Regardless of the block size considered, the average path of the estimated negative largest 

Lyapunov exponents tends to stabilize as the number of observations increases. 
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Log-periodic fits for the time series data are attempted [7] using 

 

2 2

ln ( ) ( ) ( ) cos( log )m m

pF t A B C        ,                                                 (2) 

 

where ln ( )pF t  is the natural log of the series in levels of the random variables 2(0, )X  , and 

A, B, and C are the constants resulting after the fit of the remaining parameters:   (critical time), 

2m (exponent controlling the acceleration near the critical time),   (log-periodic frequency), and 

  (phase parameter). The m and w parameter  values are first derived through nonlinear least 

squares using the Levenberg-Marquardt search algorithm and then fed back into the objective 

function. The remaining parameters are first enslaved into the nonlinear ones and then obtained 

using a standard LU decomposition method. Figure 5 shows the best fit of Eq. (2) as a 

continuous red line. Table 5 shows the estimated parameters. 

Table 6 shows the Shannon entropy and long memory tests. We take a rescaled range 

analysis (R/S) to calculate the Hurst exponents, along with the method of the detrended 

fluctuation analysis (DFA). Apart from Cisco, Citigroup and Core Molding, long memory is not 

unequivocal for the remaining stocks. Here, one has to bear in mind the fact that some studies 

have shown that long memory can be generated spuriously due to the presence of small level 

shifts in the time series of returns [10]. This result casts doubt on the presence of chaos and 

logperiodicity for most of the series. The observed log-periodic fluctuations may also have been 

created synthetically because of the sampling method [11]. Furthermore, the values of Shannon 

entropy are more akin to those of a stochastic series than to those of the deterministic ones. We 

also calculated the values in Table 6 by excluding the data on the very date of the crashes only to 

realize our results did not change a great deal. 

We then go back to stochastic models and revisit the data aggregated through the series 

using econometricians’ favorites: threshold GARCH and skewed-t GARCH. The family of 

GARCH models can describe data locally nonstationary and asymptotically stationary. The 

processes present nonconstant variances conditional on the past, and constant “unconditional” 

variances (observed on a long time interval). The models enable one to control the amount and 

the nature of the variance memory. 
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 Using Monte-Carlo simulations we find the threshold GARCH to present a good fit to the 

data. This confirms that, in general, models of the GARCH family are successful in describing 

distributions of price changes at a given time horizon. However, Table 7 shows the models 

cannot replicate the entropy of the individual stocks and long memory cannot be dismissed by 

detrended fluctuation analysis. This also conflicts with the findings for most of the time series. 

Moreover, a linear regression shows both models outside the power law regime. This replicates 

the finding that the GARCH family of models fails to properly describe the scaling properties of 

the distribution of tail returns [8, 9].  

 

3. Concluding remarks 

 

This study of tic-by-tic, high frequency data for the 14 stocks that experienced mini flash 

crashes, as well as the DJIA index, found clear characteristics. The first and unequivocal one 

being that Gaussianity is absent in the data. This is largely expected for time series that exhibit 

extreme datapoints. A second result was that tail decay of the return distributions follow power 

laws. This is a possible consequence of the absence of Gaussianity. Indeed, we found no stock 

returns to show the exponential decay typical of a Gaussian. In particular, the stocks of Cisco, 

Progress Energy and Thermo Fischer, along with the DJIA index itself, showed power law 

decays compatible with a Lévy-stable regime, where the scale factor  0,2 . The remaining 

stocks fell outside the Lévy regime; Washington Post was compatible with a cubic law; and 

Enstar overshot the scale factor of three. In short, all the series presented non-Gaussian scaling 

( 2   ). 

Scaling suggests a complex time series thus, we investigated whether the hypothesis of 

complex determinism could be rejected. We then tested for the presence of chaos and 

logperiodicity. Using a recent method for detecting chaos, we could not reject the null of chaos at 

the 5 percent significance level. We then adjusted a logperiodic formula to the data for each 

stock and showed that logperiodic fits. Thus, our third finding was that chaos and logperiodicity 

could not be dismissed at first. 

 This prompted us to investigate the Shannon entropy and test for long memory for each 

series, as chaos and logperiodicity implicitly assume long memory. We failed to find long 

memory for most stocks and the values of Shannon entropy were more akin to those of a 
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stochastic series than to those of deterministic ones. Such findings cast doubt on the presence of 

chaos and logperiodicity for most series. Therefore, our fourth finding was that chaos and 

logperiodicity are not good models for the data on second thoughts. 

 We then returned to stochastic models and considered threshold GARCH and skewed-t 

GARCH, which enable one to control for the amount of memory. These models were adjusted to 

the data aggregated through all the series. Monte-Carlo simulations showed the threshold 

GARCH to have a good fit to the data. But both models could not replicate the entropy of the 

individual stocks and their long memory. But, such models were also found outside the power 

law regime. Thus, our fifth finding was that, although a good description of the data was possible 

using the threshold GARCH, this model could not detect the scaling properties of the tail decay 

of most stock returns. 
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Figure 1. Stock prices and returns during the mini flash crashes. Source: Bloomberg. 
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Figure 2. Q-Q plots of the stock returns showing departures from Gaussianity. 
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Figure 3. Power law decays for the distribution of normalized stock returns Z   . 

 

 

Figure 4. Stable plateaus of the largest Lyapunov exponents for the stock time series. 
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Figure 5. Log periodic power law fits for the stock time series. 
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Table 1. Description of data 

Stock Sample 

size 

Time period 

(tic-by-tic from 9:30 a.m. to 4 p.m.) 

Mean return Variance 

Abott Labs   1672 29 April 2011 – 31 May 2011 6.8648e−07 4.4884e−06 

Apple 1671 16 March 2012 – 30 March 2012 −1.4522e−05 5.2526e−06 

Cisco Systems 1632  20 July 2011 – 29 July 2011  −1.5533e−05 5.2725e−06 

Citigroup 1620  24 June 2011 – 30 June 2011  −3.3082e−05  3.2485e−06 

Core Molding  1144 19 August 2011 – 31 August 2011 −1.0227e-05 8.2212e−05 

Enstar  828  12 May 2011 – 13 May 2011  −1.2263e-05  7.8117e−06 

Jazz Pharmaceuticals  1652  20 April 2011 – 29 April 2011  5.5291e−05  1.4599e−04 

Micron  1608  29 April 2011 – 6 May 2011  3.2291e−05  7.6406e−06 

Progress Energy  528  30 August 2011 – 07 September 2011  −2.8700e−05  5.5584e−06 

Pfeizer  1623  2 May 2011 – 5 May 2011  2.2147e−05  2.4454e−06 

Pall Corporation  1640 17 February 2012 – 2 March 2012 1.3602e−05 6.2189e−06 

RLJ Equity Partners 1536 11 May 2011 – 12 May 2011 −2.7002e−05 4.6044e−06 

Thermo Fischer Co. 1640 17 February 2012 – 2 March 2012 −1.8144e−06 6.5691e−06 

Washington Post 1104  14 June 2011 – 20 June 2011 6.9993e−06  1.5832e−06 

DJIA index  391  6 May 2010  −7.6953e−05  5.0441e−06 

 

Table 2. Further descriptive statistics of data: Day of crash, skewness, excess kurtosis, and 

drawdown 

Stock Day of  crash 

 

Skewness Excess kurtosis Drawdown 

Abott Labs   2 May 2011  1.1420 15.4381 0.0431 

Apple 23 March 2012  0.6084 21.8629 0.0699 

Cisco Systems 29 July 2011  0.6777 13.8423 0.0558 

Citigroup 29 June 2011  −0.5603 17.3291 0.0724 

Core Molding  26 August 2011  0.3821 9.9299 0.1904 

Enstar  13 May 2011  4.2109 78.9024 0.0452 

Jazz Pharmaceuticals  27 April 2011  11.6698 472.8615 0.2913 

Micron  5 August 2011  0.8787 11.5503 0.0476 

Progress Energy  27 September 2011  1.2511 11.7679 0.0292 

Pfeizer  2 May 2011  0.8677 7.5868 0.0290 

Pall Corporation  27 February 2012  6.6160 251.0168 0.0725 

RLJ Equity Partners 11 May 2011  0.5516 90.6679 0.0684 

Thermo Fischer Co. 27 February 2012  5.1792 173.3840 0.0794 

Washington Post 16 June 2011  0.5849 20.4079 0.0213 

DJIA index  6 May 2010  −0.0473 33.8842 0.0850 
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Table 3. Tests of Gaussianity in data 

Stock Lilliefors Cramer-Von Mises Jarque-Bera Reject normality? 

Abott Labs   0.2071 (< 0.01)  0.0829 (< 0.01) 1.109e5 (< 0.01) Yes 

Apple 0.2058 (< 0.01)  0.0829 (< 0.01) 2.477e5 (< 0.01) Yes 

Cisco Systems 0.1668 (< 0.01)  0.0829 (< 0.01) 8.083e4 (< 0.01) Yes 

Citigroup 0.1843 (< 0.01)  0.0830 (< 0.01) 1.388e5 (< 0.01) Yes 

Core Molding  0.2178 (< 0.01)  0.0816 (< 0.01) 2.301e4 (< 0.01) Yes 

Enstar  0.2517 (0.01)  0.0829 (< 0.01) 1.997e5 (< 0.01) Yes 

Jazz Pharmaceuticals  0.3122 (< 0.01)  0.0825 (< 0.01) 1.517e8 (< 0.01) Yes 

Micron  0.1760 (< 0.01)  0.0828 (< 0.01) 5.081e4 (< 0.01) Yes 

Progress Energy  0.2166 (< 0.01)  0.0829 (< 0.01) 1.804e4 (< 0.01) Yes 

Pfeizer  0.1727 (< 0.01)  0.0830 (< 0.01) 1.627e4 (< 0.01) Yes 

Pall Corporation  0.1868 (< 0.01)  0.0830 (< 0.01) 4.199e7 (< 0.01) Yes 

RLJ Equity Partners 0.2079 (< 0.01)  0.0830 (< 0.01) 4.900e6 (< 0.01) Yes 

Thermo Fischer Co. 0.2106 (< 0.01)  0.0830 (< 0.01) 1.983e7 (< 0.01) Yes 

Washington Post 0.2317 (< 0.01)  0.0831 (< 0.01) 1.391e5 (< 0.01) Yes 

DJIA index  0.2259 (< 0.01)  0.0830 (< 0.01) 1.528e5 (< 0.01) Yes 

Note: p-values are in parenthesis. The null of Gaussianity is rejected at the 5 and 10 percent 

significant levels for all the stocks. And apart from Enstar in the Lilliefors test, Gaussianity is 

also rejected at the 1 percent level for the other stocks. 

 

 

Table 4. Tests of stability of the largest Lyapunov exponents 

 
1̂   

   

Bootstrap block 1 2 3 4 

     

Abott Labs   −0.0133 (−1.40)  −0.0066 (−8.36) −0.0045 (−1.27) −0.0040 (−5.96) 

Apple −0.0135 (−1.00)  −0.0069 (−1.69) −0.0046 (−1.13) −0.0034 (−7.65) 

Cisco Systems −0.0132 (−3.14)  −0.0066 (−6.06) −0.0044 (−1.12) −0.0033 (−3.40) 

Citigroup −0.0145 (−2.19)  −0.0071 (−9.75) −0.0047 (−1.33) −0.0043 (−2.00) 

Core Molding  −0.0164 (−8.53)  −0.0082 (−9.76) −0.0056 (−1.65) −0.0044 (−2.50) 

Enstar  −0.0193 (−3.20)  −0.0164 (−1.85) −0.0108 (−2.62) −0.0076 (−3.92) 

Jazz Pharmaceuticals  −0.0222 (−2.74)  −0.0067 (−2.71) −0.0050 (−2.03) −0.0037 (−5.95) 

Micron  −0.0118 (−2.68)  −0.0062 (−8.34) −0.0063 (−2.38) −0.0039 (−2.35) 

Progress Energy  −0.0628 (−2.23)  −0.0323 (−2.66) −0.0213 (−2.73) −0.0123 (−3.91) 

Pfeizer  −0.0145 (−6.29)  −0.0070 (−8.61) −0.0047 (−2.10) −0.0043 (−1.86) 

Pall Corporation  −0.0142 (−3.35)  −0.0071 (−1.58) −0.0046 (−7.10) −0.0034 (−1.40) 

RLJ Equity Partners −0.0129 (−6.86)  −0.0066 (−6.79) −0.0044 (−6.31) −0.0043 (−1.25) 

Thermo Fischer Co. −0.0137 (−2.69)  −0.0070 (−1.96) −0.0046 (−2.53) −0.0042 (−2.56) 

Washington Post −0.0231 (−2.14)  −0.0116 (−4.91) −0.0076 (−5.16) −0.0063 (−6.76) 

DJIA index  −0.0701 (−2.79)  −0.0512 (−1.96) −0.0200 (−1.18) −0.0179 (−1.25) 

Note: Negative largest Lyapunov exponents for block 1 (1/4 of the time series’ size), block 2 

(2/4 of the time series’ size), and so on. In parentheses: critical values of the empirical 

distributions of i  divided by their standard deviations.  
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Table 5. Log periodic power law fits for the stock time series 

Stock ct   ct t     A B C 2m         

Abott Labs   78  𝜏  > 0 3.22 5.5e−6 −0.00002 0.9952 3.2827 6.7353 

Apple  1500 0 < 𝜏 < 1600 6.70 −0.00021 0.00195 0.4016 9.4081 6.0330 

Cisco Systems 600 0 < 𝜏 < 700 2.75 −0.00564 0.000774 0.4322 6.6690 1.4031 

Citigroup 1500 0 < 𝜏 < 1600 3.671 0.00443 0.000133 7.5991 9.9002 4.3312 

Core Molding  1480 0 < 𝜏 < 1500 2.06 −0.00091 0.005421 3.9001 8.4332 5.3321 

Enstar  405 0 < 𝜏 < 800 4.58 0.00114 0.000675 0.5065 3.5634 3.3093 

Jazz Pharmaceuticals  962 0 < 𝜏 < 100 3.48 −0.1740 0.00322 −2.7825 2.2054 −0.818 

Micron  243 800 < 𝜏  < 1607  2.43 −0.00955 0.00001 0.4412 10.233 5.401 

Progress Energy  250 100 < 𝜏  < 250  3.87 −0.00067 0.00487 0.5441 6.6650 2.332 

Pfeizer  1600  30 < 𝜏 < 1600 3.05 0.00213 0.06650 0.2320 6.2001 4.880 

Pall Corporation  1600 0 < 𝜏  < 1600 4.10 −0.00065 −0.0033 0.4322 5.6707 5.551 

RLJ Equity Partners. 1510 0 < 𝜏  < 1510 2.83 −0.10019 −0.0441 0.6391 8.7710 3.310 

Thermo Fischer 1100 150 < 𝜏  < 1110 4.03 −0.0800 −0.0392 0.7010 4.2210 2.002 

Washington Post 700 250 < 𝜏 <  700 6.045 −0.01223 0.00937 0.4804 3.0012 5.901 

DJIA index  323 0 < 𝜏  < 323 9.255 −0.00142 0.00121 0.7322 6.3223 2.321 

 

Table 6. Shannon entropy and long memory tests 

Stock Entropy R/S DFA Long memory? 

Abott Labs   0.0468 0.479  0.433 No 

Apple 0.0509  0.543 0.675 Yes 

Cisco Systems 0.0510  0.531 0.571 Yes 

Citigroup 0.0303  0.426 0.445 No 

Core Molding  0.3824  0.535 0.563 Yes 

Enstar  0.0330  0.473 0.422 No 

Jazz Pharmaceuticals  0.4620  0.527 0.223 No 

Micron  0.0755  0.575 0.438 No 

Progress Energy  0.0178  0.466 0.452 No 

Pfeizer  0.0277  0.450 0.388 No 

Pall Corporation  0.0520  0.536 0.150 No 

RLJ Equity Partners 0.0366  0.405 0.329 No 

Thermo Fischer Co. 0.0546  0.617 0.206 No 

Washington Post 0.0105  0.508 0.321 No 

DJIA index  0.0087  0.398 0.364 No 

Note: We consider long memory to be unequivocal when both the R/S and DFA are greater than 

0.5. 

 

Table 7. Shannon entropy and long memory tests 

Model Entropy R/S DFA 

Threshold GARCH   −0.00025 0.413 0.586 

Skewed-t GARCH −0.00038  0.392 0.518 
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