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Abstract

We present the symmetric thermal optimal path (TOPS) method to determine the time-dependent lead-lag relationship

between two stochastic time series. This novel version of the previously introduced TOP method alleviates some

inconsistencies by imposing that the lead-lag relationship should be invariant with respect to a time reversal of the

time series after a change of sign. This means that, if ‘X comes before Y’, this transforms into ‘Y comes before X’

under a time reversal. We show that previously proposed bootstrap test lacks power and leads too often to a lack of

rejection of the null that there is no lead-lag correlation when it is present. We introduce instead two novel tests. The

first free energy p-value ρ criterion quantifies the probability that a given lead-lag structure could be obtained from

random time series with similar characteristics except of the lead-lag information. The second self-consistent test

embodies the idea that, for the lead-lag path to be significant, synchronising the two time series using the time varying

lead-lag path should lead to a statistically significant correlation. We perform intensive synthetic tests to demonstrate

their performance and limitations. Finally, we apply the TOPS method with the two new tests to the time dependent

lead-lag structures of house price and monetary policy of the United Kingdom (UK) and United States (US) from

1991 to 2011. We find that, for both countries, the TOPS paths indicate that interest rate changes were lagging behind

house price index changes until the crisis in 2006-2007. The TOPS paths also suggest a catch up of the UK central

bank and of the Federal Reserve still not being on top of the game during the crisis itself, as diagnosed by again the

significant negative values of TOPS paths until 2008. Only later did the central banks interest rates as well as longer

maturity rates lead the house price indices, confirming the occurrence of the transition to an era where the central

bank is causally influencing the housing markets more than the reverse. The TOPS approach stresses the importance

of accounting for change of regimes, so that similar pieces of information or policies may have drastically different

impacts and developments, conditional on the economic, financial and geopolitical conditions. This study reinforces

the view that the hypothesis of statistical stationarity is highly questionable.
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1. Introduction

The housing market, being a market of the largest single assets owned by households and firms, is strongly related

to external financing options. Such options are usually in the form of mortgages, especially for private residential real

estate, which are provided by banks or other financial institutions. Consequently, when the central bank lowers target

interest rates, real estate financing options become more affordable. This in turn would lead to a shift in the demand

for real-estate, which impacts its prices (Adams and Füss, 2010). Furthermore, the housing market contributes to the

well-being of the global economy by contributing to households’ wealth and thus stimulating consumption (Tobin,

1969).

In theory, the influence of monetary policy on the development of real estate prices is well described. Using its

two main instruments, target interest rates and money supply, monetary authorities should be able to stimulate dis-

tressed economies or even disarm economic overheating. The target interest rate is therefore extremely important,

because it directly determines the condition of money lending and liquidity in the financial market. A famous the-

oretical attempt of explaining the dependencies in the real estate market could be found in the so-called “financial

accelerator” (Bernanke et al., 1994). According to this mechanism, rising house price leads to an increasing demand

in credit volume so as to finance house purchases on an appreciated price level. Because most of these mortgages are

also secured by the property itself, higher valuation improves the net worth of the household by raising its housing

capital. Through this mechanism, households increase the capacity for borrowing, which in turn puts pressure on

the development of real estate price. Finally, higher real estate price reduces the default risks of loans by increasing

the value of the pledged collateral, which in turn allows the banks to enlarge their borrowing activities and ensures

financial stability (Daglish, 2009; Koetter and Poghosyan, 2010).

The above-mentioned mechanisms underline the importance of real estate prices for bank lending and the credit

market because they imply that boom-bust cycles can be reinforced and mutually transmitted between the credit

market and the housing market, jeopardizing macroeconomic stability. Thus, monetary policy should be reactive to

these kinds of fluctuations within the credit and housing market to ensure financial and long-run price stability.

However, empirical studies on the influence of central banks on such cyclical economic behaviour of real estate

prices and credit conditions are limited and controversial. Bordo and Jeanne (2002) and Chen et al. (2013) find

that the impact of interest rate movements on the development of asset prices triggered by the central banks has

a highly non-linear effect depending on economic sentiment, which is mainly caused by the perception of market

participant depending on the current phase of the cycle. Empirical evidence based on the vector auto-regression

technique suggests that interest rate shocks have a significant effect on house prices (Gupta et al., 2010; Sá et al.,

2014). Moreover, Dokko et al. (2011) and Hume and Sentance (2009) argue that the expansionary monetary policy,

with its low levels of interest rates, has significantly contributed to the most recent house price boom. In contrast, there
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are also studies suggesting that housing market should have a larger effect on the growth of the economy, thus playing

an important role in the monetary policy setting (Lacoviello, 2004; Attanasio et al., 2011; Laibson and Mollerstrom,

2010).

Here, using an extension of the novel thermal optimal path technique (Sornette and Zhou, 2005; Zhou and Sornette,

2006b, 2007) for the joint analysis of pairs of time series, we revisit the time-dependent lead-lag relationship between

monetary policies and housing market of the United Kingdom and United States. The thermal optimal path method

(abbr. TOP), proposed by Sornette and Zhou (2005), is situated in the time domain. But unlike other popular methods,

it is a non-parametric approach. In some sense, it has similarities with the cross recurrence analysis (Marwan and

Kurths, 2002), which is also based on the construction of a “distance matrix” but extents this tool by the concept of a

weighted average minimal path within the distance matrix. This allows one to better analyse non-linear correlations

of time series based on a time-dependent lead-lag relationship. The quality of the empirical results obtained by the

TOP method is promising, especially when comparing the method with other linear techniques. Sornette and Zhou

(2005) and Zhou and Sornette (2006b, 2007) successfully apply it to investigate the dependence relationship between

inflation and gross domestic product and inflation and unemployment in the USA, and obtain several new insights.

Guo et al. (2011) extend the TOP method and applied it to investigate the lead-lag dependencies between the US stock

market and monetary policies. Guo et al. (2012) apply the method to check the economy barometer effect of China

stock market and no such effect was found.

Despite the major advantages of the TOP method, its use for routine empirical analyses still faces some difficul-

ties. While the TOP method is efficient in identifying stable patterns between time series that have a well-established

lead-lag structure, the impact of noise requires more investigation. Indeed, without prior knowledge, disentangling

the genuine part of the signal from the contribution of noise is sometimes difficult. In order to assess the statistical

significance of a lead-lag structure between two time series determined by TOP, Guo et al. (2011) propose a specif-

ically designed bootstrapping test. However, as demonstrated in the following context, this bootstrap test has low

power, in the sense that it fails to reject the null of no lead-lag structure in long-time series when the signal is actually

present with no too large lead or lag in the cross-correlations. Another issue is that the identified TOP paths tend to

be distorted or biased when dealing with weak lead-lag signals. We show below that this bias originates from the

non-fully consistent weights attributed to the distances between the two time series along the time direction.

The paper is organized as follows. Section 2 summarises the original TOP method, from which we develop the

symmetric thermal optimal path method (abbr. TOPS) that remedies the above stated problems. Section 3 confirms

the efficiency of the new TOPS method by way of illustration with several numerical experiments. We introduce two

novel statistical tests specific to the TOPS method. Section 4 presents applications of these new proposed method to

the identification of the time dependent lead-lag structures between house price and monetary policy of the United

Kingdom and United States. Section 5 summarizes.
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2. Method

2.1. The thermal optimal path method (TOP)

The TOP method has been proposed as a novel method to quantify the dynamical evolution of lead-lag structures

between two time series (Sornette and Zhou, 2005; Zhou and Sornette, 2006b, 2007). Consider two standardized time

series X(t1) : t1 = 0, · · · ,N − 1 and Y(t2) : t2 = 0, · · · ,N − 1, i.e., X(t1) and Y(t2) have zero means and unit variance.

We first form a distance matrix that allows us to compare systematically all values of the first time series X(t1) along

the time axis with all the values of the second time series Y(t2). As to the definition of distance, we can in principle

use any definition that obeys the axioms to qualify as a genuine distance and that is sufficiently local to be attributed

to each node. Here, we still define the distance matrix EX,Y between X to Y , which is used in (Sornette and Zhou,

2005), as

ϵ−(t1, t2) = [X(t1) − Y(t2)]2 . (1)

The value of ϵ−(t1, t2) measures the distance between the realizations of X at time t1 and Y at time t2. Depending on

the nature of the time series, it is interesting to use other distances, for instance

ϵ+(t1, t2) = [X(t1) + Y(t2)]2 (2)

and

ϵ±(t1, t2) = min[ϵ−(t1, t2), ϵ+(t1, t2)] (3)

to deal with the anti-monotonic and non-monotonic relationship between two time series (Zhou and Sornette, 2007).

Our method introduced below applies these three distances without modifications.

The dependence relationship between the two time series is searched for in the form of a one-to-one mapping

t2 = ϕ(t1) between the times t1 of the first time series X and the times t2 of the second time series such that the two

time series are closest in a certain sense. Consider a simple example like Y(t) = X(t − k) with k > 0 is a positive

constant. Then we get ϵ−(t1, t2) = 0 for t2 = t1 + k. Detecting this dependence relationship then amounts to find the

line with zero values which is parallel to the main diagonal of the distance matrix EX,Y with distance definition ϵ−.

This line equivalently defines the affine mapping t2 = ϕ(t1) = t1 + k.

A naive approach to determine the dependence relationship between two time series could be thought to find the

set of pairs (t1, t2) such that the elements of the distance matrix are the smallest. This defines the mapping as

ϕ(t1) = Mint2 {ϵ(t1, t2)} . (4)

This procedure analyses each time t1 independently, which causes two undesirable features. First, in the presence

of noise, the function t2 = ϕ(t1) is quite discontinuous with numerous large jumps ϕ(t1 + 1) − ϕ(t1) of amplitudes

comparable to the total duration N of the time series, at many times t1. Second, with large probability, a given t1
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would be associated with several t2. Thus, there will be pairs of times t1 < t′1 such that ϕ(t1) > ϕ(t′1), contradicting

causality. Therefore, these two properties disqualify the simple method in Eq. (4) as a suitable construction of time

dependence between two time series, since the lead-lag structure that would be obtained would be erratic, noisy and

unreliable.

In general and for reasonable dependence structures, we expect the lead-lag relation between two time series to be

a slowly varying function of time without unreasonable large jumps. To capture this insight, Sornette and Zhou (2005)

replace the mapping (4) determined by a local minimization by a mapping obtained from the global minimization

Min{ϕ(t1),t1=0,1,2,...,N−1} E :=
N−1∑
t1=0

|X(t1) − Y(ϕ(t1))| (5)

under the constraint of continuity expressed in discrete time

0 ≤ ϕ(t1 + 1) − ϕ(t1) ≤ 1 . (6)

In the continuous time limit of condition (6), this amounts to imposing that the mapping t1 → t2 = ϕ(t1) should be

continuous. The continuity constraint makes the determination of t2 = ϕ(t1) a global optimization problem (5) rather

than the simple local one (4).

Actually, this type of problem has a long history and has been extensively studied under the name of the “random

directed polymer at zero temperature” (Halpin-Healy and Zhang, 1995). The distance matrix EX,Y can be interpreted

as an energy landscape in the plane (t1, t2), in which the local distance ϵ(t1, t2) is the energy associated with the

node (t1, t2). The continuity constraint (6) means that the mapping defines a path or “polymer” of t2 = ϕ(t1)) with a

“surface tension” to prevent discontinuities. The causality condition that ϕ(t1) should be non-decreasing corresponds

to the constraint that the polymer should be directed. Then we can translate the global minimization problem (5) into

searching for the polymer configuration with minimum energy E in the energy landscape. In the case where the two

time series do have a dependence relationship, their corresponding energy landscape will exhibit coherent structures,

which can “trap” the polymer configuration and reveal the lead-lag structure.

We use the transfer matrix method in the rotated coordinate system that allows one to solve this global optimization

problem (5) in polynomial time (Derrida et al., 1978; Derrida and Vannimenus, 1983). Fig.1 shows a schematic

representation of the elementary steps underlying the transfer matrix method. The first (resp. second) time series is

indexed by the time t1 (resp. t2). A given node (t1, t2) in the � lattice carries the “potential energy” or distance ϵ(t1, t2).

The △ lattice is the rotated coordinate of (t1, t2)� → (t, x)△. According to the continuity restriction (6), the optimal

path can either go horizontally by one step from (t1, t2) to (t1 +1, t2), vertically by one step from (t1, t2) to (t1, t2 +1) or

along the diagonal from (t1, t2) to (t1 + 1, t2 + 1). Let us call E(t1, t2) the cumulative energy of the optimal path starting

from some origin (t1,0, t2,0) and ending at (t1, t2). Then, the transfer matrix method is based on the following recursive
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relation:

E(t1, t2) = ϵ(t1, t2) +Min{E(t1 − 1, t2), E(t1, t2 − 1), E(t1 − 1, t2 − 1)}, (7)

which means that the minimum energy path that reaches point (t1, t2) can only come from one of the three points

(t1 − 1, t2), (t1, t2 − 1) and (t1 − 1, t2 − 1) preceding it. Then the minimum energy path reaching (t1, t2) is nothing

but a recursive extension of the minimum energy path reaching one of these three preceding points. The global

minimization procedure is fully determined once the starting and ending points of the paths are defined. To respect

the fact that one of the two time series probably precede the other one, we allow the starting point to lie anywhere

on the horizontal axis t2 = 0 or on the vertical axis t1 = 0. Similarly, the ending point could lie anywhere on the

horizontal axis t2 = N − 1 or on the vertical axis t1 = N − 1. The minimum energy path over all possible starting and

ending points is the solution of the global optimization (5) under the constraint (6), whose equation t1 → t2 = ϕ(t1)

defines the dependence relationship between the two time series.

[Figure 1 about here.]

In this optimization program, it is assumed that the energy landscape EX,Y derived from the time series X to Y is

made only of useful information. In reality, the two time series are noisy. Their corresponding energy landscape can

be expected to contain spurious patterns, which may hinder the determination of the global optimal path, leading to

incorrect inferred lead-lag relationships. In the case where the noise dominates the energy landscape, small changes

in the distance matrix may lead to very large jumps in the optimal path (Halpin-Healy and Zhang, 1995; Jögi and Sor-

nette, 1998). To obtain a robust lead-lag path, Sornette and Zhou (2005) propose to introduce “thermal excitations”

around the path, so that path configurations with slightly larger global energies are allowed to contribute to the con-

formation of the optimal path with probabilities proportional to their Boltzmann weights. They specify the probability

of a given path configuration with energy ∆E above the absolute minimum energy path by a Boltzmann-Gibbs factor

exp(−∆E/T ), where the “temperature” T quantifies how much deviation from the minimum energy is allowed. For

T → 0, the probability for selecting a path configuration with incremental energy ∆E above the absolute minimum

energy path goes to zero. Increasing T allows one to sample more and more paths around the minimum energy path,

thus giving an average “optimal thermal path” over a larger and larger number of path conformations. This tends to

wash out possible idiosyncratic dependencies of the path conformation on the specific realization of the noises deco-

rating the two time series. The introduction of a finite temperature and the thermal averaging over path weighted by

the Boltzmann-Gibbs factor can be interpreted as a renormalization of the energy (or distance) landscape in which the

path configuration are sampled, decimating the details of the local distance matrix to obtain more robust and smooth

paths. Of course, for too large temperatures, one would lose the information of the lead-lag relationships between

two time series since it samples too many paths independent of the set of local distances between the realisations of

the two time series. There is therefore a compromise between not extracting too much from the spurious noise and

washing out too much of the relevant signal.
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It is convenient to use the △ frame (t, x), as defined in Fig. 1, to implement these ideas. As illustrated in Fig. 1, the

transformation from the coordinates (t1, t2)� to (t, x)△ is

 t = t2 + t1

x = t2 − t1
(8)

The optimal path for two synchronised time series is the main diagonal, so that deviations from the diagonal quantify

the lead or lag times between the two time series. It is thus convenient to use the △ frame (t, x) in which the second

coordinate x quantifies the deviation from the main diagonal, hence the lead or lag time between the two time series.

With the constraint that the path is directed, we can interpret t as an effective time and x as the position of a path at

that “time” t. Then, the optimal thermal averaged path trajectory ⟨x(t)⟩ is given by

⟨x(t)⟩ =
∑

x

xG△(t, x)/G△(t). (9)

where G△(t, x) is the sum of Boltzmann factors over all paths emanating from (0, 0)△ and ending at (t, x)△ and G△(t) =∑
x G△(t, x). As illustrated in Fig. 1 and Eq. (7), in the � frame, to arrive at (t1 + 1, t2 + 1), the path can come from

(t1 + 1, t2) vertically, (t1, t2 + 1) horizontally, or (t1, t2) diagonally. The recursive equation on the Boltzmann weight

factor is thus

G(t1 + 1, t2 + 1) = [G(t1 + 1, t2) +G(t1, t2 + 1) +G(t1, t2)]e−ϵ(t1+1,t2+1)/T , (10)

where ϵ(t1 + 1, t2 + 1) is the local energy determined by the distance matrix element at node (t1 + 1, t2 + 1). In term of

the coordinate transformation (8), it can be rewritten in the following form

G△(t + 1, x) = [G△(t, x − 1) +G△(t, x + 1) +G△(t − 1, x)]e−ϵ(t+1,x)/T . (11)

In statistical physics, G△(t, x) is called the partition function constrained to x while G△(t) is the total partition function

at t. Naturally, G△(t, x)/G△(t) is nothing but the probability for a path to be at position x at time t, which is a

compromise between minimizing the energy and maximizing the combinatorial weight of the number of paths with

similar energy in a neighborhood (similar to an “entropy”). Eq. (9) indeed defines ⟨x(t)⟩ as the thermal average of the

local time lag at t over all possible lead-lag configurations suitably weighted according to the Boltzmann factor. This

justifies to call it the “thermal averaged path”.

As we discussed in the preceding text, once we get an origin and an ending point, for instance (t0, x0)△ with

position x0 as starting point and (tn, xn) with position xn as ending point, we can determine the thermal optimal path

⟨x(t)⟩ under a certain temperature T . We can also define a cost “energy” eT for this path as the thermal average of the
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distance ϵ(t, x)△ between the two time series:

eT =
1

2N − |x0| − |xN | − 1

2N−|xN |−1∑
t=|x0 |

∑
x

ϵ(t, x)G△(t, x)/G△(t), (12)

where N is the length of the time series and |x0| and |xn| are the absolute values of the positions of the starting and

ending points.

2.2. Thermal optimal path method with time-reversed symmetric weight (TOPS)

The thermal optimal path method (TOP) starts with the allocation of weights to each node. Each node (t1, t2) is

like a city, with energy ϵ(t1, t2) as its jetton (the smaller the better), which competes with others (nodes) to welcome

the final optimal paths to pass through. This “optimal” path is determined as the best compromise for the route over

different competing nodes.

By construction, the weight of a given node is independent of whether we study the lead-lag dependence from

left-to-right or from right-to-left. Consider two time series such that X(t1) leads Y(t2) in a representation where the

times t1 and t2 are flowing from past to present. Then, reversing the time arrows, we can state equivalently that Y(t2)

precedes X(t1) when studying the lead-lag structures from future to past. Technically, this implies that the probability

weight for a path to be present on a given node is independent on whether the path is determined recursively from

left-to-right (past-to-present) or from right-to-left (future-to-past).

[Figure 2 about here.]

[Figure 3 about here.]

In the case of random distance matrices for which there is no preferred lead-lag structure, the above symmetry

argument implies that the ensemble of random optimal paths should be symmetrically distributed around the zero-lag

line x(t) = 0 and should also be symmetric with respect to an inversion of the time axis, reflecting the absence of any

preferred time arrow in the random configuration. But the left panel of Fig. 3 shows that the 5% and 95% quantiles over

a population of 1000 random optimal path configurations obtained over 1000 realisations of random distances, whose

nodes are weighted by the left-to-right recursive process (11), do not obey the time-reversed invariance symmetry.

This breaking of the time-reversed symmetry makes it problematic to interpret confidence levels of optimal paths in

the presence of noise, since it would lead to much larger confidence bounds (and thus less discriminating power), the

further to the right (the larger along the time axis) we analyse the lead-lag structure.

The origin of this breaking of time-reversed symmetry lies in the different numbers of paths contributing to the

probability weight attributed to a given node when calculated from left-to-right compared from the construction of the

probability weight on that same node from right-to-left. As illustrated in Fig. 2, the weight of node (t1 = 4, t2 = 4) is

recursively contributed by 15 preceding nodes when searching from left-to-right (time-forward direction). But only 3
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nodes contribute to its weight when searching from right-to-left (time-backward direction). To remedy this problem,

we propose to construct a time-reversed invariant node weight process, obtained by taken the average of the weights

determined along the time-forward and time-backward directions. In other words, we modify the optimal thermal

path trajectory calculated according to expression (9) into

⟨x(t)⟩ =
∑

x

x
−→
G△(t, x)/

−→
G△(t) +

←−
G△(t, x)/

←−
G△(t)

2
, (13)

where
−→
G△(t, x) and

−→
G△(t) are identical to G△(t, x) and G△(t) in Eq. (11), and where the arrow → denotes that the

recursive weight process is along the time-forward direction. In contrast,
←−
G△(t, x) is the sum of Boltzmann factors

over all paths emanating from an ending point, for instance (N − 1,N − 1)�, and ending at the same node (t, x)△ as
−→
G△(t, x). It is nothing but the partition function constrained to the same x as

−→
G△(t, x) when determining the weights

from right-to-left and the arrow ← denotes that the recursive weight process is along the time-backward direction.

Similarly,
←−
G△(t) =

∑
x
←−
G△(t, x). As shown in the right panel of Fig. 3, by using the recursive weight (13) instead of

(9), the widening trend is essentially eliminated and the ensemble of random paths obeys time-reversed invariance. In

a similar way, we modify the cost energy eT of equation (12) into

eT =
1

2N − |x0| − |xN | − 1

2N−|x0 |−|xn |∑
t=x0

∑
x

ϵ(t, x)
−→
G△(t, x)/

−→
G△(t) +

←−
G△(t, x)/

←−
G△(t)

2
(14)

3. Numerical experiments and test of statistical significance

3.1. Comparison between TOP and TOPS on two synthetic time series with varying lead-lag structure

We now present synthetic tests of the efficiency of the thermal optimal path method with the time-reversed sym-

metric weight process (abbr. TOPS) to detect multiple changes of regime in the lead-lag structure between two time

series. Let us consider two stationary time series X(t1) and Y(t2) constructed as follows:

Y(i) =



aX(i − 30) + η, 1 ≤ t ≤ 100

aX(i − 15) + η, 100 < t ≤ 200

aX(i) + η, 200 < t ≤ 300

aX(i + 15) + η, 300 < t ≤ 400

aX(i + 30) + η, 400 < t ≤ 500

(15)

where a is a constant and the noise η ∼ N(0, ση) is serially uncorrelated. X(t) itself is generated by the first-order

auto-regressive process

X(t1) = bX(t1 − 1) + ξ, (16)
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where b < 1 and the noise ξ ∼ N(0, σξ) is serially uncorrelated. By construction, the time series Y is lagging behind

X with lag τ = 30, 15 and 0 in three successive time periods of 100 time steps each. Then, Y leads X with a leading

time −τ = 15 and 30 in the last two periods of 100 time steps each. The factor f = ση/σξ quantifies the amount

of noise degrading the dependence relationship between X(t1) and Y(t2). Small f values lead to a strong dependence

relationship and large f ’s correspond to the situation where Y(t2) is mostly noise and is weakly related to X(t1) (and

become unrelated in the limit f → ∞). Here, we take a = 0.8, b = 0.7 and f = 0.2.

We determine the average thermal paths ⟨x(t)⟩ using both the original TOP method and our new proposed TOPS.

As discussed above, we take 61 starting points and 61 ending points into account, which are (t1 = 0, t2 = 0), (t1 =

0, t2 = i), (t1 = i, t2 = 0), (t1 = N, t2 = N), (t1 = N, t2 = N − i) and (t1 = N − i, t2 = N) for i = 1, 2, · · · , 30, where

N = 500 is the length of time series. The path with the minimum average energy defined by expression (12) and (14)

respectively over these 61× 61 paths is the thermal optimal path we are looking for in each scheme (TOP and TOPS).

Fig.4 depicts the thermal optimal path of the synthetic lead-lag structures constructed from (15) obtained by using the

TOP and TOPS methods respectively. The time lags in the five time periods are recovered clearly by both TOP and

TOPS. This numerical experiment is a first indication that the modification on the weight process does not impair the

power of the method to detect complex varying lead-lag patterns. The comparison of the two paths even suggests a

slight improvement of TOPS over TOP, in the sense that the TOPS lead-lag path exhibits smaller biases and less delay

in capturing the changes of lead-lag.

[Figure 4 about here.]

3.2. Bootstrapping curves test

In order to test the statistical significance of an obtained thermal optimal path of the lead-lag structure between

two time series, Guo et al. (2011) propose a bootstrapping test based on the idea of comparing it with the paths

obtained from random time series. But in order for the comparison to be meaningful, the idea is to use random

structures closely related to the initial one, except for the absence of any lead-lag structure. Guo et al. (2011) adopt

the following procedure, which is specific to the thermal optimal path method. Given the two time series {X(t1)} and

{Y(t2)} to analyse, the idea is to compare the thermal optimal path ⟨x(t)⟩ obtained with the TOP/TOPS analysis at a

given temperature T to those obtained using time series pairs transformed by random reshuffling of the sequences of

{X(t1)} and {Y(t2)}. Reshuffling n times provides n paths xi(t) associated with the n random energy landscapes for

i = 1, 2, · · · , n. For each t, out of the n reshuffled time series, we determine the 5% and 95% quantiles denoted in x5%

and x95%, shown in Fig. 3. The bootstrapping test concludes that the thermal optimal path ⟨x(t)⟩ at time t is statistically

different from zero at the significance level of 95%, if ⟨x(t)⟩ is smaller that x5% or larger than x95%.

A nice property of this bootstrapping test is that it can detect the statistical significance of the optimal path locally.

Plotting the thermal optimal path ⟨x(t)⟩ together with the x5% and x95% confidence bounds on the same plot indicates

clearly at which times t the ⟨x(t)⟩ values are significantly outside the 95% confidence interval.
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However, the power of this bootstrapping test is low, in the sense that it has a low probability to correctly rejects the

null hypothesis when the null hypothesis is false. Here, the null is the absence of non-zero lead-lag. The bootstrapping

test of Guo et al. (2011) unfortunately concludes much too often on the absence of a non-zero lead-lag when there is

truly one. This can be understood intuitively from the way the bootstrapping test is constructed: the closer the real

lead-lag to x(t) = 0, the larger the chance that it lies within the x5% and x95% confidence bounds. A small or zero

lead-lag value x(t) ≈ 0 is likely to be interpreted as being a diagnostic of the absence of inter-dependence because

the bootstrapping test will conclude that the lead-lag path is undistinguishable from those obtained from random time

series. Of course, this is incorrect since two time series can be strongly contemporaneously correlated.

Another problem is that the power of the bootstrapping test of Guo et al. (2011) weakens when the time series are

longer. This results from the widening of the x5% ∼ x95% band with the length of the time series. As shown in Fig. 3,

time series with longer durations exhibit wider x5% ∼ x95% bands, even though we have removed the time trend (right

panel) with the symmetric TOPS method. This is due to the widening of the random excursions of random paths in

random energy landscapes as their length increases. This undesirable feature of the x5% ∼ x95% band dramatically

impairs the power of the bootstrapping test. To quantify this statement, consider the three pairs of time series with the

following different synthetic lead-lag structures:

Y(i) =



aX(i − 30) + η, 1 ≤ t ≤ 100

aX(i − 15) + η, 100 < t ≤ 200

aX(i) + η, 200 < t ≤ 300

aX(i + 15) + η, 300 < t ≤ 400

aX(i + 30) + η, 400 < t ≤ 500

(17a)

Y(i) =



aX(i − 30) + η, 1 ≤ t ≤ 200

aX(i − 15) + η, 200 < t ≤ 400

aX(i) + η, 400 < t ≤ 600

aX(i + 15) + η, 600 < t ≤ 800

aX(i + 30) + η, 800 < t ≤ 1000

(17b)

Y(i) =



aX(i − 60) + η, 1 ≤ t ≤ 200

aX(i − 30) + η, 200 < t ≤ 400

aX(i) + η, 400 < t ≤ 600

aX(i + 30) + η, 600 < t ≤ 800

aX(i + 60) + η, 800 < t ≤ 1000

(17c)

Here, we still take a = 0.8, b = 0.7 and f = 0.2 so that they have strong lead-lag signals. By construction, Eq. (17b)

leads to the same lead-lag time values as Eq. (17a), but with double length of the time series X(t1) and Y(t2). Com-
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paring with Eq. (17a), Eq. (17c) doubles both the time lag values and the length of the time series. Figure 5 presents

the thermal optimal paths and their corresponding bootstrapping significance bands obtained with the TOPS method

on these three pairs of time series. Although Eq. (17a) and Eq. (17b) have “identical” time lags, their x5% ∼ x95%

bands are quite different, which would lead to incorrect distinct interpretation of the two “identical” lead-lag signals.

Moreover, even with different lead-lag structures, the bootstrapping band associated with Eq. (17b) and Eq. (17c)

are quite similar due to the fact that the corresponding time series have the same duration. In addition, the three

x5% ∼ x95% bands reject the existence of the intermediate lead-lag signal Y(i) = aX(i) + η, which actually is present

and corresponds to a strong synchronization signal, which ought not to be treated as “random”.

[Figure 5 about here.]

3.3. Free energy test and p-value ρ

To address the problems described in the previous section, we develop a novel criterion based on the free energy

in order to assess the statistical significance of obtained thermal optimal paths. Recall that the free energies of TOP

and TOPS are respectively given by expression (12) and (14). The key idea is to qualify a given lead-lag path by how

much its free energy is statistically smaller than those of other paths that would be found in absence of a genuine

signal. By construction, the selected lead-lad path has the lowest free energy, and we want to quantify how this can

be quantified in a statistical test.

Consider the following synthetic lead-lag structure:

Y(i) =



aX(i − τ1) + η, 1 ≤ t ≤ 100

aX(i − τ2) + η, 100 < t ≤ 200

aX(i − τ3) + η, 200 < t ≤ 300

aX(i − τ4) + η, 300 < t ≤ 400

aX(i − τ5) + η, 400 < t ≤ 500

(18)

The time series X(t1) is again generated by the first-order auto-regressive process (16), where b = 0.7 and f =

ση/σξ = 0.2. These values ensure a strong lead-lag correlation structure between X(t1) and Y(t2). In order to explore

sufficiently many different lead-lag structures, we generate 1000 pairs of (X(t1), Y(t2)) using Eq. (18) with the lead-

lag integer times τ j, ( j = 1, 2, 3, 4, 5) randomly chosen in the interval [−30, 30] and a randomly drawn in the interval

[0.7, 1]. Analyzing each of these 1000 pairs with the TOP and TOPS method, we record their free energy eT for

different temperatures T . Then, we shuffle these time series many times and do the same analysis, recording the

corresponding free energies under identical temperatures T . This allows us to construct 1000 distributions of random

free energies associated with the 1000 meaningful series (MS), each distribution being constructing from random time

series that are as close as possible from the meaningful series except for the reshuffling. As shown by the boxplots of

the free energies in Fig. 6, the free energies of the meaningful time series (MS) are distinctly smaller than those for
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the random reshuffled time series. Moreover, we observe a systematic downward translation of the path free energies

obtained by the TOPS method compared with the TOP method, confirming the superior value of the former.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

To develop the free energy selection criterion, we construct the normalised distribution fc(e) of free energies of

the lead-lag optimal paths over the 1000 meaningful signals described above (red distribution fc(e) in Fig. 7). The

normalized distribution fr(e) of free energies of the optimal paths for the random reshuffled time series is shown with

the blue color in Fig. 7. The more fc(e) is translated to the left of fc(e) and the least it overlaps with it, the more

significant is the recovered lead-lag structure. This can be quantified by a simple metric ρ defined as the area P(B|A)

of the intersection of the two normalised distributions, delineated with black outline in Fig. 7 (B):

ρ = P(B|A), (19)

The metric ρ has the simple interpretation of being the probability that a given lead-lag structure with its minimum

free energy could be obtained from random time series with similar characteristics except of the lead-lag information.

Thus, ρ is the p-value of the statistical test in terms of the path free energy. A small value of ρ indicates a strong

lead-lag signal, which can be distinguished from random realisation with large significance. In contrast, when ρ is too

large, typically ρ > 0.2, the lead-lag structure is obscured and not distinguishable from a random pattern at the 80%

confidence level.

To explore the performance of the metric ρ, we construct a series of statistical time series using Eq. (18) for ten

different pairs of values of the parameters a and f = ση/σξ that control the strength of the lead-lag signals between

X(t1) and Y(t2). These ten pairs are (a = 0.1, f = 1) (weakest interdependence and lead-lag signal), (a = 0.2, f = 0.9),

(a = 0.3, f = 0.8), (a = 0.4, f = 0.7), (a = 0.5, f = 0.6), (a = 0.6, f = 0.5), (a = 0.7, f = 0.4), (a = 0.8, f = 0.3),

(a = 0.9, f = 0.2) and (a = 1, f = 0.1) (strongest lead-lag signal). For each pair (a, f ), we generate 1000 pairs

(X(t1),Y(t1)) with taking b = 0.7 and τ j, ( j = 1, 2, 3, 4, 5) randomly drawn in the interval [−30, 30]. We also generate

1000 pairs of random time series by reshuffling the time series X(t1) and Y(t1). We then calculate the free energies

eT of the optimal lead-lag paths for these ten pairs (a, f ) using the TOPS method and obtain their corresponding free

energy metric ρ, which are reported in Fig. 8. For strong signals (large a’s and relatively small f ’s), ρ is very small

and the lead-lag structure is highly significant at all explored temperature. As the signal strength weakens (a decreases

and f increases), the choice of the temperature becomes more important and the significance also decreases. A good

choice of temperature seems here to be in the range [1, 2], which we will make more precise below.

[Figure 9 about here.]
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[Figure 10 about here.]

Figure 9 presents a more extensive view of the dependence of the free energy metric ρ for 12 different temperature

from 0.5 to 3 and for 100 different values of the parameter pairs (a, f ) scanning the range from 0.1 to 1 for both

parameters in unit step of 0.1. One can observe that the significance of the lead-lag signals is dominated by the

parameter a. For a > 0.5, ρ remains consistently below 0.1 even for large additive noise quantified by f . However,

for a < 0.5, the relative noise amplitude f begins to impact the ρ values.

As already identified in Fig. 8, the choice of the temperature T used in the implementation of TOPS plays a useful

role in the tradeoff between “not extracting too much from the spurious noise” and “washing out too much of the

relevant signal”. Too small values of T make the TOPS paths very sensitive to a and f , resulting in large fluctuations

in ρ, which becomes unreliable. Too large values of T can obscure the relevant signal since the entropy of the path

configurations dominates over the minimisation of the distance. This leads to large insignificant values of ρ. Fig. 10

shows the mean values and standard deviations of ρ obtained in the signal maps of Fig. 9 as a function of temperature

T . One can observe a minimum of the mean value and of the standard deviation almost at the same temperature close

to T = 2.2. This supports our choice below to use a temperature close to T = 2 in order to optimise the recovery of

the optimal lead-lag paths.

3.4. Self-consistent test of the lead-lag structure

In addition to the p-value introduced in the previous section, we present the self-consistent test for lead-lag struc-

tures identified by the TOPS method and qualified by the metric ρ. Its idea is straightforward: for the lead-lag path

⟨x(t)⟩ to be significant, synchronising the two time series using the time varying ⟨x(t)⟩ should lead to a statistically

significant correlation.

Consider two standardised time series X(t) and Y(t) for which the TOPS method has determined the optimal

thermal lead-lag path ⟨x(t)⟩. If ⟨x(t)⟩ is indeed to be interpreted at the lead-lag time between the two time series, this

implies that X(t − ⟨x(t)⟩) and Y(t) should be synchronised and should exhibit a strong linear dependence. In other

words, forming the regression

Y(t) = c + aX(t − ⟨x(t)⟩) + ε(t) , (20)

the coefficient a should be significantly different from 0.

Let us illustrate this by using the two time series X(t1) and Y(t2) generated by Eqs. (15) and (16). The corre-

sponding thermal optimal path ⟨x(t)⟩ quantifying the lead-lag relationship between X(t1) and Y(t2) has been explored

and exhibited in Fig. 4. We apply the transformation X(t) → X(t − ⟨x(t)⟩) and perform the regression (20) to obtain

the estimation â of the regression coefficient a. Applying a standard t-test at the 95% confidence level allows one to

conclude if â is statistically different from 0 and decide if there is a statistically significant correlation between the

first time varying translated time series X(t) and the second time series Y(t).
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In order to evaluate the free energy metric ρ, we estimate the amplitude of the residuals ε(t) via the metric

f̂ =

√
1

N−1
∑N

k=1(Y(k) − âX(k − τ(k)))2√
1

N−1
∑N

k=1(X(k) − X̄)2
(21)

where X̄ is the mean value of X(t1) and N is the length of time series (N = 500 in this case). Using the estimation â of

the regression coefficient in expression (20) and its corresponding average residual amplitude f̂ , we can read off Fig. 9

for T = 2 the value of ρ corresponding to the discrete set closest to the found pair (â, f̂ ). Alternatively, following the

procedure used to construct Fig. 9, we can generate many synthetic lead-lag structures with (a, f ) = (â, f̂ ) and the

recovered lead-lag path ⟨x(t)⟩ and compare their free energies with the corresponding random cases.

If the estimated regression coefficient â is found statistically significant from zero and if the free energy p-value ρ

is small, we should conclude that the found lead-lag path is genuine.

Figure 11 shows the result of the joint application of the self-consistent test and of the free energy p-value ρ

criterion to the time series generated by Eqs. (15) and (16). We implemented the tests in moving windows with size

n = 100 and moving forward with step of one time unit, leading to a total of N−n+1 = 500−100+1 = 401 windows.

Within each window, we synchronized (resp. did not synchronized) the time series, estimating the coefficients â and

f̂ , and read off the corresponding ρ values on the signal strength map shown in Fig. 9, for T = 2. Among the 401

TOPS-synchronized windows, there are 358 windows that have statistical significant coefficient â. In contrast, for the

401 overlapping non-synchronized windows, there are only 33 windows that pass the t test of significant non-zero

coefficient a. The lead-lag signals of the TOPS-synchronized windows are also remarkably stronger than for the non-

synchronized windows. Most of the TOPS-synchronized windows are found in the region of the signal strength map

with very small ρ values, while most of the significant non-synchronized windows are located within 0.15 < ρ < 0.4

and cannot be distinguished from random lead-lag patterns. The original synthetic time series have been generated

with a = 0.7 and f = 0.2 and we can observe a cluster of estimated (â, f̂ ) of the TOPS-synchronized windows in the

neighbourhood of these values. One can note that the method tends to overestimate the noise amplitude.

[Figure 11 about here.]

4. Application to house prices and monetary policy

4.1. Data description

In the following, we apply the symmetric TOPS method, together with the free energy p-value ρ criterion and

self-consistency test of the lead-lag structure introduced in the previous section to analyze the time dependent lead-

lag structures of house price and monetary policy of the United Kingdom (UK) and the United States (US). For the

UK, our study compares two major house price indices (HPIs) with the interest rates covering short to long term

maturities including the Bank of England’s Official Bank Rate (BR), the 1-year British Pound LIBOR (BPLibor)
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and the 10-year Government Bond Generic Bid Yields (GBY) constructed by Bloomberg. The house price datasets

used are gained from the largest mortgage providers in the UK, namely the seasonal adjusted Nationwide Building

Society HPI (NBSHPI) and the seasonal adjusted Halifax HPI (HHPI). For the US, the seasonal adjusted house price

indices published by the Federal Housing Finance Agency (FHFAHPI) and the Standard & Poor’s Case-Shiller Index

(SPCSHPI) are compared with the effective Federal Funds Rate (FFR), which is the open market rate that follows the

Target Rate issued by the Federal Reserve, the 1-year dollar Libor (DLibor) and the 10-year Treasury Bill (TB). All

the time series span from January 1991 to April 2011 monthly except SPCSHPI that spans from January 2000 to April

2011 monthly.

For the subsequent analysis, logarithmic returns are used for the analysis of the monthly data sets. The returns are

defined as continuously compounded returns as follows:

r(t) = ln(S (t)) − ln(S (t − 1)) (22)

where S (t) is the initial non-stationary time series (HPI or monetary policy series) at time t. After generating the

return time series r(t), we then normalize all r(t) according to

R(t) =
r(t)√
⟨[r(t)]2⟩

. (23)

This procedure ensures the comparability of the return series for the TOPS analysis.

[Figure 12 about here.]

Figure 12 (A) illustrates the monthly development of the UK interest rates over two decades between 1991 and

2011. Within this period, an almost continuous decline of interest rates with two particularly steep drops during 1991-

1992 and by the end of 2008 is observed. In the late 1980s, the Bank of England had to cope with the after-effects of

the stock market crash of October 1987 leading to comparably low interest rates, which supported the creation of a

house price bubble. With the intention to stop this development, the Bank of England increased its base rate. However,

in 1991 the bubble collapsed with a significant impact on the UK economy, resulting once again in a decline of interest

rate levels. This development was further pronounced by the so-called “Black Wednesday”, which was triggered by

the UK joining the European Exchange Rate Mechanism (ERM). In the period between 1992 and 2008, the interest

rates remained at a relatively stable level with a less pronounced downward trend and only minor fluctuations around

an average interest rate of roughly 5%. Stronger variations only occurred around the period of the bust of the dotcom

bubble in late 2000. The most recent drop in interest rate levels was directly associated with the peak in UK as well

as United States house prices around 2006 and the response to the following credit crunch in 2007.

Figure 12 (B) shows the seasonal adjusted development of housing prices measured by the Nationwide Building

Society and the Halifax HPI. After the collapse of the 1991 housing bubble, the prices stayed almost constant for over
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half a decade, followed by a period of massive growth with a small plateau in the end of 2004 and a climax in late

2007. Starting from early 2009, the house prices exhibited a moderate rebound that was again followed by a small

decrease of the valuation of real estate.

Figure 12 (C) presents the development of US interest rates over two decades. Three periods of decreasing interest

rates, led by the target rate of the Federal Reserve (FFR), can be identified. These changes in the interest rate policy

were triggered by periods of economic recessions, namely the US Savings and Loans Crisis between 1990 and 1991,

the Dotcom bubble that climaxed and crashed in March 2000, together with the shock of the 9/11 terrorist attacks

in 2001 and the most recent subprime mortgage crisis that caused a global financial crisis beginning in late 2007.

Each period preceding the crisis was characterized by a sustained economic growth with slow monotonous rises of

the Federal Reserve Target Rate likely aiming at tempering a possible overheating. In general, during the last two

decades, the interest rate level has decreased significantly for all maturities, resulting in historical lows today.

The development of house prices in the United States, represented by the FHFA House Price Index and the S&P’s

Case-Schiller House Price index in Fig. 12 (D) is characterized by a strong average exponential growth since the early

1990s (and even faster-than-exponential growth in the more recent period from 2003 to 2007 (Sornette and Cauwels,

2014; Leiss et al., 2014)), which peaked in 2007. It is also important to note that the house price time series is

obviously non-stationary and even the logarithmic returns seem to have three different regimes, one until 1997-1998

with small growth, another until 2007 with increasing growth rates and a strong decay until the end of 2010. It is

interesting to see that the peak of the UK real estate prices is delayed by over one year compared to the peak in the

US.

4.2. TOPS analysis on the time dependent lead-lag structures of house price and monetary policy

Figure 13 and Fig. 14 show the results of the TOPS analysis, together with the free energy p-value ρ criterion and

self-consistency test of the lead-lag structure performed on the time series presented in the previous section. For each

TOPS path of a pair of time series (interest rate vs. house price index), we perform the self-consistent test in moving

windows with size of 1 to 4 years. Periods that pass the tests are highlighted by shadows with colors encoding the ρ

values using a heat colour scale. Red represents ρ values close to zero (strong lead-lag signal) and blue corresponds

to ρ values close to one (weak lead-lag signal), following the same convention as in the signal strength map of Fig. 9.

If a period possesses very strong lead-lag signals, there should exist many significant moving windows overlapping in

its neighbourhood. As each window is plotted by thin dot lines, the shadows of the strong signal period appear to be

thick and dense.

4.2.1. United Kingdom

The overarching conclusion that can be extracted from Fig. 13 is that the TOPS paths ⟨x(t)⟩ are overwhelmingly

negative, which indicates that interest rate changes are lagging behind house price index changes over the period from

1991 to 2008. The lags are however time dependent and are modulated by different macro-economic developments
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that shocked the markets from 1991 to 2011, as explained below. The overall information however is that the UK

central bank has been mostly “playing catch up” with the real-estate markets, reacting to them rather than really be on

top of the game from 1991 to 2008. From 2008 to 2011, the lead-lag dependence reverses, with ⟨x(t)⟩ being mainly

positive, which corresponds to the interest rates leading the real-estate markets. This confirms the change of regime

that occurred around 2008 with the financial crisis and great recession in which central banks have become much

more influential with their unconventional and very strong market interventions.

As shown in Fig. 13(A), the four TOPS paths between Bank of England’s official Bank Rate (BR) and the Na-

tionwide Building Society house price index (NBSHPI) reveal a significant plateau from 1996 to 2000. Steady rise of

the house price index in this period suggests that housing market had stepped into its recovery phase. However, the

recovery of the credit market did not go well as the housing market did. The failure of the Barings Bank impacted the

credit market again, resulting in a further decline of interest rates in the years 1995 and 1996. The credit market recov-

ered soon afterwards. Thus significant correlation signals within this period could be regarded as a phase of common

recovery. The TOPS paths of the BR and NBSHPI pair stabilized at about −5 during this period, suggesting that house

price index was leading the recovery development with a time lag of about 5 months ahead of credit market. We can

also observe that the TOPS paths of BR-HHPI (B), BPLibor-NBSHPI (C), and BPLibor-HHPI (D) are all quite stable

during this recovery period, with a time lag of half to one year. This reinforces the significant lead-lag signals between

BR and NBSHPI. Together with the aftermath-adjusted phase, the period of late 1991 to 2000 could be identified as a

common recovery phase, during which housing market was reviving steadily and leading the process while the credit

market suffered shocks and lagged behind the housing market. On the other hand, it also draws the picture that the

housing market played the role of assistor, leading the credit market recover from recessions after turbulence.

[Figure 13 about here.]

As illustrated in Fig. 13(D), the TOPS paths between the British pound LIBOR and the Halifax house price index

present strong lead-lag signals from 1991 to 1995, according to which the Halifax house price index was leading

the British pound LIBOR at a stable time lag about 10 months. This remarkable lead-lag structure shows that the

development of the UK housing market as well as the declining and oscillating interest rates were still adjusting to the

bubble bust of 1991. However, the decline of the house price index was slowing down and reached its bottom at the

end of 1992. The housing market started to stabilize, while a new wave of decline of interest rates was triggered by

the Sterling crisis at the end of 1992, making the interest rates drop again and reach their bottom towards the end of

1993. After the later shock of the Sterling crisis, the interest rates also went into an oscillation period associated with

an adjustment to the moving house price index. Significant correlation signals during this period are detected as both

of the two markets were recovering from the economy turbulence and about to settle down. A time lag of about 10

months characterises this relationship caused by the second shock of the Sterling crisis on interest rates, which made

the stabilization of interest rates come later than the house price index. The lead-lag structures during this period

could be regarded as a phase of common adjustment to a series of shocks.
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The signals associated with the recovery phases disappeared in 2000, when the dotcom bubble collapsed. During

the period between 2000 and 2004, interest rates kept oscillating and declining into a very low level about 5%. In the

meantime, the house price index experienced a period of rapid growth with a small plateau at the end of 2004, which

probably was caused by the sudden depression of the credit market. The correlation between the two markets at this

period was weak due to their entirely different developments, according to which the credit market was suffering from

the dotcom bubble bust while the housing market was enjoying its golden time. Therefore, the TOPS paths during

this period lost the significance of genuine lead-lag signals and kept falling toward the negative, which suggests that

the growth of the house price indices were developing and leading more and more the growth of interest rates.

The TOPS paths between all the short-to-medium term interest rates and the house price index exhibit remarkable

lead-lag signals at the end of 2004. During the period of 2004 to 2007, the house price index showed undoubtable

signs of a bubble (Zhou and Sornette, 2003, 2006a). Recovered from the shock of the dotcom bubble, the interest

rates also started to increase at the end of 2004. The lead-lag structure started at the end of 2004 with a large time

lags, according to which the house price index was leading the interest rates by about 2 years, then went back rapidly

toward zero and stabilized at a small time lags of about 3 to 4 months. This suggests that the interest rates were trying

to “catch up” with the house price index, indicating that the Bank of England was rising its base rate, trying to control

the wild growth of house price. This period could be identified as the phase when the Central Bank was attempting to

cope with the overheating housing market.

Partially due to the subprime crisis of the United States in 2007, the UK housing market collapsed in 2008 and

further participated to the triggering of the European debt crisis. Both the house price index and the interest rates

dropped sharply in 2008. The TOPS paths in 2008 also run into a downward oscillation, indicating that the falling

of the house price index was leading the falling of the interest rates in the 2008 turbulence. It identifies that the bust

of the housing market bubble triggered the European debt crisis. Going through the year of 2008, the TOPS paths

rebounded rapidly toward positive values. The interest rates turned to lead the house price index in 2009. It is a sign

that the Bank of England was taking active monetary actions to slow down the collapsing housing market. The lead-

lag structures returned to zero in 2010, suggesting that the evolution of interest rates and house price index after the

economy turbulence tended to be synchronized, but with weakening correlation, as shown by the increasing ρ value.

For the United Kingdom, the influence of the 10-year Government Bond Yield can be neglected since no significant

lead-lag signals can be detected by its TOPS paths. It only has a theoretical impact on loans that are based on fixed

rates. However, as proxies of adjustable rate mortgages, both the official bank rate and the 1-year British pound

LIBOR are found to exhibit significant correlations with the house price index.

4.2.2. United States

Similarly to the UK case, Fig. 14 supports the conclusion that the TOPS paths ⟨x(t)⟩ are overwhelmingly negative

until the crisis in 2006-2007, which indicates that interest rate changes were lagging behind house price index changes.

The TOPS paths also suggests a catch up of the Federal Reserve still not being on top of the game during the crisis
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itself, as diagnosed by again the significant negative values of TOPS paths ⟨x(t)⟩ until 2008. Only later did the Federal

Reserve and longer maturity rates lead the house price indices, confirming the occurrence of the transition to an era

where the central bank is causally influencing the markets more than the reverse.

After the shock of the US Savings and Loans Crisis in 1991, the US interest rates went into a steady increasing

phase from 1993 till 2000. In the meantime, the FHFA house price index went through a substantial growth phase. A

very strong correlation signal in the period between 1993 and 2000 can be detected by the four TOPS paths between

the Federal Fund Rate and the FHFA house price index in Fig. 14(A), which shows that the house price index was

leading the Federal Fund Rate by a time lag of about 1 year. We can observe that the TOPS paths between the Federal

Fund Rate and the FHFA house price index have a slight tendency toward negative values, suggesting that the house

price index was rising faster and faster compared with the FFR. In Fig. 14(C), a relatively weak lead-lag signal can

be detected by the TOPS paths between the dollar LIBOR and the FHFA house price index during this period. The

dollar LIBOR’s growth rate was lagging behind the house price index by a stable lag time of about 10 months. An

even weaker lead-lag signal also shows up in the TOPS paths between the Treasury Bond Yield and the FHFAHPI

during this period. The Treasury Bond Yield was lagging behind the house price index by a smaller lag time of about

2 months. All these results signal a common prosperity phase between 1993 and 2000, which was led by the housing

market.

[Figure 14 about here.]

After the bust of the dotcom bubble in 2000 and the 9/11 terrorist attack in 2001, the interest rates of the US

exhibited waves of rapid and massive drops during the period between 2000 and 2004. In contrast, the house price

index rose with an even faster growth rate, but evidence of a bubble was weak until 2004 (Zhou and Sornette, 2003).

The TOPS paths in this period lost their lead-lag signals. It is interesting to note that the FFR was found at that time

to follow the US stock market antibubble (Sornette and Zhou, 2005; Zhou and Sornette, 2006b).

The interest rates reached their bottoms in late 2003 and an aggressive rebound occurred between 2004 and 2007.

The housing market, in the meantime, entered a phase of faster-than-exponential growth, showing solid signs of

a bubble (Zhou and Sornette, 2006a). The TOPS paths during this period exhibit significant lead-lag signals, which

verged quickly toward zero, especially for the dollar LIBOR and the Treasury Bond Yield, whose TOPS paths become

positive in the year around 2005 and 2006. This remarkable development of the lead-lag structures indicates that the

Federal Reserve was attempting to cool down the overheating housing market by increasing the interest rates. This is

quite similar to the UK case.

The US housing market bubble started to burst in late 2006 and triggered the infamous subprime crisis. Consec-

utively, the house price index and the interest rates crashed towards the end of 2007. The TOPS paths during this

time period oscillate and turn into negative values, suggesting that the crash of the house price index led the drop of

the interest rates. After the collapse, the TOPS paths rapidly rebound toward positive values, indicating that interest

rates were trying to catch up with the falling of the house price index and control the collapse. The lead-lag structures

20



between 2007 and 2009 could be interpreted as a phase during which the crash of the housing market led the crash of

the interest rates and, later on, monetary policy took over the causal relationship, trying to alleviate the consequence

of the crisis and of the collapsing housing market.

The lead-lag structures between the S&P Case-Shiller house price index and the interest rates are quite different

from those between the Federal Housing Finance Agency house price index and the interest rates. No consistent

conclusion can be made. As shown in Fig. 12(D), the trajectories of the S&P Case-Shiller HPI and the FHFA HPI

have several significant discrepancies. First, the S&P Case-Shiller HPI has a shorter span from 2000 to 2011. Second,

the S&P Case-Shiller HPI climaxed in late 2006 as successfully predicted in Ref. (Zhou and Sornette, 2006a), while

the FHFA HPI peaked in 2007. Third, their return series have different patterns in several periods. While the TOPS

paths between the FHFA HPI and the interest rates have very similar shapes with respect to different window sizes

and for different maturities of the interest rates, the TOPS paths in the S&P Case-Shiller HPI case are only stable with

regard to different window sizes, but not for different interest rates. We thus conclude that the results obtained for the

FHFA HPI are reasonable and convincing, but not for the S&P Case-Shiller HPI.

5. Conclusion and remarks

In this work, we improved the thermal optimal path method (TOP) and introduced the symmetric thermal optimal

path method (TOPS), making this novel technique more consistent and stable. We also introduced two powerful sta-

tistical tests specifically adapted to the TOPS method. Based on these technique, we investigated the dynamic lead-lag

interdependence between the housing market and the monetary policy for the case of two exemplary countries, namely

United Kingdom and United States. Our study enhances the existing literature by providing a time-dependent reso-

lution, together with reliable statistical test results, concerning the analysis of correlations between the data sets.The

resulting lead-lag structures reveal three common phases for both countries, and some of these correlations are in line

with other recent findings.

From 1991 to 1999, one can observe a phase of common recovery and prosperity between the housing market

and credit market. Turbulence of the credit markets happened occasionally and impacted the interest rates, while the

influence on house price indices is negligible. This draws a picture in which the housing market had been steadily

growing and its rise fuelled the increase of interest rates (Bernanke et al., 1994).

The lead-lag signals of the common recovery phase disappeared in 2000 due to the international dotcom bubble

bust. A new phase is detected that is characterised by significant lead-lag structures, during which interest rates are

trying to catch up with the growth of house price index, identifying that both countries’ central banks are making effort

to cope with their respective overheating housing market. This overheating phase for the United Kingdom spans from

2004 to 2008, while for United States it goes from 2004 to 2007.

The collapse of the housing market triggered the subprime crisis in the United States in 2007, and spread to the

United Kingdom in 2008. Lead-lag structures during the crisis demonstrate that the crash of the housing market
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preceded the collapse of interest rates. However, after the slump, the development of interest rates happen to lead the

house price indices, confirming if need be by this metric that the central banks have taken more aggressive monetary

policies to interfere more forcefully with the housing market as well with other economic variables, including the

stock markets (Guo et al., 2011). While this observation may seem just to recover a well-known fact, this exercise

confirms the soundness of the TOPS methodology. The value of these analyses lies in painting a richer picture than

just a single causal inter-dependence that the Federal Reserve interest rate policy causes or is caused by the behaviour

of other economic variables. In fact, we have presented convincing evidence that the causality has reversed several

times during the last 25 years, in relation with different market regimes. In order to fully understand monetary policy

and economic dynamics, the TOPS approach stresses the importance of accounting for change of regimes, so that

similar pieces of information or policies may have drastically different impacts and developments, conditional on

the economic, financial and geopolitical conditions. This study reinforces the view that the hypothesis of statistical

stationarity is highly questionable. This has tremendous implications for econometric works and for the understanding

of economic systems.
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Jögi, P., Sornette, D., 1998. Self-organized critical random directed polymers. Phys. Rev. E 57, 6931–6943.

Koetter, M., Poghosyan, T., 2010. Real estate prices and bank stability. J. Bank. Finance 34, 1129–1138.

Lacoviello, M., 2004. Consumption, house prices, and collateral constraints: a structural econometric analysis. J. Housing Econ. 13 (4), 304–320.

Laibson, D., Mollerstrom, J., 2010. Capital flows, consumption booms and asset bubbles: A behavioural alternative to the savings glut hypothesis.

Econ. J. 120 (544), 354–374.

Leiss, M., Nax, H. H., Sornette, D., 2014. Super-exponential growth expectations and the global financial crisis. J. Econ. Dyn. Control submitted

19 Aug. 2014, (http://ssrn.com/abstract=2477396).

Marwan, N., Kurths, J., 2002. Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302, 299–307.
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Figure 7: Schematic illustration of the construction of the free energy metric ρ, which can be interpreted as a p-value of the statistical test in terms
of the path free energy. P(A) (resp. P(B)) represents the total probability of the distribution fc(e) (resp. fr(e)) of free energies of the lead-lag
optimal paths over the 1000 meaningful signals (resp. for the random reshuffled time series), which is equal to 1 when fc(e) (resp. fr(e)) is properly
normalised. Panel A (resp. C) shows a case where the recovered lead-lag structure is highly significant (resp. insignificant). Panel B depicts an
intermediate situation for which it is more difficult to conclude with certainty about the reality of the found lead-lag pattern.
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Figure 9: Maps of the signal strength ρ for various (a, f ) combination lead-lag structures. ρ close to one (blue) indicates that the corresponding lead-
lag structures have weak signals and low confidence. ρ close to zero (red) indicates that the lead-lag structures have strong signals and reliability.
Maps are generated under different temperatures T = 0.5, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3. The a − f grids are expanded by a and f from
0.01 to 1 with step 0.05.
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Figure 10: Mean values and standard deviations of ρ values obtained in the signal maps of figure 9 as a function of temperature T .
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the second time series Y(t) regressed with respect to the shifted first time series X(t − ⟨x(t)⟩) using the obtained lead-lag structure derived with the
TOPS method with temperature T = 2. Each symbol shows the values of the pair (â, f̂ ) obtained in a moving window of size n = 100 and the color
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Figure 12: Data sets presentation. The left y axis S (t) of (A) exhibits the monthly UK interest rate data of the Bank of England’s Official Bank
Rate (BR z), the British Pound 1-year LIBOR (BPLibor z) and the 10-year Government Bond (GBY z) as well as their corresponding normalized
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Figure 13: TOPS analysis of the normalized returns R(t) of monthly interest rates and of seasonal adjusted house price index of the UK. The
analysis is implemented at temperature T = 2, using the distance definition ϵ−. Each row shows the result for a pair of “interest rate vs. house price
index” series. The pairs BR vs. NBSHPI, BR vs. HHPI, BPLibor vs. NBSHPI, BPLibor vs. HHPI, GBY vs. NBSHPI, GBY vs. HHPI correspond
respectively to the rows A,B,C,D,E,F. The self-consistent test is implemented within moving windows with sizes of 1 to 4 years, corresponding
to columns 1 to 4 respectively. Each black dash line is the resulting TOPS path ⟨x(t)⟩, which is chosen as the one with lowest free energy among
41 × 41 paths of different starting points (t1 = i1, t2 = i2) and ending points (t1 = N − i1, t2 = N − i2) for i1, i2 = 0, 1, 2, · · · , 30. The case
when ⟨x(t)⟩ > 0 indicates that interest rate changes are preceding house price index changes at time t, and vice versa. Periods qualified by the
self-consistent test are highlighted by shadow areas, whose colors encode their ρ values following the same convention as in the signal strength
map (Fig. 9, T = 2). The ρ values are calculated based on their estimated â and f̂ as explained in the text.
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Figure 14: TOPS analysis of the normalized returns R(t) of monthly interest rate and of seasonal adjusted house price index of the US. The
analysis is implemented at temperature T = 2, using the distance definition ϵ−. Each row shows the result for a pair of “interest rate vs. house
price index” series. The pairs FFR vs. FHFAHPI, FFR vs. SPCSHPI, DLibor vs. FHFAHPI, DLibor vs. SPCSHPI, TB vs. FHFAHPI, TB vs.
SPCSHPI correspond respectively to rows A,B,C,D,E,F. The self-consistent test is implemented within moving windows with sizes of 1 to 4 years,
corresponding to columns 1 to 4 respectively. Each black dash line is the resulting TOPS path ⟨x(t)⟩, which is chosen as the one with lowest free
energy among 41 × 41 paths of different starting points (t1 = i1, t2 = i2) and ending points (t1 = N − i1, t2 = N − i2) for i1, i2 = 0, 1, 2, · · · , 30.
The case ⟨x(t)⟩ > 0 indicates that interest rate changes are preceding house price index changes at time t, and vice versa. Periods qualified by the
self-consistent test are highlighted by shadow areas, whose color encode their corresponding ρ values as in the signal strength map (Fig. 9, T = 2).
The ρ values are calculated based on their estimated â and f̂ according as explained in the text.
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