
Journal of Empirical Finance 69 (2022) 285–302

i
g
(
a
o
r
f
u
c
(
a

y

h
R
A
0

Contents lists available at ScienceDirect

Journal of Empirical Finance

journal homepage: www.elsevier.com/locate/jempfin

Consumption risks in option returns✩

Shuwen Yang c,∗, Kevin Aretz a, Hening Liu a,b, Yuzhao Zhang d

a Accounting and Finance Group, Alliance Manchester Business School, the University of Manchester, Booth Street West, Manchester M15
6PB, UK
b School of Economics and Management, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, 221116, PR China
c PBC School of Finance, Tsinghua University, 43 Chengfu Road, Haidian District, Beijing, PR China
d AllianceBernstein L.P., New York, NY, 10105, USA

A R T I C L E I N F O

JEL classification:
G11
G12

Keywords:
Consumption growth
Option returns
Recursive utility
Volatility risk

A B S T R A C T

We offer evidence that exposures to consumption growth and consumption volatility are
significantly priced in the cross-section of delta-hedged option returns. Consumption growth
commands a positive risk premium, whereas consumption volatility commands a negative risk
premium. Our results suggest that consumption risk exposures provide rational foundations for
well-known relations between options moneyness or idiosyncratic underlying-stock volatility
and the cross-section of delta-hedged option returns. Furthermore, those risk premiums can also
price stocks. In a representative-agent economy with recursive preferences, our results suggest
that investors prefer early resolution of uncertainty.

1. Introduction

In the standard consumption-based asset pricing model (CCAPM) pioneered by Breeden (1979), the risk premium on an asset
s a multiple of its exposure to consumption risk, the covariance of the asset return with contemporaneous aggregate consumption
rowth. In long-run risk models with Epstein and Zin’s (1989) recursive preferences and richer dynamics of consumption growth
e.g., Bansal and Yaron (2004) and Gallant et al. (2019)), both expected consumption growth and consumption volatility are
lso priced. Most of the early studies in the consumption-based asset pricing literature focus on the impact of the first moment
f consumption growth on stocks (e.g., Lettau and Ludvigson (2001), Parker and Julliard (2005), and Yogo (2006)). More
ecently, Boguth and Kuehn (2013) stress the importance of consumption volatility for stocks. However, the consumption-based
ramework is, in theory, applicable to all traded assets, including options. Delta-hedged options are particularly sensitive to the
nderlying asset’s volatility, which is in turn determined by the fundamental consumption volatility. Option returns are related to
onsumption volatility in light of two strands of literature. First, empirical studies (Coval and Shumway (2001), Goyal and Saretto
2009), Cao and Han (2013), and Hu and Jacobs (2020)) show that stock volatility risk is priced in option returns. Second, theoretical
nalysis (Veronesi (1999), Bansal and Yaron (2004), and Drechsler and Yaron (2011)) suggests that consumption volatility is
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important for explaining the behavior of stock volatility. The strong connection between options and volatility provides us with
powerful test assets to identify the consumption volatility premium.

In our paper, we evaluate the ability of consumption risks to price delta-hedged call options. We show that consumption risks
offer rational explanations for the following well-known option anomalies. Bakshi and Kapadia (2003) document that delta-hedged
call returns are negative and low moneyness (out-of-the-money (OTM)) options have more negative returns. Cao and Han (2013)
discover that delta-hedged option returns are negative and decreasing in the idiosyncratic volatility of the underlying stock (IVOL).
The option portfolio with low moneyness and high IVOL loads more negatively on consumption growth and more positively on
consumption volatility than the option portfolio with high moneyness (in-the-money (ITM)) and low IVOL does. Using options
as test assets, we identify highly significant consumption growth and consumption volatility risk premiums which can also price
the cross-section of stock returns sorted on well-known characteristics including the market beta, size and valuation ratios. The
significant consumption growth premium supports the CCAPM. The negative and significant risk premium on consumption volatility
supports the recursive utility model featuring a preference for early resolution of uncertainty. That is, the elasticity of intertemporal
substitution (EIS) of the representative agent exceeds the inverse of relative risk aversion (RRA).

To better understand how consumption risks affect options, we study a delta-hedged call option in the representative-agent model
of Lettau et al. (2008). In that model, consumption growth follows a Markov-switching process in which the mean growth rate and
the volatility of the innovation shock are characterized by two independent Markov chains. The representative agent has Epstein
and Zin’s (1989) recursive preferences that disentangle RRA and EIS. The agent cannot observe the state of the economy but has to
learn about it by observing realized consumption growth. The agent updates beliefs according to Bayes’ rule. It can be shown that
the log-linearized pricing kernel is an affine function of consumption growth and its conditional mean and conditional volatility. We
adopt this consumption process instead of the long-run risk model in Bansal and Yaron (2004) because Bayesian learning embedded
in the model generates time-series estimates of expected consumption growth and consumption volatility. Using the impulse response
analysis, we show that when the EIS is greater than the inverse of RRA, a realized shock to consumption growth lowers the price of
a call option written on the underlying stock despite raising the option’s implied volatility. The call option’s loss, however, is lower
than the gain from shorting delta stocks because the call option price is convex in the underlying stock’s price and because the
implied volatility increases in response to the shock. Thus, the value of the delta-hedged option (which is long the call option and
short delta stocks) increases, implying that the delta-hedged option is negatively exposed to consumption growth and its conditional
mean but is positively exposed to consumption volatility.

To test these asset pricing implications, we estimate the Markov-switching model and obtain estimates of the conditional mean
and volatility of consumption growth. We sort options into portfolios based on stock or option characteristics that generate a spread
in average option returns and test whether the spread in returns can be explained by betas with respect to sources of consumption
risk. We use firm-level IVOL and option moneyness as sorting variables because Cao and Han (2013) show that IVOL is negatively
related to delta-hedged option returns, and in addition, Bakshi and Kapadia (2003) discover a positive relation between delta-hedged
call option returns and options moneyness. To match the quarterly consumption data, we choose a cross-section of options with
times-to-maturity between about three to six months at the end of each quarter. Our time-to-maturity choice guarantees that the
options expire after the end of the coming quarter and confines the times-to-maturity to be within a reasonable range. We then
compute the quarterly return of a portfolio that buys one call option and delta-hedges it with the underlying stock. Delta-hedging
the option neutralizes the effect of movements in the underlying stock’s price on option returns, ensuring that our results do not
simply hinge on stock returns. We finally form 16 equally-weighted delta-hedged call option portfolios sorted independently on the
underlying stock’s IVOL and options moneyness.

In line with existing studies (e.g., Cao and Han (2013)), the mean returns of our constructed delta-hedged option portfolios
are all negative. We provide a macroeconomic-based explanation for this result. Most of the portfolios have negative exposures
toward consumption growth. According to the CCAPM, investors accept a lower or even negative return when an asset pays off
in adverse macroeconomic conditions. Moreover, we find that our constructed delta-hedged option portfolios all have positive
consumption volatility exposures. Taken together, our results suggest that the delta-hedged option portfolios are countercyclical
assets accommodating investors’ hedging concerns and thus have negative returns on average. We also find that the exposures of
the option portfolios to consumption growth risk (consumption volatility risk) become more negative (positive) at higher IVOL levels,
implying that options written on higher IVOL stocks offer better protection against adverse conditions featuring low consumption
growth or high uncertainty.

Using both Fama–MacBeth (Fama and MacBeth (1973), henceforth FM) regressions and Hansen’s (1982) generalized method of
moments (GMM), we find that the consumption growth and volatility risk exposures are priced in options and the two methods
generate consistent risk premium estimates. The estimated consumption growth risk premium is positive and significant, while
the estimated consumption volatility risk premium is negative and significant. The intercepts from the FM regressions are all
insignificantly different from zero. The GMM overidentifying restrictions test fails to reject the Euler equation, which is based on
the observation that the stochastic discount factor (SDF) is approximately affine in the state variables. These results are consistent
with Jagannathan and Wang (2007) and Boguth and Kuehn (2013) who investigate the cross-section of stock returns. The two
sources of consumption risks both contribute to the negative delta-hedged option returns and explain over 45% of the cross-sectional
variation in option returns. In relation to the consumption-based model, the positive premium on consumption growth suggests that
investors are risk averse, while the negative premium on consumption volatility implies that investors prefer early resolution of
uncertainty (EIS > 1/RRA).

To examine whether consumption risk premiums estimated from options can price stocks, we first compare the average returns
of the market portfolio and the Fama–French 25 size-value stock portfolios with those predicted by our estimated consumption risk
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premiums. We estimate each stock portfolio’s exposures to consumption growth and the changes in mean growth and consumption
volatility, and calculate the predicted mean returns of each portfolio via combining those exposures with the consumption risk
premiums estimated from options. The correlation between the mean portfolio returns in the data and those implied by our estimates
of the consumption risk premiums is 0.54. More formally, we use GMM to test implications from the Euler equation using the joint
cross-section of the 16 option portfolios and the 25 size-value stock portfolios as test assets. The consumption growth and its volatility
are significantly priced, with risk premiums being quantitatively similar to those obtained using only option portfolios as test assets.
Moreover, the expected consumption growth is also significantly priced, which indicates that adding stock portfolios helps us to
identify prices of shocks to expected consumption growth.

Our work contributes to the literature on the cross-section of option returns as well as studies on time-varying economic
uncertainty. Cao and Han (2013) show that delta-hedged option returns decrease with the underlying stock’s IVOL. They argue
that options written on high IVOL stocks are more difficult to hedge, inducing dealers to charge a higher premium in the presence
of limits to arbitrage. The question remains why investors are willing to pay the extra premium. Our analysis complements theirs
by showing that the options written on high IVOL stocks provide a better hedge against adverse macroeconomic conditions, making
investors willing to accept low or even negative returns. Hu and Jacobs (2020) show that returns on call (put) stock-option portfolios
decrease (increase) with the underlying stock volatility.1 By mainly using variance swaps, Dew-Becker et al. (2017) find that
shocks to expected aggregate stock market volatility are not priced beyond one quarter. Our work is different from theirs in the
following aspects: (1) Dew-Becker et al. (2017) study variance swaps and synthetic variance swaps on the S&P 500 index, while
we study the cross-section of options written on individual stocks; (2) we use consumption data to estimate the time-series of
consumption volatility and the associated risk premium rather than assessing the performance of calibrated consumption-based
models in matching the term structure of variance risk implied by variance swaps. Existing studies such as Drechsler and Yaron
(2011), Boguth and Kuehn (2013), Romeo (2015), and Liu and Zhang (2022) emphasize the importance of time-varying economic
uncertainty and a preference for early resolution of uncertainty in explaining the behavior of stock returns. Our paper complements
these studies by providing empirical support using option returns.

The rest of our paper is organized as follows. Section 2 introduces the theoretical model motivating our empirical analysis. In
Section 3, we use numerical analysis to study the impacts of consumption risks on delta-hedged option returns. In Section 4, we test
whether loadings on consumption growth and changes in its conditional moments forecast the cross-section of delta-hedged option
returns. Section 5 summarizes and concludes. The Internet Appendix contains additional derivations and empirical results.

2. The model

In this section, we briefly introduce the consumption-based model of Lettau et al. (2008). In the model, the growth rate of
consumption follows a Markov-switching process, and the representative agent has the recursive preferences of Epstein and Zin
(1989). We next follow Boguth and Kuehn (2013) in linearizing the SDF to derive an equation for expected returns. We use the
model to guide our empirical analysis.

2.1. Consumption dynamics

We follow McConnell and Perez-Quiros (2000) and Lettau et al. (2008) and assume that consumption growth follows a Markov-
switching process in which the conditional mean and volatility states follow two independent Markov chains. More specifically, we
assume that the log consumption growth rate, 𝛥𝑐𝑡+1, follows the process

𝛥𝑐𝑡+1 ≡ ln
(

𝐶𝑡+1
𝐶𝑡

)

= 𝜇𝑡 + 𝜎𝑡𝜖𝑡+1, 𝜖𝑡+1 ∼ 𝑁(0, 1), (1)

where 𝐶𝑡 is consumption at time 𝑡, and 𝜇𝑡 the conditional mean and 𝜎𝑡 the conditional volatility of 𝛥𝑐𝑡+1. We assume two states for
mean growth, 𝜇𝑡 ∈

{

𝜇𝑙 , 𝜇ℎ
}

, and two states for the volatility of the innovation shock, 𝜎𝑡 ∈
{

𝜎𝑙 , 𝜎ℎ
}

. The transition matrix for the
mean and volatility states are 𝑷 𝜇 and 𝑷 𝜎 respectively, which are given by:

𝑷 𝜇 =

[

𝑝𝜇𝑙𝑙 1 − 𝑝𝜇ℎℎ
1 − 𝑝𝜇𝑙𝑙 𝑝𝜇ℎℎ

]

, 𝑷 𝜎 =

[

𝑝𝜎𝑙𝑙 1 − 𝑝𝜎ℎℎ
1 − 𝑝𝜎𝑙𝑙 𝑝𝜎ℎℎ

]

. (2)

The agent cannot observe the state of the economy and must infer it from realized consumption growth. In contrast to the long-
run risk model in Bansal and Yaron (2004), Bayesian learning embedded in this consumption process is able to generate time-series
estimates of expected consumption growth and consumption volatility, which are further analyzed in the following empirical asset
pricing tests. The posterior belief over specific states at date 𝑡 + 1 conditional on observations available until date 𝑡 is denoted by
the vector 𝝃𝑡+1|𝑡. Bayesian inference implies that the belief vector evolves according to:

𝝃𝑡+1|𝑡 = 𝑷
(

𝝃𝑡|𝑡−1 ⊙ 𝜼𝑡
)

𝟏′
(

𝝃𝑡|𝑡−1 ⊙ 𝜼𝑡
) , (3)

where 𝜼𝑡 is a vector of conditional Gaussian densities, ⊙ represents element-by-element multiplication, 𝑷 = 𝑷 𝜇 ⊗ 𝑷 𝜎 is the joint
transition matrix, and ⊗ is the Kronecker product. Despite the mean and volatility states switching independently, Bayesian learning
implies that the agent’s beliefs over those states are dependent (Lettau et al. (2008) and Boguth and Kuehn (2013)).

1 Aretz et al. (2022) use a SDF model to illustrate that expected European option returns are not unambiguously related to their underlying asset’s volatility,
ith the sign of the relation depending on the option’s moneyness.
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2.2. The stochastic discount factor

The agent’s preferences obey Epstein and Zin’s (1989) recursive utility function, given by:

𝑈𝑡 =
⎡

⎢

⎢

⎣

(1 − 𝛽)𝐶
1− 1

𝜓
𝑡 + 𝛽

[

𝐸𝑡
(

𝑈1−𝛾
𝑡+1

)]

1− 1
𝜓

1−𝛾
⎤

⎥

⎥

⎦

1
1− 1

𝜓

, (4)

where 𝛽 is the time discount factor, 𝛾 the RRA parameter, 𝜓 the EIS, 𝑈𝑡+1 the continuation value at time 𝑡 + 1, and 𝛾 > 0, 𝜓 > 0,
and 𝜓 ≠ 1. For 𝜓 = 1

𝛾 , the representative agent has standard constant relative risk aversion (CRRA) preferences. When 𝜓 > (<) 1
𝛾 ,

the agent prefers early (late) resolution of uncertainty.
The Euler equation is given by:

𝐸𝑡
[

𝑀𝑡+1𝑅𝑖,𝑡+1
]

= 1, (5)

where 𝑀𝑡+1 is the SDF, and 𝑅𝑖,𝑡+1 is the return on any asset. The SDF under recursive utility is

𝑀𝑡+1 = 𝛽𝜃
(

𝐶𝑡+1
𝐶𝑡

)− 𝜃
𝜓 (

𝑅𝑊𝑡+1
)𝜃−1 ,

here 𝜃 = 1−𝛾
1−1∕𝜓 , and 𝑅𝑊𝑡+1 is the return on wealth, given by 𝑅𝑊𝑡+1 = 𝑊𝑡+1∕(𝑊𝑡 − 𝐶𝑡), with 𝑊𝑡+1 representing wealth at time 𝑡 + 1.

ccording to the Euler equation, the log wealth-consumption ratio, which is defined as 𝑧𝑡 = log(𝑊𝑡∕𝐶𝑡) and depends on the agent’s
elief 𝑧𝑡 = 𝑧

(

𝝃𝑡+1|𝑡
)

, satisfies the functional equation

𝐸𝑡

[

exp
(

𝜃
(

log 𝛽 +
(

1 − 1
𝜓

)

𝛥𝑐𝑡+1 + 𝑧𝑡+1 − log (𝑒𝑧𝑡 − 1)
))]

= 1.

2.3. Asset pricing implications

Although the wealth-consumption ratio is not observable in the data, we can use numerical simulations to show that the change
in 𝑧𝑡 is approximately linear in the change in the conditional mean of consumption growth, denoted by 𝛥�̂�𝑡, and the change in the
onditional volatility of consumption growth, denoted by 𝛥�̂�𝑡. As a result, we can further linearize the SDF and derive the following
ricing equation for any asset 𝑖 from the Euler equation:

𝐸𝑡
[

𝑅𝑒𝑖,𝑡+1
]

≈ 𝛽𝑖𝛥𝑐,𝑡𝜆𝛥𝑐,𝑡 + 𝛽
𝑖
𝛥𝜇,𝑡𝜆𝛥𝜇,𝑡 + 𝛽

𝑖
𝛥𝜎,𝑡𝜆𝛥𝜎,𝑡, (6)

here 𝐸𝑡
[

𝑅𝑒𝑖,𝑡+1
]

is asset 𝑖’s expected excess return, 𝛽𝑖𝛥𝑐,𝑡, 𝛽
𝑖
𝛥𝜇,𝑡, and 𝛽𝑖𝛥𝜎,𝑡 are the asset’s exposures to consumption growth and its

onditional mean and volatility respectively, and 𝜆𝛥𝑐,𝑡, 𝜆𝛥𝜇,𝑡, and 𝜆𝛥𝜎,𝑡 are the corresponding risk premiums of the three consumption
xposures. It is worth noting that the exact functional forms of 𝜆𝛥𝜇,𝑡 and 𝜆𝛥𝜎,𝑡 are unknown due to the approximation of the change
n 𝑧𝑡.

Due to risk aversion, the model always predicts a positive risk premium for the consumption growth exposure. Moreover, it can
e shown that when 𝜓 > 1∕𝛾 (the agent prefers early resolution of uncertainty), the risk premiums on the conditional mean and
olatility of consumption growth are positive and negative respectively. Interested readers can refer to Boguth and Kuehn (2013)
nd the Internet Appendix for the derivation of the above-mentioned results.

. Impulse response analysis

In this section, we use an impulse response analysis to study how consumption risks affect delta-hedged option returns within
he framework presented in Section 2. We then discuss the mechanism of our results.

.1. Computing model-implied option returns

To compute the delta-hedged return, we begin by considering a stock paying dividends that are positively correlated with
ggregate consumption. Specifically, we follow Abel (1999) and Bansal and Yaron (2004) and assume that the dividend growth
rocess, 𝛥𝑑𝑡, is given by:

𝛥𝑑𝑡 ≡ ln
(

𝐷𝑡
𝐷𝑡−1

)

= 𝛷𝛥𝑐𝑡 + 𝑔𝑑 + 𝜎𝑑𝜖𝑑,𝑡 (7)

here 𝐷𝑡 is the dividend at time 𝑡, 𝛷 is the leverage parameter, 𝜖𝑑,𝑡 is a standard i.i.d. normal shock independent of other shocks in
he model, 𝜎𝑑 is the volatility of that idiosyncratic shock, and 𝑔𝑑 is a constant. In equilibrium, the price–dividend ratio 𝑆𝑡

𝐷𝑡
≡ 𝜑

(

𝝃𝑡+1|𝑡
)

atisfies the Euler equation:
𝑆𝑡 = 𝐸𝑡

[

𝑀𝑡+1

(

𝑆𝑡+1 + 1
)

𝐷𝑡+1
]

𝐷𝑡 𝐷𝑡+1 𝐷𝑡
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or equivalently,

𝜑
(

𝝃𝑡+1|𝑡
)

= 𝐸𝑡
[

𝑀𝑡+1
(

𝜑
(

𝝃𝑡+2|𝑡+1
)

+ 1
)

exp
(

𝛥𝑑𝑡+1
)]

. (8)

We solve the fixed point of the price-dividend ratio as determined by Eq. (8) using the linear interpolation method.2 The
model-implied risk-free rate is 𝑟𝑓𝑡 ≡ ln

(

𝑅𝑓𝑡
)

, with 𝑅𝑓𝑡 = 1∕𝐸𝑡
[

𝑀𝑡+1
]

.
We assume that the option price is equal to the option value implied by the equilibrium model. For instance, the current value

f a call option expiring in 𝑛 periods, �̃� (𝑛)
𝑡 , is given by the expectation of the option’s future cash flow multiplied by the multi-period

DF:

�̃� (𝑛)
𝑡 = 𝐸𝑡

[

𝑀𝑡,𝑡+𝑛max
(

0, 𝑆𝑡+𝑛 −𝐾
)]

, (9)

here 𝑆𝑡+𝑛 is the price of the underlying asset at time 𝑡 + 𝑛, 𝐾 is the option’s strike price, and 𝑀𝑡,𝑡+𝑛 is the multi-period SDF,
𝑡,𝑡+𝑛 =𝑀𝑡,𝑡+1𝑀𝑡+1,𝑡+2 ⋯𝑀𝑡+𝑛−1,𝑡+𝑛 in which 𝑀𝑡,𝑡+1 is the one-period SDF.
We set the leverage parameter 𝛷 = 3, in line with previous studies such as Bansal and Yaron (2004) and Lettau et al. (2008).

he parameters 𝑔𝑑 and 𝜎𝑑 are set to match the unconditional mean and standard deviation of dividend growth in the post-war data,
hich yields quarterly values 𝑔𝑑 = −0.009 and 𝜎𝑑 = 0.028. Our calibration analysis suggests that the benchmark case with (𝛾 = 60,
= 1.5) and our empirical estimates of the Markov-switching model parameters in Table 1 can generate a sizable equity premium

f about 4% per year when the model is calibrated at the quarterly frequency. Since (𝛾 = 60, 𝜓 = 1.5) implies that the agent prefers
arly resolution of uncertainty, we also run simulations with (𝛾 = 60, 𝜓 = 0.01) to study the case in which the agent prefers late
esolution of uncertainty.

We use Monte Carlo simulations to compute the values of an ATM European call option with three months (twelve weeks)
o maturity according to Eq. (9).3 The computation involves simulating 40,000 sample paths of stock prices and the multi-period
DF using the parameters that match the aggregate consumption process, as shown in Table 1. Along a sample path, we track the
ontract and compute the option prices given time-𝑡 state belief 𝝃𝑡+1|𝑡, the current dividend 𝐷𝑡, and the pre-specified strike price
. We compute the implied volatility and delta derived from the Black–Scholes model for each option that is still alive at time 𝑡.
ecause the underlying asset is a dividend-paying stock, we make appropriate adjustments to the equilibrium price 𝑆𝑡 and use the
x-dividend price in computing the implied volatility and delta of the options.

We calculate the model-implied delta-hedged gain of a call option over its lifetime as:

𝛱 (𝑡, 𝑡 − 11) = �̃� (1)
𝑡 − �̃� (12)

𝑡−11 −
10
∑

𝑛=0
𝛥𝑐,𝑡−11+𝑛

(

𝑆𝑡−10+𝑛 − 𝑆𝑡−11+𝑛
)

−
10
∑

𝑛=0
𝑟𝑓𝑡−11+𝑛

(

�̃� (12−𝑛)
𝑡−11+𝑛 − 𝛥𝑐,𝑡−11+𝑛𝑆𝑡−11+𝑛

)

,

here �̃� (12)
𝑡−11 is the value of the option when issued, �̃� (1)

𝑡 the option value one period (week) before expiration, and 𝛥𝑐,𝑡−11+𝑛, �̃�
(12−𝑛)
𝑡−11+𝑛,

𝑡−11+𝑛, and 𝑟𝑓𝑡−11+𝑛 (𝑛 = 0, 1,… , 10) are, respectively, the option delta, option value, stock price, and the risk-free rate within
he horizon of the delta-hedged gain. The value of the delta-hedged option at the start of the horizon is 𝛥𝑐,𝑡−11𝑆𝑡−11 − �̃� (12)

𝑡−11. The
elta-hedged gain divided by the absolute value of the delta-hedged option portfolio yields the delta-hedged return.

The model-implied delta-hedged return resembles its empirical counterpart. First, the delta-hedged return is an excess return
erived from a self-financing strategy. Second, the computation of the delta-hedged gain requires multiple intermediate delta-
edging opportunities within the horizon. Third, the model-implied delta-hedged return crucially depends on stock and option
rices determined in equilibrium. As such, we can investigate the mechanism of the model by examining the impact of consumption
isks on the SDF and equilibrium asset prices.

.2. Simulation results

We perform impulse response analysis to study the impacts of changing beliefs about the consumption growth regimes on the
DF, the stock return, the call option return, and the delta-hedged call option return. First, we assume that consumption growth
tays at its long-run mean implied by the estimated Markov-switching model. Due to Bayesian learning, the agent’s belief converges
o the stationary level. We then suppose that a negative shock to consumption growth occurs in the fifth period. The agent updates
is belief according to Bayes’ rule, leading to a decline in the posterior probability of the high mean growth regime and an increase
n the posterior probability of the high volatility regime. Consequently, the agent’s estimate of mean growth falls, whereas his
stimate of consumption volatility rises. The top two panels of Fig. 1 display these results. Assuming (𝛾 = 60, 𝜓 = 1.5), the other
anels in Fig. 1 present the impulse responses of the SDF, the stock return, the conditional variance of the stock return, the implied
olatility, the call option return, and the delta-hedged call option return in response to the negative shock. Under recursive utility,

2 We choose 50 grid points on each dimension of the state variables and use function iterations to find the fixed points for both the wealth-consumption
atio and the price-dividend ratio.

3 Before running Monte Carlo simulations to compute delta-hedged returns, we solve the model (including the SDF and price-dividend ratio) numerically at
he weekly frequency by appropriately scaling relevant parameters in the model. An alternative approach is to develop a continuous-time asset pricing model
ith recursive utility and a hidden Markov model. However, (semi)closed-form solutions are not available for such a model. Moreover, because volatility is

nstantaneously observable in the continuous-time setting, it would be infeasible to analyze the impact of learning about the volatility state on equilibrium prices.
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Fig. 1. Impulse responses: Conditional mean and volatility, 𝛾 = 60, 𝜓 = 1.5. This figure plots the impulse response functions when the growth rate of consumption
hifts from its long-run mean to the low mean growth rate. The agent’s belief vector 𝝃𝑡+1|𝑡 is updated according to Bayes’ rule. The risk aversion parameter is

set at 𝛾 = 60, and the EIS parameter at 𝜓 = 1.5.

the continuation value falls as a result of the lower conditional mean and the higher conditional volatility of consumption growth.
Because the values of 𝛾 and 𝜓 imply a preference for early resolution of uncertainty, the SDF rises significantly in response to the
hock. Moreover, the stock return drops as the equity value depreciates, while the conditional variance of the stock return rises
ue to an enhanced pessimism about the state of the economy. The co-movement of the SDF and the conditional stock variance
uggests that stock return variance carries a risk premium. This is also evident from the observation that the implied volatility of
he call option increases substantially. The lowest panel in the figure shows that the call option return falls because the effect of
ower equity value dominates that of higher implied volatility. On the contrary, the delta-hedged call option gain (return) rises due
o the elimination of the impact of the underlying stock price movement on the call option price.

The co-movement of the SDF and the delta-hedged call option return in Fig. 1 implies that the delta-hedged option enables
nvestors to hedge against systematic risk. Because consumption growth and its conditional mean are negatively related to the SDF,
oth factors have positive risk premiums. In contrast, since conditional consumption volatility is positively related to the SDF, it
as a negative risk premium. These results are consistent with our empirical findings presented in Sections 4.3 and 4.4 below.

Boguth and Kuehn (2013) find that consumption volatility is important to price stocks. To focus on volatility risk on its own,
e run a second impulse response analysis by assuming that consumption growth and its expectation remain unchanged but

onsumption volatility rises. Fig. 2 shows that the responses of the variables of interest are largely similar to those in the previous
ase. The rise in conditional volatility alone leads to an increase in the SDF, the conditional stock variance and the implied volatility.
n addition, the option return falls, whereas the delta-hedged return rises. Thus, the delta-hedged option represents a hedging
pportunity against consumption volatility, and consumption volatility carries a negative risk premium.

Figs. 3 and 4 plot simulation results for the (𝛾 = 60, 𝜓 = 0.01) case, in which the agent prefers late resolution of uncertainty.
Fig. 3 shows that the delta-hedged return and the SDF move in opposite directions in response to a negative mean growth shock
despite that both conditional stock variance and implied volatility rise on impact. Contrary to the (𝛾 = 60, 𝜓 = 1.5) case and our

empirical evidence, in this case the delta-hedged call option has a positive exposure to systematic risk in that the return on the
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Fig. 2. Impulse responses: Conditional volatility, 𝛾 = 60, 𝜓 = 1.5. This figure plots the impulse response functions when conditional volatility of consumption
growth rises. The risk aversion parameter is set at 𝛾 = 60, and the EIS parameter at 𝜓 = 1.5.

elta-hedged option performs poorly when the SDF is high. On the other hand, the stock return increases and co-moves with the
DF. Thus, the implied risk premiums on the conditional mean and volatility of consumption, respectively, have opposite signs
ompared to the (𝛾 = 60, 𝜓 = 1.5) case. As shown in Fig. 4, when the conditional volatility of consumption growth rises on its own,
mplied volatility falls, resulting in a decline in the delta-hedged option return. Because of the agent’s preference for late resolution
f uncertainty and the absence of shocks to the level of consumption, the SDF drops in response to the volatility shock. Although
he delta-hedged option return and the SDF co-move in the same direction, the implied risk premium on consumption volatility is
ositive, opposite to that in the (𝛾 = 60, 𝜓 = 1.5) case and in our empirical evidence. In Sections 4.3 and 4.4, our GMM estimation
dentifies a negative relation between the SDF and the conditional mean of consumption growth while a positive relation between
he SDF and consumption volatility.

. Empirical tests

In this section, we use options data to estimate the risk premiums of consumption growth, mean growth, and consumption
olatility. We first fit a Markov-switching model to obtain time-series estimates of the conditional mean and volatility of consumption
rowth. We next sort single-name options into portfolios and use the portfolios to study the pricing of consumption exposures in
ption returns. We then study whether consumption risk premiums estimated from option returns can price stocks, and how the
hree consumption risk exposures price the joint cross-section of stock and option returns.

.1. Estimating consumption dynamics

Defining total consumption as the sum of non-durable goods consumption expenditures and service consumption expenditures,
e obtain quarterly per capita real expenditures data on the two consumption components from the Bureau of Economic Analysis

BEA). Our sample is from 1952:Q1 to 2018:Q1.
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Fig. 3. Impulse responses: Conditional mean and volatility, 𝛾 = 60, 𝜓 = 0.01. This figure plots the impulse response functions when the growth rate of consumption
shifts from its long-run mean to the low mean growth rate. The agent’s belief vector 𝝃𝑡+1|𝑡 is updated according to Bayes’ rule. The risk aversion parameter is
set at 𝛾 = 60, and the EIS parameter at 𝜓 = 0.01.

We fit a four-state Markov-switching model to our consumption data. While maintaining the assumption that the agent has
preferences over total consumption, we follow Boguth and Kuehn (2013) in separately using non-durable and service consumption
expenditures in our estimation to improve state identification and to reduce standard errors. In particular, we assume that both log
non-durable goods consumption growth and the log change in the share of non-durable to total consumption follow Markov chains.
This strategy implies that log total consumption growth also follows a Markov chain. More precisely, we express total consumption
𝐶𝑡 as non-durable goods consumption 𝑁𝑡 divided by the non-durable consumption share 𝑉𝑡. That is, 𝐶𝑡 = 𝑁𝑡∕𝑉𝑡. Thus, log total
consumption growth is log non-durable consumption growth, 𝛥𝑛𝑡, minus the log change in the non-durable consumption share, 𝛥𝑣𝑡:

𝛥𝑐𝑡+1 = 𝛥𝑛𝑡+1 − 𝛥𝑣𝑡+1. (10)

Given Eq. (10), we assume that both 𝛥𝑛𝑡+1 and 𝛥𝑣𝑡+1 follow Markov chains:

𝛥𝑛𝑡+1 = 𝜇𝑛𝑡 + 𝜎
𝑛
𝑡 𝜖
𝑛
𝑡+1 𝛥𝑣𝑡+1 = 𝜇𝑣𝑡 + 𝜎

𝑣
𝑡 𝜖
𝑣
𝑡+1, (11)

where 𝜇𝑘𝑡 and 𝜎𝑘𝑡 , with 𝑘 ∈ {𝑛, 𝑣}, are, respectively, the mean of log non-durable consumption growth (𝑘 = 𝑛) or the log change
in the non-durable consumption share (𝑘 = 𝑣) and the volatility of the individual innovation. The innovation 𝜖𝑘𝑡+1 is standard
normal, with Cov𝑡

(

𝜖𝑛𝑡+1, 𝜖
𝑣
𝑡+1

)

= 𝜌𝑛𝑣. The dynamics specified in Eqs. (10) and (11) together with the fact that the information set
𝑡 contains {𝛥𝑛𝑡, 𝛥𝑣𝑡} and its history also imply a Markov process for total consumption growth, with dynamics specified in Eq. (1)
and 𝜇𝑡 = 𝜇𝑛𝑡 − 𝜇

𝑣
𝑡 and 𝜎2𝑡 =

(

𝜎𝑛𝑡
)2 +

(

𝜎𝑣𝑡
)2 − 2𝜌𝑛𝑣𝜎𝑛𝑡 𝜎

𝑣
𝑡 . Thus, the estimates of the parameters {𝜇𝑛ℎ, 𝜇

𝑛
𝑙 , 𝜇

𝑣
ℎ, 𝜇

𝑣
𝑙 , 𝜎

𝑛
ℎ, 𝜎

𝑛
𝑙 , 𝜎

𝑣
ℎ, 𝜎

𝑣
𝑙 , 𝜌𝑛𝑣} allow us

to recover the dynamics of log total consumption growth, which we use to solve the consumption-based model in Section 2.
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c

Fig. 4. Impulse responses: Conditional volatility, 𝛾 = 60, 𝜓 = 0.01. This figure plots the impulse response functions when conditional volatility of consumption
growth rises. The risk aversion parameter is set at 𝛾 = 60, and the EIS parameter at 𝜓 = 0.01.

Table 1 presents the estimates of the parameters in the Markov-switching processes. Panel A shows that expected non-durable
onsumption growth is positive in the high state (𝜇𝑛ℎ = 0.58%) and negative in the low state (𝜇𝑛𝑙 = −0.03%). State-conditional

non-durable consumption volatilities are 𝜎𝑛𝑙 = 0.40% and 𝜎𝑛ℎ = 0.83%. The estimated parameters for the non-durable consumption
share (shown in Panel B) are 𝜇𝑣𝑙 = −0.16% and 𝜇𝑣ℎ = 0.00% and 𝜎𝑣𝑙 = 0.34% and 𝜎𝑣ℎ = 0.58%. The correlation between log changes
in the two variables is 𝜌𝑛𝑣 = 0.83. Turning to total consumption growth, its expected growth is 𝜇𝑙 = 0.13% in the low state and
𝜇ℎ = 0.58% in the high state, while its volatility is 𝜎𝑙 = 0.23% in the low state and 𝜎ℎ = 0.50% in the high state.

The two transition probabilities for the mean growth regimes, 𝑝𝑙𝑙𝜇 and 𝑝ℎℎ𝜇 , are 0.87 and 0.95 respectively. Consistent with Lettau
et al. (2008), the high mean state is thus markedly more persistent than the low mean state. Both volatility states are persistent,
with transition probabilities being about 0.91. Given the differences in the sample and in the consumption measure across the two
papers, these estimates differ moderately from those in Lettau et al. (2008), who find the volatility states to be even more persistent.

Fig. 5 presents the filtered beliefs for the regimes. The upper panel depicts the belief dynamics for the high mean growth regime,
and the lower panel for the high volatility regime. The gray bars in the graphs indicate economic recession periods defined by the
National Bureau of Economic Research. The figure further suggests that the low volatility regime becomes more prevalent from
1990 on, as also observed by Kim and Nelson (1999) and Boguth and Kuehn (2013). Despite that, consumption volatility appears
to have returned to the high regime during both the 2000–2001 dot-com crash and the 2008–2009 global financial crisis in the
post-1990 period. When the economy is in a recession, the probability of being in the high mean state is low, while the probability
of being in the high volatility state tends to be high in certain periods. However, their correlation is far from being perfect due to the
assumption of independent switching between mean regimes and volatility regimes. Overall, the Markov-switching model captures
most recessions during our sample period, with the exceptions of the mild 1969–1970 recession and the 1981–1982 recession caused
by contractionary monetary policy.
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Table 1
Markov-switching model of consumption growth.

Panel A: Non-durable consumption (%)

𝜇𝑛𝑙 𝜇𝑛ℎ 𝜎𝑛𝑙 𝜎𝑛ℎ
−0.0269 0.5835 0.4002 0.8255
(−0.57) (21.51) (17.67) (45.73)

Panel B: Non-durable consumption share (%)

𝜇𝑣𝑙 𝜇𝑣ℎ 𝜎𝑣𝑙 𝜎𝑣ℎ
−0.1576 0.0000 0.3422 0.5835
(−4.46) (0.00) (17.63) (22.01)

Panel C: Marginal transition probabilities

𝑝𝑙𝑙𝜇 𝑝ℎℎ𝜇 𝑝𝑙𝑙𝜎 𝑝ℎℎ𝜎
0.87 0.95 0.91 0.91
(18.96) (47.59) (28.87) (24.46)

Panel D: Correlation

𝜌𝑛𝑣
0.8256
(45.73)

This table reports parameter estimates for the Markov-switching model fitting log non-durable
goods consumption growth, 𝛥𝑛𝑡+1, and changes in the log non-durable consumption share, 𝛥𝑣𝑡,

𝛥𝑛𝑡+1 = 𝜇𝑛𝑡 + 𝜎
𝑛
𝑡 𝜖

𝑛
𝑡+1 𝛥𝑣𝑡+1 = 𝜇𝑣𝑡 + 𝜎

𝑣
𝑡 𝜖

𝑣
𝑡+1 ,

where for 𝑖 ∈ {𝑛, 𝑣}, 𝜇𝑖𝑡 denotes the mean regime, 𝜎𝑖𝑡 denotes the volatility regime, and 𝜖𝑖𝑡+1 is
standard normal with Cov𝑡

(

𝜖𝑛𝑡+1 , 𝜖
𝑣
𝑡+1

)

= 𝜌𝑛𝑣. The transition matrices, 𝑷 𝜇 and 𝑷 𝜎 , are given by

𝑷 𝜇 =

[

𝑝𝑙𝑙𝜇 1 − 𝑝ℎℎ𝜇
1 − 𝑝𝑙𝑙𝜇 𝑝ℎℎ𝜇

]

𝑷 𝜎 =
[

𝑝𝑙𝑙𝜎 1 − 𝑝ℎℎ𝜎
1 − 𝑝𝑙𝑙𝜎 𝑝ℎℎ𝜎

]

.

The estimation procedure follows Hamilton (1994). The data for estimation include quarterly per
capita real consumption expenditures for non-durable goods and services for the period 1952.Q1
to 2018.Q1. 𝑡-statistics are reported in parentheses.

.2. Calculation of delta-hedged call option returns

We obtain call options data over the period from January 1996 to December 2017 from Optionmetrics.4 The data include the
aily closing bid and ask quotes, the trading volume, the strike price, and the maturity date of each option. The data further include
ach option’s delta, calculated by Optionmetrics using standard market conventions, the closing price of and the dividends paid out
y the stocks underlying the options, and the risk-free rate of return.

We apply standard filters to the options data (see Goyal and Saretto (2009) and Cao and Han (2013)). First, we exclude an
ption if the stock underlying the option pays out dividends over the option’s remaining time-to-maturity. Second, we exclude
ption observations violating well-known arbitrage bounds. More specifically, we exclude an option observation if the option’s
rice does not fulfill 𝑆 ≥ �̃� ≥ max(0, 𝑆 − 𝐾𝑒−𝑟𝑇 ) where �̃� is the call option’s price, 𝑆 the underlying stock’s price, 𝐾 the strike
rice, 𝑇 the option’s time-to-maturity, and 𝑟 the risk-free rate of return in the data. Third, we only retain option observations with
ositive trading volume, a positive bid quote, a bid price strictly smaller than the ask price, and a bid-ask midpoint of at least $1/8.
inally, we only keep option observations whose last trade date matches the record date and whose option price date matches the
nderlying stock’s price date.

We use quarterly delta-hedged option returns in our main tests, and monthly delta-hedged option returns in robustness tests.
n either case, we calculate the return from the start of a calendar quarter or month to its end. In line with Bakshi and Kapadia
2003) and Cao and Han (2013), we define the delta-hedged option return as the delta-hedged option gain over the period scaled by
he absolute value of the delta-hedged option at the start of the period, where the delta-hedged option is a self-financing portfolio
onsisting of a long option, a hedging position in the underlying stock, and a money market investment. The value of a perfectly
elta-hedged option would be insensitive to changes in the value of the underlying stock. Assuming that the delta-hedge is rebalanced
t the end of every trading day, we calculate the delta-hedged call option gain over the quarter or month starting at time 𝑡− 1 and
nding at time 𝑡, 𝛱 (𝑡 − 1, 𝑡), as:

𝛱 (𝑡 − 1, 𝑡) = �̃�𝑡 − �̃�𝑡−1 −
𝑁−1
∑

𝑛=0
𝛥𝑐,𝑡𝑛

[

𝑆
(

𝑡𝑛+1
)

− 𝑆
(

𝑡𝑛
)]

−
𝑁−1
∑

𝑛=0

𝑎𝑛𝑟𝑡𝑛
365

[

�̃�
(

𝑡𝑛
)

− 𝛥𝑐,𝑡𝑛𝑆
(

𝑡𝑛
)

]

, (12)

here �̃�𝑡 is the call option price at time 𝑡, 𝛥𝑐,𝑡𝑛 the option delta, 𝑟𝑡𝑛 the annualized risk-free rate of return, 𝑆(𝑡𝑛) the underlying stock
rice at the end of trading day 𝑡𝑛, where 𝑡𝑛 ∈

{

𝑡0, 𝑡1,… , 𝑡𝑁−1
}

are the 𝑁 trading days within the period from time 𝑡 − 1 to 𝑡, and 𝑎𝑛
s the number of calendar days between 𝑡𝑛 and 𝑡𝑛+1. We finally calculate the value of the delta-hedged call option at time 𝑡 − 1 as
he absolute value of 𝛥𝑐,𝑡−1𝑆𝑡−1 − �̃�𝑡−1.

4 We only consider American call options written on non-dividend stocks in our empirical tests since American put options contain an early exercise risk
remium correlated with moneyness (see, e.g., Aretz and Gazi (2021)).
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Fig. 5. Bayesian beliefs about the mean and volatility state. This figure displays the estimated Bayesian belief processes for being in the high expected growth
ate state (top figure) and high volatility state (bottom figure). The estimation procedure follows Hamilton (1994). We use quarterly per capita real consumption
xpenditure for non-durable goods and services for the period 1952:Q1–2018:Q1. The parameter estimates for the Markov-switching model are reported in
able 1. The gray bars indicate NBER recession periods.

We select options with a time-to-maturity between 106 to 176 days so that the option expires after the end of the following
uarter and the time-to-maturity range is not too wide. Within the maturity range, we select the option with the shortest time-
o-maturity, the largest open interest, and the highest trading volume for each stock. The selection results in 28,064 quarterly
bservations for call options. Table 2 shows summary statistics for the quarterly option sample. The average delta-hedged call
ption return is −2.47% per quarter, with a variation of 10.19%. The average call option has a time-to-maturity of 137 days, a daily
VOL of 2.95%, and moneyness of 0.97.

.3. The pricing of consumption risks in option returns

In this section, we study how consumption growth, expected consumption growth, and consumption volatility exposures price
he cross-section of call option returns. We start our investigation by looking at the cross-section of quarterly returns on IVOL and
oneyness sorted portfolios of delta-hedged calls.5

Cao and Han (2013) discover a strongly significant negative relation between delta-hedged stock-option returns and IVOL. Bakshi
nd Kapadia (2003) show that delta-hedged call option returns are negative and monotonically increase with options money-
ess.6 Boyer and Vorkink (2014) offer evidence that a call option’s ex-ante skewness is negatively related to its return and
onotonically decreases with options moneyness. Taken together, these two findings imply that lower-moneyness (OTM) call options

5 We also consider the realized and implied variance of these portfolios over the same return horizon. As robustness tests, we next analyze the monthly
eturns of the IVOL and moneyness sorted call option portfolios. The relevant results are presented in the Internet Appendix.

6 Bakshi and Kapadia (2003) also present evidence that the dollar gains (losses) are smaller for OTM than ITM options. This is to be expected because the
ollar gains are not normalized by price and OTM options are much cheaper than ITM options. Once the gains are normalized, OTM options have more negative
eturns than ITM options.
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Table 2
Summary statistics for the call options sample.

Mean Median SD 5th 10th 25th 75th 90th 95th

Delta-hedged returns −2.47 −2.03 10.19 −19.34 −13.36 −6.61 2.10 7.88 12.89
Days-to-maturity 137 140 26 108 108 112 169 172 173
Idiosyncratic volatility 2.95 2.55 1.90 1.05 1.29 1.78 3.64 5.02 6.16
Moneyness 0.97 0.95 0.19 0.72 0.77 0.86 1.03 1.16 1.27
Bid–ask spread 0.28 0.20 0.33 0.05 0.06 0.10 0.30 0.50 0.80
Volume 96 14 530 1 2 5 49 150 313
Open interest 2719 612 8430 27 59 187 2019 5898 11 347

This table reports descriptive statistics on the delta-hedged call option returns, days-to-maturity, idiosyncratic underlying-stock volatility, moneyness, bid-ask
spread, trading volume, and open interest of option contracts sampled at a quarterly frequency. We exclude the following option observations: the stock
underlying the option pays out cash over the option’s remaining time-to-maturity; option price violates arbitrage bounds; reported trading volume is 0; option
bid quote is 0 or midpoint of bid and ask quotes is less than $1/8. For each optionable stock, we select that call having the shortest time-to-maturity, the largest
open interest and the largest trading volume. Then we only keep calls with days-to-maturity within the range from 106 to 176 days. Delta-hedged returns (in
percentage) are calculated through option delta-hedged gains (given by Eq. (12)) scaled by the absolute value of 𝛥𝑆 − �̃�, where 𝛥 is the Black–Scholes option
delta, 𝑆 is the underlying stock price, and �̃� is the price of the call option at the beginning of a quarter. Days-to-maturity is the number of calendar days until
option expiration. Idiosyncratic volatility (in percentage) is the standard deviation of the residuals of the Fama–French 3-factor model estimated using the daily
stock returns over the previous quarter. Moneyness is the ratio of stock price over option strike price. Bid-ask spread is the spread between the lowest closing
ask and the highest closing bid. ‘‘SD’’ represents standard deviation. ‘‘5th’’ to ‘‘95th’’ are the 5th to 95th percentiles respectively. The option sample period is
from January 1996 to December 2017, and the number of sample observations is 28,064.

have higher ex-ante skewness and earn more negative returns than higher-moneyness (ITM) call options do. Our aim in this section
is to find out whether consumption risks can help us understand the negative relation between delta-hedged call option returns and
IVOL and why delta-hedged call option returns are more negative for OTM than for ITM options.

At the end of each quarter 𝑡 − 1 in our sample period, we sort the delta-hedged call options into 16 portfolios independently
according to options moneyness and the IVOL of the underlying stock. We construct equally-weighted portfolios and hold them
over quarter 𝑡. IVOL is the standard deviation of the residual with respect to the Fama–French three-factor model estimated using
daily stock returns over the previous quarter. Moneyness is defined as the ratio of the underlying stock’s price to the option’s strike
price. Panel A of Table 3 reports the average option returns for each portfolio. We form four quartile groups based on the IVOL
of the underlying stock and four quartile groups based on options moneyness. The bottom IVOL and bottom moneyness portfolio
contains options with IVOL and moneyness in the lowest quartile, while the top IVOL and top moneyness portfolio contains options
with IVOL and moneyness in the highest quartile. We also create spread portfolios long portfolios with the highest IVOL and short
portfolios with the lowest IVOL while keeping the range of options moneyness unchanged (‘‘HIVOL–LIVOL’’). Similarly, we construct
spread portfolios long portfolios with the highest options moneyness and short portfolios with the lowest while keeping the IVOL
of the underlying stock unchanged.

Results in Table 3 support Cao and Han (2013) in showing that the delta-hedged option returns are all negative and become
monotonically more negative with increasing IVOL. In accordance, average returns of the ‘‘HIVOL–LIVOL’’ portfolios are all
significantly negative. Specifically, the mean return of the ‘‘HIVOL–LIVOL’’ portfolio with moneyness in the lowest quartile is −3.49%
(𝑡 = −5.60) per quarter, and the mean return of the ‘‘HIVOL–LIVOL’’ portfolio with moneyness in the highest quartile is −1.64% (𝑡
= −4.69) per quarter. In line with Bakshi and Kapadia (2003), the mean return becomes more negative the lower the moneyness
of the options in a portfolio is (i.e., the more the options are OTM). In particular, the spread return of portfolio ‘‘HMON–LMON’’
with IVOL in the highest quartile is 4.35% (𝑡 = 9.04), and the average return of spread portfolio ‘‘HMON–LMON’’ with IVOL in the
lowest quartile is 2.50% (𝑡 = 3.52).

We also find that these option portfolio returns are close to being normally distributed, alleviating the concern that non-normality
could distort our statistical inference.7 Related results are reported in the Internet Appendix. While the low moneyness options are
more volatile than the high moneyness options, skewness monotonically declines with moneyness, with OTM options being positively
skewed and ITM options negatively skewed. Thus, sorting options into portfolios according to moneyness is akin to sorting them into
portfolios according to Boyer and Vorkink’s (2014) ex-ante skewness proxy derived from the Black–Scholes model, even though we
do not explicitly use skewness in our sorts. We also differ with Boyer and Vorkink (2014) in that they focus on raw option returns
while we examine delta-hedged returns. The return spread between portfolios with high and low skewness further suggests that
investors pay more for the tail probability (lottery feature) in OTM options even after controlling for the directional movement of
the underlying asset.

Motivated by the model in Section 2 (see Eq. (6)), we run time-series regressions of option portfolio returns on consumption
growth, 𝛥𝑐𝑡, the change in the conditional mean of consumption growth, 𝛥�̂�𝑡, and the change in consumption volatility, 𝛥�̂�𝑡:

𝑅𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽
𝑖
𝛥𝑐,𝑡𝛥𝑐𝑡 + 𝛽

𝑖
𝛥𝜇,𝑡𝛥�̂�𝑡 + 𝛽

𝑖
𝛥𝜎,𝑡𝛥�̂�𝑡 + 𝜖

𝑖
𝑡 , (13)

where 𝑅𝑖𝑡 is the delta-hedged quarterly return of option portfolio 𝑖 over period 𝑡, 𝛼𝑖𝑡 is a constant, 𝛽𝑖𝛥𝑐,𝑡, 𝛽
𝑖
𝛥𝜇,𝑡, and 𝛽𝑖𝛥𝜎,𝑡 are exposures

o consumption risks, and 𝜖𝑖𝑡 is the residual. We obtain the conditional mean and volatility of consumption growth (�̂�𝑡 and �̂�𝑡,

7 Consistent with the mild skewness and excess kurtosis of the portfolio returns, we have found that bootstrap inference levels used in either our portfolio
orts or FM regressions are similar to asymptotic inference levels. For the sake of brevity, we do not report the bootstrap inference levels in the paper.
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Table 3
IVOL and moneyness sorted option portfolios.

LMON HMON HMON–LMON

Panel A: Average return (%)

LIVOL −2.78 −1.36 −0.88 −0.27 2.50
(−3.49) (−3.08) (−2.69) (−0.87) (3.52)
−2.88 −1.87 −0.96 −0.52 2.36
(−4.03) (−4.45) (−2.35) (−1.31) (3.97)
−4.01 −2.29 −1.78 −1.03 2.98
(−6.58) (−5.01) (−3.61) (−2.79) (6.27)

HIVOL −6.26 −3.56 −3.06 −1.91 4.35
(−8.66) (−6.36) (−6.20) (−4.14) (9.04)

HIVOL–LIVOL −3.49 −2.20 −2.18 −1.64
(−5.60) (−5.26) (−6.92) (−4.69)

Panel B: 𝛽𝛥𝑐
LIVOL −2.35 −0.30 −0.25 0.69

−1.50 −0.60 −0.01 0.83
−4.74 −3.42 −0.06 −0.72

HIVOL −4.17 −2.87 −1.84 −1.40

Panel C: 𝛽𝛥𝜇
LIVOL −5.98 −0.01 −1.00 −2.72

7.89 0.35 0.99 −3.32
5.32 0.15 −4.30 −1.70

HIVOL 5.25 4.67 0.09 −8.90

Panel D: 𝛽𝛥𝜎
LIVOL 21.27 22.48 15.18 10.86

22.89 12.02 13.31 18.28
13.26 13.14 13.55 12.10

HIVOL 31.15 26.64 33.74 7.39

This table reports characteristics of equally-weighted call option portfolios independently sorted on options moneyness (MON)
and idiosyncratic underlying-stock volatility (IVOL). Four quartile groups are formed based on the IVOL of the underlying stock
and four quartile groups based on options moneyness at the end of quarter 𝑡 − 1. The bottom IVOL and bottom moneyness
portfolio contains options with IVOL and moneyness in the lowest quartile, while the top IVOL and top moneyness portfolio
contains options with IVOL and moneyness in the highest quartile. Portfolios are held over quarter 𝑡 and rebalanced every
quarter. The average return of each portfolio is reported in Panel A. Column ‘‘HIVOL–LIVOL’’ shows the average return of
the long-short strategy which buys the highest IVOL portfolio and sells the lowest IVOL portfolio. ‘‘HMON–LMON’’ presents
the average return of the portfolio strategy that longs the highest moneyness (in-the-money) portfolio and shorts the lowest
moneyness (out-of-the-money) portfolio. Full sample loadings on consumption growth (𝛽𝛥𝑐 ), the change in conditional mean of
consumption growth (𝛽𝛥𝜇), and the change in consumption growth volatility (𝛽𝛥𝜎 ) are reported for each option portfolio in Panels
B to D respectively. Newey–West (Newey and West, 1987) adjusted 𝑡-statistics with a lag of four are reported in parentheses.
The sample period is from January 1996 to December 2017.

espectively) from the estimates of the Markov-switching model in Section 4.1. We estimate regression model (13) over rolling
indows spanning ten years of quarterly data, expanding the rolling windows on a quarterly basis. The first rolling window stretches

rom the second quarter of 1996 to the first quarter of 2006.
Panels B, C, and D of Table 3 present the full-sample exposures of the call option portfolios. We calculate the exposures for IVOL-

orted portfolios by averaging their full sample exposures across moneyness quartiles and those for moneyness-sorted portfolios by
veraging the full sample exposures across IVOL quartiles. As displayed in Fig. 6, both IVOL-sorted and moneyness-sorted portfolios
roduce negative consumption growth exposures, with the exposures becoming more negative over the IVOL-sorted portfolios and
ess negative over the moneyness-sorted portfolios. Negative consumption growth exposures suggest that delta-hedged call options
re countercyclical assets. Conversely, the same portfolios produce positive consumption volatility exposures, with those exposures
ecoming more positive over the IVOL-sorted portfolios and less positive over the moneyness-sorted portfolios. There is no clear
rend in the mean growth exposures over the IVOL-sorted portfolios and a decreasing trend over the moneyness-sorted portfolios.
hat the high IVOL portfolios and the low moneyness (OTM) portfolios are more negatively exposed to consumption growth and
ore positively to consumption volatility suggests that they are better suited to hedge against consumption risks than the low IVOL
ortfolios and the high moneyness (ITM) portfolios. The only concerning aspect of the low-moneyness portfolios is that they can have
higher mean growth exposure than the other portfolios, which lowers their ability to hedge against adverse economic conditions.

To test whether the three consumption exposures are priced, we next run FM regressions of the quarterly returns of the option
ortfolios on subsets of the exposures. In our most comprehensive specification, we regress the quarterly return of option portfolio 𝑖
ver quarter 𝑡+1, 𝑅𝑖𝑡+1, on the consumption growth exposure, 𝛽𝑖𝛥𝑐,𝑡, the mean growth exposure, 𝛽𝑖𝛥𝜇,𝑡, and the consumption volatility
xposure, 𝛽𝑖𝛥𝜎,𝑡, of the portfolio:

𝑅𝑖 = 𝜑 + 𝜆 𝛽𝑖 + 𝜆 𝛽𝑖 + 𝜆 𝛽𝑖 + 𝜂𝑖 , (14)
𝑡+1 0,𝑡+1 𝛥𝑐,𝑡+1 𝛥𝑐,𝑡 𝛥𝜇,𝑡+1 𝛥𝜇,𝑡 𝛥𝜎,𝑡+1 𝛥𝜎,𝑡 𝑡+1
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Fig. 6. Consumption betas of IVOL and moneyness sorted option portfolios. This graph displays consumption risk exposures estimated using the full sample for
VOL-sorted and moneyness-sorted portfolios. The exposures for IVOL-sorted portfolios are calculated by averaging the full sample exposures across moneyness
uartiles and those for moneyness-sorted portfolios by averaging the full sample exposures across IVOL quartiles. The exposures for IVOL-sorted portfolios are
lotted with the blue line, and those for moneyness-sorted portfolios with the red dashed line. Portfolio 1 represents the IVOL-sorted portfolio with idiosyncratic
nderlying-stock volatility in the lowest quartile, and portfolio 4 in the highest quartile. Meanwhile, portfolio 1 indicates the moneyness-sorted portfolio with
ptions moneyness in the lowest quartile, and portfolio 4 in the highest quartile. The upper panel, middle panel, and lower panel show consumption growth
eta (𝛽𝛥𝑐 ), consumption mean beta (𝛽𝛥𝜇), and consumption volatility beta (𝛽𝛥𝜎 ) respectively. The sample period is from January 1996 to December 2017.

here 𝜑0,𝑡+1 is a constant and 𝜆𝛥𝑐,𝑡+1, 𝜆𝛥𝜇,𝑡+1, and 𝜆𝛥𝜎,𝑡+1 are the risk premiums. The exposure estimates, 𝛽𝑖𝛥𝑐,𝑡, 𝛽
𝑖
𝛥𝜇,𝑡, and 𝛽𝑖𝛥𝜎,𝑡, are

btained from the rolling-window time-series regressions.
Table 4 Panel A presents the FM regression results. Model specification I tests the standard CCAPM. The risk premium estimate,

𝛥𝑐 , is significant at 0.62% (𝑡 = 5.83) and the average cross-sectional 𝑅2 is around 27.64%. Prior studies (e.g., Mankiw and Shapiro
1986), Lettau and Ludvigson (2001), and Boguth and Kuehn (2013)) show that quarterly contemporaneous consumption growth
xposures do not explain stock returns. Different from prior studies using stock returns, we find that consumption growth exposures
ignificantly explain delta-hedged option returns. Specification II further incorporates the mean consumption growth exposure. As
uch, the 𝜆𝛥𝑐 estimate is hardly affected, the risk premium estimate on the mean growth exposure, 𝜆𝛥𝜇 , is −0.01% (𝑡 = −0.47),
nd the average 𝑅2 increases to 35.49%. Specification III has the consumption volatility exposure in addition to the consumption
rowth exposure. Again, the 𝜆 estimate is hardly affected. However, the 𝜆 estimate is −0.05% and significant (𝑡 = −3.71), and the
𝛥𝑐 𝛥𝜎
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Table 4
Estimating risk premiums with IVOL and moneyness sorted option portfolios.

Panel A: Fama–MacBeth regressions

Intercept 𝛽𝑖𝛥𝑐,𝑡 𝛽𝑖𝛥𝜇,𝑡 𝛽𝑖𝛥𝜎,𝑡 Avg.𝑅2

I −0.34 0.62 27.64
(−0.73) (5.83)

II −0.13 0.58 −0.01 35.49
(−0.30) (5.51) (−0.47)

III 0.23 0.59 −0.05 37.43
(0.73) (5.24) (−3.71)

IV 0.34 0.57 0.01 −0.05 45.27
(1.10) (4.69) (0.34) (−3.45)

Panel B: GMM tests

𝛥𝑐 𝛥𝜇 𝛥𝜎 MAE RMSE 𝐽 𝑅2

𝑏 2.49 0.26 0.31 10.82 97.62
(9.54) (0.77)

𝜆 0.32
(9.54)

𝑏 2.24 −9.70 0.11 0.15 14.07 99.46
(9.59) (−3.92) (0.44)

𝜆 0.20 −0.02
(5.09) (−1.36)

𝑏 2.76 −26.69 0.21 0.23 11.02 98.65
(11.15) (−4.97) (0.68)

𝜆 0.37 −0.05
(11.14) (−5.12)

𝑏 2.26 −9.37 −1.71 0.11 0.15 13.17 99.47
(9.26) (−2.57) (−2.40) (0.43)

𝜆 0.21 −0.02 −0.004
(5.11) (−0.61) (−2.08)

This table reports quarterly consumption risk premium estimates using IVOL-moneyness sorted call option portfolio returns. In
Panel A, we report the Fama–MacBeth regression results. The consumption risk exposures are estimated from ten-year rolling
window time-series regressions (see Eq. (13)). In the cross-section, we regress quarterly option returns over quarter 𝑡 + 1 on
estimated beta loadings (see Eq. (14)). Panel B reports the GMM estimates of the moment conditions in Eq. (15), showing both
the 𝑏 estimates as well as the implied risk premiums (𝜆). MAE and RMSE (in percentage) refer to the mean absolute pricing
error and the root mean squared error, respectively. Newey–West (Newey and West, 1987) adjusted 𝑡-statistics using four lags
are reported in parentheses, and 𝑝-values for 𝐽 -statistics are shown in parentheses below the associated 𝐽 -statistics. The sample
period is from January 1996 to December 2017.

average 𝑅2 increases to 37.43%. The negative 𝜆𝛥𝜎 estimate, which is similar to the estimate in Boguth and Kuehn (2013), identifies
a channel for macroeconomic volatility to be priced in options.

Specification IV presents the full three-factor model. The jointly estimated risk premiums 𝜆𝛥𝑐 , 𝜆𝛥𝜇 , and 𝜆𝛥𝜎 are, respectively,
0.57% (𝑡 = 4.69), 0.01% (𝑡 = 0.34), and −0.05% (𝑡 = −3.45), indicating that consumption growth and consumption volatility
exposures have independently significant explanatory power. In our test (not shown here), we find that consumption growth highly
correlates with shocks to expected consumption growth, with a correlation coefficient of around 0.57. The reason why exposures
to expected consumption growth are not priced may be that their prices are absorbed in the risk prices of consumption growth.
The signs of the risk premiums are consistent with investors’ preference for early resolution of uncertainty (𝜓 > 1∕𝛾). Since delta-
hedged option portfolios are zero-cost portfolios, we further test whether the intercepts are zeros. Interestingly, we cannot reject
that hypothesis, neither for the comprehensive model in specification IV nor for the less comprehensive models in specifications I,
II, and III.

In the consumption-based model, the linear approximation of log changes in the wealth-consumption ratio suggests that the log-
linearized SDF is approximately affine in consumption growth and the changes in its first two moments (see the Internet Appendix
and Boguth and Kuehn (2013)). As an alternative to running FM regressions, we thus now use two-stage GMM to explicitly test the
Euler equation of our model.8 The second stage uses the optimal weighting matrix. The full-model moment condition can be written
as:

𝐸[(1 − 𝑏𝛥𝑐𝛥𝑐𝑡+1 − 𝑏𝛥𝜇𝛥�̂�𝑡+1 − 𝑏𝛥𝜎𝛥�̂�𝑡+1)𝑅𝑖𝑡+1] = 0, (15)

where 𝑏𝛥𝑐 , 𝑏𝛥𝜇 , and 𝑏𝛥𝜎 are the SDF loadings. The GMM estimation of the Euler equation can generate useful results for elucidating
the relation between the SDF and the consumption risk factors.

Table 4 Panel B presents the model estimates (both SDF loadings and implied risk premiums 𝜆) and test statistics by using
the 16 call option portfolios independently sorted on idiosyncratic underlying-stock volatility and options moneyness. Standard

8 Iterative GMM yields results virtually identical to those reported.
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Table 5
Predicting stock portfolio returns using consumption risk premiums.

BM (L) BM (H)

Average returns (%)

Small 2.28 3.72 3.78 4.39 4.73
2.86 3.65 3.97 4.11 4.31
2.89 3.69 3.57 4.02 4.33
3.18 3.13 3.39 3.86 3.95

Big 2.77 2.75 2.90 2.83 3.20
Market 2.84

Model predicted returns (%)

Small 6.80 6.84 6.89 6.70 7.57
6.06 5.71 5.70 6.14 7.13
5.84 5.38 5.50 5.51 5.66
5.12 4.84 5.79 5.39 6.29

Big 4.91 4.60 4.38 5.62 4.90
Market 4.56
𝜌 0.54

This table presents the average quarterly returns (Average Returns) of the market portfolio and the 25 value-weighted size-
value stock portfolios, quarterly portfolio returns predicted by Eq. (14) (Model Predicted Returns), and the correlation coefficient
between the average returns and model predicted returns (𝜌). Returns are expressed in percentage. Monthly stock portfolio returns
are downloaded from Professor Kenneth French’s data library and are compounded into quarterly returns. Model predicted returns
are calculated by multiplying consumption risk loadings of each portfolio and the corresponding consumption risk premiums
estimated from option data plus the risk-free rate. The risk-free rate is the average quarterly risk-free rate over the sample
period. The sample period is from July 1963 to December 2017.

errors are Newey–West (1987) adjusted with four lags. We find that, consistent with the FM regression results, the risk premiums
for consumption growth and consumption volatility are significantly positive and negative, respectively. More specifically, the full
model produces risk premium estimates for consumption growth, mean consumption growth, and consumption volatility of 0.21%
(𝑡 = 5.11), −0.02% (𝑡 = −0.61), and −0.004% (𝑡 = −2.08), respectively. It further produces a mean absolute error (MAE) of 0.11%
per quarter and an 𝑅2 of over 99%, and the 𝐽 -test of the over-identifying restrictions never rejects it (𝑝 = 0.43).

.4. The pricing of consumption risks in stock and option returns

Because the consumption-based model is applicable to not only options but also to all assets in general, it is interesting to
xamine whether the consumption risk premiums estimated from options and presented in Table 4 also help to price other assets.
o answer this question, we compare the mean returns of the market portfolio and the 25 size-value stock portfolios with the mean
eturn predictions of our model and present the results in Table 5. We estimate each portfolio’s exposures to consumption growth
nd the changes in mean growth and consumption volatility from a time-series regression of a portfolio’s excess return on those
hree consumption moments. Combining the estimated exposures with the consumption risk premiums estimated from options, we
alculate our consumption-based model’s prediction for the mean return of each portfolio. For the market portfolio and the 25 size-
alue stock portfolios, we find that the correlation between the mean portfolio returns and the model predicted returns is 0.54. It is
orth mentioning that the model predicted returns are generally larger than the average returns. It is well known in the literature

hat the magnitude of option returns is larger than that of stock returns and options embed larger risk premiums, which generate
igh model predicted returns. In our sample, the average Sharpe ratio of our option portfolios is −0.55, whereas the average Sharpe
atio of the 25 size-value stock portfolios is 0.20. The reward to risk ratio of option portfolios is thus more than two times as large
s that of stock portfolios.

We further perform asset pricing tests using the joint cross-section of the 16 option portfolios and the 25 size-value stock
ortfolios. Table 6 presents the GMM model estimates (both SDF loadings and implied risk premiums 𝜆) and test statistics. Standard
rrors are Newey–West (1987) adjusted with four lags. After adding stock portfolios to option portfolios, all three consumption risk
remiums are significant. The full model generates risk premium estimates for consumption growth, mean consumption growth,
nd consumption volatility of 0.28% (𝑡 = 9.20), 0.04% (𝑡 = 4.04), and −0.01% (𝑡 = −2.33), respectively. It indicates that adding
tock portfolios helps us to identify prices of shocks to expected consumption growth, and meanwhile the estimated risk premiums
or the other two state variables are of similar magnitude with those estimated using only option portfolios in Table 4 Panel B.

Overall, our empirical analysis suggests that consumption risks can explain the negative relation between IVOL and the cross-
ection of delta-hedged option returns discovered by Cao and Han (2013). While these authors attribute the relation to market makers
harging a premium for options that are difficult to delta hedge, the question remains why investors are content to pay the high
remium. We show that investors are content to do so because options written on high IVOL stocks pay out more in adverse economic
onditions, as evidenced by large negative consumption growth exposures and large positive consumption volatility exposures. Thus,
hese options are better hedging tools. Moreover, our analysis also suggests that consumption risks can explain the positive relation
etween delta-hedged call options and moneyness. Boyer and Vorkink (2014) argue that the positive relation arises because OTM
ptions have more right-skewed payoffs than other options, which can be attractive to investors with non-standard preferences. Our

vidence supports their finding that option moneyness is negatively related to option skewness. More importantly, we show that the
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Table 6
Asset pricing tests with the joint cross-section of stock and option portfolios.

𝛥𝑐 𝛥𝜇 𝛥𝜎 MAE RMSE 𝐽 𝑅2

𝑏 1.81 0.42 0.54 29.07 96.18
(7.08) (0.90)

𝜆 0.23
(7.08)

𝑏 1.90 4.01 0.41 0.52 29.39 96.43
(7.45) (2.72) (0.87)

𝜆 0.28 0.04
(9.28) (5.71)

𝑏 1.78 −1.20 0.42 0.54 29.40 96.19
(3.96) (−0.82) (0.87)

𝜆 0.23 −0.00
(4.48) (−1.27)

𝑏 1.84 4.53 −3.17 0.40 0.52 30.55 96.48
(8.52) (3.13) (−1.95) (0.80)

𝜆 0.28 0.04 −0.01
(9.20) (4.04) (−2.33)

This table reports the GMM estimates of the moment conditions in Eq. (15) using the 16 quarterly IVOL-moneyness call option
portfolio returns combined with the 25 value-weighted size-value stock portfolio returns. We report both the 𝑏 estimates as well
as the implied risk premiums (𝜆). MAE and RMSE (in percentage) refer to the mean absolute pricing error and the root mean
squared error, respectively. Newey–West (Newey and West, 1987) adjusted 𝑡-statistics using four lags are reported in parentheses,
and 𝑝-values for 𝐽 -statistics are shown in parentheses below the associated 𝐽 -statistics. The sample period is from January 1996
to December 2017.

ow returns of low-moneyness and/or high-skewness options can be explained by these options being better instruments to hedge
gainst adverse economic conditions. Here, adverse economic conditions not only include shocks to consumption growth but also
ariations in expected consumption growth and consumption volatility that can lead to a rise in the SDF under recursive utility.
oreover, we find that consumption risk premiums estimated from options data do surprisingly well in pricing stock portfolios and

dding stock portfolios in option portfolios further helps us to identify prices of shocks to expected consumption growth.

. Conclusion

We study the impact of consumption risks on the cross-section of delta-hedged option returns using portfolios sorted on IVOL
nd options moneyness. Our consumption-based pricing factors consist of consumption growth, an estimate of its conditional
xpectation, and an estimate of its conditional volatility. The three factors explain the cross-section of delta-hedged option returns
ell and support a risk-based explanation for option returns. Consumption growth commands a positive risk premium, whereas

onsumption volatility commands a negative risk premium. Our evidence suggests that, in a representative-agent economy with
ecursive preferences, the agent prefers early resolution of uncertainty. We further suggest that options written on high IVOL stocks
nd options with a low moneyness earn more negative returns than other options because they provide a better hedge against
ad macroeconomic conditions. Moreover, consumption risk premiums estimated from option portfolios can predict stock portfolio
eturns well, and adding stock portfolios in option portfolios further identifies a significantly positive expected consumption growth
isk premium. Overall, our empirical findings are robust to the choice of test assets, option maturities, and the testing horizon. Taken
ogether, our analysis provides a foundation for consumption risks explaining the cross-section of delta-hedged option returns.
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