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Abstract. Allowing correlation to be local, i.e., state-dependent, in multi-asset models allows better hedg-
ing by incorporating correlation moves in the delta. When options on a basket, be it a stock index, a cross FX
rate, or an interest rate spread, are liquidly traded, one may want to calibrate a local correlation to these op-
tion prices. Only two admissible models, i.e., models that calibrate to the basket smile, have been suggested
in the past. Depending on market conditions, both models may actually not be always admissible and, when
they are, they impose a particular dependency of the correlation matrix on the asset values that one has no
reason to undergo. In this article we introduce a new class of local correlation models that include the two
existing models as special cases. Not all models in this new family are guaranteed to be always admissible
but with this new family at hand, one has more chances to pick a model that not only is admissible but also
has extra desirable properties, like fitting a view on correlation skew, mimicking historical correlation, or
matching prices of exotic options. The models are described by nonlinear SDEs and built using the particle
method. It is straightforward to generalize at no extra cost this construction of admissible models to the
cases of (i) models that combine stochastic interest rates, stochastic dividend yield, local stochastic volatility,
and local correlation; and (ii) single asset path-dependent volatility models. Our numerical tests in the case
of the FX smile triangle problem show the wide variety of admissible local correlations and give insight on
lower bounds/upper bounds on general multi-asset option prices given the surface of implied volatilities of a
basket and those of its constituents.

1. Introduction

Many investment banks use a multi-asset version of the Dupire local volatility model to price multi-asset
derivatives. Most of the time, the correlation matrix is assumed to be constant, e.g., some constant historical
correlation ρhist. In the equity market, since banks usually “sell correlation,” i.e., sell products that have a
positive sensitivity to correlation, they tend to overprice correlation and often use a convex combination of
ρhist and the matrix 1 representing full correlation of the assets, whose all entries are equal to one:

ρ = (1− λ)ρhist + λ1, λ ∈ [0, 1]

However, such a model is not able to reproduce the market smile of implied volatilities of stock index options:
typically, when a constant correlation is picked to match the price of the at-the-money implied volatility of
the index, it generates a skew which is much smaller (roughly twice smaller) than the market skew. Stated
otherwise, the smile of index options contains information on how much more correlated its constituents are
in a bearish market, and how less they are in a bullish one.

Local correlation models, in which the correlation matrix is allowed to be state-dependent:

ρ(t, S1
t , . . . , S

N
t )

are able to capture this information. They are of high practical importance, not only because they include
correlation variability in option prices, but mainly because they allow better hedging by incorporating cor-
relation moves in the delta. This is crucial for short cross gamma positions, where an underestimation of
correlation in periods of crises yields a daily P&L bleeding that can only be stopped by occuring a large
remarking-to-market loss. Many investment banks have been affected by this effect in 2008 after the bank-
ruptcy of Lehman Brothers. Like the local volatility model, local correlations models do not aim at describing
the real world dynamics of the assets, but at helping traders risk-manage their correlation positions, especially
during crises. Local correlation models are also very useful in the context of foreign exchange (FX) options.
They allow to build models that are consistent with the market smiles of two FX rates, and the market smile
of the cross rate. They are also used in interest rates to calibrate to spread options prices.

Date: First version: February 21, 2013. This version: June 21, 2013.
Key words and phrases. Local correlation, path-dependent volatility, path-dependent correlation, calibration, particle

method, local stochastic volatility, stochastic interest rates, stochastic dividend yield.
1



A NEW CLASS OF LOCAL CORRELATION MODELS 2

Langnau [25] Reghai [26] Guyon and New model
Henry-Labordère [16]

Function of basket value Basket variance Correlation, λ Correlation, λ a+ bλ
Function of all Correlation, λ Basket variance Basket variance a, b, basket variance

underlying assets and correlation
Possibly function of any / / / a, b, basket variance
path-dependent variable and correlation
Calibration method Closed form Fixed point Particle method Particle method
Correlation candidate Yes No Yes, time step Yes, time step

built explicitly by time step by time step
Avoids computing Yes No Yes Yes
implied volatilities

Number of 0 0 0 An infinity: all
degrees of freedom functions a and b

Table 1. Summary of models and methods for calibrating to basket smile. The correlation
matrix ρ = (1− λ)ρ0 + λρ1 lies on the line defined by two fixed correlation matrices ρ0 and
ρ1.

Let us say that a local correlation model is admissible if it calibrates to the market smile of the index. To
the best of our knowledge, only two admissible models have been suggested so far in the literature. In both
models the correlation matrix ρ = (1−λ)ρ0+λρ1 is assumed to lie on the line defined by two fixed correlation
matrices ρ0 and ρ1. The first model, proposed by Langnau [25], assumes that the instantaneous variance of
a stock index in the multi-asset local volatility-local correlation model is “local in index,” i.e., depends on
the stocks only through the index value. The second model, presented in Reghai [26] and Guyon and Henry-
Labordère [16], assumes that the instantaneous correlation itself (or equivalently λ) is local in index. It may
seem enough to have those two models at hand. However, they both have drawbacks. First, both models
may actually fail to be admissible. In [25] and [16], a unique correlation candidate is explicitly built and may
fail to be positive semi-definite (PSD). Then one projects the candidate onto the set of correlation matrices,
and the resulting model does not perfectly calibrate. (The correlation candidate has more chances to be PSD
in the second model, see Equation (6.1)). In [26], the correlation matrix is built by solving a fixed point
problem that may have no solution. (Precisely it has no solution when the correlation candidate exhibited
in [16] is not PSD.) Second, even if both models are admissible, there is no reason why one would undergo
either correlation structure. For instance, the resulting correlation may have a weird skew (dependence on
the asset values), or its skew may be far from the one that is historically observed, or it may generate prices
of other options that are far from market quotes.

In this article, we build a new family of local correlation models using the particle method. This family is
parameterized by two functions a and b that depend on time and on the values of all the underlying assets.
Instead of assuming that the basket variance or the correlation (or equivalently λ) is local in index, we assume
that a+ bλ is. The two existing models are just two particular points in this family: they correspond to two
particular choices of (a, b). We easily handle path-dependent correlation by allowing a and b to depend as
well on any set of path-dependent variables. Table 1 helps compare the two existing models with the new
family of models.

Using the new family, one can now design one’s favorite local correlation model in order to satisfy desir-
able properties P, such as matching a view on a correlation skew, reproducing some features of historical
correlation, calibrating to other option prices, etc. on top of reproducing the market smile of the basket, be
it a stock index, a cross FX rate, an interest rate spread, etc. Not all models in the family are admissible: for
a given (a, b), the particle method generates an explicit local correlation candidate, and admissible models
correspond to those pairs (a, b) for which the candidate is PSD at all times and for all asset values. If for some
time and asset values a correlation candidate fails to be PSD, we project it onto the set of correlation matrices
and carry on using the particle method. The resulting model is not perfectly admissible, but the imperfect
calibration may be accurate enough for trading purposes, for instance when the correlation candidate fails to
be PSD only for unlikely asset values (see examples in Section 10).
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Another way of jointly calibrating to the smile of a basket and to the smiles of its components is described
in [23] where Jourdain and Sbai build an incomplete stochastic volatility-stochastic correlation model by
following a top-down approach in which the level of a stock index induces some feedback on the dynamics of
its constituents. Attempts to approximately calibrate to a triangle of FX market smiles in a symmetric way
include [7], where a multi-Heston model with constant correlations is used. Reghai [26] considers the pricing
of options on worst-of in a model where the local correlation depends on the stocks only through the worst
performance of the basket constituents and suggests a historical calibration procedure. Delanoe [8] addresses
the question of calibrating such a model to option prices and discusses stochastic volatility extensions of
local correlation models. In the context of constant correlation, Avellaneda et al. [3] are first to give the
formula for the equivalent local volatility of a basket of stocks (see (9.2)), and estimate it using short term
asymptotics at order zero, namely Varadhan’s formula and the method of steepest descent. The expansion at
order one, as well as an extension to local in index correlation models, are proved in [19]. Durrleman and El
Karoui [11] price options written on a domestic asset based on implied volatilities of options on the same asset
expressed in a foreign currency and the exchange rate and, given a local correlation, derive explicit formulas
to compute the at-the-money implied volatility, skew, convexity, and term structure for short maturities. In
[4], Cont and Deguest use a random mixture of reference models to build a multi-asset model consistent with
a set of observed single- and multi-asset derivative prices. Austing [2] provides an analytic formula for a
joint probability density such that all three market smiles in a FX triangle are repriced. A few stochastic
correlation models have also been suggested and analyzed in the literature, including [14, 6, 1].

The paper is structured as follows. In Section 3, we introduce our new family of local correlation models
in the simple context of the FX triangle smile calibration problem, briefly recalled in Section 2. In Section 4
we show how easy it is to build this new family of local correlations step by step from inception to maturity
using the particle method. We highlight some key examples in Section 5. Important links between the various
admissible local correlations are investigated in Section 6. In Section 7 we give an intuition of the reason why
an inadequate joint extrapolation of local volatilities may lead to the non-existence of (strictly) admissible
local correlation models. Section 8 deals with the impact of correlation on the prices of multi-asset options,
with a reminder on implied correlation à la Dupire [10] and a new formula à la Gatheral [13]. In Section 9
we show how to build our new family of local correlation models in the context of the N -dimensional stock
index smile calibration problem. In Section 10, our numerical examples in the FX context show the wide
variety of admissible correlations and give insight on lower bounds and upper bounds on prices of multi-asset
options when the smile of a basket and the smiles of its constituents are given. In Section 11 we generalize to
models that combine stochastic interest rates, stochastic dividend yield, local stochastic volatility, and local
correlation. Finally, in Section 12, we show how to easily adapt the technique presented in this article to
build single asset path-dependent volatility models that calibrate to the smile, before we conclude in Section
13. The proofs are gathered in the appendix.

2. The FX triangle smile calibration problem

Let us introduce our new family of local correlation models in the simple context of the FX triangle
smile calibration problem. Section 9 deals with the general N -dimensional basket case. Let S1, S2 be two
FX rates, and S12 = S1/S2 be the cross rate. One can think of S1 = EUR/USD, S2 = GBP/USD and
S12 = EUR/GBP. Assume we know from the market the surfaces of implied volatility for S1, S2 and S12

until some maturity T , and that those surfaces are jointly arbitrage-free. They correspond to three local
volatility surfaces that we denote by σ1(t, S1), σ2(t, S2), and σ12(t, S12). Assume the following model Mρ

for the dynamics of S1 and S2:

dS1
t =

(
rdt − r1t

)
S1
t dt+ σ1(t, S1

t )S1
t dW

1
t

dS2
t =

(
rdt − r2t

)
S2
t dt+ σ2(t, S2

t )S2
t dW

2
t (2.1)

d〈W 1,W 2〉t = ρ(t, S1
t , S

2
t ) dt

All interest rates are deterministic; both rates S1 and S2 follow local volatility dynamics; the two driving
processes W 1 and W 2 are Brownian motions under the risk-neutral measure Q associated to the anchor
(domestic) currency (USD in our example); they have a local instantaneous correlation ρ(t, S1

t , S
2
t ) ∈ [−1, 1].
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ModelMρ is calibrated to the market smile of the cross rate S12 if and only if (see proof in the appendix)

EQf
ρ

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t )− 2ρ(t, S1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )

∣∣∣∣S1
t

S2
t

]
= σ2

12

(
t,
S1
t

S2
t

)
(2.2)

for all t ∈ [0, T ], where EQf denotes the expectation under the risk-neutral measure Qf associated to the
foreign currency in S2 (GBP in our example):

dQf

dQ
=
S2
T

S2
0

exp

(ˆ T

0

(
r2t − rdt

)
dt

)
Equation (2.2) is equivalent to

EQ
ρ

[
S2
t

(
σ2
1(t, S1

t ) + σ2
2(t, S2

t )− 2ρ(t, S1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )
) ∣∣∣S1

t

S2
t

]
EQ
ρ

[
S2
t

∣∣∣S1
t

S2
t

] = σ2
12

(
t,
S1
t

S2
t

)
(2.3)

Note that the left hand side of Equation (2.2) depends on the correlation in two ways: (i) explicitly through
the random variable σ2

1 + σ2
2 − 2ρσ1σ2, and (ii) implicitly through the conditional distribution of (S1

t , S
2
t )

given S1
t

S2
t
under Qf . To emphasize point (ii), we have written EQf

ρ instead of EQf .
Let us denote by C the set of functions ρ : [0, T ] × R∗+ × R∗+ → [−1, 1]. Any ρ ∈ C satisfying (2.2) will

be called an “admissible correlation.” In this article, we are mainly interested in the following important
practical question (Q): How to build an almost (if not strictly) admissible correlation ρ(t, S1, S2) having
some of the desirable properties P listed above?

Remark 1. Two important and difficult theoretical questions are the following ones:

(1) How to verify that the three surfaces of implied volatility for S1, S2 and S12 are jointly arbitrage-free?
How to detect joint arbitrages?

(2) Assuming no arbitrage, under which condition on σ1(t, S1), σ2(t, S2), and σ12(t, S12) does there exist
an admissible correlation?

The non-existence of an admissible correlation may be due to the extrapolations of the three local volatilities
(see Section 7). In practice, this means that “good” correlation candidates ρ(t, S1, S2), such as the ones
exhibited in [25, 16] may fail to be true correlations, i.e., to belong to [−1, 1], but only for very small or
very large values of S1 or S2 or S12. (The correlation candidate exhibited in [16] is more likely to belong
to [−1, 1] than the one exhibited in [25], see Equation (6.1).) In practice, this may not be a problem: the
“good” correlation candidates, when capped to +1 and floored to −1, become “almost” admissible correlations,
meaning that the smile of the cross rate is correctly reproduced almost everywhere, except maybe very far
from the money. One might also want to modify the extrapolations of the local volatilities that appear
to be problematic. For instance, in the situation of Figure 10.5, one may want to modifiy the low strikes
extrapolations of σ1 and σ2.

Remark 2. We may have started with a general stochastic process (ρt) for the correlation, that possibly
depends on extra sources of randomness. In this situation, the calibration condition (2.2) still holds with
ρ(t, S1

t , S
2
t ) ≡ EQf

ρt

[
ρt
∣∣S1
t , S

2
t

]
= EQ

ρt

[
ρt
∣∣S1
t , S

2
t

]
. This result is not completely trivial, as one needs to show

that EQf
ρt can be replaced by EQf

ρ . This follows from Gyöngy’s theorem - see Section 8.2 for a simple derivation.
As a consequence, if there exists an admissible correlation process ρt, then there exists an admissible local
correlation ρ(t, S1, S2): as far as calibration to the market smile of the cross rate is concerned, assuming a
local correlation ρ(t, S1, S2) is not restrictive.

3. A new representation of admissible correlations

To answer Question (Q), we now introduce a new representation of admissible correlations. We consider
an admissible correlation ρ ∈ C. We say that a function is “local in X” if it is a function of (t,X) only, say
f (t,X). When X = S1/S2, we also say “local in cross.” Let us pick two functions a(t, S1, S2) and b(t, S1, S2)
such that b does not vanish and

a(t, S1, S2) + b(t, S1, S2)ρ(t, S1, S2) ≡ f
(
t,
S1

S2

)
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is local in cross. We can always do so, by choosing for instance b ≡ 1 and a(t, S1, S2) = f
(
t, S

1

S2

)
−ρ(t, S1, S2)

for some function f . The two already mentioned existing approaches for trying to build admissible correlations
correspond to two special cases of this assumption: when a ≡ 0 and b ≡ 1, one assumes that the correlation
itself is local in cross, see [16, 26]; when a = σ2

1 + σ2
2 and b = −2σ1σ2, one assumes that the instantaneous

variance of the cross rate is local in cross, see [24, 25]. We will come back to both examples and introduce
new ones in Sections 5 and 10. Then1

σ2
12

(
t,
S1
t

S2
t

)
= EQf

ρ

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t )− 2ρ(t, S1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )

∣∣∣∣S1
t

S2
t

]
= EQf

ρ

[
σ2
1 + σ2

2 + 2
a

b
σ1σ2

∣∣∣∣S1
t

S2
t

]
− 2 (a+ bρ)

(
t,
S1
t

S2
t

)
EQf
ρ

[
σ1σ2
b

∣∣∣∣S1
t

S2
t

]
As a consequence ρ = ρ(a,b) satisfies ρ(a,b) ∈ C and

ρ(a,b)(t, S
1
t , S

2
t ) =

1

b(t, S1
t , S

2
t )

EQf
ρ(a,b)

[
σ2
1 + σ2

2 + 2abσ1σ2

∣∣∣S1
t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2EQf

ρ(a,b)

[
σ1σ2

b

∣∣∣S1
t

S2
t

] − a(t, S1
t , S

2
t )

 (3.1)

We have thus proved that any admissible correlation is of the above type. Conversely, if a function ρ(a,b) ∈ C
satisfies (3.1), then it is an admissible correlation. We call (3.1) the “local in cross a+ bρ representation”
of admissible correlations. Question (Q) can now be restated as follows: Can we find a pair of functions
(a, b) such that ρ(a,b) is (at least almost) admissible and has some of the desirable properties P?

Note that (3.1) is a circular equation: the right hand side of (3.1) depends on ρ(a,b) through the two
conditional expectations. To the best of our knowledge, the existence of the nonlinear stochastic differential
equations (SDEs) describing the calibrated models

dS1
t =

(
rdt − r1t

)
S1
t dt+ σ1(t, S1

t )S1
t dW

1
t

dS2
t =

(
rdt − r2t

)
S2
t dt+ σ2(t, S2

t )S2
t dW

2
t

d〈W 1,W 2〉t =
dt

b(t, S1
t , S

2
t )

EQ
[
S2
t

(
σ2
1 + σ2

2 + 2abσ1σ2
) ∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
EQ
[
S2
t

∣∣∣S1
t

S2
t

]
2EQ

[
S2
t
σ1σ2

b

∣∣∣S1
t

S2
t

] − a(t, S1
t , S

2
t )


is still an open mathematical question. This is common to a variety of smile calibration problems, see
for instance [16, 17] for an investigation of some nonlinear SDEs describing models calibrated to a smile -
including local stochastic volatility models, with or without stochastic interest rates, and local correlation
models - and a discussion and numerical experiments on the existence of a solution. In practice, one may try
to build a solution ρ(a,b) ∈ C using the particle method [16], as we explain in the next section.

Remark 3. As stated above, one can always require that b ≡ 1. Consequently, any correlation candidate is
also of the subtype ρ(a,1):

ρ(a,1)(t, S
1
t , S

2
t ) =

EQf
ρ(a,1)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t ) + 2a(t, S1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2EQf

ρ(a,1)

[
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

] −a(t, S1
t , S

2
t )

(3.2)
The advantage of dealing with a + bρ instead of a + ρ is that it includes the common approach where
σ2
1+σ2

2−2ρσ1σ2 is assumed to be local in cross, with both a = σ2
1+σ2

2 and b = −2σ1σ2 being independent of ρ.
In general one cannot require that a ≡ 0, because it would impose that ρ(t, S1, S2) = 0⇒ ρ(t, λS1, λS2) = 0
for all λ > 0. Any admissible correlation satisfying the above condition - in particular any non-vanishing
admissible correlation - is also of the subtype ρ(0,b):

ρ(0,b)(t, S
1
t , S

2
t ) =

EQf
ρ(0,b)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t )
∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2b(t, S1

t , S
2
t )EQf

ρ(0,b)

[
σ1(t,S1

t )σ2(t,S2
t )

b(t,S1
t ,S

2
t )

∣∣∣S1
t

S2
t

] (3.3)

1From now on, for the sake of clarity, we may omit the functions arguments t, S1
t , S

2
t , etc. within conditional expectations

in long equations.
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Remark 4. Our method allows us to consider more general models where the instantaneous correlation
depends on path-dependent variables as well. For instance, we can handle situations where ρ depends not
only on (t, S1

t , S
2
t ) but also on the running averages 1

t

´ t
0
S1
udu and 1

t

´ t
0
S2
udu, or on moving averages, or on

the running minimums and maximums of S1 and S2, or on the realized correlation over the past few days, or
on the realized volatilities over the past few days, etc. All one has to do is to also include the path-dependent
variables in the arguments of the functions a and b.

4. The particle method for local correlation

The particle method for solving various smile calibration problems, including calibration of local stochastic
volatility models, with or without stochastic interest rates, and of local correlation models, has been presented
in [16]. It was also used in [23] to calibrate a model coupling an index and its constituents. In the context
presented in Section 3, the particle algorithm can be described as follows. Let {tk} denote a time discretization
of [0, T ]. We simulate N processes (S1,i

t , S2,i
t )1≤i≤N starting from (S1

0 , S
2
0) at time 0 using N independent

Brownian motions under the domestic measure Q as follows:

(1) Initialize k = 1 and set ρ(a,b)(t, S1, S2) =
σ2
1(0,S

1)+σ2
2(0,S

2)−σ2
12

(
0,S

1

S2

)
2σ1(0,S1)σ2(0,S2) for all t ∈ [t0 = 0; t1]. (At t = 0,

no conditional expectation is computed so ρ(a,b) does not depend on (a, b).)
(2) Simulate (S1,i

t , S2,i
t )1≤i≤N from tk−1 to tk using a discretization scheme - say a log-Euler scheme.

(3) For all S12 in a grid Gtkof cross rate values, compute

Enum
tk

(S12) =

∑N
i=1 S

2,i
tk

(
σ2
1(tk, S

1,i
tk

) + σ2
2(tk, S

2,i
tk

) + 2
a(tk,S

1,i
tk
,S2,i
tk

)

b(tk,S
1,i
tk
,S2,i
tk

)
σ1(tk, S

1,i
tk

)σ2(tk, S
2,i
tk

)

)
δtk,N

(
S1,i
tk

S2,i
tk

− S12

)
∑N
i=1 S

2,i
tk
δtk,N

(
S1,i
tk

S2,i
tk

− S12

)

Eden
tk

(S12) =

∑N
i=1 S

2,i
tk

σ1(tk,S
1,i
tk

)σ2(tk,S
2,i
tk

)

b(tk,S
1,i
tk
,S2,i
tk

)
δtk,N

(
S1,i
tk

S2,i
tk

− S12

)
∑N
i=1 S

2,i
tk
δtk,N

(
S1,i
tk

S2,i
tk

− S12

)
f(tk, S

12) =
Enum
tk

(S12)− σ2
12

(
tk, S

12
)

2Eden
tk

(S12)

interpolate and extrapolate f(tk, ·), for instance using cubic splines, and, for all t ∈ [tk, tk+1], set

ρ(a,b)(t, S
1, S2) =

1

b(t, S1, S2)

(
f

(
tk,

S1

S2

)
− a(t, S1, S2)

)
(4) Set k := k + 1. Iterate steps 2 and 3 up to the maturity date T .

Here, δt,N (x) = 1
ht,N

K
(

x
ht,N

)
is an approximation of the Delta dirac function; K is a fixed, symmetric, non-

negative kernel; ht,N is a bandwidth that tends to zero as N grows to infinity. Enum
t (S12) and Eden

t (S12) ap-
proximate the conditional expectations EQf

ρ(a,b)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t ) + 2
a(t,S1

t ,S
2
t )

b(t,S1
t ,S

2
t )
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

= S12
]

and EQf
ρ(a,b)

[
σ1(t,S

1
t )σ2(t,S

2
t )

b(t,S1
t ,S

2
t )

∣∣∣S1
t

S2
t

= S12
]
respectively. Alternative methods for estimating such conditional ex-

pectations include B-spline techniques as explained in a recent work by Corlay [5]. Implementation details
can be found in Section 10.

5. Some examples of pairs of functions (a, b)

As already mentioned in Section 3, the two existing approaches for trying to build admissible correlations
are special cases of the local in cross a+ bρ representation:

• a ≡ 0 and b ≡ 1: In this case [16, 26], one assumes that the correlation itself is local in cross:

ρ(0,1)(t, S
1
t , S

2
t ) =

EQf
ρ(0,1)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t )
∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2EQf

ρ(0,1)

[
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

] (5.1)
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a b ρ(a,b)(t, S
1
t , S

2
t )

0 σ1
EQf
ρ(a,b)

[
σ2
1(t,S

1
t )+σ

2
2(t,S

2
t )

∣∣∣∣S1
t
S2
t

]
−σ2

12

(
t,
S1
t
S2
t

)
2σ1(t,S1

t )E
Qf
ρ(a,b)

[
σ2(t,S2

t )

∣∣∣∣S1
t
S2
t

]

0 σ2
EQf
ρ(a,b)

[
σ2
1(t,S

1
t )+σ

2
2(t,S

2
t )

∣∣∣∣S1
t
S2
t

]
−σ2

12

(
t,
S1
t
S2
t

)
2EQf
ρ(a,b)

[
σ1(t,S1

t )

∣∣∣∣S1
t
S2
t

]
σ2(t,S2

t )

σ2
1 −2σ1σ2

σ2
1(t,S

1
t )+EQf

ρ(a,b)

[
σ2
2(t,S

2
t )

∣∣∣∣S1
t
S2
t

]
−σ2

12

(
t,
S1
t
S2
t

)
2σ1(t,S1

t )σ2(t,S2
t )

σ2
2 −2σ1σ2

EQf
ρ(a,b)

[
σ2
1(t,S

1
t )

∣∣∣∣S1
t
S2
t

]
+σ2

2(t,S
2
t )−σ

2
12

(
t,
S1
t
S2
t

)
2σ1(t,S1

t )σ2(t,S2
t )

Table 2. Examples of simple but symmetry-breaking choices of (a, b) and the corresponding
correlation candidates

We then speak of the “local in cross ρ model” or “local in cross correlation model.” If at some
date t < T , ρ(0,1)(t, S1, S2) /∈ [−1, 1] for some FX rate values S1, S2, then the trial is a failure: ρ(0,1)
is not admissible.

• a = σ2
1 + σ2

2 and b = −2σ1σ2: In this case, one assumes that the instantaneous variance of the cross
rate is local in cross. This is in the spirit of [25] and has been studied in this FX context in [24]. In
this case, the cross rate follows a local volatility model, we speak of the “local in cross volatility
model,” and denote by ρ∗ the correlation candidate:

ρ∗(t, S1
t , S

2
t ) =

σ2
1(t, S1

t ) + σ2
2(t, S2

t )− σ2
12

(
t,
S1
t

S2
t

)
2σ1(t, S1

t )σ2(t, S2
t )

(5.2)

Note that this is the only situation where no estimation of conditional expectation (given the value
of S1

t /S
2
t ) is needed. As a consequence, ρ∗ is well defined even if it exits the interval [−1, 1]. If at

some date t < T , ρ∗(t, S1, S2) /∈ [−1, 1] for some S1, S2, then ρ∗ is not admissible.
Another natural choice of (a, b) is the following:

• a ≡ 0 and b = σ1σ2: In this case, one assumes that the local covariance ρ(t, S1, S2)σ1(t, S1)σ2(t, S2)
of increments of S1 and S2 is local in cross. We then speak of the “local in cross covariance
model.” This choice defines a model calibrated to the three FX smiles if and only if

EQf
ρ(0,σ1σ2)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t )
∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2σ1(t, S1

t )σ2(t, S2
t )

∈ [−1, 1]

Other simple but symmetry-breaking choices of (a, b) are given in Table 5, together with the corresponding
correlation candidates.

Remark 5. Had we only considered the types ρ(a,1) (which span the space of all admissible correlations), by
blindly applying (3.2), we would have get for the local in cross volatility assumption a = σ2

1 +σ2
2−2ρσ1σ2−ρ

and the following correlation candidate

ρ(a,1)(t, S
1
t , S

2
t ) =

EQf
ρ(a,1)

[
σ2
1(t, S1

t ) + σ2
2(t, S2

t ) + 2a(t, S1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

]
− σ2

12

(
t,
S1
t

S2
t

)
2EQf

ρ(a,1)

[
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

] −a(t, S1
t , S

2
t )

Though we can recover (5.2) from the above equation, it is much more convenient to consider the a + bρ
formulation, because in this case both a and b are independent of ρ.

Remark 6. In general, the instantaneous volatility of the cross
√
σ2
1 + σ2

2 − 2ρσ1σ2 in the model depends
jointly on S1 and S2, and not only on S12, whereas the instantaneous volatility of S1 (resp. S2) depends
only on S1 (resp. S2). This means that in general the model is not symmetric in the three FX rates. If ρ∗
takes values in [−1, 1], then the local in cross volatility model is the unique local volatility-local correlation
model that is symmetric in the three FX rates. Otherwise, no such model exists. The asymmetry may not
necessarily be seen as a drawback: in cases where a currency is “stronger” than the other two, it is natural
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to choose it as the anchor rate and it might make sense to price and hedge in a model where the volatility
of the cross is actually a function of the two rates against the strong currency separately, not only of the
cross rate. Note however that if one takes EUR or GBP as anchor, i.e., domestic currency, instead of USD,
one gets another family of admissible local correlation models, and different prices for exotic options. See for
instance [7] for a symmetric way to approximately calibrate to a triangle of FX market smiles.

6. Some links between local correlations

Assume that ρ(a,b) is an admissible correlation. We can express the affine transform a + bρ(a,b) of ρ(a,b)
as an average of the same affine transform of the correlation candidate ρ∗ (even if ρ∗ takes values outside
[−1, 1]):

(
a+ bρ(a,b)

)(
t,
S1
t

S2
t

)
=

EQf
ρ(a,b)

[
(a+ bρ∗)

(
t, S1

t , S
2
t

) σ1(t,S
1
t )σ2(t,S

2
t )

b(t,S1
t ,S

2
t )

∣∣∣S1
t

S2
t

]
EQf
ρ(a,b)

[
σ1(t,S1

t )σ2(t,S2
t )

b(t,S1
t ,S

2
t )

∣∣∣S1
t

S2
t

] ≡ EQ
σ1σ2
b

ρ(a,b)

[
(a+ bρ∗)

(
t, S1

t , S
2
t

) ∣∣∣∣S1
t

S2
t

]
where

dQ
σ1σ2
b

dQf
≡

σ1(t,S
1
t )σ2(t,S

2
t )

b(t,S1
t ,S

2
t )

EQf
ρ(a,b)

[
σ1(t,S1

t )σ2(t,S2
t )

b(t,S1
t ,S

2
t )

]
In particular, if ρ(0,1) is an admissible correlation, ρ(0,1) is a weighted average of ρ∗ on each line where S1

S2 is
constant:

ρ(0,1)

(
t,
S1
t

S2
t

)
=

EQf
ρ(0,1)

[
ρ∗
(
t, S1

t , S
2
t

)
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

]
EQf
ρ(0,1)

[
σ1(t, S1

t )σ2(t, S2
t )
∣∣∣S1

t

S2
t

] ≡ EQσ1σ2
ρ(a,b)

[
ρ∗
(
t, S1

t , S
2
t

) ∣∣∣∣S1
t

S2
t

]
(6.1)

This has two consequences:
• If ρ(0,1) is an admissible correlation, then its image, i.e., the range of values it takes, is included in

the image of ρ∗.
• The smallest time τρ(0,1) at which ρ(0,1) fails to be a correlation function is larger than or equal to

the smallest time τρ∗ at which ρ∗ fails to be a correlation function, where

τρ = inf
{
t ∈ [0, T ] | ∃S1, S2 > 0, ρ(t, S1, S2) /∈ [−1, 1]

}
(6.2)

As for the volatility of S1/S2, if we denote

σ2
(a,b)(t, S

1
t , S

2
t ) = σ2

1(t, S1
t ) + σ2

2(t, S2
t )− 2ρ(a,b)(t, S

1
t , S

2
t )σ1(t, S1

t )σ2(t, S2
t )

we have by construction

σ2
12

(
t,
S1
t

S2
t

)
= EQf

ρ(a,b)

[
σ2
(a,b)(t, S

1
t , S

2
t )

∣∣∣∣S1
t

S2
t

]
(6.3)

In the particular case where σ1 and σ2 depend only on t (no skew on S1 nor S2), then (6.3) simply reads

σ2
12

(
t,
S1
t

S2
t

)
= σ1(t)2 + σ2(t)2 − 2EQf

ρ(a,b)

[
ρ(a,b)(t, S

1
t , S

2
t )

∣∣∣∣S1
t

S2
t

]
σ1(t)σ2(t)

i.e., using (5.1) and (5.2),

ρ∗(t, S1
t , S

2
t ) = ρ(0,1)

(
t,
S1
t

S2
t

)
= EQf

ρ(a,b)

[
ρ(a,b)(t, S

1
t , S

2
t )

∣∣∣∣S1
t

S2
t

]
(6.4)

Note that in this case, all seven examples of Section 5 boil down to the same correlation model, where the
correlation is local in cross. In this situation, ρ(0,1) = ρ∗ is, among all the admissible correlations ρ(t, S1, S2)
the one with the smallest image. This means that if ρ(0,1) = ρ∗ is not admissible, then no correlation

ρ(t, S1, S2) is admissible; ρ(0,1)
(
t,
S1
t

S2
t

)
= ρ∗

(
t,
S1
t

S2
t

)
> 1 corresponds to the situation where

|σ1(t)− σ2(t)| > σ12

(
t,
S1
t

S2
t

)
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ρ(0,1)

(
t,
S1
t

S2
t

)
= ρ∗

(
t,
S1
t

S2
t

)
< −1 corresponds to the situation where

σ1(t) + σ2(t) < σ12

(
t,
S1
t

S2
t

)
Equation (6.4) tells us that in the case where S1and S2 have no skew all admissible correlations have same
average value under Qf over each line where S1/S2 is constant, and this common average value is given by
ρ(0,1).

7. Joint extrapolation of local volatilities

As stated in Section 2, failure to be a correlation fonction, i.e., the fact that τρ < T (see Equation (6.2)),
may be the consequence of an inadequate joint extrapolation of the three local volatilities σ1, σ2 and σ12. To
give an intuition of this, let us look at the particular case of the correlation candidate ρ∗. It takes values in
[−1, 1] if and only if for all t, S1, S2

∣∣σ1(t, S1)− σ2(t, S2)
∣∣ ≤ σ12(t, S1

S2

)
≤ σ1(t, S1) + σ2(t, S2)

This is equivalent to saying that
σ12 ≤ σ12 ≤ σ12 (7.1)

where the functions σ12 and σ12 are defined by

σ12(t, S12) = sup
S2>0

∣∣σ1(t, S2S12)− σ2(t, S2)
∣∣

σ12(t, S12) = inf
S2>0

{
σ1(t, S2S12) + σ2(t, S2)

}
A first problem is that there is no guarantee that σ12 ≤ σ12. If this does not hold, ρ∗ is guaranteed to be

inadmissible, whatever the local volatility σ12 of the cross rate. For instance, the extrapolations of σ1 and
σ2 may be such that σ12(t, S12) ≡ +∞, if at least one of both local volatilities is unbounded, because in the
definition of σ12 we take the supremum over all values of S2, even extremely unlikely values. For instance,
it is common to build extrapolations where asymptotically the squared local volatility is an affine function
of the log-spot. When the asymptotic slopes of σ2

1 and σ2
2 differ, then σ12(t, S12) ≡ +∞. In such a case ρ∗

must cross the +1 boundary for S1 or S2 far enough from the money. However, this may not be a problem
in practice, if ρ∗ lies in [−1, 1] for a broad range of likely values of S1 and S2.

A second problem is that, even if σ12 ≤ σ12, the market local volatility of the cross rate may fail to lie in
between the two. This may indicate an inadequate joint extrapolation of the three local volatilities involved.

For general (a, b), there is no necessary and sufficient condition as simple as (7.1) for τρ(a,b) to be greater
than T , i.e., for ρ(a,b) to be well defined over [0, T ] × R∗+ × R∗+. The above reasoning shows that even with
“good” candidates (a, b), one may have τρ(a,b) = 0 in theory, because ρ(a,b) exits [−1, 1] for extremely small or
large values of S1, S2, or S12. However, again, this may not be a problem in practice if, in the Monte Carlo
procedure, only a small proportion of paths (if any) reaches the region where ρ(a,b) is capped to 1 or floored
to −1. See Section 10 for many numerical examples.

8. Price impact of correlation

Different choices of admissible ρ(a,b) will lead to different prices for exotic options on S1 and S2, while
still producing same prices for vanilla options on S1, vanilla options on S2, and vanilla options on the cross
rate S1/S2. In this section we analyze the impact of ρ(a,b) on the price of options on S1 and S2. This helps
developing an intuition of the model, and choosing the right model for pricing and hedging a given option.

8.1. The price impact formula. Here we follow a reasoning inspired by El Karoui et al. [12] and Dupire
[10]. We consider the option with payout g(S1

T , S
2
T ) in domestic currency (USD in our example) at maturity

T . Let us pick a correlation function ρ0(t, S1, S2), and denote by P0(t, S1, S2) the corresponding pricing
function in domestic currency (ModelMρ0). P0 is solution to the backward PDE

(∂t + L)P0 = 0 (8.1)
P0(T, S1, S2) = g(S1, S2) (8.2)
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where

L =
1

2
σ2
1(t, S1)(S1)2∂2S1 +

1

2
σ2
2(t, S2)(S2)2∂2S2 + ρ0(t, S1, S2)σ1(t, S1)σ2(t, S2)S1S2∂2S1S2

+ (rdt − r1t )S1∂S1 + (rdt − r2t )S2∂S2 − rdt ·

We apply Itô’s formula to the function P0 and a process (S1
t , S

2
t ) whose dynamics derive, not from ρ0, but

from a general correlation process ρt (ModelMρt). Using (8.1) and (8.2), we have

Dd
0T g(S1

T , S
2
T )− P0(0, S1

0 , S
2
0)

=

ˆ T

0

Dd
0t

(
∂tP0(t, S1

t , S
2
t ) +

1

2
σ2
1(t, S1

t )(S1
t )2∂2S1P0(t, S1

t , S
2
t )

+
1

2
σ2
2(t, S2

t )(S2
t )2∂2S2P0(t, S1

t , S
2
t ) + ρtσ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P0(t, S1

t , S
2
t )

+(rdt − r1t )S1
t ∂S1P0(t, S1

t , S
2
t ) + (rdt − r2t )S2

t ∂S2P0(t, S1
t , S

2
t )− rdtP0(t, S1

t , S
2
t )
)
dt+Mt

=

ˆ T

0

Dd
0t(ρt − ρ0(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P0(t, S1

t , S
2
t )dt+Mt

where Dd
0T = exp

(
−
´ T
0
rdt dt

)
is the (deterministic) discount factor and

Mt =

ˆ T

0

Dd
0t∂S1P0(t, S1

t , S
2
t )σ1(t, S1

t )S1
t dW

1
t +

ˆ T

0

Dd
0t∂S2P0(t, S1

t , S
2
t )σ2(t, S2

t )S2
t dW

2
t

is a local martingale under the risk-neutral measure Q. Assuming that it is a true martingale and taking
expectations, we get

Dd
0TEQ

ρt [g(S1
T , S

2
T )]− P0(0, S1

0 , S
2
0)

= EQ
ρt

[ˆ T

0

Dd
0t(ρt − ρ0(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P0(t, S1

t , S
2
t )dt

]
(8.3)

We use the notation EQ
ρt to emphasize that the process (S1

t , S
2
t ) is simulated under Model Mρt . This is

interpreted as follows: the price difference between ModelMρt and ModelMρ0 is the expected value of the
integrated discounted tracking error, where the instantaneous tracking error at date t

εt ≡ (ρt − ρ0(t, S1
t , S

2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P0(t, S1

t , S
2
t )

consists of the spread of the two correlations times the Mρ0-cross gamma ∂2S1S2P0, times the product of
(normal) volatilities σ1σ2S1S2, where all terms are evaluated at the spots (S1

t , S
2
t ) defined by Model Mρt .

The interpretation as an error comes from the fact that εtdt is the infinitesimal P&L between t and t + dt
of a delta-hedged long position in one option, when one uses the pricing function P0 and the corresponding
deltas ∂S1P0, ∂S2P0, derived from ModelMρ0while the actual dynamics of the assets is given by ModelMρt .
Equation (8.3) has several interesting consequences that we address below in Sections 8.2, 8.3, and 8.4.

8.2. Equivalent local correlation. From (8.3), by conditioning on (S1
t , S

2
t ), we get

Dd
0TEQ

ρt [g(S1
T , S

2
T )]− P0(0, S1

0 , S
2
0)

= EQ
ρt

[ˆ T

0

Dd
0t(ρloc(t, S

1
t , S

2
t )− ρ0(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P0(t, S1

t , S
2
t )dt

]
(8.4)

where

ρloc(t, S
1
t , S

2
t ) ≡ EQ

ρt [ρt|S
1
t , S

2
t ]

is the equivalent local correlation. From Gyöngy’s theorem [18], we know that the model, say Mρloc , that
uses local correlation function ρloc generates the same distributions for (S1

t , S
2
t ) as ModelMρt , for all t. This
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can be easily rederived by applying (8.4) with the modelMρloc playing the role ofMρ0 :

Dd
0TEQ

ρt [g(S1
T , S

2
T )]− Pρloc(0, S1

0 , S
2
0)

= EQ
ρt

[ˆ T

0

Dd
0t(ρloc(t, S

1
t , S

2
t )− ρloc(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρloc(t, S

1
t , S

2
t )dt

]
= 0

This proves that all vanilla payoffs g(S1
T , S

2
T ) have identical prices in modelsMρt andMρloc , i.e., (S1

T , S
2
T )

have identical distributions under Q in both models.

8.3. Implied correlation. Equation (8.3), or equivalently Equation (8.4), also allows us to define the implied
correlation. Given a general modelMρt and a payoff g(S1

T , S
2
T ), we define the implied correlation ρ(T, g) as

the value of the constant correlation such that the option has same price in Model Mρt and in the model
with constant correlation function, i.e., such that

EQ
ρt

[ˆ T

0

Dd
0t(ρt − ρ(T, g))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρ(T,g)(t, S

1
t , S

2
t )dt

]
= 0

or, equivalently,

ρ(T, g) =
EQ
ρt

[´ T
0
ρtD

d
0tσ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρ(T,g)(t, S

1
t , S

2
t )dt

]
EQ
ρt

[´ T
0
Dd

0tσ1(t, S1
t )σ2(t, S2

t )S1
t S

2
t ∂

2
S1S2Pρ(T,g)(t, S

1
t , S

2
t )dt

] (8.5)

This is similar to Dupire’s expression of implied volatility as a weighted average of the spot volatility [10].
Note that (8.5) is a fixed point equation, because the right hand side depends on ρ(T, g) as well through
the cross gamma ∂2S1S2Pρ(T,g). If (8.5) admits a unique solution, then the implied correlation exists and is
uniquely defined.

Following Guyon and Henry-Labordère [15], one can estimate the implied correlation by estimating the
fixed point of the mapping

ρ 7→
ˆ T

0

ˆ ∞
0

ˆ ∞
0

ρloc(t, S
1, S2)qρ(t, S

1, S2)dS1dS2dt

where

qρ(t, S
1, S2) =

Dd
0tσ1(t, S1)σ2(t, S2)S1S2∂2S1S2Pρ(t, S

1, S2)p(t, S1, S2)´ T
0

´∞
0

´∞
0
Dd

0t∗
σ1(t∗, S1

∗)σ2(t∗, S2
∗)S

1
∗S

2
∗∂

2
S1S2Pρ(t∗, S1

∗ , S
2
∗)p(t∗, S

1
∗ , S

2
∗)dS

1
∗dS

2
∗dt∗

with p(t, S1, S2) the probability density function of (S1
t , S

2
t ) when the correlation is ρt, or, equivalently,

ρloc(t, S
1
t , S

2
t ). Of course the density p(t, S1, S2) is unknown - otherwise we could compute exactly the price

of the option. One way to estimate the implied correlation is to compute the fixed point of the approximate
mapping where p(t, S1, S2) is replaced by some explicit estimate p̂(t, S1, S2). In the particular case where
the instantaneous volatilities and correlation are constant, the weight qρ(t, S1, S2) is known explicitly for the
payoff g(S1

T , S
2
T ) = (S1

T − KS2
T )+. Figure 8.1 shows the graphs of (S1, S2) 7→ qρ(t, S

1, S2) for increasing
values of t, from 0 to T .

Following Gatheral [13] (see also [15]), we can get an alternative expression for the implied correlation by
considering the situation where the local correlation function ρ(t) is a deterministic function of time only.
The option has the same price in ModelMρt and in this model if and only if

ˆ T

0

Dd
0tEQ

ρt

[
(ρt − ρ(t))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρ(t)(t, S

1
t , S

2
t )
]
dt = 0

There is a unique function ρ(t) ≡ ρ(t;T, g) such that, not only the time integral is zero, but also the integrand
vanishes for each time slice t:

ρ(t;T, g) =
EQ
ρt

[
ρtσ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρ(t;T,g)(t, S

1
t , S

2
t )
]

EQ
ρt

[
σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2Pρ(t;T,g)(t, S

1
t , S

2
t )
]
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Figure 8.1. Graphs of (S1, S2) 7→ qρ(t, S
1, S2) for increasing values of t. Black-Scholes

model: σ1 = 20%, σ2 = 20%, ρ = 0, S1
0 = 100, S2

0 = 100. Payoff g(S1
T , S

2
T ) = (S1

T −KS2
T )+,

K = 1.3, T = 1.

Note that this is again a fixed point equation, because the right hand side depends on ρ(t;T, g) through the
cross gamma ∂2S1S2Pρ(t;T,g). In the particular case where σ1(t, S1

t ) = σ1(t) and σ2(t, S2
t ) = σ2(t) depend only

on time (no volatility skew on S1 and S2), then

ρ(T, g) =

´ T
0
ρ(t;T, g)σ1(t)σ2(t)dt´ T

0
σ1(t)σ2(t)dt

=

´ T
0

EQ
ρt

[ρtS1
tS

2
t ∂

2
S1S2Pρ(t;T,g)(t,S

1
t ,S

2
t )]

EQ
ρt [S1

tS
2
t ∂

2
S1S2Pρ(t;T,g)(t,S

1
t ,S

2
t )]

σ1(t)σ2(t)dt

´ T
0
σ1(t)σ2(t)dt

(8.6)

In the even more particular case where σ1 and σ2 are constant, this reads

ρ(T, g) =
1

T

ˆ T

0

EQ
ρt

[
ρtS

1
t S

2
t ∂

2
S1S2Pρ(t;T,g)(t, S

1
t , S

2
t )
]

EQ
ρt

[
S1
t S

2
t ∂

2
S1S2Pρ(t;T,g)(t, S

1
t , S

2
t )
] dt (8.7)

Equations (8.6) and (8.7) are similar to Gatheral’s formula for the implied volatility (see [13, 15]). Note
however that we had to assume no skew on S1 and S2 to derive them. When S1 or S2 have a skew, we can
no longer easily link the implied volatility ρ(T, g) to ρ(t;T, g). Equation (8.7) looks like Equation (8.5) but
actually differs in two ways: (i) Equation (8.7) involves a time average of a space average, whereas Equation
(8.5) involves a joint time and space average, and (ii) The cross gammas involved in both equations slightly
differ: Equation (8.7) uses the cross gamma computed with time-dependent correlation ρ(t;T, g), whereas
Equation (8.5) uses the cross gamma computed with constant correlation ρ(T, g).

8.4. Impact of correlation on price. For a given option, Equation (8.3) helps understand the impact on
the option price of a particular choice of local correlation function. Basically, high option prices correspond
to local correlation functions that are large in the region where the cross gamma is positive, and small (i.e.,
close to −1) in the region where the cross gamma is negative. Of course the cross gamma depends on the
particular model picked. Equation (8.3) states that to compute the price difference between ModelMρt and
reference Model Mρ0 you may compute the right hand side expectation where (S1

t , S
2
t ) is simulated under

ModelMρt and the cross gamma is computed under ModelMρ0 . Actually, in the case when the process ρt
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is a local correlation process ρ1(t, S1
t , S

2
t ), the roles ofMρ0 andMρ1 can be swapped:

Dd
0TEQ

ρ0 [g(S1
T , S

2
T )]− P1(0, S1

0 , S
2
0)

= EQ
ρ0

[ˆ T

0

Dd
0t(ρ0(t, S1

t , S
2
t )− ρ1(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P1(t, S1

t , S
2
t )dt

]
or, equivalently,

P1(0, S1
0 , S

2
0)− P0(0, S1

0 , S
2
0)

= EQ
ρ0

[ˆ T

0

Dd
0t(ρ1(t, S1

t , S
2
t )− ρ0(t, S1

t , S
2
t ))σ1(t, S1

t )σ2(t, S2
t )S1

t S
2
t ∂

2
S1S2P1(t, S1

t , S
2
t )dt

]
Stated otherwise, to compute the price difference between two local correlation modelsMρ1 andMρ0 , you
may compute the expected value of the integrated tracking error where:

• either (S1
t , S

2
t ) is simulated under ModelMρ1 and the cross gamma is computed under ModelMρ0 ,

• or (S1
t , S

2
t ) is simulated under ModelMρ0 and the cross gamma is computed under ModelMρ1 .

8.5. Uncertain correlation model. The highest possible price for payoff g, given local volatility dynamics
for S1 and S2, is

Dd
0T sup

ρt∈R
EQ
ρt [g(S1

T , S
2
T )]

where R denotes the set of all adapted stochastic processes taking values in [−1, 1]. It is given by the solution
P (0, S1

0 , S
2
0) to the (nonlinear) Hamilton-Jacobi-Bellman (HJB) equation:

∂tP +
1

2
σ2
1(t, S1)(S1)2∂2S1P +

1

2
σ2
2(t, S2)(S2)2∂2S2P + sup

ρ∈[−1,1]

{
ρσ1(t, S1)σ2(t, S2)S1S2∂2S1S2P

}
+(rdt − r1t )S1∂S1P + (rdt − r2t )S2∂S2P − rdtP = 0

P (T, S1, S2) = g(S1, S2)

that is,

∂tP +
1

2
σ2
1(t, S1)(S1)2∂2S1P +

1

2
σ2
2(t, S2)(S2)2∂2S2P + ρ

(
∂2S1S2P

)
σ1(t, S1)σ2(t, S2)S1S2∂2S1S2P (8.8)

+(rdt − r1t )S1∂S1P + (rdt − r2t )S∂2S2P − rdtP = 0

P (T, S1, S2) = g(S1, S2)

where

ρ (Γ) =

{
+1 if Γ ≥ 0

−1 otherwise

As expected from (8.3), the highest option price correspond to the local correlation function that is worth
+1 in the region where the cross gamma is positive, and −1 in the region where the cross gamma is negative.
Here, for consistency, the cross gamma must be computed within this extremal modelMHJB, i.e., by solving
(8.8). Symmetrically, the lower bound

Dd
0T inf

ρt∈R
Eρt [g(S1

T , S
2
T )]

is given by P (0, S1
0 , S

2
0), where P is solution to the (nonlinear) HJB equation

∂tP +
1

2
σ2
1(t, S1)(S1)2∂2S1P +

1

2
σ2
2(t, S2)(S2)2∂2S2P − ρ

(
∂2S1S2P

)
σ1(t, S1)σ2(t, S2)S1S2∂2S1S2P (8.9)

+(rdt − r1t )S1∂S1P + (rdt − r2t )S∂2S2P − rdtP = 0

P (T, S1, S2) = g(S1, S2)
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9. The equity index smile calibration problem

Let us now see to which extent the reasoning presented above in Sections 2 and 3 for the FX smile triangle
calibration problem can be extended to the N -dimensional equity index smile calibration problem. Let us
consider an index It =

∑N
i=1 αiS

i
t made of N weighted stocks, each of which modeled using its own local

volatility:
dSit = rtS

i
t dt+ σi(t, S

i
t)S

i
t dW

i
t , d〈W i,W j〉t = ρij(t, St)dt (9.1)

The interest rate rt is deterministic; {W i} denotes a multi-dimensional Brownian motion with an instanta-
neous correlation function of the time and the N stock values St =

(
S1
t , . . . , S

N
t

)
. This model is calibrated

to the index smile if and only if (see proof in the appendix)

I2t σ
I
Dup(t, It)

2 = Eρ

 N∑
i,j=1

αiαjρij(t, St)σi(t, S
i
t)σj(t, S

j
t )S

i
tS

j
t

∣∣∣∣∣∣ It
 (9.2)

where σIDup denotes the Dupire local volatility of the index. To ease notations, let us denote by

vρ(t, St) =

N∑
i,j=1

αiαjρij(t, St)σi(t, S
i
t)σj(t, S

j
t )S

i
tS

j
t

the instantaneous (normal) variance of the basket of stocks within Model (9.1). Then Equation (9.2) simply
reads

I2t σ
I
Dup(t, It)

2 = Eρ [vρ(t, St)| It] (9.3)

Remark 7. It is tempting but wrong to believe that in order to exclude arbitrage opportunities we must have
the stronger statement I2t σIDup(t, It)

2 = vρ(t, St) at each point in time. This is incorrect in two ways. First,
only the conditional expected value of the basket variance given the index value matters. Second, if no ρ
satisfies (9.3), it does not mean that arbitrage opportunities exist, but only that prices are inconsistent with
local volatilities-local correlation modeling, and that one has to consider more general models, for instance
models that include stochastic volatility.

Let C denote the set of functions ρ(t, S) taking values in the set of correlation matrices. Any function ρ ∈ C
satisfying (9.3) will be called an “admissible correlation.” We aim at identifying families of admissible
correlations. Let ρ ∈ C be admissible. It is made of N(N − 1)/2 parameters (the off-diagonal entries)
satisfying one scalar equation, so we reduce the dimension of the problem by assuming that ρ(t, S) lies on the
line defined by two given correlation matrices ρ0(t, S) and ρ1(t, S) that may depend on (t, S) but are usually
taken to be constant:

ρ(t, S) = (1− λ(t, S))ρ0(t, S) + λ(t, S)ρ1(t, S), λ(t, S) ∈ R
When λ = 0, ρ = ρ0; when λ = 1, ρ = ρ1. If λ ∈ [0, 1], ρ is guaranteed to be a correlation matrix, because
the set of correlation matrices is convex. When ρ0 (resp. ρ1) does not belong to the boundary of the set of
correlation matrices, ρ may be a correlation matrix even if λ < 0 (resp. λ > 1). With this specification of
ρ(t, S), (9.3) reads

I2t σ
I
Dup(t, It)

2 = Eρ
[
vρ0(t, St) +

(
vρ1(t, St)− vρ0(t, St)

)
λ(t, St)

∣∣ It]
Let us now pick two functions a and b such that b does not vanish and

a(t, St) + b(t, St)λ(t, St) ≡ f(t, It)

is local in index, i.e., is a function of (t, It) only, say f(t, It). We can always do so, by choosing for instance
b ≡ 1 and a(t, St) = f(t, It)− λ(t, St) for some function f . Then

I2t σ
I
Dup(t, It)

2 = (a+ bλ) (t, It)Eρ
[
vρ1 − vρ0

b

∣∣∣∣ It]+ Eρ
[
vρ0 −

a

b

(
vρ1 − vρ0

)∣∣∣ It]
and λ = λ(a,b) satisfies the self-consistency equation

ρ(a,b) ≡ (1− λ(a,b))ρ0 + λ(a,b)ρ
1 ∈ C (9.4)

λ(a,b)(t, St) =
1

b(t, St)

I2t σIDup(t, It)
2 − Eρ(a,b)

[
vρ0(t, St)− a(t,St)

b(t,St)

(
vρ1(t, St)− vρ0(t, St)

)∣∣∣ It]
Eρ(a,b)

[
1

b(t,St)

(
vρ1(t, St)− vρ0(t, St)

)∣∣∣ It] − a(t, St)
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Figure 10.1. Surfaces of local volatilities σ1, σ2 and σ12

Conversely, if a function λ(a,b) satisfies both conditions in (9.4), then ρ(a,b) is an admissible correlation. ρ(a,b)
is guaranteed to be PSD if λ(a,b) takes values in [0, 1]. We call the resulting model the “local in index a+bλ

model.” It also depends on the choice of ρ0 and ρ1.
The two existing approaches correspond to special cases of this formulation:
• a ≡ 0 and b ≡ 1: In this case one assumes that the linear combination parameter λ itself is local in

index. Then [16]

λ(0,1)(t, St) =
I2t σ

I
Dup(t, It)

2 − Eρ(0,1)
[
vρ0(t, St)

∣∣ It]
Eρ(0,1)

[
vρ1(t, St)− vρ0(t, St)

∣∣ It]
and we speak of the “local in index λ model.” If at some date t < T , ρ(0,1)(t, S) is not a correlation
matrix for some S, then the trial is a failure: ρ(0,1) is not admissible. In [26], the same model is
investigated but no explicit formula is given for λ(0,1); instead λ(0,1) is computed as the fixed point
of a mapping that requires computing basket implied volatilities at each iteration, which makes this
method slower. Precisely the mapping admits no fixed point when for some t, S, the candidate ρ(0,1)
exhibited in [16] is not PSD.

• a = vρ0 and b = vρ1 − vρ0 : In this case one assumes that the instantaneous variance of the index
within Model (9.1) is local in index, we denote λ(a,b) = λ∗ [25]:

λ∗(t, St) =
I2t σ

I
Dup(t, It)

2 − vρ0(t, St)

vρ1(t, St)− vρ0(t, St)

and we speak of the “local in index volatility model.” This is the only situation where no
estimation of conditional expectation (given the value of It) is needed. Note that λ∗ is well defined
even if the corresponding ρ∗ is not PSD. If at some date t < T , ρ∗(t, S) is not a correlation matrix
for some S, then ρ∗ is not admissible.

Another choice of (a, b) that respects the symmetry of the problem is the following:
• a ≡ 0 and b = vρ1 − vρ0 : In this case

λ(0,vρ1−vρ0 )(t, St) =
I2t σ

I
Dup(t, It)

2 − Eρ(0,v
ρ1

−v
ρ0

)

[
vρ0(t, St)

∣∣ It]
vρ1(t, St)− vρ0(t, St)

Remark 8. As already mentioned in Remark 4, our method allows to handle local correlations that depend
on path-dependent variables, like some running averages, moving averages, running maximums, running
minimums, etc. It is enough to add those path-dependent variables to the arguments of the functions a, b
and λ.

10. Numerical experiments on the FX triangle problem

10.1. Calibration. We have tested several “local in cross a + bρ models” on March 2012 market data in-
volving the three currencies USD, EUR and GBP, and using USD as domestic currency: S1 = EUR/USD,
S2 = GBP/USD, S12 = S1/S2 = EUR/GBP. For simplicity we have assumed zero interest rates. The
three surfaces of local volatilities are shown in Figure 10.1. Different pairs of functions (a, b) are tested. For
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Figure 10.2. a = 0, b = 1

Figure 10.3. a(t, S1, S2) = σ2
1(t, S1) + σ2

2(t, S2), b(t, S1, S2) = −2σ1(t, S1)σ2(t, S2)
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Figure 10.4. a = 0, b(t, S1, S2) = σ1(t, S1)σ2(t, S2)

each pair (a, b), the instantaneous correlation (S1, S2) 7→ ρ(T, S1, S2) at maturity (top left), and the instan-
taneous volatility (S1, S2) 7→

√
σ2
1(T, S1) + σ2

2(T, S2)− 2ρ(a,b)(T, S1, S2)σ1(T, S1)σ2(T, S2) of the cross rate
at maturity (top right), the repriced smile of the cross rate at maturity T (bottom left), and the scatter
plot of Monte Carlo sampled paths (S1

T , S
2
T ) (bottom right) are shown in Figures 10.2 through 10.16. In the

case when the instantaneous correlation ρ(a,b)(t, S1, S2) takes values above +1, we simply cap it to +1, we
highlight the corresponding (S1

T , S
2
T ) on the scatter plot with red circles, and we show the proportion of those

paths as a function of time on a fith graph.
We picked T = 1, and used the particle method described in Section 4 with N = 10, 000 Monte Carlo

paths and the time step ∆t = 1
80 . For the non-parametric regressions, we used the quartic kernel K(x) =

(1− x2)21{|x|≤1} and a bandwidth

h = κσ̄12S12
0

√
max(t, tmin)N−

1
5

where σ̄12 = 10% is a typical level for the volatility of S12, tmin = 0.25 and κ = 3. The conditional
expectations are computed on a grid GS,t of NS,t = max(NS

√
t,N ′S) values of the conditioning random
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Figure 10.5. a = 0, b(t, S1, S2) =
√
S1S2

variable S12 = S1/S2, with NS = 30 and N ′S = 15. We use the 1% and 99% quantiles of the distribution of
S12
t as the minimum and maximum values of the grid GS,t. Then the function

f

(
t,
S1

S2

)
= a(t, S1, S2) + b(t, S1, S2)ρ(t, S1, S2)

is interpolated using cubic splines and extrapolated in a flat way.
The bottom left graphs also show the market implied volatilities of the cross rate at maturity, as well as

the smiles produced by the constant correlation model for three values of constant correlation: 71%, 72%
and 73%. This allows to translate the calibration error in terms of correlation points. 72% is the value of the
constant correlation that fits the market value of the ATM implied volatility of the cross rate at maturity.

Figures 10.2 to 10.14 illustrate the variety of (at least almost) admissible correlations. Before we introduce
the local in cross a + bρ representation, one would only choose between two local correlations: the local in
cross correlation ρ(0,1) (Figure 10.2) or the correlation ρ∗ corresponding to a local in cross volatility of the
cross (Figure 10.3). Thanks to our local in cross a + bρ representation, among the variety of admissible
correlations that it produces, one can now pick one’s favourite depending on one’s criterion:
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Figure 10.6. a = 0, b(t, S1, S2) = min
(
S1

S1
0
, S

2

S2
0

)

• Match a view on the correlation skew, for instance match a value of

∆ρ ≡ ρ(T, 1.05S1
0 , 1.05S2

0)− ρ(T, 0.95S1
0 , 0.95S2

0)

• Reproduce some features of the historical shape of the correlation between the returns in S1and S2,
as a function of the values of S1and S2. Figure 10.17 shows what this shape looks like for EUR/USD
and GBP/USD over the periods January 2007-June 2013 (left) and January 2011-June 2013 (right).

• Fit the price of options on S1 and S2 (other than the payoffs (S1 −KS2)+ which are automatically
fitted to the market since the correlation is admissible). See Table 3 below.

For instance, one may fit a negative skew by using a = 0 and b = (S1S2)α with α > 0, see Figures 10.5
and 10.8. The larger α, the more negative the skew ∆ρ. However, too large values of α produce correlation
candidates that are not admissible. For instance, in Figure 10.5, we observe that we had to cap the correlation
to 1 for some small values of S1and S2. However, this is still acceptable in practice because only 0.3% of the
simulated spots undergo this capped correlation. Conversely, one may fit a positive skew by using a negative
value for α, see Figure 10.11.



A NEW CLASS OF LOCAL CORRELATION MODELS 20

Figure 10.7. a = 0, b(t, S1, S2) = max
(
S1

S1
0
, S

2

S2
0

)

If one observes that the historical correlation is large when the spots are low - which is typical in equity
markets - then one may slightly transform function b and use for instance b = min(S1, S2)2α, see Figures
10.6 and 10.9. This has almost no impact on the price of many products (see Table 3), but allows to
incorporate correlation impact in the delta hedge and avoids posting large remarking-to-market loss in case
of crisis. If, on the contrary, one wants to decrease correlation for low spot values, one may use for instance
b = max(S1, S2)2α, see Figures 10.7 and 10.10.

Choosing ρ(0,1) implies pricing vanishing correlation skew across lines where S1/S2 is constant, and may
not be desirable. Choosing ρ∗ may imply pricing and hedging with a correlation that varies strongly with
the spot values and which is highly asymmetric (see Figure 10.3). As expected from (6.1), the image of ρ(0,1)
is much narrower than the image of ρ∗: ρ(0,1) varies much less than ρ∗.

Note that, in this numerical example, the third financially natural correlation, namely the local in cross
covariance correlation, varies a lot (and the volatility of S1/S2 as well) and has to be capped to 1 for S1

large and S2 around the money, and for S2 large and S1around the money. However, only around 0.5% of
the simulated paths are affected by the cap (see Figure 10.4).
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Figure 10.8. a = 0, b(t, S1, S2) = (S1S2)1/4

Figure 10.9. a = 0, b(t, S1, S2) =
√

min(S1, S2)
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Figure 10.10. a = 0, b(t, S1, S2) =
√

max(S1, S2)

An extreme admissible correlation is shown in Figure 10.12. From (6.4), we know that all admissible
correlations approximately share the same average value on each line where S1/S2 is constant. (This is exact
only when the two rates have no skew, and when the average is taken under Qf .) The correlation in Figure
10.12 was built so that the local correlation is very high and roughly constant when S1

S1
0

+ S2

S2
0
is lesser than

2, and very low and roughly constant when S1

S1
0

+ S2

S2
0
is greater than 2, and has the correct average value on

those lines where the cross is constant. A smoothed version using the tanh function is shown in Figure 10.13.
Eventually, Figure 10.14 shows that our new method allows to build very diverse admissible correlations,

here for instance a local correlation which is peaked around (S1
0 , S

2
0). As for Figures 10.15 and 10.16, they

illustrate that a wrong choice of functions (a, b) can lead to inadmissible correlations, with a high proportion
(resp. 22% and 16%) of correlations that have to be capped, resulting in a poor calibration of the smile of
the cross rate.

10.2. Pricing. To illustrate the impact of the local correlation model on the price of options, we have
considered the following three derivative products:

Min of calls : g(S1
T , S

2
T ) = min

((
S1
T

K1
− 1

)
+

,

(
S2
T

K2
− 1

)
+

)
, K1 = S1

0 , K2 = S2
0

Put on worst : g(S1
T , S

2
T ) =

(
K −min

(
S1
T

S1
0

,
S2
T

S2
0

))
+

, K = 0.95

Put on basket : g(S1
T , S

2
T ) =

(
K −

(
S1
T

S1
0

+
S2
T

S2
0

))
+

, K = 1.8

The prices are shown in Table 3 for different admissible correlations. For each of these products, we can
build an intuition of the impact of the local correlation model on the price by looking at the instantaneous
correlation surfaces in Figures 10.2-10.13 and using the price impact formula (8.3). To this end, note that
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Figure 10.11. a = 0, b(t, S1, S2) = 1√
S1S2

the cross gammas of these options at maturity are simply proportional to the following Dirac masses:

Min of calls : δ

(
S2

K2
− S1

K1

)
1{ S1

K1≥1
}

Put on worst : − δ
(
S2

S2
0

− S1

S1
0

)
1{S1

T
S1
0
≤K

}

Put on basket : δ

(
S1

S1
0

+
S2

S2
0

−K
)

From (8.3), we expect the higher prices to correspond to local correlation surfaces that are:

• larger in the neighborhood of the half-line S1

S2 = K1

K2 , S1 ≥ K1, for the min of calls,

• smaller in the neighborhood of the half-line S1

S2 =
S1
0

S2
0
, S1 ≤ KS1

0 , for the put on worst,

• larger in the neighborhood of the segment S1

S1
0

+ S2

S2
0

= K, S1, S2 > 0, for the put on basket.
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Figure 10.12. a = 0, b(t, S1, S2) = 1.5 + 1{
S1

S1
0
+S2

S2
0
>2

}

Figure 10.13. a = 0, b(t, S1, S2) = 1.5 + 1
2

(
1 + tanh

(
10
(
S1

S1
0

+ S2

S2
0
− 2
)))
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Figure 10.14. a = 0, b(t, S1, S2) = 0.08 +
(
S1

S1
0
− 1
)2

+
(
S2

S2
0
− 1
)2

This is indeed verified. For these products, the highest and lowest prices always correspond to the local in
cross covariance correlation (Figure 10.4), and to the extreme correlation of Figure 10.12. This way, we have
provided a numerical partial answer to the difficult problem of determining the lower and upper bounds of
prices of options on (S1, S2) given the three surfaces of implied volatilities on S1, S2, and S1/S2, and the
corresponding models. The answer is only partial because here we have only considered local volatility models
(see Section 11 for a generalization to stochastic local volatility models) and a small number of admissible
local correlations ρ(a,b). Note that the range of prices is already quite large, from 2.37 to 2.91 for instance
for the min of calls, despite the fact that the three surfaces of implied volatilities are calibrated. In Table 3
we have also reported prices of a digital call on the cross rate with strike K = 1.1

S1
0

S2
0
and a double-no-touch

on the cross rate with barriers K1 = 0.9
S1
0

S2
0
and K2 = 1.1

S1
0

S2
0
. The derivation of lower and upper bounds of

prices of calls on the cross rate S1/S2 of maturity T given the two smiles at maturity T of S1and S2 and the
at-the-money implied volatility and skew of S1/S2 can be found in [20].

11. Generalization to stochastic volatility, stochastic interest rates, and stochastic
dividend yield

The FX triangle smile calibration problem. Let us show how to generalize the construction of
families of local correlation models for the FX triangle smile calibration problem in the presence of local
stochastic volatility, stochastic interest rates, and local correlation. For the sake of simplicity (see Remark
9 for a more general case), let us assume that the extra Brownian motions W 3, W 4, W 5 . . . that drive the
dynamics of the stochastic volatilities and the stochastic interest rates are independent of the two Brownian
motions W 1 and W 2 that drive the dynamics of (S1, S2). The correlation matrix of W 3, W 4, W 5 . . . is
assumed to be known and constant. Only the correlation between W 1 and W 2 is unknown; it is assumed to
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Figure 10.15. a = 0, b(t, S1, S2) = 0.02 +
(
S1

S1
0
− 1
)2

+
(
S2

S2
0
− 1
)2

be local:

dS1
t =

(
rdt − r1t

)
S1
t dt+ σ1(t, S1

t )a1tS
1
t dW

1
t

dS2
t =

(
rdt − r2t

)
S2
t dt+ σ2(t, S2

t )a2tS
2
t dW

2
t (11.1)

d〈W 1,W 2〉t = ρ(t, S1
t , S

2
t , a

1
t , a

2
t , D

d
0t, D

1
0t, D

2
0t) dt

a1t , a2t , rdt , r1t and r2t are Itô processes driven by the extra Brownian motions W 3, W 4, W 5 . . . The instan-
taneous correlation between W 1 and W 2 is assumed to depend not only on the FX rates S1

t and S2
t but

also on the stochastic volatilities a1t and a2t and on the (stochastic) discount factors Dd
0t, D1

0t and D2
0t:

2

Di
0t = exp

(
−
´ t
0
risds

)
. To keep notations short, we write ρ(t,Xt) with Xt = (S1

t , S
2
t , a

1
t , a

2
t , D

d
0t, D

1
0t, D

2
0t).

2The instantaneous correlation may also depend on rdt , r
1
t , r

2
t . It may actually depend on any Ft-measurable random variable,

including path-dependent variables (see Remark 4).
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Figure 10.16. a(t, S1, S2) = 3
√
S1S2, b(t, S1, S2) =

√
S1S2

Figure 10.17. Empirical state-dependency of correlation of EUR/USD and GBP/USD over
the period January 2007-June 2013 (left) and over the period January 2011-June 2013 (right).
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a b Min of calls Put on worst Put on basket DC on S12 DNT on S12

Standard deviation ≈ 0.020 ≈ 0.027 ≈ 0.027 ≈ 0.18 ≈ 0.22
Constant correlation 72% 2.59 3.47 1.88 21.18 57.97

0 1 2.65 3.49 1.91 20.53 58.02
σ2
1 + σ2

2 −2σ1σ2 2.53 3.37 1.99 20.46 58.17
0 σ1σ2 2.91 3.70 1.78 19.75 59.41
0 σ1 2.81 3.62 1.83 20.22 58.67
0 σ2 2.78 3.60 1.85 20.27 58.39
σ2
1 −2σ1σ2 2.67 3.51 1.91 20.47 58.12
σ2
2 −2σ1σ2 2.80 3.60 1.84 20.38 58.50
0

√
S1S2 2.56 3.41 1.95 20.48 58.11

0 max(S1, S2) 2.56 3.40 1.95 20.50 58.10
0 min(S1, S2) 2.56 3.41 1.95 20.46 58.15
0 (S1S2)1/4 2.61 3.45 1.93 20.45 58.09
0

√
max(S1, S2) 2.61 3.45 1.93 20.46 58.08

0
√

min(S1, S2) 2.61 3.45 1.93 20.44 58.10
0 1√

S1S2
2.74 3.56 1.87 20.41 58.21

0 1.5 + 1{
S1

S1
0
+S2

S2
0
>2

} 2.37 3.25 2.06 19.71 59.26

0 2 + 1
2 tanh

(
10
(
S1

S1
0

+ S2

S2
0
− 2
))

2.42 3.28 2.04 20.14 58.65
Table 3. Price in pct of the min of calls, put on worst, put on basket, digital call (DC)
on S12, and double-no-touch (DNT) on S12 for different admissible (or almost admissible)
correlations described by the pair of functions (a, b). We used the same 50, 000 = 10, 000 +
40, 000 Brownian paths for all choices of (a, b). The first 10,000 paths are those used for
calibration of the correlation.

First, the local volatility σ1(t, S1) is calibrated to the market smile of S1 using Propostion 10 in the
appendix with rt = rdt , qt = r1t and at = σ1(t, S1

t )a1t :

σ1(t,K)2
EQ[Dd

0t(a
1
t )

2|S1
t = K]

EQ[Dd
0t|S1

t = K]
= σ1

Dup(t,K)2 −
EQ
[
Dd

0t

(
rdt − r1t − (rd,0t − r

1,0
t )
)

1S1
t>K

]
1
2K∂

2
KC(t,K)

+
EQ
[
Dd

0t

(
r1t − r

1,0
t

) (
S1
t −K

)+]
1
2K

2∂2KC(t,K)

where rd,0t = −∂t lnP d0t, r
1,0
t = −∂t lnP 1

0t, and

σ1
Dup(t,K)2 =

∂tC1(t,K) + (rd,0t − r
1,0
t )K∂KC1(t,K) + r1,0t C1(t,K)

1
2K

2∂2KC1(t,K)

with C1(t,K) the market price of the call option on S1 with strikeK and maturity t; and likewise for σ2(t, S2).
This is achieved using the particle algorithm (see [16, 17]). The knowledge of the local correlation ρ(t,X)
between the two FX rates is not required at this step. Then ρ(t,X) is calibrated to the market smile of the
cross rate S12 by requiring that (see proof in the appendix)

EQf
ρ

[
D2

0t

((
σ1(t, S1

t )a1t
)2

+
(
σ2(t, S2

t )a2t
)2 − 2ρ(t,Xt)σ1(t, S1

t )a1tσ2(t, S2
t )a2t

) ∣∣S12
t = K

]
EQf
ρ [D2

0t |S12
t = K ]

= σ12
Dup(t,K)2 −

EQf
ρ

[
D2

0t

(
r2t − r1t − (r2,0t − r

1,0
t )
)

1S12
t >K

]
1
2K∂

2
KC(t,K)

+
EQf
ρ

[
D2

0t(r
1
t − r

1,0
t )(S12

t −K)+
]

1
2K

2∂2KC(t,K)
(11.2)
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for all (t,K), where D2
0t = exp

(
−
´ t
0
r2sds

)
, r1,0t and r2,0t are deterministic interest rates, and

σ12
Dup(t,K)2 =

∂tC(t,K) + (r2,0t − r
1,0
t )K∂KC(t,K) + r1,0t C(t,K)

1
2K

2∂2KC(t,K)

is the market local volatility of the cross rate S12 computed using the determimistic interest rates r1,0t and
r2,0t . C(t,K) is the market price of the call option on S12 with strike K and maturity t. Equation (11.2) is
equivalent to

EQ
ρ

[
Dd

0tS
2
t

((
σ1(t, S1

t )a1t
)2

+
(
σ2(t, S2

t )a2t
)2 − 2ρ(t,Xt)σ1(t, S1

t )a1tσ2(t, S2
t )a2t

) ∣∣S12
t = K

]
EQ
ρ

[
Dd

0tS
2
t |S12

t = K
]

= σ12
Dup(t,K)2 −

EQ
ρ

[
Dd

0t
S2
t

S2
0

(
r2t − r1t − (r2,0t − r

1,0
t )
)

1S12
t >K

]
1
2K∂

2
KC(t,K)

+
EQ
ρ

[
Dd

0t
S2
t

S2
0
(r1t − r

1,0
t )(S12

t −K)+
]

1
2K

2∂2KC(t,K)
(11.3)

and to

EQf,t
ρ

[(
σ1(t, S1

t )a1t
)2

+
(
σ2(t, S2

t )a2t
)2 − 2ρ(t,Xt)σ1(t, S1

t )a1tσ2(t, S2
t )a2t

∣∣S12
t = K

]
= σ12

Dup(t,K)2 − P 2
0t

EQf,t
ρ

[(
r2t − r1t − (r2,0t − r

1,0
t )
)

1S12
t >K

]
1
2K∂

2
KC(t,K)

+ P 2
0t

EQf,t
ρ

[
(r1t − r

1,0
t )(S12

t −K)+
]

1
2K

2∂2KC(t,K)
(11.4)

where Qf,t denotes the foreign t-forward measure: dQf,t
dQf =

D2
0t

P 2
0t
.

We say that a correlation ρ is admissible if Equation (11.2), or equivalently (11.3) or (11.4), holds. To
build the set of all admissible correlations, we easily extend the local in cross a+ bρ representation that was
presented in Section 3 in the following way: for an admissible ρ, pick two functions a(t,X) and b(t,X) such
that b does not vanish and

a(t,X) + b(t,X)ρ(t,X)

is local in cross, i.e., depends on X only through S12 ≡ S1/S2, where X = (S1, S2, a1, a2, Dd
0·, D

1
0·, D

2
0·). One

can always do so by choosing b ≡ 1 and a(t,X) = f
(
t, S12

)
− ρ(t,X) for some function f . Then (11.3) is

equivalent to

EQ
ρ

[
Dd

0tS
2
t

((
σ1(t, S1

t )a1t
)2

+
(
σ2(t, S2

t )a2t
)2

+ 2a(t,Xt)b(t,Xt)
σ1(t, S1

t )a1tσ2(t, S2
t )a2t

) ∣∣S12
t = K

]
EQ
ρ

[
Dd

0tS
2
t |S12

t = K
]

− 2 (a+ bρ) (t,K)
EQ
ρ

[
Dd

0tS
2
t
σ1(t,S

1
t )a

1
tσ2(t,S

2
t )a

2
t

b(t,Xt)

∣∣S12
t = K

]
EQ
ρ

[
Dd

0tS
2
t |S12

t = K
]

= σ12
Dup(t,K)2 −

EQ
ρ

[
Dd

0t
S2
t

S2
0

(
r2t − r1t − (r2,0t − r

1,0
t )
)

1S12
t >K

]
1
2K∂

2
KC(t,K)

+
EQ
ρ

[
Dd

0t
S2
t

S2
0
(r1t − r

1,0
t )(S12

t −K)+
]

1
2K

2∂2KC(t,K)

from which one gets ρ(t,X) = ρ(a,b)(t,X) ≡ f(t,S12)−a(t,X)

b(t,X) with f
(
t, S12

)
≡ Nf (t,S

12)
Df (t,S12) defined by

Nf (t,K) =
EQ
ρ(a,b)

[
Dd

0tS
2
t

((
σ1(t, S1

t )a1t
)2

+
(
σ2(t, S2

t )a2t
)2

+ 2a(t,Xt)b(t,Xt)
σ1(t, S1

t )a1tσ2(t, S2
t )a2t

) ∣∣S12
t = K

]
EQ
ρ(a,b)

[
Dd

0tS
2
t |S12

t = K
]

−σ12
Dup(t,K)2 +

EQ
ρ(a,b)
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0t
S2
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S2
0

(
r2t − r1t − (r2,0t − r

1,0
t )
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1S12
t >K

]
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2K∂

2
KC(t,K)

−
EQ
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Dd

0t
S2
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S2
0
(r1t − r

1,0
t )(S12
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1
2K

2∂2KC(t,K)

Df (t,K) = 2
EQ
ρ(a,b)

[
Dd

0tS
2
t
σ1(t,S

1
t )a

1
tσ2(t,S

2
t )a

2
t

b(t,Xt)

∣∣S12
t = K

]
EQ
ρ(a,b)

[
Dd

0tS
2
t |S12

t = K
]
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One can then compute ρ(a,b) using the particle method. Eventually one has to verify that ρ(a,b)(t,X) ∈ [−1, 1].
If this is not the case, one may cap and floor ρ(a,b) when needed and check how large is the resulting smile
calibration error.

Remark 9. One may wish to correlate the extra Brownian motions that drive the dynamics of the stochastic
volatilities and the stochastic interest rates, and the two Brownian motions that drive the dynamics of the
two FX rates. Here is one way to adapt the above method. Assume for simplicity that each of the extra
processes a1t , a2t , rdt , r1t and r2t is driven by exactly one extra Brownian motion. Pick a set C∗ of admissible
constant values for the 12 correlations

C(ρ) = {ρS1a1 , ρS1rd , ρS1r1 , ρa1rd , ρa1r1 , ρrdr1 , ρS2a2 , ρS2rd , ρS2r2 , ρa2rd , ρa2r2 , ρrdr2}

The first six correlations are used to calibrate σ1; the last six to calibrate σ2. Then one builds two full
correlation matrices ρ0 and ρ1 as follows: first one picks constant values for all the unspecified correlations
in the matrix except ρS1S2 . Those values can be arbitrary or inferred from historical data, and may make
the matrix fail to be PSD. Then one chooses the extremal value ρS1S2 = −1 (resp. 1) and projects the
resulting matrix onto the space of correlation matrices to get ρ0 (resp. ρ1). The projection method must
leave C(ρ) unchanged. This can be done by using weighted norms on matrices (see for instance [21]).
Then one assumes that the entire 7 × 7 correlation matrix ρ(t,X) lies on the line defined by ρ0 and ρ1:
ρ(t,X) = (1 − λ(t,X))ρ0 + λ(t,X)ρ1, picks two functions a(t,X) and b(t,X) (with b non-vanishing) and,
using the particle method, builds λ(a,b)(t,X) such that a+bλ(a,b) is local in cross and the calibration condition
(11.2) is satisfied, with ρ(t,Xt) replaced by (1 − λ(a,b)(t,Xt))ρ

0
12 + λ(a,b)(t,Xt)ρ

1
12. Then one has to verify

that λ(a,b) takes values in [0, 1]. Actually, any ρ0 and ρ1 for which C(ρ0) = C(ρ1) = C∗ will do the job: this
guarantees that the knowledge of ρ(t,X) is not needed during the first step of the calibration procedure, i.e.,
the calibration of σ1 and σ2, so that indeed the calibration procedure can be cut in two consecutive steps. It
is indeed desirable to calibrate σ1 and σ2 independently of “cross-correlations” such as ρS1S2 , ρS1a2 , ρS2a1 ...

The equity index smile calibration problem. Let us consider a model that combines local stochastic
volatility, stochastic interest rate, stochastic repo (inclusive of the dividend yield), and local correlation. Here
again let us assume for simplicity that the extra Brownian motions that drive the dynamics of the stochastic
volatilities, the stochastic interest rate, and the stochastic repos are independent of the Brownian motions
(W 1, . . . ,WN ) that drive the dynamics of the N stocks (S1, . . . , SN ). The correlation matrix of the extra
Brownian motions is assumed to be known and constant. Only the correlation of (W 1, . . . ,WN ) is unknown;
it is assumed to be local:

dSit = (rt − qit)Sit dt+ σi(t, S
i
t)a

i
tS
i
t dW

i
t , d〈W i,W j〉t = ρij(t,Xt)dt (11.5)

where rt, qit, ait are stochastic processes, Xt = (S1
t , . . . , S

N
t , a

1
t , . . . , a

N
t , D0t),3 and D0t = exp

(
−
´ t
0
rsds

)
.

First, the local volatilities σi(t, Si) are calibrated to the market smiles of the Si’s using Propostion 10 in
the appendix:

σi(t,K)2
E[D0t(a

i
t)

2|Sit = K]

E[D0t|Sit = K]
= σiDup(t,K)2 −

E
[
D0t

(
rt − qit − (r0t − q

i,0
t )
)

1Sit>K

]
1
2K∂

2
KCi(t,K)

+
E
[
D0t

(
qit − q

i,0
t

) (
Sit −K

)+]
1
2K

2∂2KCi(t,K)

where r0t = −∂t lnP0t, q
i,0
t = r0t − ∂t ln

fi,t0

Si0
(with f i,t0 the forward of maturity t), and

σiDup(t,K)2 =
∂tCi(t,K) + (r0t − q

i,0
t )K∂KCi(t,K) + qi,0t Ci(t,K)

1
2K

2∂2KCi(t,K)

where Ci(t,K) is the market price of the call option on Si with strike K and maturity t. This is achieved in
practice thanks to the particle algorithm [16, 17]. At this step the local correlation ρ(t,X) does not need to

3Xt may actually include any Ft-measurable random variable (see Remark 4).
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be known. Then ρ(t,X) is calibrated to the market smile of the index It =
∑N
i=1 αiS

i
t by requiring that (see

proof in the appendix)

Eρ[D0tvρ(t,Xt)|It = K]

Eρ[D0t|It = K]
= K2σIDup(t,K)2 −K

Eρ
[
D0t

(
rt − qt − (r0t − q0t )

)
1It>K

]
1
2∂

2
KC(t,K)

+
Eρ
[
D0t

(
qt − q0t

)
(It −K)

+
]

1
2∂

2
KC(t,K)

(11.6)

for all (t,K), where

vρ(t,Xt) =

N∑
i,j=1

αiαjρij(t,Xt)σi(t, S
i
t)a

i
tσj(t, S

j
t )a

j
tS

i
tS

j
t (11.7)

qt =

∑N
i=1 αiS

i
tq
i
t∑N

i=1 αiS
i
t

r0t and q0t are deterministic interest rate and repo, and

σIDup(t,K)2 =
∂tC(t,K) + (r0t − q0t )K∂KC(t,K) + q0t C(t,K)

1
2K

2∂2KC(t,K)

with C(t,K) the market price of the call option on I with strike K and maturity t.
Following the lines of Section 9, if one assumes that the correlation matrix lies on the line defined by two

correlation matrices ρ0 and ρ1, which may depend on (t,Xt),

ρ(t,Xt) = (1− λ(t,Xt))ρ
0(t,Xt) + λ(t,Xt)ρ

1(t,Xt), λ(t,Xt) ∈ R

then (11.6) reads

Eρ
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(
vρ0(t,Xt) + (vρ1 − vρ0)(t,Xt)λ(t,Xt)
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]
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+
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When one further assumes that there exist two functions a(t,X) and b(t,X) such that b does not vanish and
a+ bλ is local in index, then one has

Eρ
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from which one gets λ(t,X) = λ(a,b)(t,X) ≡ f(t,I)−a(t,X)
b(t,X) with f (t, I) ≡ Nf (t,I)

Df (t,I)
defined by

Nf (t,K) = K2σIDup(t,K)2 −K
Eρ(a,b)

[
D0t

(
rt − qt − (r0t − q0t )

)
1It>K

]
1
2∂

2
KC(t,K)

+
Eρ(a,b)

[
D0t

(
qt − q0t

)
(It −K)

+
]

1
2∂

2
KC(t,K)

−
Eρ(a,b)

[
D0t

(
vρ0(t,Xt)− a(t,Xt)

b(t,Xt)
(vρ1(t,Xt)− vρ0(t,Xt))

)
|It = K

]
Eρ(a,b) [D0t|It = K]

Df (t,K) =
Eρ(a,b)

[
D0t

vρ1 (t,Xt)−vρ0 (t,Xt)
b(t,Xt)

|It = K
]

Eρ(a,b) [D0t|It = K]

where ρ(a,b) = (1− λ(a,b))ρ0 + λ(a,b)ρ
1. One can then compute ρ(a,b) using the particle method. Eventually,

one has to verify that ρ(a,b)(t,X) is a true correlation matrix. If this is not the case, one may “cap” and “floor”
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ρ(a,b) (to ρ0 or ρ1) when needed and check how large is the resulting smile calibration error. It is very easy
to adapt Remark 9 to extend to cases where the extra Brownian motions are correlated with (W 1, . . . ,WN ).

12. Path-dependent volatility

In Remark 4 we noticed that the particle method easily accomodates path-dependent correlation. It is
easy to adapt this remark to build single asset path-dependent volatility models that calibrate to the smile.
In such a model,

dSt
St

= (rt − qt) dt+ σ(t, St, Xt) dWt (12.1)

where Xt stands for a set of path-dependent variables. The interest and repo rates rt and qt are assumed
deterministic. The vector Xt may for instance include the running average, a moving average, the running
minimum, the running maximum, the realized volatility on the past few days, etc. Hobson and Rogers [22]
suggested a model where Xt is a collection of exponentially weighted moments of past returns.

Path-dependent volatility models of type (12.1) have the very nice property of being complete so that,
unlike stochastic volatility models, prices are uniquely defined, independently of utility or preferences. The
path-dependency allows for dynamics for the spot and the implied volatility that are richer than those
produced by the local volatility model.

Assume that the market smile of S is arbitrage-free. How to calibrate σ to it? If Xt is void, the answer is
well known [9]: there is a unique solution σ(t, S) = σDup(t, S), called the local volatility of S, given by (14.3)
with r0t = rt and q0t = qt. This is the famous local volatility model. What if Xt includes some information
on the past of S? Assume that σ calibrates to the market smile of S. From Proposition 10 in the appendix,
this is equivalent to saying that

Eσ[σ(t, St, Xt)
2|St] = σ2

Dup(t, St) (12.2)

We then say that σ is admissible. Choose two functions a(t, S,X) and b(t, S,X) such that b does not vanish
and

a(t, S,X) + b(t, S,X)σ2(t, S,X)

is local in spot, i.e., depends on (S,X) only through S. One can always do so by picking b ≡ 1 and
a(t, S,X) = f(t, S)− σ2(t, S,X) for some local in spot function f . If σ(t, S,X) does not vanish, one can also
pick a ≡ 0 and b(t, S,X) = f(t,S)

σ2(t,S,X) . Then from (12.2)

(
a+ bσ2

)
(t, St)Eσ

[
1

b(t, St, Xt)

∣∣∣∣St]− Eσ
[
a(t, St, Xt)

b(t, St, Xt)

∣∣∣∣St] = σ2
Dup(t, St)

from which we get σ = σ(a,b) solution to

σ2
(a,b)(t, St, Xt) =

1

b(t, St, Xt)

σ2
Dup(t, St) + Eσ(a,b)

[
a(t,St,Xt)
b(t,St,Xt)

∣∣∣St]
Eσ(a,b)

[
1

b(t,St,Xt)

∣∣∣St] − a(t, St, Xt)

 (12.3)

We have thus proved that any admissible path-dependent σ is of the above type. Conversely, if a function
σ(a,b) satisfies (12.3), then it is an admissible path-dependent volatility. We call (12.3), the “local in cross
a+ bσ2 representation” of admissible path-dependent volatilities.

Note that, like (3.1), (12.3) is a circular equation: the two conditional expectations on the right hand
side depend on σ(a,b). To the best of our knowledge, the existence of the nonlinear stochastic differential
equations (SDEs) describing the calibrated models

dSt
St

= (rt − qt) dt+

√√√√√ 1

b(t, St, Xt)

σ2
Dup(t, St) + E

[
a(t,St,Xt)
b(t,St,Xt)

∣∣∣St]
E
[

1
b(t,St,Xt)

∣∣∣St] − a(t, St, Xt)

 dWt

is still an open mathematical question.
In practice, one may try to build a solution σ(a,b) using the particle method (see Section 4 and [16, 17]):
(1) Initialize k = 1 and set σ(a,b)(t, S,X) = σDup(0, S) for all t ∈ [t0 = 0; t1].
(2) Simulate (Sit)1≤i≤N from tk−1 to tk using a discretization scheme - say a log-Euler scheme.
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(3) For all S in a grid Gtk of spot values, compute non-parametric estimations Enum
tk

(S) and Eden
tk

(S)

of E
[
a(tk,Stk ,Xtk )

b(tk,Stk ,Xtk )

∣∣∣Stk = S
]
and E

[
1

b(tk,Stk ,Xtk )

∣∣∣Stk = S
]
, set f(tk, S) =

σ2
Dup(tk,S)+E

num
tk

(S)

Eden
tk

(S)
, in-

terpolate and extrapolate f(tk, ·), for instance using cubic splines, and, for all t ∈ [tk, tk+1], set

σ(a,b)(t, S,X) =
√

f(tk,S)−a(t,S,X)
b(t,S,X) .

(4) Set k := k + 1. Iterate steps 2 and 3 up to the maturity date T .

For a given pair (a, b), if at some point in time and for some path f(tk,S)−a(t,S,X)
b(t,S,X) is negative, i.e., σ2

(a,b) is
negative, this means that there is no admissible path-dependent volatility such that a+ bσ2 is local in spot.
However one can then floor σ2

(a,b)(t, S,X) to zero and carry on using the particle method until maturity.
Then one must check how bad the smile calibration is. It may happen that the path-dependent volatility has
to be floored on only a few paths, in which case the calibration error may be acceptable. We then say that
the path-dependent volatility is almost admissible.

Given a set X of path-dependent variables, the method offers a huge number of degrees of freedom,
namely the functions a and b, that can be used to build a path-dependent volatility that not only is (at least
almost) admissible, but also is better than the local volatility model at reproducing some historical features
of volatility, or calibrates to extra option prices, etc.

The generalization to stochastic volatility, stochastic interest rates, and stochastic dividend yield is
straightforward. Assume that

dSt
St

= (rt − qt) dt+ σ(t, St, Xt)αt dWt

where now rt and qt are Itô processes, as well as the stochastic volatility αt. From Proposition 10 in the
appendix, this model is calibrated to the market smile of S if and only if for all t,K

E[D0tσ
2(t, St, Xt)α

2
t |St = K]

E[D0t|St = K]
= σ2

Dup(t,K)−
E
[
D0t

(
rt − qt − (r0t − q0t )

)
1St>K

]
1
2K∂

2
KC(t,K)

+
E
[
D0t

(
qt − q0t

)
(St −K)

+
]

1
2K

2∂2KC(t,K)

where σDup is the Dupire local volatility computed using the deterministic rate r0t and the derministic dividend
yield q0t . Following the same reasoning as above, we have that in this model a path-dependent volatility σ(t,X)
calibrates to the smile of S (we say, is admissible) if and only if there exists two functions a(t, S,X) and
b(t, S,X) such that b does not vanish and σ satisfies the self-consistency equation σ2(t, S,X) = f(t,S)−a(t,S,X)

b(t,S,X)

with f(t,K) ≡ Nf (t,K)
Df (t,K) defined by

Nf (t,K) =
Eσ
[
a(t,St,Xt)
b(t,St,Xt)

D0tα
2
t

∣∣∣St = K
]

Eσ[D0t|St = K]

+σ2
Dup(t,K)−

Eσ
[
D0t

(
rt − qt − (r0t − q0t )

)
1St>K

]
1
2K∂

2
KC(t,K)

+
Eσ
[
D0t

(
qt − q0t

)
(St −K)

+
]

1
2K

2∂2KC(t,K)

Df (t,K) =
Eσ
[

D0tα
2
t

b(t,St,Xt)

∣∣∣St = K
]

Eσ[D0t|St = K]

Again one can use the particle method to check if a pair (a, b) gives rise to an admissible path-dependent
volatility. Some pairs (a, b) may be such that the self-consistency equation has no solution. Within the
particle method, this is reflected in the quantity f(t,S)−a(t,S,X)

b(t,S,X) being negative at some point in time and for
some simulated path.

13. Conclusion

Only two local correlation models have been proposed in the past in order to exactly calibrate to the smile
of a basket, be it a stock index, a cross FX rate, an interest rate spread, etc. Both models may actually fail to
calibrate the basket smile, and, even if they do not, they impose a particular shape of the correlation matrix
that one has no reason to undergo. In this article we have suggested a general procedure that produces a
whole family of local correlation models among which many calibrate to the basket smile. The two existing
models are just special points in the new family of models. We have also shown how to build admissible
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models that combine stochastic interest rates, stochastic dividend yield, local stochastic volatility, and local
correlation. This generality is reached at no cost : the usual particle method does the job. Our procedure
also easily adapts to build single asset path-dependent volatility models that calibrate to the market smile.
The huge number of degrees of freedom, represented by the two functions a and b, allows one to pick one’s
favorite correlation with desirable properties among the new family of admissible correlations. This way
we reconcile static calibration, i.e., calibration from snapshot of prices of options on basket, and dynamic
calibration, i.e., calibration from historical study of state-dependency of correlation. Our numerical tests
show the wide variety of admissible correlations and give insight on lower bounds/upper bounds on general
multi-asset option prices given the smile of a basket and the smiles of its constituents. The derivation of
the exact bounds; the derivation of conditions under which a triangle of surfaces of FX implied volatilities is
jointly arbitrage-free; and, when so, the derivation of conditions under which an admissible local correlation
does exist in theory, are three examples of important open questions that we leave for future work.
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14. Appendix: proofs

The following proposition gives a necessary and sufficient condition for a model to be calibrated to a given
smile, in the presence of stochastic volatility (possibly including some local volatility component, or even
some path-dependent volatility component), stochastic interest rates and stochastic dividend yield.

Proposition 10. Let us consider the following dynamics for an asset S, where the volatility at, the interest
rate rt, and the repo qt, inclusive of the dividend yield, are all stochastic processes:

dSt
St

= (rt − qt) dt+ at dWt (14.1)

Model (14.1) is exactly calibrated to the market smile of S if and only if

E[D0ta
2
t |St = K]

E[D0t|St = K]
= σ2

Dup(t,K)−
E
[
D0t

(
rt − qt − (r0t − q0t )

)
1St>K

]
1
2K∂

2
KC(t,K)

+
E
[
D0t

(
qt − q0t

)
(St −K)

+
]

1
2K

2∂2KC(t,K)
(14.2)

for all (t,K), where D0t = exp
(
−
´ t
0
rsds

)
is the discount factor, r0t and q0t are deterministic rates and repos,

and

σ2
Dup(t,K) =

∂tC(t,K) + (r0t − q0t )K∂KC(t,K) + q0t C(t,K)
1
2K

2∂2KC(t,K)
(14.3)

with C(t,K) the market price of the call option on S with strike K and maturity t.

Remark 11. The deterministic rate r0t is typically taken to be equal to −∂t lnP0t, with P0t the price at time 0
of a zero-coupon bond maturing at time t. Then one can infer a deterministic repo rate q0t from the forward
price f t0:

q0t = r0t − ∂t ln
f t0
S0

Proof. By applying Itô-Tanaka’s formula on a discounted vanilla call payoff with maturity t and strike K,
Pt ≡ D0t(St −K)+, we have:

dPt = −D0t(St −K)+rtdt+D0t1St>KSt ((rt − qt)dt+ atdWt) +
1

2
S2
t a

2
tD0tδ(St −K)dt

= D0t1St>K(rt − qt)Kdt−D0tqt(St −K)+dt+D0t1St>KatStdWt +
1

2
K2a2tD0tδ(St −K)dt

By taking the expectation E[·] on both sides of the above equation and assuming thatMt =
´ t
0
D0s1Ss>KasSsdWs

is a true martingale, we get

∂tCm(t,K) = KE[D0t(rt − qt)1St>K ]− E[D0tqt(St −K)+] +
1

2
K2σ(t,K)2E[D0ta

2
t δ(St −K)]

where Cm(t,K) = E[Pt] denotes the price of the call option in the model. Then, by using that ∂KCm(t,K) =
−E[D0t1St>K ] and ∂2KCm(t,K) = E[D0tδ(St −K)], we deduce that

∂tCm(t,K) = KE[D0t(rt − qt − (r0t − q0t ))1St>K ]− (r0t − q0t )K∂KCm(t,K)

− E[D0t(qt − q0t )(St −K)+]− q0t Cm(t,K) +
1

2
K2∂2KCm(t,K)

E[D0ta
2
t |St = K]

E[D0t|St = K]

with the initial condition Cm(0,K) = (S0 −K)+ so by uniqueness of the solution of this PDE the model is
calibrated to the market smile of S if and only if

∂tC(t,K) = KE[D0t(rt − qt − (r0t − q0t ))1St>K ]− (r0t − q0t )K∂KC(t,K)

− E[D0t(qt − q0t )(St −K)+]− q0t C(t,K) +
1

2
K2∂2KC(t,K)

E[D0ta
2
t |St = K]

E[D0t|St = K]

From the definition of σDup(t,K), this is equivalent to (14.2), which completes the proof. �
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The FX triangle smile calibration problem. Under Model (11.1), the dynamics of the cross rate
S12 = S1/S2 reads

dS12
t

S12
t

= (r2t − r1t ) dt+ σ1(t, S1
t )a1t dW

1,f
t − σ2(t, S2

t )a2t dW
2,f
t

where

W 1,f
t = W 1

t −
ˆ t

0

ρ(s,Xs)σ2(s, S2
s )a2s ds

W 2,f
t = W 2

t −
ˆ t

0

σ2(s, S2
s )a2s ds

are two Qf -Brownian motions, where Qf is the risk-neutral measure associated to the foreign currency in S2

(GBP in our example):
dQf

dQ
=
S2
T

S2
0

exp

(ˆ T

0

(
r2t − rdt

)
dt

)
≡ S2

T

S2
0

Dd
0T

D2
0T

From Proposition 10, Model (11.1) is calibrated to the smile of the cross rate if and only if (11.2) holds. In
the particular case of Model (2.1), where the interest rates are deterministic (r1t = r1,0t and r2t = r2,0t ), and
the volatilities are purely local (a1t = a2t ≡ 1), (11.2) boils down to (2.2).

The equity index smile calibration problem. Under Model (11.5), the dynamics of the index It =∑N
i=1 αiS

i
t reads

dIt = (rt − qt)It dt+
√
vρ(t,Xt) dWt

where qt and vρ are defined by (11.7) andW is a Brownian motion. From Proposition 10, the model is exactly
calibrated to the market smile of the index I if and only if (11.6) holds. In the particular case where the
interest rate is deterministic (rt = r0t ), and the repos are deterministic and equal (q1t = · · · = qNt = qt = q0t ;
in particular when this common value is zero), (11.6) boils down to (9.2).
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