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1. Introduction

Everything should be made as simple as possible, but not simpler. — Albert Einstein

The foreign exchange market is the largest financial market in the world. Currently, the average trading

volume in foreign currencies exceeds 1.5 trillion U.S. dollars per day. Hence, a deeper understanding of

the exchange rate dynamics has important economic repercussions. Accompanying the dizzying volume in

the foreign exchange market has been a thriving over-the-counter market in currency options. Market prices

of these currency options reveal important information about the underlying exchange rate dynamics. The

objective of this paper is to study foreign exchange rate dynamics using currency options.

We perform our analysis using over-the-counter option quotes on two of the most actively traded currency

pairs over the past eight years. The two currency pairs are the U.S. dollar prices of the Japanese yen and the

British pound. The option quotes are expressed as Garman andKohlhagen (1983) implied volatilities at fixed

time to maturities and fixed moneyness in terms of the Garman-Kohlhagen delta. For each currency pair, our

data set consists of 40 option series from a matrix of eight maturities and five deltas.

From the implied volatility quotes, we document several interesting patterns. First, at each maturity, the

time-series average of the implied volatility is a U-shapedfunction of moneyness. This well-known implied

volatility smile suggests that the risk-neutral conditional distribution of currency returns is fat-tailed. The

average implied volatility smile persists as the option maturity increases from one week to one and half years.

Second, the implied volatility at a fixed moneyness and maturity level shows substantial time variation over

our sample period, suggesting that currency return volatility is stochastically time varying. Third, the curva-

ture of the implied volatility smile is relatively stable, but the slope of the smile varies greatly over time. The

sign of the slope switches several times in our sample. Therefore, although the risk-neutral distribution of the

currency return exhibits persistent fat-tail behavior, the risk-neutral skewness of the distribution experiences

strong time-variation. It can be very positive or very negative on any given date.

The strong variation in currency return skewness poses a newmodeling challenge for option pricing

theory. Existing currency option pricing models, such as the jump-diffusion stochastic volatility model of

Bates (1996b), readily accommodate the average shape of theimplied volatility smiles and time-variation of

the implied volatility level. In the Bates model, the Merton(1976) jump component captures the short-term

curvature of the implied volatility smile, whereas the Heston (1993) stochastic volatility component generates

smiles at longer maturities and time variation in the implied volatility level. It is a tribute to the ingenuity of
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the option pricing modelers that they can capture both the average shape of implied volatility smiles and the

time-variation in their levels while operating under the constraints of no arbitrage. Unfortunately, models of

this vintage cannot generate strong time variation in the risk-neutral skewness of currency returns.

Starting from the jump-diffusion stochastic volatility model of Bates (1996b), it would be tempting to

attempt to capture stochastic skewness by randomizing the mean jump size parameter and/or the correlation

parameter between the currency return and the stochastic volatility process. In the Bates model, these two

parameters govern the risk-neutral skewness at short and long maturities, respectively. However, randomizing

either parameter is not amenable to analytic solution techniques that greatly aid econometric estimation.

In this paper, we attack the problem from a different perspective. We apply the general framework of time-

changed Lévy processes developed in Carr and Wu (2004), anddevelop a subclass of models that contrast

sharply with the traditional option pricing literature. Our models separate the up jumps from the down jumps

in the currency movement through two Lévy processes. The separation is consistent with the market reality

that buy orders and sell orders arrive separately in time. Italso allows us to apply separate time changes

to each Lévy component. Intuitively, a time change can be used to regulate the number of order arrivals

that occur in a given time interval. Stochastic volatility and skewness can be induced by randomizing the

time clock on which each Lévy process runs. The greater the randomness in the sum of the two clocks, the

greater is the degree of stochastic volatility. The stochastic variation in the relative proportion of up and down

jumps generates stochastic variation in the risk-neutral skewness of currency returns. Thus, our models are

capable of generating both stochastic volatility and stochastic skewness. To differentiate this model class from

traditional stochastic volatility models, we christen them asstochastic skew models(SSM).

Our parsimoniously designed stochastic skew models have one more state variable than traditional stochas-

tic volatility models, but they have about the same number offree parameters as the Bates (1996b) model.

Model estimation using options on the two currency pairs shows that our models generate much better per-

formance in terms of both root mean squared pricing errors and log likelihood values, both in-sample and

out-of-sample. The stochastic volatility component in theBates model can capture the time variation in over-

all volatility, but it cannot capture the variation in the relative proportion of up and down jumps. As a result,

the Bates model and other single factor stochastic volatility models fail to capture a large portion of the vari-

ation in the currency options data. In contrast, the two random clocks in our stochastic skew models generate

not only stochastic volatility, but also the stochastic skew observed in currency option prices.

Linking back to the literature, we can think of the classic Garman and Kohlhagen (1983) model as the
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first generation of models that only captures the stochasticvariation of the currency price. The Bates (1996b)

model and many other single-factor stochastic volatility models also recognize the stochastic behavior of

the currency return variance. Our SSM class captures the stochastic behavior of yet another dimension, the

conditional skewness of the currency return distribution.Furthermore, our chosen model specifications within

the SSM class capture all three dimensions with parsimony and tractability.

In other related works, Bakshi and Chen (1997) consider equilibrium valuation of foreign exchange

claims. Bates (1996a) investigates the distributional properties of the currency returns implied from currency

futures options. Campa and Chang (1995, 1998) and Campa, Chang, and Reider (1998) study the empirical

properties of the over-the-counter currency options. Johnson (2002) proposes a stochastic volatility model of

exchange rates that links both the level of volatility and its instantaneous covariance with returns to pathwise

properties of the currency. By allowing time-variation in the covariance, the model can generate time-varying

skewness, but option pricing under this model is no longer tractable. Bollen (1998) and Bollen, Gray, and

Whaley (2000) propose regime-switching models for currency option pricing. Nevertheless, Bollen and Raisel

(2003) find that the jump-diffusion stochastic volatility model of Bates (1996b) outperforms regime-switching

and GARCH-type models in matching the observed behaviors ofcurrency options.

The paper is organized as follows. Section 2 documents the empirical properties of over-the-counter

currency options. Section 3 develops a class of models that captures the properties of currency options.

Section 4 proposes a maximum likelihood method that estimates the models using the currency option quotes.

Section 5 reports the estimation results of our parsimoniously designed stochastic skew models and compares

their performance to traditional stochastic volatility models. Section 6 explores the virtues of more general

specifications within the stochastic skew model class. Section 7 concludes.

2. The behavior of over-the-counter currency options

Over-the-counter currency option quotes differ from exchange-listed option quotes in two major ways.

First, the over-the-counter quotes are not made directly onoption prices, but on the Garman-Kohlhagen im-

plied volatilities. Second, the implied volatilities are not quoted at a fixed strike price, but at a fixed Garman-

Kohlhagen delta. Given the quote on the implied volatility,the invoice price is computed according to the

Garman-Kohlhagen option pricing formula, with mutually agreed-upon inputs on the underlying spot ex-

change rate and interest rates. As the Garman Kohlhagen delta is agreed upon ex ante, the strike price of the
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option can be derived using the Garman-Kohlhagen model and the implied volatility quote.

2.1. Data description

We have over-the-counter currency option quotes from several broker dealers and data vendors. These data

sets cover different sample periods, sampling frequencies, and currency pairs. We use the common samples of

these different data sets to cross-validate the quality of the data. We present the stylized evidence and estimate

our models using two currency pairs from one data source because the samples on these two currency pairs

span the longest time period from January 24, 1996 to January28, 2004. Although our data are available

daily, we sample the data weekly on every Wednesday to avoid weekday effects in model estimation. Each

series contain 419 weekly observations.

The two currency pairs are the dollar price of Japanese yen (JPYUSD) and the dollar price of British pound

(GBPUSD). Options on each pair have eight fixed time to maturities at one week and one, two, three, six, nine,

12, and 18 months. At each maturity, quotes are available at five deltas in the form of delta-neutral straddle

implied volatilities, ten- and 25-delta risk reversals, and ten- and 25-delta butterfly spreads. Altogether, we

have 16,760 options quotes for each currency pair.

A straddle is a portfolio of a call option and a put option withthe same strike and maturity. For the straddle

to be delta-neutral under the Garman-Kohlhagen model, the strike priceK needs to satisfy,

e−r f τN(d1)+e−r f τN(−d1) = 0, (1)

wherer f denotes the foreign interest rate,N(·) denotes the cumulative normal distribution, and

d1 =
ln(Ft/K)

IV
√

τ
+

1
2

IV
√

τ, (2)

with Ft being the forward currency price,τ the time to maturity in years, andIV the implied volatility quote.

Equation (1) implies thatd1 = 0. Hence, the strike price is very close to the spot or forwardprice. We refer to

this quote as the at-the-money implied volatility quote (ATMV).

The ten-delta risk reversal (RR10) quote measures the difference in implied volatilities between a ten-delta
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call option and a ten-delta put option,4

RR10= IV (10c)− IV (10p), (3)

where 10p and 10c denote a ten-delta put and call, respectively. Hence, the risk reversal is a measure of

asymmetry, or slope, of the implied volatility smile acrossmoneyness.

The ten-delta butterfly spread (BF10) measures the difference between the average implied volatility of

the two ten-delta options and the delta-neutral straddle implied volatility,

BF10= (IV (10c)+ IV (10p))/2−ATMV. (4)

Hence, a butterfly spread measures the curvature of the implied volatility smile. The 25-delta risk reversals

(RR25) and butterfly spreads (BF25) are defined analogously.

From the five quotes, we can derive the implied volatilities at the five levels of delta. To convert the implied

volatilities into option prices and the deltas into strike prices, we need the currency price and the domestic

and foreign interest rates. The currency prices are from thesame data source. We strip the continuously

compounded interest rates using LIBOR and swap rates from Bloomberg for the three currencies, assuming

piece-wise constant forward rates.

2.2. Stylized features of currency option implied volatilities

Using the currency option implied volatility quotes, we document several important features that a cur-

rency option pricing model should accommodate.

2.2.1. The average behavior of implied volatility smiles

When we plot the time-series average of implied volatilities against delta, we observe a U-shape for each

currency and at each maturity. Figure 1 plots the average implied volatility smile across moneyness at selected

maturities of one (solid lines), three (dashed lines) and 12(dash-dotted lines) months. In the graphs, we denote

thex-axis in terms of approximate put option delta. We approximate the ten-delta call as a 90-delta put in the

4As an industry convention, the deltas are quoted on out-of-the-money options and in absolute percentage terms. Thus, the
moneyness is represented in terms of call delta whenK > Ft and put delta whenK < Ft . A ten-delta call corresponds to a Black-
Scholes delta of 0.1 on the call option, and a ten-delta put corresponds to a Black-Scholes delta of -0.1 on the put option.
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graph, and denote the delta-neutral straddle at 50 delta.

[Fig. 1 about here.]

The Garman-Kohlhagen model assumes a normal currency return distribution. The smile shape of the

implied volatility across moneyness has long been regardedas evidence for return non-normality under the

risk-neutral measure. The curvature of the smile reflects fat-tails or positive excess kurtosis in the risk-

neutral return distribution. The asymmetry of the smile reflects asymmetry or skewness in the currency return

distribution. The relatively symmetric mean implied volatility smiles on GBPUSD show that on average, the

risk-neutral return distribution of this currency pair is fat-tailed, but not highly asymmetric. In contrast, the

average smiles on JPYUSD show more pronounced asymmetry.

A classical hypothesis is that return increments are independently and identically distributed (iid), with

the common distribution being non-gaussian but having finite return variance. Under this hypothesis, the

short-term return distribution is non-normal, but this non-normality disappears rapidly as the time horizon for

the return increases. By virtue of the central limit theorem, the return skewness declines like the reciprocal of

the square root of the time horizon, and the excess kurtosis declines like the reciprocal of the time horizon.

Mapping this declining non-normality to the implied volatility smile at different maturities, we would expect

the smile to flatten out rapidly at long option maturities.

Figure 1 shows that the average smiles remain highly curved as the option maturity increases from one

month to one year. This maturity pattern indicates that the risk-neutral distribution remains highly non-

normal as the horizon increases. Thus, an iid return distribution with finite return variance cannot generate

this average maturity pattern of the implied volatility smile. In continuous-time, one generates iid return

increments by assuming that currency returns are driven by aLévy process. To slow down the convergence of

the return distribution to normality, researchers have proposed incorporating a persistent stochastic volatility

process into the return dynamics.

2.2.2. The dynamic properties of implied volatilities, risk reversals, and butterfly spreads

Figure 2 plots the time series of delta-neutral straddle implied volatilities at three selected maturities of

one (solid lines), three (dashed lines), and 12 (dash-dotted lines) months. The plots show that historically,

the implied volatility series on both currency pairs have experienced large variations. If we use the implied

volatility as a proxy for the currency return volatility level, the time-series plots in Figure 2 suggest that a

6



reasonable model should allow the currency return volatility to vary over time. Stochastic volatility models

such as Heston (1993) and Hull and White (1987) can accommodate this feature of the data.

[Fig. 2 about here.]

The market quotes on risk reversals and butterfly spreads provide direct and intuitive measures of the

asymmetry and curvature of the implied volatility smile, respectively. Figure 3 plots the time series of the

ten-delta risk reversals (solid lines) and butterfly spreads (dashed lines), both normalized as percentages of

the corresponding delta-neutral straddle implied volatility level. The three lines for both the risk reversals and

the butterfly spreads represent three selected option maturities at one, three, and 12 months.

[Fig. 3 about here.]

The ten-delta butterfly spreads are consistently at about 10% of the straddle implied volatility level during

the eight-year span at all three option maturities and for both currency pairs. Therefore, the curvature of

the smile is relatively stable over option maturity, calendar time, and for both currency pairs. The stability

suggests that excess kurtosis in the currency return distribution is a robust feature of the data.

In contrast, the risk reversals vary greatly over time. For JYPUSD, the ten-delta risk reversals have

moved from−30% to 60% of the straddle implied volatility level. For GBPUSD, the swing of the ten-

delta risk reversal is from−20% to 20%. For both currency pairs, the skewness of the risk-neutral return

distribution varies so much that the direction of the skewness often switches. This feature of the currency

options contrasts sharply with equity index options, wherethe implied skewness also varies over time, but it

stays highly negative across most sample periods (David andVeronesi (1999) and Foresi and Wu (2005)).

Table 1 reports the mean, standard deviation, and the weeklyautocorrelation of risk reversals, butterfly

spreads, and delta-neutral straddle implied volatilities. We normalize the risk reversals and butterfly spreads

as percentages of the delta-neutral straddle implied volatility. For JPYUSD, the sample averages of the risk-

reversals are positive, implying that the out-of-money call options are on average more expensive than the

corresponding out-of-money put options during the sample period. The average butterfly spreads are around

12% at ten delta and 3-4% at 25 delta. For GBPUSD, the average implied volatility smile is much more

symmetric as the average risk-reversals are close to zero. The average butterfly spreads for GBPUSD are

around 9% at ten delta and less than 3% at 25 delta.
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For both currencies, the standard deviations of the risk reversals are much larger than the standard devia-

tions of the butterfly spreads. For JPYUSD, the standard deviations are around 15% for ten-delta risk reversals

and are about 3-4% for ten-delta butterfly spreads. The standard deviations of 25-delta risk reversals are about

8%, but that for the 25-delta butterfly spreads are about 1% orless. The same pattern holds for GBPUSD. The

standard deviations for the risk reversals are about three times larger than that for the corresponding butterfly

spreads. The delta-neutral straddle implied volatilitieshave standard deviations around three for JPYUSD

and less than two for GBPUSD. Finally, all time series show strong serial correlation that increases with the

option maturity.

2.2.3. Cross-correlations between currency returns and changes in risk reversals

Table 2 reports the cross-correlation estimates between currency returns and the weekly changes in risk

reversals, butterfly spreads, and delta-neutral straddle implied volatilities. Currency returns show strongly

positive correlations with weekly changes in risk reversals across all option maturities and at both ten and 25

delta for both currency pairs. In contrast, currency returns show little correlation with changes in butterfly

spreads. The correlation estimates between the currency return and changes in the delta-neutral straddle

implied volatility are positive for JPYUSD, but essentially zero for GBPUSD. Hence, the only persistent and

universal correlation pattern is between currency returnsand risk reversals.

Using different currency pairs, sample periods, and different data sources, we have cross-validated the

above-documented evidence on currency options. In particular, risk reversals on most currency pairs vary

greatly over time, while butterfly spreads remain relatively stable. The positive correlations between currency

returns and changes in risk reversals are also universal across most currency pairs.

3. Modeling currency return dynamics for option pricing

We propose a class of models that can capture not only the average behavior of currency option implied

volatilities across moneyness and maturity, but also the dynamic variation of at-the-money implied volatilities

and risk reversals.

We use(Ω,F ,(F t)t≥0,Q) to denote a complete stochastic basis defined on a risk-neutral probability
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measureQ, under which the log currency return obeys a time-changed L´evy process,

st ≡ lnSt/S0 = (rd − r f )t +
(

LR
TR

t
−ξRTR

t

)
+

(
LL

TL
t
−ξLTL

t

)
, (5)

whererd andr f denote the continuously-compounded domestic and foreign riskfree rates, respectively, both

of which are assumed to be deterministic.LR andLL denote two Lévy processes that exhibit right (positive)

and left (negative) skewness, respectively.ξR andξL are known functions of the parameters governing these

Lévy processes, chosen so that the exponentials ofLR
TR

t
− ξRTR

t and LL
TL

t
− ξLTL

t are bothQ martingales.

Finally, TR
t andTL

t denote two separate stochastic time changes applied to the two Lévy components.

In principle, the specification in equation (5) can capture all of the documented features of currency

options. First, the two Lévy components can generate short-term return non-normalities and hence the implied

volatility smiles at short maturities. Furthermore, by applying time changes to the two Lévy components, the

model can generate stochastic volatility. Persistence in stochastic volatility reduces the speed of convergence

of the return distribution to normality. Thus, the model cangenerate average implied volatility smiles at both

short and long maturities, as well as dynamic variation in the implied volatility time series.

More importantly, the relative weight of the two Lévy components can also vary over time due to the

separate time changes. When the weight of the right-skewed Lévy componentLR is higher than the weight of

the left-skewed Lévy componentLL, the model generates a right-skewed conditional return distribution and

hence positive risk reversals. When the opposite is the case, the model generates a left-skewed conditional

return distribution and negative risk reversals. Thus, themodel can generate variations and even sign changes

on the risk reversals via the separate time changes. To stress the ability of this class of models in capturing

the stochastic skewness of the currency return distribution, we christen them asstochastic skew models.

In what follows, we propose parsimonious and tractable specifications for the two Lévy components and

the stochastic time changes. We then price options under theparsimoniously designed model specifications.

3.1. The Ĺevy components

For model design, we make the following decomposition on thetwo Lévy components in equation (5),

LR
t = JR

t + σWR
t , LL

t = JL
t + σWL

t ,
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where(WR
t ,WL

t ) denote two independent, standard Brownian motions and(JR
t ,JL

t ) denote two pure jump

Lévy components with positive and negative skewness in distribution, respectively.

For parsimony, we assume relative symmetry for the unconditional return distribution. We set the instanta-

neous volatility parameter (σ) of the two diffusion components to be the same. For the two jump components

(JR
t ,JL

t ), we propose a simple yet flexible specification for the Lévy density,

νR(x) =





λe−

|x|
vJ |x|−α−1, x > 0,

0, x < 0.
, νL(x) =





0, x > 0,

λe−
|x|
vJ |x|−α−1, x < 0.

(6)

so that the right-skewed jump component only allows up jumpsand the left-skewed jump component only

allows down jumps. For both jumps, we use the same parameters(λ,vJ) ∈ R+ and α ≤ 2 for parsimony.

This specification has its origin in the CGMY model of Carr, Geman, Madan, and Yor (2002). We hence

label it as CG jump. The Lévy density of the CG specification follows an exponentially dampened power law.

Depending on the magnitude of the power coefficientα, the sample paths of the jump process can exhibit finite

activity (α < 0), infinite activity with finite variation (0≤ α < 1), or infinite variation (1≤ α ≤ 2).5 Therefore,

this parsimonious specification can capture a wide range of jump behaviors. We let the data determine the

exact jump behavior for currency prices. Within this specification, we estimate models both withα as a free

parameter and withα fixed at three special values at−1, 0, and 1. Withα = −1, the jump specification

becomes a finite-activity compound Poisson process with an exponential jump size distribution as in Kou

(2002). We label it as KJ jump. Withα = 0, the jump specification becomes the infinite-activity but finite

variation variance-gamma model of Madan, Carr, and Chang (1998) and Madan and Seneta (1990). We hence

label it as VG jump. Finally, whenα = 1, we obtain the Lévy density for an exponentially dampenedCauchy

process. We label it as CJ jump.

3.2. Activity rates

We assume that the two stochastic time changes are continuous and differentiable and let

vR
t ≡ ∂TR

t

∂t
, vL

t ≡ ∂TR
t

∂t
,

5We needα ≤ 2 to maintain finite quadratic variation.

10



denote the instantaneous activity rates of the two Lévy components. We model the two activity rates as

following square-root processes,

dvj
t = κ

(
1−v j

t

)
dt+ σv

√
v j

t dZ j
t , j = R,L. (7)

For identification, we normalize the long-run mean of both processes to one. For parsimony, we set the

mean-reversion parameterκ and volatility of volatility coefficientσv to be the same for both processes.

We allow the two Brownian motions(WR
t ,WL

t ) in the return process and the two Brownian motions

(ZR
t ,ZL

t ) in the activity rates to be correlated,

ρRdt = E
[
dWR

t dZR
t

]
, ρLdt = E

[
dWL

t dZL
t

]
.

The four Brownian motions are assumed to be independent otherwise. Furthermore, we constrainρR to be

positive andρL to be negative. With this constraint, we generate positive skewness at short horizons via the

pure up jump Lévy componentJR and at long horizons via the positive correlationρR. Similarly, we generate

negative skewness at short horizons via the pure down jump L´evy componentJL and at long horizons via the

negative correlationρL. The time variation in the relative magnitudes of the two activity rates (vR
t andvL

t )

generates time variation in the skewness of the currency return distribution at both short and long horizons.

The correlation assumptions also capture the observed positive correlation between currency returns and

changes in risk reversals. To see this, we can usedZR
t − dZL

t to proxy the innovation in the risk reversal,

anddWR
t +dWL

t to proxy the innovation in the currency return, ignoring theorthogonal jump component and

the relative scales. Then, the correlation between currency returns and changes in risk reversals is positively

related toρR−ρL, which is positive given the positivity constraint onρR and the negativity constraint onρL.

3.3. Option pricing under stochastic skew models

For each model considered in this paper, we first derive its generalized Fourier transform and then price

European options using a fast Fourier transform method. Thegeneralized Fourier transform of the currency

return is defined as,

φs(u) ≡ E
[
eiust

]
, u∈ D ⊂ C, (8)
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whereE[·] denotes the expectation operator under the risk-neutral measureQ, andD is a subset of the complex

domainC on which the expectation is well-defined.

For time-changed Lévy processes, Carr and Wu (2004) show that the problem of deriving the generalized

Fourier transform can be converted into an equivalent problem of deriving the Laplace transform of the random

time change under a new, complex-valued measure:

φs(u) = eiu(rd−r f )tE

[
e

iu

(
LR

TR
t
−ξRTR

t

)
+iu

(
LL

TL
t
−ξLTL

t

)]

= eiu(rd−r f )tEM

[
e−ψ⊤Tt

]
≡ eiu(rd−r f )tLM

T (ψ) , (9)

whereψ ≡
[
ψR,ψL

]⊤
denotes the vector of the characteristic exponents of the concavity-adjusted right- and

left-skewed Lévy components, respectively, andLM

T (ψ) represents the Laplace transform of the stochastic

time vectorTt ≡ [TR
t ,TL

t ] under a new measureM. The measureM is defined by a complex-valued exponential

martingale,
dM

dQ t
≡ exp

[
iu

(
LR

TR
t
−ξRTR

t

)
+ iu

(
LL

TL
t
−ξLTL

t

)
+ ψRTR

t + ψLTL
t

]
. (10)

The solution to the Laplace transform depends on the characteristic exponents and the activity rate dynamics.

The characteristic exponent of a Lévy processX is given by the Lévy-Khintchine Theorem:

ψ(u) ≡ 1
t

lnE
[
eiuXt

]
= −iuµ+

1
2

u2σ2 +

Z

R0

(
1−eiux + iux1|x|<1

)
ν(x)dx, (11)

whereµ describes the constant drift of the process,σ2 is the constant variance rate of the diffusion component

of the process, andν(x) determines the arrival rate of jumps of sizex and is referred to as theLévy density

(Bertoin (1996)). The truncation 1|x|<1 equals one when|x|< 1 and zero otherwise. It is needed under infinite

variation jump processes in order to guarantee finiteness ofthe integral.

Under our Lévy density specification in (6), the integral inequation (11) can be carried out analytically

(Wu (2006)). Table 3 summarizes the characteristic exponents of the two concavity-adjusted Lévy compo-

nents (LR
t −ξRt,LL

t −ξLt) under eachα specification. The characteristic exponents for the general case (CG)

are applicable to all admissibleα values except for two singular cases atα = 0 andα = 1, which have different

functional forms for the characteristic exponents.

Since the Laplace transform of the time change in equation (9) is defined under the complex measureM,

we need to obtain the activity rate process underM. By Girsanov’s Theorem, under measureM, the diffusion
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coefficient ofv(t) remains the same asσv

√
v j

t , j = R,L. The drift terms adjust as follows:

drift(v j
t )

M = κ(1−v j
t )+ iuσσvρ j v j

t , j = R,L. (12)

Thus, both the drift and the variance are affine in the activity rates under measureM. Under affine activity

rates, the Laplace transform ofTt is exponential-affine in the current level of the activity rates,(vR
0 ,vL

0):

LM

T (ψ) = exp
(
−bR(t)vR

0 −cR(t)−bL(t)vL
0 −cL(t)

)
, (13)

where

b j(t) =
2ψ j

(
1−e−η j t

)

2η j−(η j−κ j )
(

1−e−η j t
) ,

c j(t) = κ
σ2

v

[
2ln

(
1− η j−κ j

2η j

(
1−e−η j t

))
+(η j −κ j)t

]
,

(14)

and

η j =

√
(κ j)2 +2σ2

vψ j , κ j = κ− iuρ jσσv, j = R,L.

Thus, we obtain in closed form the generalized Fourier transforms for our stochastic skew specifications.

3.4. Option pricing under traditional jump-diffusion stochastic volatility models

The jump-diffusion stochastic volatility model of Bates (1996b) represents the state of the art in the

currency option pricing literature. This model combines the Lévy jump-diffusion specification of Merton

(1976) with the stochastic volatility specification of Heston (1993). We label this model as MJDSV, where

MJD denotes the Merton jump-diffusion specification and SV denotes the stochastic volatility component.

To compare the MJDSV model to our SSM specification, we cast the MJDSV model into the time-changed

Lévy process framework and write the log return process under measureQ as

st = (rd − r f )t +(Jt(λ)−ξt)+

(
σWTt −

1
2

σ2Tt

)
, (15)

whereJt(λ) denotes a compound Poisson Lévy pure jump process with meanarrival rateλ. Conditional on

one jump occurring, the jump size in log returns is normally distributed with meanµJ and variancevJ. The

termWt denotes a standard Brownian motion, andTt denotes the stochastic clock with its activity rate given

13



by vt = ∂Tt/∂t. The activity rate follows a square-root process:

dvt = κ(1−vt)dt+ σv
√

vtdZt ,

with ρdt = E [dWtdZt ]. Equation (15) makes it obvious that the MJDSV model generates stochastic volatility

purely from the diffusion component, while keeping the jumparrival rate constant over time. If we setλ = 0,

we obtain the pure-diffusion stochastic volatility model of Heston (1993) as a special case. We also estimate

this model and denote it as HSTSV.

Both MJDSV and HSTSV can generate stochastic volatility viathe stochastic time change of the diffusion

component, but neither can generate stochastic skew. UnderHSTSV, return skewness is determined by the

correlation parameterρ between the diffusion in the currency return and the diffusion in the activity rate.

With a fixed correlation parameter, the model cannot generate dramatically varying skews. Under MJDSV,

the mean jump sizeµJ also helps in generating return skewness at short maturities. However, since it is also

a fixed parameter, the MJDSV model cannot generate large variations in the skewness, either. Thus, although

both models can generate static skewness, neither model cangenerate the dynamics in skewness that are

observed from the time series of currency option quotes.

There are some attempts in the literature that try to extend the Bates (1996b) model by making the mean

jump sizeµJ and/or the instantaneous correlationρ stochastic. Both extensions can generate stochastic skew,

but neither is amenable to analytic solution techniques that greatly aid econometric estimation.

4. Maximum likelihood estimation

To estimate the dynamic models using the time series data of implied volatilities, we cast the models into

a state-space form and estimate the models using the maximumlikelihood method.

To capture the time-series dynamics, we need to specify the currency return and activity rate dynamics

under the statistical measureP. Since the return process under measureP has limited relevance for option

pricing, we focus on the activity rate processes and leave the market price of return risk unspecified. We

assume that the market price of risk on the activity rates is proportional to the square root of the activity rates:

γ(v j
t ) = γ

√
v j

t , j = L,R. (16)
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We use the same parameterγ for both activity rates. TheP-dynamics governing the activity rates become,

dvj
t = (κ−κPv j

t )dt + σv

√
v j

t dZ j
t , j = R,L, (17)

with κP = κ−σvγ. We make analogous assumptions for the Bates (1996b) model.

In the state-space form, we regard the two activity rates of the SSM model as the unobservable states

Vt ≡ [vR
t ,vL

t ] and specify the state propagation equation using an Euler approximation of equation (17):

Vt = (1−ϕ)θP + ϕVt−1 + σv

√
Vt−1∆tεt , (18)

whereϕ = exp(−κP∆t) denotes the autocorrelation coefficient with∆t being the length of the discrete time

interval, andε denotes an iid bivariate standard normal innovation. With weekly sampling frequency, we set

∆t = 7/365. For notational clarity, we normalize the discrete timeinterval to one. For the Bates (1996b)

model, the state variableVt ≡ vt follows an analogous scalar process.

We construct the measurement equations based on the option prices, assuming additive, normally-distributed

measurement errors:

yt = O(Vt ;Θ)+et , (19)

whereyt denotes the observed option prices at timet andO(Vt ;Θ) denotes the model-implied values as a

function of the parameter setΘ and the state vectorVt . The termet denotes the pricing errors. We convert

the implied volatility quotes into out-of-money option prices and scale all option prices by their Garman-

Kohlhagen vega. With this scaling, we assume that the pricing errors are IID normal with zero mean and

constant varianceσr . The dimension of the measurement equation is 40, capturingthe 40 options quotes on

each date for each currency pair.

When both the state propagation equation and the measurement equations are Gaussian and linear, the

Kalman (1960) filter generates efficient forecasts and updates on the conditional mean and covariance of

the state vector and the measurement series. In our application, the state propagation equation in (18) is

Gaussian and linear, but the measurement equation in (19) isnonlinear. We use the unscented Kalman filter

(Wan and van der Merwe (2001)) to handle the nonlinearity. The unscented Kalman filter approximates the

posterior state density using a set of deterministically chosen sample points (sigma points). These sample

points completely capture the true mean and covariance of the Gaussian state variables, and when propagated

through the nonlinear functions in the measurement equations, capture the posterior mean and covariance of
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the option prices accurately to the second order for any nonlinearity. Letyt+1 andAt+1 denote the time-t ex

ante forecasts of time-(t +1) values of the measurement series and the covariance of the measurement series,

respectively obtained from the unscented Kalman filter. We construct the log-likelihood value assuming

normally distributed forecasting errors,

lt+1(Θ) = −1
2

log
∣∣At+1

∣∣− 1
2

(
(yt+1−yt+1)

⊤ (
At+1

)−1
(yt+1−yt+1)

)
. (20)

The model parameters are chosen to maximize the log likelihood of the data series,

Θ ≡ argmax
Θ
L (Θ,{yt}N

t=1), with L (Θ,{yt}N
t=1) =

N−1

∑
t=0

lt+1(Θ), (21)

whereN = 419 denotes the number of weeks in our sample of estimation.

For each currency pair, we estimate six models, which include the Heston (1993) model (HSTSV), the

Bates (1996b) model (MJDSV), and four SSM models. The four SSM models differ in their respective jump

specifications. We label them as KJSSM, VGSSM, CJSSM, and CGSSM, with KJ, VG, CJ, and CG denoting

the four different jump structures, respectively.

The Bates (1996b) model has nine free parametersΘB =
[
σr ,σ2,λ,µJ,vJ,κ,σv,ρ,κP

]
. The Heston (1993)

constitutes a restricted version withλ = vJ = µJ = 0. Our SSM models with KJ, VG, and CJ jumps also have

nine parameters,ΘS =
[
σr ,σ2,λ,vJ,κ,σv,ρR,ρL,κP

]
. The SSM model with CG jump specification (CGSSM)

has one extra free parameterα that controls the type of the jump process. Furthermore, thefour SSM models

have two state variables(vR
t ,vL

t ) that generate both stochastic volatility and stochastic skewness in the currency

return distribution. The Bates model and the Heston model have only one state variablevt that controls the

instantaneous variance of the diffusion component.

5. Results and Discussion

In this section, we discuss the estimation results. First, we investigate which model best captures the

time series and cross-sectional behavior of currency option implied volatilities. Second, we show how the

estimated activity rate dynamics relate to the observed time variation in implied volatilities and risk reversals.
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5.1. In-sample model performance comparison

We compare the in-sample model performance along two dimensions. First, we investigate how our new

SSM models perform against traditional jump-diffusion stochastic volatility models. Second, within our new

SSM model framework, we investigate which jump structure delivers the best performance in capturing the

currency option price behavior.

Table 4 reports the parameter estimates and standard errors(in parentheses) for the six models on the two

currency pairs based on the whole sample of eight years of data. In the last two rows of the table, we also

report the root mean squared pricing error and the maximizedlog likelihood value for each model and each

currency pair. The pricing errors are defined as the difference between the implied volatility quotes and the

corresponding model-generated values.

Our four SSM models markedly outperform the MJDSV model in terms of both the log likelihood values

and the root mean squared pricing errors. For the currency pair JPYUSD, the log likelihood value for MJDSV

is lower than values for the four SSM models by 2,605, 2,619, 2,637, and 2,685, respectively. The root mean

squared error is 1.065 volatility points for MJDSV and is about 0.87 volatility points for the four SSM models.

For GBPUSD, the log likelihood values for the four SSM modelsare also higher than the value for the MJDSV

model, with the difference ranging from 1,537 to 1,561. The root mean squared pricing error is 0.442 volatility

points for MJDSV and is about 0.39 for the four SSM models. From MJDSV to its restricted version HSTSV,

we observe a further reduction in likelihood values and a further increase in root mean squared pricing errors.

The likelihood difference is 409 for JPYUSD and 604 for GBPUSD. These differences show that the jump

component in MJDSV improves the model performance over the pure-diffusion model of HSTSV.

Within our SSM framework, we estimate four models with different jump specifications. In contrast to

the large difference in log likelihood values between the SSM models and the MJDSV model, the likelihood

value differences among the four SSM models are much smaller. The parameter estimates for the four SSM

models are also very similar, except for the jump parameters, which can have different scales under different

jump specifications. For JPYUSD, we detect a marginal increase in the likelihood value as we move from

KJ to VG and then to the CJ jump structure. These three jump specifications differ by a power term in

the Lévy density. The performance ranking corresponds to an increase in the power coefficientα and an

increase in jump frequency. When we estimate the CGSSM modelwhereα is a free parameter, the estimate

for α is 1.602, indicating that a high-frequency jump specification is favored for modeling JPYUSD options.

Nevertheless, when we compare the root mean squared pricingerrors for the four SSM models, we can hardly
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distinguish any differences among the four jump types. For GBPUSD, the estimate ofα under the CGSSM

model is 1.18, but the performance differences of the four SSM models are negligible in terms of both the log

likelihood values and the root mean squared pricing errors.Therefore, we conclude that our currency options

data cannot effectively distinguish between different jump types. There is only weak evidence that favors a

high-frequency jump specification with infinite variation for JPYUSD.

Our results on the nature of the jump specification for currency options are not as strong as those in Carr

and Wu (2003) and Huang and Wu (2004) for equity index options. Both studies find that infinite-activity

jump specifications significantly outperform finite-activity jump specifications for pricing S&P 500 index

options. Madan and Daal (2004) also find evidence that the infinite-activity VG model performs better than

the finite-activity Merton (1976) jump in pricing currency options. Those studies use exchange-traded options

that include very deep out-of-the-money contracts. The over-the-counter currency options data that we use

have only five strikes for each maturity, all located within approximately the tenth and 90th percentile of the

risk-neutral return distribution. Hence, the currency options data that we use do not provide much information

on the tail (beyond the tenth percentile) of the risk-neutral currency return distribution. However, it is in the

tails of the distribution that the alternative jump specifications display their differences.

To test the statistical significance of the performance difference between different models, we adopt the

likelihood ratio statistic constructed by Vuong (1989) fornon-nested models. Formally, we letLR(Θi ,Θ j)

denote the log likelihood ratio between modelsi and j,

LR(Θi ,Θ j) ≡ L i(Θi)−L j(Θ j). (22)

Vuong constructs a test statistic based on this log likelihood ratio,

M = LR(Θi,Θ j)/(ŝ
√

N), (23)

whereN denotes the number of weeks in the time series andŝ2 denote the variance estimate of the weekly

log likelihood ratio(l i − l j). Vuong proves thatM has an asymptotic standard normal distribution under the

null hypothesis that the two models are equivalent in terms of likelihood. Based on the weekly log likelihood

estimates, we compute the sample mean and standard deviation of the likelihood ratio between each pair of

models and then construct the test statistic in equation (23). In estimatinĝs, we adjust for serial dependence in

the weekly log likelihood ratios according to Newey and West(1987) with the lags optimally chosen following
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Andrews (1991) under an AR(1) specification.

Table 5 reports the pairwise log likelihood ratio test statistics. For each currency pair, we report the

statistics in a(6×6) matrix, with the(i, j)th element being the statistic on(l i − l j). Given the symmetry of

the test, the diagonal terms are zero by definition and the lower triangular elements are equal to the negative

of the upper triangular elements. We focus on the lower triangular entries for our discussion and use boldface

type to highlight the statistics that are greater than 1.65,which corresponds to a 95% confidence level on a

one-sided test.

For both currency pairs, all of the off-diagonal elements inthe first column are positive and strongly

significant, indicating that HSTSV is the worst performing of all six estimated models. The last four elements

in the second column are also strongly positive and significant, indicating that the performance of MJDSV is

significantly worse than the four SSM models. However, as we move to the(4×4) block in the right bottom

corner, none of the elements are significant for either currency pair. This block compares the performance

among the four SSM models, with CGSSM having an extra free parameterα that controls the jump type.

Within the SSM modeling framework, our currency options data cannot effectively distinguish the different

jump specifications.

5.2. Out-of-sample performance comparison

To study the out-of-sample performance, we re-estimate thesix models using the first six years of data

from January 24, 1996 to December 26, 2001, 310 weekly observations for each series. Then, we use these

estimated model parameters to compare the model performance both in-sample during the first six years and

out-of-sample during the last two years from January 2, 2002to January 28, 2004, 109 weekly observations

for each series. If the behavior of currency option prices has not dramatically changed during the last two

years, we would expect that the out-of-sample performance for each model is similar to its in-sample perfor-

mance. We also investigate whether the superior in-sample performance of our SSM models over traditional

specifications such as HSTSV and MJDSV extends to an out-of-sample comparison.

Table 6 reports the subsample estimates and standard errorsof the model parameters. For GBPUSD, the

parameter estimates from the subsample are close to those obtained from the full-sample estimation in Ta-

ble 4. The differences in the two sets of estimates for most parameters are within two times their respective

standard errors. The stability of parameter estimates suggest that the option price behavior on GBPUSD has

not experienced dramatic structural changes over the past two years. For JPYUSD, the subsample estimates
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on some of parameters show substantial differences from thefull sample estimates. In particular, for all six

models, the subsample estimates on the mean-reversion parameterκ are markedly larger than the correspond-

ing full-sample estimates. The subsample estimates for thevolatility of volatility coefficientsσv are also larger

than the corresponding full-sample estimates for five of thesix models. These differences suggest that option

price behavior on JPYUSD is not as stable as that on GBPUSD.

Table 7 compares the in-sample and out-of-sample performance of the six models based on the subsam-

ple estimation. We report the root mean squared pricing error (rmse) in implied volatility percentage points,

the mean weekly log likelihood value (L /N), and the pairwise likelihood ratio test statistics definedin equa-

tion (23). To facilitate comparison between in- and out-of-sample performance, we normalize the aggregate

likelihood value (L ) by the number of weeks (N) for each sample period and report the mean weekly log like-

lihood estimate (L /N). The in-sample comparison is based on the first 310 weeks of data. The out-of-sample

comparison is based on the last 109 weeks of data.

For each currency pair and each model, we first compare the in-sample and out-of-sample performance

in terms of the root mean squared pricing error and the mean weekly log likelihood value. The in-sample

and out-of-sample estimates are very close to one another. For JPYUSD, most models generate slightly larger

out-of-sample pricing errors and smaller out-of-sample likelihood values than their in-sample counterpart.

For GBPUSD, all models actually generate smaller out-of-sample pricing errors and larger out-of-sample

likelihood values. Therefore, we do not observe much degeneration in out-of-sample performance.

To test the overall stability of the model parameters over time, we construct a likelihood ratio statistic.

We can think of the full-sample estimates in Table 4 as for a restricted model where the parameters during

the first six years are restricted to be the same as the parameters during the last two years. By comparison,

the subsample estimates in Table 6 can be regarded as for an unrestricted model as they can be different from

the parameter values during the last two years. Thus, we can construct the likelihood ratio statistic based on

the first six years of data,LR= 2(LSub−LFull ), where the subscriptSubandFull refer to the subsample and

full-sample parameter estimates used to compute the likelihoods for the six years of data. The statistic has a

chi-square distribution with six degrees of freedom for HSTSV, nine degrees of freedom for MJDSV, KJSSM,

VGSSM, and CJSSM, and ten degrees of freedom for CGSSM. We report the likelihood ratio statistic, as well

as the critical values at 99% confidence level in the last panel of Table 7. The statistics suggest that the null

hypothesis that the parameters are the same during the two sample periods are rejected.

We now compare the performance of different models both in-sample and out-of-sample. The root mean
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squared error and the log likelihood values in Table 7 show that the four SSM models perform much better

than the MJDSV and HSTSV models, both in-sample and out-of-sample. The likelihood ratio test statistics

M tell the same story. For both in-sample and out-of-sample tests, the off-diagonal terms in the first column

of theM matrix are all strongly positive for both currencies, indicating that all other models significantly

outperform the Heston (1993) model. The last four elements of the second column are also strongly positive,

indicating that our four SSM models significantly outperform the MJDSV model.

Among the four SSM models, the in-sampleM statistics show that the four models are not statistically

different from one another for both currencies. For out-of-sample performance on JPYUSD, the CG jump

structure significantly outperforms the three restricted jump specifications (KJ, VG, and CJ). Among the three

restricted jump specifications, CJ significantly outperforms KJ and VG, and VG significantly outperforms KJ,

thus generating the following statistically significant performance ranking in descending order: CG, CJ, VG,

and KJ. The qualitative conclusion is similar to that from the in-sample comparison, but statistically stronger:

high frequency jumps perform better in capturing the optionprice behavior on JPYUSD.

For GBPUSD, the out-of-sample performance ranking among the four jump specifications goes the op-

posite direction, but with less statistical significance. Although the encompassing CG jump specification

generates slightly better in-sample performance, its out-of-sample performance is significantly worse than KJ

and VG. Thus, options on GBPUSD ask for a more parsimonious and less frequent jump specification.

Historically, JPYUSD options have generated much larger smile curvature (butterfly spreads) and skews

(risk reversals) than options on GBPUSD. Thus, we conclude that high-frequency jump specifications per-

form better in capturing large non-normalities, but a finite-activity jump specification suffices for capturing

moderate non-normalities in the return distribution.

In summary, likelihood ratio tests reject the null hypothesis on all models that the model parameters do not

vary over the eight years of sample period. Nevertheless, our estimated SSM models significantly outperform

traditional jump-diffusion stochastic volatility modelsregardless of the sample period and irrespective of

whether the test is in-sample or out-of-sample.

5.3. Pricing biases

Another way to investigate the performance of different models is to check for the existence of any struc-

tural patterns in the pricing errors of these models. Since we have documented the evidence mainly in the

21



implied volatility space, we also define the pricing errors in the volatility space as the difference between the

observed implied volatility quote and the corresponding values computed from the model.

The mean pricing error of a good model should be close to zero and show no obvious structures along

both the moneyness and the maturity dimensions. Figure 4 plots the mean pricing error in volatility percentage

points along the moneyness dimension at selected maturities of one (solid lines), three (dashed lines), and 12

(dash-dotted lines) months. Since the in-sample and out-of-sample performances are similar for all models,

we only report results from the full-sample estimation. To further reduce graphics clustering, we henceforth

focus on two models, one from our four SSM specifications and one from the two traditional specifications.

The four SSM models generate similar performance. We chooseKJSSM as the representative. Of the two tra-

ditional models, the Bates model (MJDSV) performs better than the pure-diffusion Heston model (HSTSV).

We choose the better performing MJDSV and compare its performance to KJSSM.

[Fig. 4 about here.]

Under the MJDSV model, the mean pricing errors display obvious structural patterns for JPYUSD along

both the moneyness and maturity dimensions. At short maturities, the mean pricing errors show a smile

shape along the moneyness dimension, implying that the MJDSV model cannot fully account for the implied

volatility smile at short maturities. At longer maturities, the mean pricing errors show an inverse smile shape

along the moneyness dimension, implying that the MJDSV model generates excess curvature in the implied

volatility smile at these maturities. In contrast, under our KJSSM model, the mean pricing errors are very

close to zero and do not show any obvious remaining structural patterns. For both currencies, the mean

pricing errors under KJSSM are all well within half a percentage point, the average bid-ask spread for the

implied volatility quotes.

Figure 5 plots the mean absolute pricing error in implied volatility under MJDSV and KJSSM. Under

both models, the mean absolute pricing errors are smaller for GBPUSD than for JPYUSD. Under MJDSV, the

mean absolute pricing errors are larger on out-of-money options than on at-the-money options, indicating that

the MJDSV model cannot fully account for the observed implied volatility smile. The mean absolute pricing

errors are also larger at very short and long maturities thanat moderate maturities, indicating that the model

cannot fully account for the term structure of the implied volatilities.

[Fig. 5 about here.]
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The mean absolute pricing errors under KJSSM are smaller than those under MJDSV across all moneyness

levels and maturities for both currency pairs. Hence, this SSM model performs universally better than the

MJDSV model. Furthermore, under KJSSM, the mean absolute pricing error is invariant to moneyness at

each maturity and for each underlying currency pair, indicating that the model captures the volatility smile

at all terms and for both currencies. Along the maturity dimension, the mean absolute pricing errors are

smaller at moderate maturities than at very short and very long maturities, indicating that the model has some

remaining tensions along the term structure dimension.

5.4. The activity rate dynamics

Under the SSM models, the risk-neutral dynamics of the two activity rates are mainly controlled by two

parameters:κ andσv. The parameterκ controls the speed of mean-reversion for the activity rate processes.

The parameterσv controls the instantaneous volatility of the processes. Furthermore, the activity rate pro-

cesses interact with the currency return innovation through the instantaneous correlation parametersρR and

ρL. Under the statistical measure, the time-series dynamics of the activity rates differ from the risk-neutral

dynamics in terms of the mean-reverting speedsκP. The difference betweenκ andκP captures the market

price of volatility risk. When the market price of risk coefficientγ is positive, the time-series dynamics of the

activity rates are more persistent. The opposite is true when the coefficient is negative.

In Table 4, the estimates for the risk-neutral mean-reversion speedκ in the SSM models for JPYUSD vary

from 0.387 to 0.465 as the jump specification changes. The statistical mean-reversion speedsκP are slightly

larger, ranging from 0.502 to 0.586. The difference betweenthe two sets of parameters imply that the market

price of activity rate risk is negative. For GBPUSD, theκ estimates are larger between 1.18 and 1.211. The

corresponding time-series estimates are between 1.158 and3.296, implying a negative market price of risk

except under CJSSM. Intuitively, the activity rate captures the volatility of the exchange rate. A negative

market price for the activity rate risk implies that investors are averse to both high activity level and high

variation in the activity rate. Nevertheless, we caution the reader that our inference on the signs of market

prices of risk are tentative, given the large standard errors on the estimates forκP.

The estimates for the instantaneous volatility coefficientof the activity ratesσv are also stable across

different jump specifications under the SSM framework. The estimates are between 1.566 and 1.675 for

JPYUSD and between 1.429 and 1.505 for GBPUSD.

The estimates for the instantaneous correlation are significantly positive between the positively skewed
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Lévy component and its activity rate, and are strongly negative between the negatively-skewed Lévy compo-

nent and its activity rate. These different correlations help in generating the stochastic skews at long maturi-

ties. They also help generate the observed positive correlation between currency returns and changes in risk

reversals.

Under the HSTSV and MJDSV models, a scalar activity rate process controls the overall stochastic volatil-

ity. The estimates for the persistence parametersκ andκP and the instantaneous volatility parameterσv are

similar to those obtained under the SSM models. However, theinstantaneous correlationρ estimates are

close to zero under both currencies, consistent with our observation that the currency returns and changes in

volatilities do not have strong cross-correlations.

The unscented Kalman filter provides a fast way to update the activity rates to achieve an approximate

fit to the implied volatility surface. In Figure 6, the top twopanels plot the filtered activity rates for the

MJDSV model, and the bottom two panels plot the filtered activity rates of the right-skewed (solid lines) and

left-skewed (dashed lines) return components under the KJSSM model.

[Fig. 6 about here.]

Under both models, the overall time variation of the activity rates match the ups and downs in the time

series of the implied volatilities in Figure 2. Hence, both models can capture the stochastic volatility feature

of currency options. For example, the implied volatilitieson JPYUSD show a large spike between 1998 and

1999, reflecting the market stress during the Russian bond crisis and the ensuing hedge fund crisis. The single

activity rate process under MJDSV shows a similar spike. Thetwo activity rates from our SSM model tell a

more detailed story. The spike in the implied volatility wasmainly caused by a spike in the activity rate level

for the right-skewed Lévy component, whereas the activityrate level for the left-skewed Lévy component

actually went down. The difference in the two activity ratesduring the hedge fund crisis reveals a potential

imbalance of market demand for out-of-money call and put options on the Japanese yen. The industry folklore

is that many hedge funds had gone short on yen before the crisis and were then forced to use call options to

cover their positions during the crisis. This extra demand for call options on yen drove up the activity rate of

upward yen moves (solid line), but not the activity rate of downward yen moves (dashed line).
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5.5. Theory and evidence on the stochastic skew

The key feature that differentiates the implied volatilitydynamics of currency options from their equity

market counterparts is the strong time variation in the riskreversal, suggesting stochastic skewness in currency

returnss. Using the filtered time series on the activity rates, we compute the model-implied option prices

and implied volatilities. From the implied volatilities, we re-construct the model-implied risk reversals and

compare them with the market observations.

Figure 7 compares the time series of the observed risk reversals to the model-implied values. For clarity,

we only plot one time series for each currency pair: the ten-delta risk reversal at three-month maturity in

percentages of the delta-neutral straddle implied volatility of the same maturity. The dash-dotted lines denote

data quotes, and the solid lines are the values computed fromthe estimated models.

[Fig. 7 about here.]

The top two panels in Figure 7 show that the MJDSV model fails miserably in capturing the observed

strong variation in risk reversals. Compared to the strong variations in the data, the MJDSV model-implied

values vary very little. In contrast, the bottom two panels in Figure 7 show that our SSM models can generate

risk reversals that closely match the data. The matches are close to perfection except under extreme realiza-

tions. Therefore, our SSM modeling framework contributes to the literature by capturing stochastic skew in

addition to stochastic volatility, both of which are pervasive features of the currency options market.

6. Extensions

The class of stochastic skew models can in principle captureall of the salient features of currency option

prices. The four SSM models that we have designed and estimated are extremely parsimonious as they have

about the same number of free parameters as the Bates (1996b)model, although they generate much better

performance by capturing an extra dimension of variation inthe conditional skewness of the currency return

distribution. In this section, we explore the virtues of more general specifications within the SSM model class.
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6.1. Unconditional asymmetry

We achieve parsimony in the four estimated SSM models by assuming approximate unconditional sym-

metry on the currency return distribution. Based on this assumption, we use the same set of parameters to

control the two Lévy components. The summary statistics inTable 1 suggests that the symmetry assumption

holds reasonably well on GBPUSD, but less so on JPYUSD. For future applications, if we intend to price

options on exchange rates between emerging markets and industrialized countries, this assumption is likely

to be strongly violated because risk reversals on these currency pairs often skew toward the industrialized

countries. For example, the option-implied risk-neutral return distributions on the U.S. dollar price of most

emerging market currencies are negatively skewed (Carr andWu (2005)).6 Thus, to price options on these

currency pairs, it is imperative to allow the parameters forthe two Lévy components to be different.

To gauge the importance of the asymmetry generalization foroption pricing on the two currency pairs

under investigation, we estimate an asymmetric SSM specification that allows the parameters for the two

Lévy components to be different. Given the observed relative insensitivity to the jump structure specification,

we limit our estimation to one jump structure, the KJ specification withα fixed at−1. In this case, we have

15 model parameters:Θ ≡ [σr ,(σ2,λ,vJ,κ,σv,κP,ρ)R,L], where the parameters with anRsubscript are for the

right-skewed Lévy component and the parameters with anL subscript are for the left-skewed Lévy component.

We label this model as KJASSM, with the letter A denoting asymmetry. The option pricing formula can be

derived analogously. We estimate the model using the first six years of data and compare its performance with

its symmetric counterpart KJSSM both in-sample and out-of-sample.

Table 8 reports the estimation results. In the top panel, we report the parameters and their standard errors

(in parentheses) that govern the two Lévy components. We also report their differences and the absolute

magnitudes of thet-statistics on the differences. The average magnitudes of the two Lévy components are

controlled byσ2
R,L for the two diffusion components andλR,L for the two jump components. For JPYUSD, the

estimates are markedly different for the right- and left-skewed Lévy components. The average magnitudes

of the right-skewed component are much larger than the average magnitudes of the left-skewed component,

generating positive risk reversals and positively skewed conditional currency return distribution on average.

Nevertheless, the estimates also show large standard errors, making the differences statistically insignificant.

For GBPUSD, the(σ2,λ) estimates for the two Lévy components show smaller differences, consistent

6Another example is equity index options. The slopes of the implied volatility smiles are time varying, but stay negativemost of
the time.
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with the smaller average risk reversals. Again, the standard errors of the estimates are large and the parameter

differences between the two components are insignificant. The large standard errors for both currency pairs

suggest that the fully asymmetric specification experiences some identification issues.

The t-statistics on the parameter differences show that the mostsignificant asymmetry between the two

Lévy components do not come from their average magnitudes(σ2,λ), but from the risk-neutral persistence (κ)

and, to a lesser degree, volatility (σv) of the two underlying activity rates. For JPYUSD, the activity rate for

the right-skewed Lévy component is more persistent but less volatile than the activity rate for the left-skewed

Lévy component. The opposite is the case for GBPUSD.

Table 8 also reports the in-sample and out-of-sample performance for the asymmetric model. The in-

sample root mean squared pricing errors are 0.65 for JPYUSD and 0.33 for GBPUSD, substantially smaller

than the corresponding values (0.89 and 0.42) for its symmetric counterpart (KJSSM in Table 6). We also

report the likelihood ratio test statistics between the twomodels,LR = 2(LKJASSM− LKJSSM), which has a

chi-square distribution with six degrees of freedom. The critical value at the 99% confidence level is 16.81.

TheLRstatistics show that KJASSM significantly outperforms its symmetric counterpart KJSSM.

6.2. Stochastic central tendency

The mean absolute pricing errors in Figure 5 show that the KJSSM model performs better on three-

month options than on one- and 12-month options, pointing toremaining tensions along the term structure

dimension. Furthermore, the summary statistics in Table 1 show that the weekly autocorrelation estimates

for risk reversals, butterfly spreads, and delta-neutral straddle implied volatilities all increase with option

maturities. The upward sloping term structure on the autocorrelation estimates suggests the potential existence

of multiple volatility factors with different persistence, with low-persistence factors dominating short-term

contracts and high-persistence factors dominating long-term contracts. Finally, when we allow the two Lévy

components in the SSM model to be asymmetric in KJASSM, the most significant asymmetry identified

from the estimation does not come from the average magnitudes of the two Lévy components, but from the

persistence of the two underlying activity rates.

Based on these observations, we consider an alternative generalization of the KJSSM model by allowing
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the mean of the two activity rates to be stochastic and drivenby one common dynamic factor:

dvj
t = κ

(
θt −v j

t

)
dt+ σv

√
v j

t dZ j
t , j = R,L,

dθt = κθ (1−θt)dt+ σθ
√

θtdZθ
t ,

(24)

whereθt denotes the common “stochastic central tendency” (Balduzzi, Das, and Foresi (1998)) for the two ac-

tivity rates andZθ
t denotes another standard Brownian motion that is independent of other Brownian motions.

We label this extended model as KJSSMSC, with SC denoting thestochastic central tendency generalization.

In contrast to KJASSM, KJSSMSC retains the symmetric assumption, but allows the activity rate dynamics

for each Lévy component to be controlled by two factors withdifferent persistence. Normally, the stochastic

central tendency factor is more persistent than the activity rate itself: κθ < κ. Long-term option contracts

depend more heavily on the central tendency factor and henceshow higher persistence.

Under this specification, we can show that the generalized Fourier transform of the currency return remains

exponential affine in the current levels of the expanded state vectorV0 ≡ [vR
0 ,vL

0,θ0],

φs(u) = exp
(

iu(rd − r f )t −b(t)⊤V0−c(t)
)

, (25)

where the coefficients[b(t),c(t)] solve a set of ordinary differential equations:

b′ (t) = bv−K⊤b(t)− 1
2

Σ⊙b(t)⊙b(t) , c′ (t) = b(t)⊤M, (26)

with ⊙ denoting the Hadamard product and

bv =





ψR

ψL

0




, K =





κ− iuσσvρR 0 −κ

0 κ− iuσσvρL −κ

0 0 κθ




, Σ =





σ2
v

σ2
v

σ2
θ




, M =





0

0

κθ




.

The coefficients can be solved numerically starting atb(0) = 0 andc(0) = 0.

We estimate this stochastic central tendency model using the first six years of data and compare its per-

formance with KJSSM both in-sample and out-of-sample. We assume that the market price ofθt risk is

proportional to
√

θt and useκP
θ to denote the mean-reversion coefficient forθt under the statistical measure

P. Compared to KJSSM, this new model KJSSMSC has three additional parameters(κθ,σθ,κP
θ) that control

the risk-neutral and statistical dynamics of the stochastic central tendency factorθt .
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Table 9 reports the parameter estimates, standard errors, and in-sample and out-of-sample performance

measures. The parameter estimates show that the central tendency factorθt is much more persistent than the

activity rates themselves under both the risk-neutral measure and the statistical measure. The performance

measures show that the addition of the central tendency factor dramatically improves the model performance.

The root mean squared errors are much smaller and the likelihood values are much larger than both the KJSSM

benchmark and the asymmetric generalization KJASSM. The root mean squared errors for KJSSMSC are only

about half of that for KJSSM. The likelihood ratio test statistics,LR= 2(LKJSSMSC−LKJSSM), are very large

and highly significant over any reasonable confidence level both in-sample and out-of-sample.

7. Conclusions

In this paper, we document the statistical properties of currency option implied volatilities across the

dimensions of moneyness, maturity, and calendar time. We find that the market prices of currency options

exhibit several behaviors that challenge standard models in the option pricing literature. Chief among these

challenging behaviors is the observation that the risk reversals vary greatly over time and switch signs several

times in our sample.

Working within the paradigm of time-changed Lévy processes, we develop and estimate a subclass of

models that captures this stochastic skew behavior of currency option prices. Our estimation results show that

our stochastic skew models strongly outperform traditional jump-diffusion stochastic volatility models, both

in-sample and out-of-sample.

For future research, it is important to understand the economic underpinnings of the stochastic skewness

suggested by currency option prices. An understanding of the source of this feature should have important

implications on our understanding of the behavior of currency risk premia. For such research, our stochastic

skew modeling framework can serve as a benchmark, upon whichwe can construct the pricing kernels for each

country and link the exchange rate dynamics to the ratio of the pricing kernels of the two relevant countries.
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Table 1
Summary statistics of currency option implied volatilities
The three columns under each contract report the mean, standard deviation, and weekly autocorrelation of the contract on risk reversal (RR),
butterfly spread (BF), and delta-neutral straddle implied volatilities (ATMV). Risk reversals and butterfly spreads are in percentages of the delta-
neutral straddle implied volatility. The numbers following RR and BF denote the delta of the contract. Data are weekly from January 24, 1996
to January 28, 2004, 419 observations for each series. The first column denotes the option maturities, with ‘w’ denoting weeks and ‘m’ denoting
months.

Mat RR10 BF10 RR25 BF25 ATMV

JPYUSD
1w 15.18 16.96 0.69 14.34 4.26 0.77 7.40 8.10 0.70 4.32 1.47 0.85 11.70 3.80 0.83
1m 13.32 15.21 0.85 12.15 3.40 0.89 6.90 8.04 0.87 3.60 0.88 0.87 11.45 3.10 0.92
2m 11.53 14.27 0.89 12.08 3.21 0.92 6.02 7.63 0.91 3.51 0.67 0.87 11.47 2.84 0.94
3m 10.16 14.14 0.92 12.20 3.29 0.94 5.34 7.60 0.93 3.47 0.64 0.89 11.57 2.70 0.96
6m 8.25 14.32 0.96 12.30 3.67 0.96 4.30 7.63 0.96 3.41 0.72 0.94 11.78 2.58 0.97
9m 7.77 14.66 0.97 12.42 4.11 0.98 4.01 7.74 0.97 3.39 0.82 0.96 11.87 2.55 0.98

12m 7.45 14.99 0.97 12.39 4.48 0.98 3.81 7.91 0.97 3.34 0.90 0.97 11.95 2.53 0.98
18m 7.95 14.42 0.97 12.03 4.95 0.98 4.00 7.61 0.97 3.17 1.00 0.97 12.00 2.49 0.98

GBPUSD
1w -0.14 11.76 0.73 10.30 4.60 0.86 0.13 5.72 0.76 2.95 1.50 0.89 8.20 1.79 0.81
1m -0.52 9.35 0.84 9.74 3.04 0.91 -0.11 4.68 0.84 2.95 0.86 0.88 8.20 1.47 0.90
2m -0.33 7.48 0.88 9.22 1.83 0.87 -0.05 3.95 0.89 2.77 0.57 0.87 8.33 1.31 0.92
3m -0.37 6.74 0.90 9.11 1.56 0.86 -0.10 3.55 0.91 2.72 0.47 0.84 8.43 1.20 0.93
6m -0.44 5.92 0.94 8.80 1.72 0.92 -0.15 3.13 0.95 2.59 0.52 0.89 8.61 1.02 0.95
9m -0.38 5.60 0.96 8.63 1.95 0.95 -0.14 2.98 0.96 2.55 0.56 0.92 8.69 0.95 0.95

12m -0.36 5.45 0.96 8.46 2.11 0.96 -0.14 2.91 0.97 2.49 0.55 0.92 8.77 0.90 0.95
18m -0.53 4.93 0.97 7.99 2.38 0.97 -0.24 2.63 0.97 2.26 0.61 0.94 8.88 0.89 0.95
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Table 2
Cross-correlation between currency returns and weekly changes in implied volatilities
Entries report the contemporaneous correlation between log currency returns and weekly changes in risk
reversals (RR), butterfly spreads (BF), and delta-neutral straddle implied volatilities (ATMV). Risk reversals
and butterfly spreads are in percentages of the delta-neutral straddle implied volatility level. The numbers
following RR and BF denote the delta of the contract. The firstcolumn denotes the option maturities, with
‘w’ denoting weeks and ‘m’ denoting months. Data are weekly from January 24, 1996 to January 28, 2004,
419 observations for each series.

JPYUSD GBPUSD

Mat RR10 BF10 RR25 BF25 ATMV RR10 BF10 RR25 BF25 ATMV

1w 0.46 -0.06 0.48 -0.14 0.41 0.38 -0.01 0.40 -0.02 -0.02
1m 0.57 -0.06 0.58 -0.14 0.44 0.44 0.01 0.45 0.01 -0.00
2m 0.58 -0.05 0.59 -0.10 0.40 0.46 -0.01 0.46 0.02 0.02
3m 0.59 -0.06 0.59 -0.08 0.35 0.47 0.03 0.47 0.03 0.00
6m 0.59 -0.04 0.59 -0.04 0.25 0.44 0.04 0.45 0.04 0.02
9m 0.56 -0.04 0.57 -0.02 0.21 0.42 0.03 0.43 0.03 0.04

12m 0.57 -0.03 0.58 0.00 0.18 0.39 0.05 0.40 0.05 0.04
18m 0.53 -0.05 0.55 -0.01 0.18 0.37 0.06 0.37 0.07 0.02
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Table 3
Characteristic exponents of different Lévy components
All Lévy specifications have a diffusion component. The characteristic exponent for the concavity-adjusted
diffusion component,σWt − 1

2σ2t, isψD = 1
2σ2

(
iu+u2

)
. Entries in the table show the characteristic exponents

of the concavity-adjusted Lévy jump components (J j
t −ξ jt, j = R,L) under different jump specifications.

Model α Right-Skewed ComponentψR Left-Skewed ComponentψL

KJ -1 −iuλ
[

1
1−iuvj

− 1
1−vj

]
+ ψD iuλ

[
1

1+iuvj
− 1

1+vj

]
+ ψD

VG 0 λ ln(1− iuv j)− iuλ ln(1−v j)+ ψD λ ln(1+ iuv j)− iuλ ln(1+v j)+ ψD

CJ 1 −λ(1/v j − iu) ln(1− iuv j) −λ(1/v j + iu) ln(1+ iuv j)
+iuλ(1/v j −1) ln(1−v j)+ ψD +iuλ(1/v j +1) ln(1+v j)+ ψD

CG Free λΓ(−α)
[(

1
vj

)α
−

(
1
vj
− iu

)α]
λΓ(−α)

[(
1
vj

)α
−

(
1
vj

+ iu
)α]

−iuλΓ(−α)
[(

1
vj

)α
−

(
1
vj
−1

)α]
+ ψD −iuλΓ(−α)

[(
1
vj

)α
−

(
1
vj

+1
)α]

+ ψD
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Table 4
Full-sample likelihood estimates of model parameters
Entries report the maximum likelihood estimates of the model parameters, standard errors (in parentheses), root mean squared pricing errors (rmse)
in implied volatility percentage points, and the maximizedlog likelihood values (L ). For each currency pair, we estimate six models: the Heston
(1993) model (HSTSV), the Bates (1996b) model (MJDSV), and our stochastic skew models (SSM) with four different jump specifications: KJ,
VG, CJ, and CG. The estimation uses eight years of weekly option data from January 24, 1996 to January 28, 2004 (419 weekly observations for
each series). The column under “ΘB” denotes the parameter names for the Heston model and the Bates model. The column under “ΘS” denotes
the parameter names for our SSM models.

Currency JPYUSD GBPUSD

ΘB ΘS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

σ2 σ2 0.020 0.006 0.006 0.005 0.004 0.003 0.010 0.008 0.003 0.003 0.002 0.002
( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

λ λ — 0.016 0.059 1.708 0.035 0.004 — 0.422 0.079 6.869 0.080 0.032
( — ) ( 0.001 ) ( 0.003 ) ( 0.151 ) ( 0.002 ) ( 0.001 ) ( — ) ( 0.044 ) ( 0.005 ) ( 0.700 ) ( 0.005 ) ( 0.015 )

v j v j — 0.497 0.029 0.045 0.104 0.270 — 0.003 0.012 0.017 0.031 0.039
( — ) ( 0.013 ) ( 0.001 ) ( 0.001 ) ( 0.004 ) ( 0.056 ) ( — ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.001 ) ( 0.004 )

κ κ 0.559 0.569 0.387 0.394 0.421 0.465 1.532 1.044 1.205 1.206 1.211 1.180
( 0.006 ) ( 0.011 ) ( 0.005 ) ( 0.006 ) ( 0.007 ) ( 0.010 ) ( 0.007 ) ( 0.007 ) ( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.008 )

σv σv 1.837 1.210 1.675 1.657 1.582 1.566 2.198 1.737 1.429 1.447 1.505 1.492
( 0.023 ) ( 0.022 ) ( 0.027 ) ( 0.028 ) ( 0.027 ) ( 0.031 ) ( 0.026 ) ( 0.023 ) ( 0.039 ) ( 0.040 ) ( 0.017 ) ( 0.018 )

ρ ρR 0.076 0.123 0.395 0.393 0.400 0.424 -0.023 -0.061 0.848 0.848 0.849 0.836
( 0.005 ) ( 0.065 ) ( 0.017 ) ( 0.018 ) ( 0.022 ) ( 0.056 ) ( 0.003 ) ( 0.017 ) ( 0.040 ) ( 0.043 ) ( 0.017 ) ( 0.016 )

µj ρL — -0.210 -0.739 -0.758 -0.851 -1.000 — 0.002 -1.000 -0.999 -1.000 -1.000
( — ) ( 0.024 ) ( 0.034 ) ( 0.036 ) ( 0.040 ) ( 0.144 ) ( — ) ( 0.001 ) ( 0.047 ) ( 0.050 ) ( 0.000 ) ( 0.004 )

κP κP 0.745 0.258 0.522 0.502 0.544 0.586 1.276 0.800 2.062 2.092 1.158 3.296
( 0.396 ) ( 0.114 ) ( 0.289 ) ( 0.288 ) ( 0.251 ) ( 0.261 ) ( 0.345 ) ( 0.236 ) ( 0.213 ) ( 0.213 ) ( 0.006 ) ( 0.223 )

σr σr 1.045 1.002 0.704 0.703 0.703 0.700 0.198 0.184 0.148 0.148 0.148 0.148
( 0.003 ) ( 0.003 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

— α — — — — — 1.602 — — — — — 1.180
— — — — — ( 0.126 ) — — — — — ( 0.155 )

rmse 1.099 1.065 0.865 0.865 0.866 0.865 0.464 0.442 0.387 0.387 0.387 0.388
L ,×103 -9.430 -9.021 -6.416 -6.402 -6.384 -6.336 4.356 4.960 6.5016.502 6.497 6.521
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Table 5
Full-sample likelihood ratio tests of model performance differences
Entries report the pairwise likelihood ratio test statisticsM on non-nested models. The statistic has an asymp-
totic standard normal distribution. We report the pairwisestatistics in a(6×6) matrix, with the(i, j)th element
denoting the statistic on modeli versus modelj such that a strongly positive estimate for this element indicates
that modeli significantly outperforms modelj. The tests are based on the model estimations using the full
sample of eight years of data for each currency. We bold the lower triangular elements that are greater than
1.96, the critical value at 95% confidence level. The upper triangular elements contain the same information
as the lower triangular elements, only with opposite signs.

M HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

JPYUSD
HSTSV 0.00 -2.55 -4.92 -4.88 -4.75 -4.67
MJDSV 2.55 0.00 -5.39 -5.33 -5.22 -5.07
KJSSM 4.92 5.39 0.00 -1.11 -0.86 -1.20
VGSSM 4.88 5.33 1.11 0.00 -0.72 -1.21
CJSSM 4.75 5.22 0.86 0.72 0.00 -1.59
CGSSM 4.67 5.07 1.20 1.21 1.59 0.00

GBPUSD
HSTSV 0.00 -2.64 -4.70 -4.68 -4.63 -4.71
MJDSV 2.64 0.00 -3.85 -3.86 -3.89 -4.19
KJSSM 4.70 3.85 0.00 -0.04 0.34 -0.37
VGSSM 4.68 3.86 0.04 0.00 0.56 -0.39
CJSSM 4.63 3.89 -0.34 -0.56 0.00 -0.51
CGSSM 4.71 4.19 0.37 0.39 0.51 0.00
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Table 6
Subsample likelihood estimates of model parameters
Entries report the maximum likelihood estimates of the model parameters and their standard errors (in parentheses). For each currency pair,
we estimate six models: the Heston (1993) model (HSTSV), theBates (1996b) model (MJDSV), and our stochastic skew models(SSM) with
four different jump specifications: KJ, VG, CJ, and CG. The estimation uses the first six years of weekly option data from January 24, 1996 to
December 26, 2001 (310 weekly observations for each series). The column under “ΘB” denotes the parameter names for the Heston model and
the Bates model. The column under “ΘS” denotes the parameter names for our SSM models.

Currency JPYUSD GBPUSD

ΘB ΘS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

σ2 σ2 0.022 0.011 0.006 0.006 0.005 0.002 0.010 0.009 0.003 0.003 0.002 0.003
( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.002 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

λ λ — 0.016 0.074 2.486 0.053 0.004 — 2.027 0.087 7.829 0.091 1210
( — ) ( 0.001 ) ( 0.004 ) ( 0.234 ) ( 0.004 ) ( 0.002 ) ( — ) ( 0.153 ) ( 0.006 ) ( 0.922 ) ( 0.007 ) ( 9439 )

v j v j — 0.491 0.027 0.041 0.087 0.273 — 0.001 0.012 0.017 0.030 0.011
( — ) ( 0.018 ) ( 0.001 ) ( 0.001 ) ( 0.004 ) ( 0.089 ) ( — ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.001 ) ( 0.006 )

κ κ 0.810 0.846 0.660 0.665 0.686 0.739 1.449 1.015 1.177 1.178 1.183 1.173
( 0.006 ) ( 0.013 ) ( 0.006 ) ( 0.007 ) ( 0.008 ) ( 0.012 ) ( 0.008 ) ( 0.008 ) ( 0.007 ) ( 0.008 ) ( 0.008 ) ( 0.012 )

σv σv 1.943 1.171 1.945 1.922 1.881 1.777 2.091 2.041 1.428 1.452 1.523 1.518
( 0.025 ) ( 0.024 ) ( 0.031 ) ( 0.031 ) ( 0.032 ) ( 0.037 ) ( 0.030 ) ( 0.028 ) ( 0.047 ) ( 0.048 ) ( 0.023 ) ( 0.053 )

ρ ρR 0.050 0.062 0.270 0.267 0.252 0.299 -0.056 -0.065 0.796 0.794 0.789 0.720
( 0.005 ) ( 0.078 ) ( 0.015 ) ( 0.016 ) ( 0.018 ) ( 0.092 ) ( 0.005 ) ( 0.013 ) ( 0.047 ) ( 0.050 ) ( 0.022 ) ( 0.053 )

µj ρL — -0.212 -0.629 -0.642 -0.672 -1.000 — -0.001 -1.000 -0.999 -1.000 -0.905
( — ) ( 0.033 ) ( 0.035 ) ( 0.037 ) ( 0.041 ) ( 0.396 ) ( — ) ( 0.000 ) ( 0.059 ) ( 0.062 ) ( 0.000 ) ( 0.069 )

κP κP 1.090 0.636 0.924 0.879 0.822 0.813 1.308 2.529 2.022 2.060 1.166 2.192
( 0.390 ) ( 0.155 ) ( 0.392 ) ( 0.385 ) ( 0.364 ) ( 0.331 ) ( 0.451 ) ( 0.238 ) ( 0.263 ) ( 0.260 ) ( 0.270 ) ( 0.263 )

σr σr 1.095 1.072 0.746 0.747 0.746 0.744 0.217 0.200 0.175 0.175 0.175 0.174
( 0.003 ) ( 0.004 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 )

— α — — — — — 1.691 — — — — — -1.162
— — — — — ( 0.175 ) — — — — — ( 15.37 )
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Table 7
In-sample and out-of-sample model performance comparison
Entries report the root mean squared pricing error (rmse) inimplied volatility percentage points, mean weekly
log likelihood value (L /N), and the pairwise likelihood ratio test statisticsM on non-nested models. The
models are estimated using data from January 24, 1996 to December 26, 2001 (310 weekly observations for
each series). The in-sample statistics are from the same period. The out-of-sample statistics are computed
from the remaining two years of data from January 2, 2002 to January 28, 2004 (109 weekly observations
for each series) based on model parameter estimates from thefirst subsample. The last panel reports the
likelihood ratio test statisticsLR= 2(LSub−LFull ) between the models estimated using the first six years of
data and the corresponding models estimated using the full sample of eight years of data. The likelihood ratio
is computed based on the first six years of data..

HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSMCJSSM CGSSM

JPYUSD GBPUSD

In-sample performance

rmse 1.14 1.11 0.89 0.89 0.89 0.89 0.49 0.46 0.42 0.42 0.42 0.42
L /N -23.69 -23.03 -16.61 -16.60 -16.57 -16.47 8.36 10.06 12.27 12.27 12.26 12.28
M
HSTSV 0.00 -2.14 -4.44 -4.41 -4.33 -4.17 0.00 -3.34 -4.42 -4.39 -4.24 -4.33
MJDSV 2.14 0.00 -4.74 -4.70 -4.61 -4.42 3.34 0.00 -3.40 -3.39 -3.33 -3.33
KJSSM 4.44 4.74 0.00 -0.49 -0.51 -0.84 4.42 3.40 0.00 0.08 0.36 -0.42
VGSSM 4.41 4.70 0.49 0.00 -0.51 -0.89 4.39 3.39 -0.08 0.00 0.51 -0.42
CJSSM 4.33 4.61 0.51 0.51 0.00 -1.14 4.24 3.33 -0.36 -0.51 0.00 -0.55
CGSSM 4.17 4.42 0.84 0.89 1.14 0.00 4.33 3.33 0.42 0.42 0.55 0.00

Out-of-sample performance

rmse 1.09 1.03 0.90 0.90 0.90 0.90 0.40 0.38 0.27 0.27 0.27 0.27
L /N -24.01 -21.75 -18.47 -18.35 -18.23 -18.11 14.36 15.85 23.3023.29 23.26 23.25
M
HSTSV 0.00 -6.01 -5.90 -6.01 -6.08 -6.12 0.00 -4.88 -7.06 -7.06 -7.05 -7.05
MJDSV 6.01 0.00 -3.11 -3.23 -3.32 -3.48 4.88 0.00 -5.98 -5.99 -5.99 -5.97
KJSSM 5.90 3.11 0.00 -7.76 -6.81 -5.27 7.06 5.98 0.00 0.64 1.47 4.51
VGSSM 6.01 3.23 7.76 0.00 -4.39 -3.67 7.06 5.99 -0.64 0.00 1.63 4.19
CJSSM 6.08 3.32 6.81 4.39 0.00 -3.11 7.05 5.99 -1.47 -1.63 0.00 0.23
CGSSM 6.12 3.48 5.27 3.67 3.11 0.00 7.05 5.97 -4.51 -4.19 -0.23 0.00

Likelihood ratio tests for overall parameter stability over time

LR 663.8 600.8 857.6 854.6 863.0 859.8 357.4 498.8 263.4 264.0 265.6 318.4
99% crit. value 16.8 21.7 21.7 21.7 21.7 23.2 16.8 21.7 21.7 21.7 21.7 23.2
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Table 8
Likelihood estimation of the asymmetric model KJASSM
Entries report the maximum likelihood estimates of the model parameters and their standard errors (in parentheses) forKJASSM. We also report the
difference between the parameters for the right-skewed Lévy component and the corresponding parameters for the left-skewed Lévy component,
as well as the absolute magnitude of thet-statistics on the difference. For model performance, we report the root mean squared pricing error
(rmse) in implied volatility percentage points, the mean weekly log likelihood (L /N), and the likelihood ratio statistic against the KJSSM model,
LR= 2(LKJASSM−LKJSSM), which has a chi-square distribution with six degrees of freedom. The critical value for the statistic at 99% confidence
level is 16.81. The estimation uses the first six years of weekly option data from January 24, 1996 to December 26, 2001 (310weekly observations
for each series). In-sample performance measures are basedon the same sample period. Out-of-sample performance measures are based on the
remaining two years of data from January 2, 2002 to January 28, 2004 (109 weekly observations for each series).

Currency JPYUSD GBPUSD

Θ Right Left Difference |t|-value Right Left Difference |t|-value

σ2 1.004 ( 4.249 ) 0.007 ( 0.004 ) 0.998 0.235 0.005 ( 0.004 ) 0.023( 0.016 ) -0.018 1.375
λ 8.065 ( 34.299 ) 0.005 ( 10.113 ) 8.060 0.219 0.078 ( 4.200 ) 0.063 ( 0.043 ) 0.016 0.004
v j 0.030 ( 0.001 ) 0.000 ( 0.177 ) 0.030 0.167 0.001 ( 0.024 ) 0.061( 0.003 ) -0.060 2.402
κ 0.003 ( 0.012 ) 20.037 ( 0.232 ) -20.034 87.665 5.636 ( 0.039 ) 0.014 ( 0.011 ) 5.622 133.24
σv 0.212 ( 0.450 ) 11.665 ( 0.159 ) -11.452 26.972 5.781 ( 0.066 ) 0.126 ( 0.043 ) 5.656 72.082
ρ 0.000 ( 0.003 ) -0.042 ( 0.008 ) 0.042 4.408 0.179 ( 0.068 ) -0.998 ( 0.036 ) 1.179 0.004
κP 0.906 ( 0.443 ) 2.467 ( 0.576 ) -1.561 1.924 2.240 ( 0.493 ) 0.077 ( 0.008 ) 2.163 4.392

In-sample performance

rmse 0.65 0.33
L /N -6.50 23.15
LR 6265.60 6746.47

Out-of-sample performance

rmse 0.75 0.26
L /N -13.24 28.96
LR 1139.66 1234.18
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Table 9
Likelihood estimation of the stochastic central tendency model KJSSMSC
Entries report the maximum likelihood estimates of the model parameters and their standard errors (in paren-
theses) for KJSSMSC. For model performance, we report the root mean squared pricing error (rmse) in
implied volatility percentage points, the mean weekly log likelihood (L /N), and the likelihood ratio statis-
tic against the KJSSM model,LR = 2(LKJSSMSC− LKJSSM), which has a chi-square distribution with 313
degrees of freedom for in-sample performance and 112 degrees of freedom for out-of-sample performance.
The critical value of the statistic at 99% confidence level is374.13 (in-sample) and 149.73 (out-of-sample),
respectively. The estimation uses the first six years of weekly option data from January 24, 1996 to Decem-
ber 26, 2001 (310 weekly observations for each series). In-sample performance measures are based on the
same sample period. Out-of-sample performance measures are based on the remaining two years of data from
January 2, 2002 to January 28, 2004 (109 weekly observationsfor each series).

Currency JPYUSD GBPUSD

σ2 0.033 ( 0.012 ) 0.002 ( 0.000 )
λ 0.098 ( 0.038 ) 1.104 ( 0.146 )
v j 0.092 ( 0.001 ) 0.002 ( 0.000 )
κ 23.028 ( 0.144 ) 8.184 ( 0.027 )
σv 1.764 ( 0.343 ) 3.980 ( 0.046 )
ρR 0.587 ( 0.020 ) 0.703 ( 0.052 )
ρL -0.730 ( 0.026 ) -0.993 ( 0.073 )
κP 1.180 ( 0.114 ) 3.192 ( 0.319 )
κθ 0.027 ( 0.011 ) 0.193 ( 0.006 )
σθ 0.224 ( 0.042 ) 0.617 ( 0.010 )
κP

θ 0.171 ( 0.177 ) 0.194 ( 0.010 )
σr 0.251 ( 0.001 ) 0.039 ( 0.000 )

In-sample performance

rmse 0.49 0.22
L /N 2.74 37.61
LR 11998.70 15711.15

Out-of-sample performance

rmse 0.52 0.20
L /N 2.81 39.79
LR 4638.85 3594.54

40



10 20 30 40 50 60 70 80 90
11

11.5

12

12.5

13

13.5

14

Put Delta, %

A
ve

ra
ge

 Im
pl

ie
d 

V
ol

at
ili

ty
, %

JPYUSD

10 20 30 40 50 60 70 80 90
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Put Delta, %

A
ve

ra
ge

 Im
pl

ie
d 

V
ol

at
ili

ty
, %

GBPUSD

Fig. 1. Mean implied volatility smiles on currency options.Lines plot the time-series average of the implied
volatility against the delta of the currency options at three selected time-to-maturities at one (solid lines), three
(dashed lines), and 12 (dash-dotted lines) months. The averages are on weekly data from January 24, 1996 to
January 28, 2004, 419 observations for each series.
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Fig. 2. The time series of currency option implied volatilities. Lines plot the time-series of delta-neutral
straddle implied volatility quotes on the dollar price of yen (JPYUSD, left panel) and pound (GBPUSD,
right panel) at three option maturities: one month (solid lines), three months (dashed lines), and one year
(dash-dotted lines). Data are weekly from January 24, 1996 to January 28, 2004, 419 observations for each
series.
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Fig. 3. Risk reversals and butterfly spreads over calendar time. Solid lines are ten-delta risk reversals and
dashed lines are ten-delta butterfly spreads, both in percentages of the delta-neutral straddle implied volatility.
To reduce clustering, we plot the lines at three maturities at one, three, and 12 months.
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Currency = JPYUSD; Model = MJDSV
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Fig. 4. Mean pricing bias in implied volatility. We define thepricing error as the difference between the
observed implied volatility quote and the corresponding value implied by the estimated models. We compute
the mean pricing error at each moneyness and maturity. The three lines represent three chosen maturities at
one (solid lines), three (dashed lines), and 12 (dash-dotted lines) months.
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Fig. 5. Mean absolute pricing error in implied volatility. We define the pricing error as the difference between
the observed implied volatility quote and the corresponding model value. We compute the mean absolute
value of the pricing errors at each moneyness and maturity. The three lines represent three chosen maturities
at one (solid lines), three (dashed lines), and 12 (dash-dotted lines) months.
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Fig. 6. Filtered activity rates. The top two panels plot the single series of the activity rates from the MJDSV
model. The bottom two panels plot the two activity rate series from the KJSSM model. The solid lines denote
the activity rate for the right-skewed Lévy component and the dashed lines denote the activity rate for the
left-skewed Lévy component under the SSM model. We extractthe activity rates from the options data using
unscented Kalman filter, based on the estimated models usingthe whole sample of data.
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Fig. 7. Theory and evidence on the stochastic skew. Dashed lines are the market quotes on three-month ten-
delta risk reversals, in percentages of the delta-neutral straddle implied volatility of the same maturity. Solid
lines are the values computed from the estimated models using the whole sample of data.
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