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SPARSE RECOVERY, KASHIN DECOMPOSITION AND CONIC PROGRAMMI NG

ALEXANDRE D’ASPREMONT

ABSTRACT. We produce relaxation bounds on the diameter of arbitrary sections of theℓ1 ball in Rn. We use
these results to test conditions for sparse recovery.

1. INTRODUCTION

Let A ∈ Rm×n be a full rank matrix, we are givenm observationsAu of a signalu ∈ Rn, and we seek
to decode it by solving

minimize Card(x)
subject to Ax = Au,

(1)

in the variablex ∈ Rn. Problem (1) is combinatorially hard, but under certain conditions on the matrixA
(see e.g.Donoho and Tanner(2005); Candès and Tao(2005); Kashin and Temlyakov(2007); Cohen et al.
(2009)), we can reconstruct the signal by solving instead

minimize ‖x‖1
subject to Ax = Au,

(2)

which is a convex problem in the variablex ∈ Rn.

2. SPARSE RECOVERY CONDITIONS

We begin by discussing conditions on the coding matrixA ∈ Rm×n and on the signalu which guarantee
that the solution to theℓ1 minimization problem (2) matches that of theℓ0 minimization problem (1) and
allows us to reconstruct the original signalu.

2.1. Discrete signals.We first assume that the signalu only takes discrete values. For a given coding
matrixA ∈ Rm×n, the proposition below describes a sufficient condition which guarantees that a discrete
signalu ∈ {−1, 0, 1}n will be reconstructed by solving problem (2).

Proposition 2.1. We define

U =

{

u ∈ Rn : uTx+ ξ

n
∑

i=1

|uixi| ≤ ξ‖x‖1,∀x ∈ Rn : Ax = 0

}

. (3)

If u ∈ {−1, 0, 1}n ∩ U for someξ ∈ (0, 1) and z ∈ Rn solves theℓ1 recovery problem in(2), then the
signature ofz is a subset of that ofu, i.e.uizi = |zi|, i = 1, . . . , n.

Proof. Suppose there is a vectorz ∈ Rn, with Az = Au and‖z‖1 ≤ ‖u‖1. Let I = {i ∈ [1, n] : ui 6= 0}
be the support of the signalu andJ its complement in[1, n], the vectoru − z is in the nullspace ofA so
u ∈ U implies

uT (u− z) + ξ

n
∑

i=1

|ui||ui − zi| ≤ ξ‖u− z‖1.

Becauseui ∈ {−1, 0, 1} this is equivalent to

uT (u− z) ≤ ξ‖zJ‖1,

Date: Jan. 12 2011.
2010Mathematics Subject Classification.94A12, 90C27, 90C22.
Key words and phrases.Compressed Sensing, Kashin Decomposition, Semidefinite Programming.

1

http://arxiv.org/abs/1101.3027v1


hence, having assumed‖z‖1 ≤ ‖u‖1, we get

‖z‖1 = ‖zI‖1 + ‖zJ‖1 ≤ ‖u‖1 ≤ uT z + ξ‖zJ‖1
≤ ‖zI‖1 + ξ‖zJ‖1,

so‖zJ‖1 = 0. Then‖z‖1 ≤ ‖u‖1 ≤ uT z ≤ ‖z‖1 meansuizi = |zi|, i = 1, . . . , n.

Given a priori bounds on the signal coefficients, we obtain the following (tighter) result, which ensures
that the signature of the decoded signal matches that of the true one, when solving a modified version of
problem (2).

Corollary 2.2. Let z solve
minimize ‖x‖1
subject to Ax = Au

‖x‖∞ ≤ 1,
(4)

If u ∈ {−1, 0, 1}n ∩ U for someξ ∈ (0, 1), whereU was defined in(3), thenz = u.

Proof. In the proof of Proposition2.1, we showeduT z = ‖z‖1 = ‖u‖1 under the same assumptions,
which together with the additional constraint that‖z‖∞ ≤ 1 means thatz = u.

Next, we show that controlling the ratio of dual pairs of norms on the nullspace ofA provides simple
sufficient conditions for checking that a signalu belongs to the setU of ℓ1-recoverable signals.

Proposition 2.3. Let‖ · ‖ be a norm onRn and‖ · ‖∗ its dual,A ∈ Rm×n andu ∈ {−1, 0, 1}n, if

sup
Ax=0,
‖x‖1≤1

‖x‖ <
1

‖u‖∗
(5)

thenu ∈ U , whereU is the set ofℓ1-recoverable signals defined in(3).

Proof. When (5) holds

sup
Ax=0
‖x‖1≤1

|u|T |x| ≤ ‖u‖∗ sup
Ax=0,
‖x‖1≤1

‖x‖ ≤ ξ

1 + ξ

for someξ ∈ (0, 1), where|u| is the vector with components|ui|. We then have

sup
Ax=0,‖x‖1≤1
w∈{−1,1}n

uT (I+ ξ diag(w))x ≤ (1 + ξ) sup
Ax=0
‖x‖1≤1

|u|T |x| ≤ ξ

which meansu ∈ U .

We can bound the value of thesup in (5) when‖ · ‖ is the Euclidean norm and the matrixA satisfies the
restricted isometry property of orderk∗ with constantδ < 1.

Lemma 2.4. SupposeA ∈ Rm×n satisfies the Restricted Isometry Property (RIP) of order3k∗ with con-
stantδ3k∗ ≤ δ < 1, then

sup
Ax=0

‖x‖2
‖x‖1

≤ 2

(1− δ)
√
k∗

. (6)

Proof. We roughly follow the proof ofCohen et al.(2009, Lemma 4.1). Letη ∈ Rn be in the nullspace
of A. Let T = T0 be the index set of thek∗ largest magnitude coefficients inη, with T1 corresponding to
the nextk∗ largest and so on.Cohen et al.(2009, Lemma 4.1) show

‖ηT ‖2 ≤
(1 + δ)

(1− δ)

‖ηT c‖1√
k∗

and

‖ηTi+1‖2 ≤ ‖ηTi
‖1√

k∗
, i ≥ 0
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so

‖ηT c‖2 ≤ ‖η‖1√
k∗

and a triangular inequality yields the desired result.

As discussed in (Donoho, 2006; Kashin and Temlyakov, 2007) this result is in fact a direct consequence
of classical bounds on Gel’fand and Kolmogorov widths, withKashin(1977); Garnaev and Gluskin(1984)
showing in particular that

sup
Ax=0

‖x‖2
‖x‖1

≤ 8√
n

for some matricesA (the proof is not constructive). Moreover,Kashin(1977) shows that this holds with high
probability when the nullspace ofA is picked at random uniformly on the Grassman manifold of subspaces
of Rn with dimensionk ≤ n/2. In other words, whenn is large, most matrices are good sensing matrices.

2.2. Generic signals. Very similar results hold for arbitrary signalsu ∈ Rn at marginally lower thresholds.
In particular,Kashin and Temlyakov(2007, Th. 2.1) show the following guarantee.

Proposition 2.5. Given a coding matrixA ∈ Rm×n, suppose that there is someS > 0 such that

sup
Ax=0

‖x‖2
‖x‖1

≤ 1√
S

(7)

thenxLP = u if Card(u) ≤ S/4, and

‖u− xLP‖1 ≤ 4 min
{Card(y)≤S/16}

‖u− y‖1

wherexLP solves theℓ1-recovery problem in(2) andu is the original signal.

This means that theℓ1-minimization problem in (2) will recover exactly all sparse signalsu satisfying
Card(u) ≤ S/4 and that theℓ1 reconstruction error for other signals will be at most four times larger than
theℓ1 error corresponding to the best possible approximation ofu by a signal of cardinality at mostS/16.

3. WEAK RECOVERY CONDITIONS

Similar conditions (with slightly better recovery thresholds) can be derived when the signalu follows a
given distribution, and recovery is only required to occur with high probability. Givenk ∈ [0, n], suppose
now that the signal is i.i.d., distributed as follows

ui =







−1 with probabilityk/2n
+1 with probabilityk/2n
0 otherwise, i = 1, . . . , n.

(8)

The condition definingU in (3) can be written

max
w∈{−1,1}n

Ax=0,‖x‖1≤1

{

uTx+ ξ

n
∑

i=1

uiwixi

}

≤ ξ

and because the maximum is taken over a polyhedral set, this can be understood as

max
x∈T

uTx ≤ ξ

whereT ⊂ Rn is a finite set. Whenu is distributed as in (8), the left-hand sidemaxx∈T uTx of this last
condition is a Rademacher process whose mean and fluctuations can be controlled, as detailed in the lemma
below.
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Lemma 3.1. LetA ∈ Rm×n, with ξ > 0 andu distributed as in(8), define

S(A) ≡ max
Ax=0

‖x‖2
‖x‖1

, (9)

then the expected value of the max. can be bounded by

M(A) ≡ E






max

w∈{−1,1}n

Ax=0,‖x‖1≤1

{

uTx+ ξ

n
∑

i=1

uiwixi

}






≤ (1 + ξ)S(A)E[‖u‖2]

and

Prob






max

w∈{−1,1}n

Ax=0,‖x‖1≤1

{

uTx+ ξ
n
∑

i=1

uiwixi

}

≥ ξ






≤ 4e

−
(ξ−M(A))2

4(1+ξ)2S2(A)

wheneverM(A) ≤ ξ.

Proof. First, remember that

max
Ax=0,‖x‖1≤1
w∈{−1,1}n

uT (I+ ξ diag(w))x ≤ (1 + ξ) max
Ax=0
‖x‖1≤1

|u|T |x|

where|u| is the vector with components|ui| here. Then, a Cauchy-Schwarz inequality yields

E



 max
Ax=0
‖x‖1≤1

(1 + ξ)|u|T |x|



 ≤ (1 + ξ) max
Ax=0
‖x‖1≤1

‖x‖2 E [‖u‖2] .

We then note that

max
w∈{−1,1}n

max
Ax=0
‖x‖1≤1

‖(I+ ξ diag(w))x‖2 = (1 + ξ) max
Ax=0
‖x‖1≤1

‖x‖2,

whenξ ∈ (0, 1), and the concentration inequality follows from (Ledoux, 2005, Cor. 4.8).

We summarize these last results in the following proposition, which highlights the role played byS(A)
in controlling the probability of recovering the signalu.

Proposition 3.2. Suppose the signalu is distributed as in(8), β > 0 andA ∈ Rm×n satisfies

S(A) <
1

E[‖u‖2] + 2β + 4
√
π

(10)

then
Prob [u /∈ U ] ≤ 4e−β2

whereU is the set ofℓ1-recoverable signals defined in(3).

Proof. If S(A) < 1/(E[‖u‖2] + 2β + 4
√
π), then there is aξ ∈ (0, 1) such thatM(A) ≤ ξ and

(1 + ξ)S(A)(E[‖u‖2] + 2β + 4
√
π) < ξ,

Lemma3.1 then yields the desired result.

BecauseE[‖u‖2] <
√
k (by Jensen’s inequality), recovery with high probability can be obtained at

slightly higher cardinalitiesk than those required for recovery of all signals. Of course, this discrepancy
vanishes if the random model foru has uniformly distributed support of size exactlyk. Here however, other
choices of norm in (5) might produce different results.

4. TRACTABLE BOUNDS

In this section, we discuss methods to efficiently bound the ratio S(A), i.e. control the Banach-Mazur
distance ofℓ1 andℓ2 on the nullspace ofA.
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4.1. Semidefinite relaxation. We now show how to compute tractable bounds on the ratio

S(A) = max
Ax=0

‖x‖2
‖x‖1

,

defined in (9). This question is directly connected to the problem of efficiently testing Kashin decomposi-
tions (see (Szarek, 2010, §4.1) for a discussion). We first formulate a semidefinite relaxation of this problem.

Lemma 4.1. LetA ∈ Rm×n,

S(A)2 ≤ SDP (A) ≡ max
Tr(ATAX)=0
‖X‖1≤1,X�0

TrX (11)

whereSDP (A) is computed by solving a semidefinite program in the variableX ∈ Sn.

Proof. Writing X = xxT , we have

S(A)2 = max
Tr(ATAX)=0, ‖X‖21≤1,

Rank(X)=1, X�0

TrX

and dropping the rank constraint yields the desired result.

We now connect the value ofS(A) with that of the functionα1(A) defined in (Juditsky and Nemirovski,
2008; d’Aspremont and El Ghaoui, 2008) as

α1(A) ≡ max
Ax=0

‖x‖∞
‖x‖1

, (12)

which can be computed by solving either a linear program (Juditsky and Nemirovski, 2008) or a semidefinite
program (d’Aspremont and El Ghaoui, 2008). The following lemma boundsS(A) usingα1(A).

Lemma 4.2. LetA ∈ Rm×n, we have

α1(A) ≤ S(A) ≤
√

SDP (A) ≤
√

α1(A)

Proof. The first inequality simply follows from‖x‖∞ ≤ ‖x‖2, the second from Lemma4.1. If X
solves (11), Tr(ATAX) = 0 impliesAX = 0, which means that the columns ofX are in the nullspace
of A. By definition ofα1(A), we then haveXii = ‖Xi‖∞ ≤ α1(A)‖Xi‖1, henceTr(X) ≤ α1(A)‖X‖1 ≤
α1(A), which yields the desired result.

The following proposition shows that if a matrix allows recovery of all signals of cardinality less thank∗,
then the SDP relaxation above will efficiently certify recovery of all signals up to cardinalityO(k∗/

√
n).

This is a direct extension of Lemma4.2and Proposition2.5.

Proposition 4.3. SupposeA ∈ Rm×n satisfies condition(7) for someS > 0, the semidefinite relaxation
will satisfy

S(A) ≤
√

SDP (A) ≤ S− 1
4 (13)

and the semidefinite relaxation will certify exact decodingof all signals of cardinality at most
√
S.

Proof. From Lemma4.2, we know thatα1 ≤ S(A) hence
√

SDP (A) ≤
√

S(A). We conclude using
Proposition2.5.

We can produce a second proof of this last result, which uses the norm ratio in (9) directly.

Proposition 4.4. SupposeA ∈ Rm×n satisfies condition(7) for someS > 0, the semidefinite relaxation
will satisfy

S(A) ≤
√

SDP (A) ≤ S− 1
4 (14)

and the semidefinite relaxation will certify exact decodingof all signals of cardinality at most
√
S.
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Proof. If X solves the SDP relaxation in (11), with S(A) = S in (9), then the rows ofX are in the
nullspace ofA, and satisfy‖Xi‖2 ≤ ‖Xi|/

√
S. Then, with‖X‖1,

TrX ≤
n
∑

i=1

‖Xi‖∞ ≤
n
∑

i=1

‖Xi‖2 ≤
‖X‖1√

S
≤ 1√

S

hence the desired result.

Note that we are not directly usingX � 0 in this last proof, so the semidefinite relaxation can be replaced
by a linear programming bound

LP (A) ≡ max. TrX
s.t. AX = 0

‖X‖1 ≤ 1
(15)

We now show that theS−1/4 bound is typically the best we can hope for from the relaxation in (11).

Proposition 4.5. SupposeA ∈ Rm×n with n = 2m, then

1√
2n

≤ SDP (A) (16)

and the semidefinite relaxation will certify exact decodingof all signals of cardinality at mostO(
√
m).

Proof. Let Q be the orthoprojector on the nullspace ofA. We haveQ � 0, Tr(Q) = m, ‖Q‖F =
√
m

and ‖Q‖1 ≤
√
n2‖Q‖F ≤ n

√
m, which means thatX = Q/(n

√
m) is a feasible point of the SDP

relaxation in (11) with TrX =
√
m/n = 1/

√
2n which yields the required bound on the optimal value

of (11).

This means that if the matrixA allows exact recovery of signals with up to (an unknown number) S
nonzero coefficients, then our relaxation will only exact certify recovery of signals with cardinalityO(

√
S).

The fact that approximating the recovery thresholdS is hard is not entirely surprising,S in (7) is the
Euclidean diameter of the centrally symmetric polytope{x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1}. Computing
the radius of convex polytopes is NP-Complete (Freund and Orlin, 1985; Lovasz and Simonovits, 1992;
Gritzmann and Klee, 1993; Brieden et al., 2001). In particular,Lovasz and Simonovits(1992) show that if
we only have access to an oracle forK, then there is no randomized polynomial time algorithm to compute
the diameter of a convex bodyK within a factorn1/4. In that sense, the approximation ratio obtained above
is optimal. Here of course, we have some additional structural information on the setK (it is a section of the
ℓ1 ball) so there is a possibility that this bound could be improved. On the other hand, in the next section,
we will see that if we are willing to add a few random experiments toA, then the diametercanbe bounded
with high probability by a randomized polynomial time algorithm.

5. GEOMETRIC BOUNDS

Proposition2.5establishes a link between the sparse recovery thresholdS of a matrixA and the diameter
of the polytope{x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1}. In this section, we first recall some classical results of geo-
metric functional analysis and use these to quantify the sparse recovery thresholds of arbitrary matricesA.

5.1. Dvoretzky’s theorem. We first recall some concentration results on the sphere as well as classical
results in geometric functional analysis which control, inparticular, the diameter ofrandomsections of the
ℓ1 ball (i.e. whereA is chosen randomly). Letσ be the unique rotation invariant probability measure on the
unit sphereSn−1 of Rn, and‖ · ‖K be a norm onRn with unit ballK, then

σ
{

x ∈ S
n−1 : |‖x‖ −M(K)| ≥ tM(K)

}

≤ e−k(K)t2 (17)

with

k(K) = cn

(

M(K)

b(K)

)2

(18)
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wherec > 0 is a universal constant, and

M(K) =

∫

Sn−1

‖x‖dσ(x) and b(K) = sup
x∈Sn−1

‖x‖. (19)

Klartag and Vershynin(2007) call k(K) the Dvoretzky dimensionof the convex setK. Part of the proof
of Dvoretzky’s theorem states that random sections ofK with dimensionk = k(K) are approximately
spherical with high probability (w.r.t. the uniform measure on the GrassmanGn,k). We writeBn

p theℓp ball
of Rn.

Theorem 5.1(General Dvoretzky). LetE ⊂ Rn be a subspace of dimensionl ≤ k(K) defined in(18),
chosen uniformly at random w.r.t. to the Haar measure onGn,k, then

c1
M(K)

(Bn
2 ∩ E) ⊂ (K ∩ E) ⊂ c2

M(K)
(Bn

2 ∩E)

with probability1− e−c3l, wherec1, c2, c3 > 0 are absolute constants.

Proof. See (Milman and Schechtman, 1986, §4) or (Vershynin, 2011, Th. 6.4) for example.

This result means that random sections of convex bodies withdimensionk are approximately spherical
with high probability. Milman and Schechtman(1997) show that the thresholdk(K) is sharp in the sense
that random sections of dimension greater thank(K) are typically not spherical. Because projections of
sphere are spheres, there is thus a phase transition atk(K): random sections ofK become increasingly
spherical until they reach dimensionk(K) below which they are approximately spherical with high proba-
bility.

The diameter follows this phase transition as well, and the following result characterizes its behavior as
the dimension of the subspace decreases (we writeK∗ the polar ofK).

Theorem 5.2 (Low M∗ estimate). Let E ⊂ Rn be a subspace of codimensionk chosen uniformly at
random w.r.t. to the Haar measure onGn,n−k, then

diam(K ∩ E) ≤ c

√

n

k
M(K∗)

with probability1− e−k, wherec is an absolute constant.

Proof. See (Pajor and Tomczak-Jaegermann, 1986) for example.

The value ofM(K∗) is known for many convex bodies, includinglp balls. In particular,(Bn
1 )

∗ = Bn
∞

andM(Bn
∞) ∼

√

log n/n asymptotically. This means that random sections of theℓ1 ball with dimension
n− k have diameter bounded by

diam(Bn
1 ∩ E) ≤ c

√

log n

k
with high probability, wherec is an absolute constant (a more precise analysis allows thelog term to be
replaced bylog(n/k)).

Theorem 5.3(Low M estimate). Letλ ∈ (0, 1) andk = ⌊λn⌋ andE ⊂ Rn be a subspace of codimension
k chosen uniformly at random w.r.t. to the Haar measure onGn,n−k, supposeBn

2 ⊂ K and

M(K) ≥
√
λ

then

diam(K ∩ E) ≤ c
√
1− λ

M(K)−
√
λ

with probability1− c2e
−c3δ2(1−λ)n, where

δ =
M2(K)− λ

1−M2(K)
7



andc1, c2, c3 are absolute constants.

Proof. See (Giannopoulos et al., 2005, Th.B).

Note that the conditionBn
2 ⊂ K means the setK needs to be normalized byb(K). Klartag (2004)

recently produced a similar result usingM(K) together with volume ratios. This result applies to all values
of M(K)/b(K), unfortunately, the dependence onk is exponential instead of being polynomial.

5.2. Connection with sparse recovery.We have seen in Proposition2.5that the sparse recovery threshold
associated with them linear observations stored inA ∈ Rm×n, i.e. the largest signal cardinality for which
all signalsu can be recovered exactly by solving theℓ1-minimization problem in (2), is given by the radius
(or diameter) of the centrally symmetric convex polytope{x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1}. By homogeneity,
this is equivalent to producing lower bounds on‖Fy‖1 overSn−m−1, the unit sphere ofRn−m.

Proposition2.5 (or Kashin and Temlyakov(2007)) shows that the sparse recovery thresholdS of the
observationsA ∈ Rm×n satisfies

S ≥ 1

diam({x ∈ Rn : Ax = 0, ‖x‖1 ≤ 1})2 (20)

The lowM∗ estimate in Proposition5.2 together with the fact thatM(Bn
∞) ∼

√

log n/n then shows that
choosingm linear samplesA ∈ Rm×n uniformly at random in the Grassman will allow us, with high
probability, to recover all signals with at mostmc logn nonzero coefficients, by solving theℓ1 minimization
problem in (2) (again, the log term can be replaced bylog(n/k)).

5.3. Approximating the diameter. As we have seen above, finding good compressed sensing experiments
means finding matricesA ∈ Rm×n for which ‖Fy‖1 is almost spherical, whereF is any basis for the
nullspace. Bad matrices are matrices for which the norm ballof ‖Fy‖1 is much closer to a cross-polytope.
This section is thus focused on measuring how spherical‖Fy‖1 actually is. The key difficulty in high
dimensions is that all centrally symmetric convex bodies look like spheres, except for a few “spikes” (or
tentacles inVershynin(2011)) with negligible volume, hence precisely characterizingthe diameter using
only probabilistic arguments is delicate.

If we notice that‖Fy‖1 defines a norm onRn−m, we can try to apply Dvoretzky’s result in the normed
space(Rn−m, ‖Fy‖1) instead of(Rn, ‖x‖1). The Dvoretzky dimensionk(K) would then act as an indirect
measure of how Euclidean‖Fy‖1 is. In compressed sensing terms,k(K) computed in(Rn−m, ‖Fy‖1) will
measure how many random experiments need to be added to the matrix A so that all signals of sizeO∗(n)
can be recovered exactly by solving theℓ1-minimization problem in (2). The lowM estimate makes this
statement even more explicit: Theorem5.3 directly links the ratioM(K)/b(K) and the number(1 − λ)n
of random experiments that need to be added to reach recoverythresholdS (through the diameter).

5.3.1. Approximating the Dvoretzky dimension.We will see below that the quantitiesM(K) and b(K)
which characterize the phase transition for sections of thenorm ball of‖Fy‖1 can be approximated ef-
ficiently. We first recall a result which can be traced back at least to (Nesterov, 1998a; Steinberg and
Nemirovski, 2005), approximating the mixed‖ · ‖2→1 operator norm by a MAXCUT type relaxation.

Proposition 5.4. LetF ∈ Rn×n−m, then

2

π
SDP (F ) ≤ max

‖x‖2≤1
‖Fx‖21 ≤ SDP (F ) (21)

where
SDP (F ) = max. Tr(XFF T )

s.t. diag(X) = 1

X � 0.
(22)
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Proof. We can write
max
‖x‖2≤1

‖Fx‖21 = max
‖u‖∞≤1

uTFF Tu

and by convexity ofuTFF Tu this is equal to

max
u∈{−1,1}n

uTFF Tu

andNesterov(1998b) (using again the fact thatFF T is positive semidefinite) shows that this problem can
be approximated within a factor2/π by the semidefinite relaxation in (22).

This means that the mixed normb(K), which is typically hard to bound in probabilistic arguments, is
approximated within a factor2/π by solving a MAXCUT semidefinite relaxation when the norm ball is a
section of theℓ1 ball. We now recall a classical result showing that the spherical averageM(K) can be
approximated by a Gaussian average.

Lemma 5.5. Letf be a homogeneous function onRn, then
∫

Sn−1

f(x)dσ(x) =

(

1√
n
+

1

4n3/2
+ o(n−3/2)

)

E[f(g)]

whereσ is the Haar measure on the sphere andg ∼ N (0, In).

Proof. Because the Gaussian measureγ is invariant by rotation, uniqueness of the Haar measure onS
n−1

means that
∫

Sn−1

f(x)dσ(x) = λn

∫

Rn
‖x‖2f(x/‖x‖2)dγ(x) = λn

∫

Rn
f(x)dγ(x)

for some constantλn satisfying

λn =

∫

Rn
‖x‖2dγ(x)

and we conclude using
∫

Rn
‖x‖2dγ(x) =

√
2Γ((n + 1)/2)

Γ(n/2)
=

√
n− 1

4
√
n
+ o(n−1/2)

asn goes to infinity.

We can now easily computeM(K), whenK is the unit ball of‖Fy‖1, with

M(K) =

(

1√
n
+

1

4n3/2
+ o(n−3/2)

)

√

2

π

n
∑

i=1

‖Fi‖2 (23)

whereFi are the rows of the matrixF , with F ∈ Rn×n−m satisfyingAF = 0. The key difficulty with
these approximations of the Dvoretzky dimension is thatM(Bn

1 ) is roughly equal to
√

2n/π, so the ratio
M(K)/b(K) is already constant and the2/π approximation ratio forb(K) only produces trivial bounds.
Hence, even though we can expect matrices with high approximate ratioM(K)/SDP (F ) to be good sens-
ing matrices, there are no guarantees that all such matriceswill have high approximate ratios.

5.3.2. ApproximatingM∗(K). We can also use the lowM∗ bound in Theorem5.2 to produce bounds on
the diameter. Once again, the idea here is to apply this boundin the normed space(Rn−m, ‖Fy‖1) instead
of (Rn, ‖x‖1), i.e. measure how many random experiments need to be added tothe matrixA so that all
signals of sizeS can be recovered exactly by solving theℓ1-minimization problem in (2). Solving for the
dual norm is a convex problem, hence we can simply approximateM∗ by simulation. In the particular case
of (Rn−m, ‖Fy‖1), this means computing

E
[

max‖Fy‖1≤1 y
T g

]

= E
[

minFTx=g ‖x‖∞
]

= E [minFTx=0 ‖Fg + x‖∞] (24)

by duality, whereg ∼ N (0, In−m) (and assumingF TF = In−m). Sampling both terms simply means
solving one linear program per sample. Also, a simple Cauchyinequality shows thatM(K∗) is bounded
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above byO(1/
√
S). Since the target precision for our estimate ofM(K∗) is always larger than1/

√
n, this

produces a recipe for a randomized polynomial time algorithm for estimatingS. In fact, following (Bourgain
et al., 1988; Giannopoulos and Milman, 1997; Giannopoulos et al., 2005), if K ⊂ Rn is a symmetric convex
body,0 < δ, β < 1 and we pickN pointsxi uniformly at random on the sphereSn−1 with

N =
c log(2/β)

δ2
+ 1

wherec is an absolute constant, then
∣

∣

∣

∣

∣

M(K∗)− 1

N

N
∑

i=1

‖xi‖K∗

∣

∣

∣

∣

∣

≤ δM(K∗)

with probability1− β.
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