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Abstract

We show that typical behaviors of market participants at the high frequency scale generate
leverage effect and rough volatility. To do so, we build a simple microscopic model for the
price of an asset based on Hawkes processes. We encode in this model some of the main
features of market microstructure in the context of high frequency trading: high degree
of endogeneity of market, no-arbitrage property, buying/selling asymmetry and presence
of metaorders. We prove that when the first three of these stylized facts are considered
within the framework of our microscopic model, it behaves in the long run as a Heston
stochastic volatility model, where leverage effect is generated. Adding the last property
enables us to obtain a rough Heston model in the limit, exhibiting both leverage effect
and rough volatility. Hence we show that at least part of the foundations of leverage effect
and rough volatility can be found in the microstructure of the asset.

Keywords: Market microstructure, high frequency trading, leverage effect, rough volatility,
Hawkes processes, limit theorems, Heston model, rough Heston model.

1 Introduction

Leverage effect is a well-known stylized fact of financial data. It refers to the negative correla-
tion between price returns and volatility increments: when the price of an asset is increasing,
its volatility drops, while when it decreases, the volatility tends to become larger. The name
“leverage” comes from the following interpretation of this phenomenon due to Black [13] and
Christie [21]: When an asset price declines, the associated company becomes automatically
more leveraged since the ratio of its debt with respect to the equity value becomes larger.
Hence the risk of the asset, namely its volatility, should become more important. Another
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economic interpretation of the leverage effect, inverting causality, is that the forecast of an
increase of the volatility should be compensated by a higher rate of return, which can only
be obtained through a decrease in the asset value, see [19, 29, 31].

From an empirical viewpoint, leverage effect and the plausible interpretations for it have been
widely studied in the literature, see for example [12, 15, 27, 60]. Furthermore, some statistical
methods enabling us to use high frequency data have been built to measure it, see [3, 59].
From a modeling perspective, the will to reproduce the leverage phenomenon has been a key
motivation in the development of sophisticated time series models, for example of ARCH
type, see [14, 24, 53, 55, 61]. Finally, in financial engineering, it has become clear in the late
eighties that it is necessary to introduce leverage effect in derivatives pricing frameworks in
order to accurately reproduce the behavior of the implied volatility surface. This led to the
rise of famous stochastic volatility models, where the Brownian motion driving the volatility is
(negatively) correlated with that driving the price, see for example [33, 39, 41, 56] for SABR,
Heston, Hull and White and Stein and Stein stochastic volatility models.

As mentioned above, traditional explanations for leverage effect are based on “macroscopic”
arguments from financial economics. In this paper, we wish to address the following question:
Could microscopic interactions between agents naturally lead to leverage effect at larger time
scales? Hence we would like to know whether part of the foundations for leverage effect could
be microstructural. To do so, our idea is to consider a very simple agent-based model, en-
coding well-documented and understood behaviors of market participants at the microscopic
scale. Then we aim at showing that in the long run, this model leads to a price dynamic
exhibiting leverage effect. This would demonstrate that typical strategies of market partici-
pants at the high frequency level naturally induce leverage effect.

One could argue that transactions take place at the finest frequencies and prices are revealed
through order book type mechanisms. Therefore, it is an obvious fact that leverage effect
arises from high frequency properties. However, what we wish to show here is that under
certain market conditions, typical high frequency behaviors, having probably no connection
with the financial economics concepts mentioned earlier, may give rise to some leverage effect
at the low frequency scales. It is important to emphasize that we do not claim that leverage
effect should be fully explained by high frequency features. What we simply say is that part
of it could be generated from the microstructure of the asset.

Another important stylized fact of financial data, which has been highlighted recently in [32],
is the rough nature of the volatility process. Indeed, it is shown in [32] that for a very wide
range of assets, historical volatility time-series exhibit a behavior which is much rougher than
that of a Brownian motion. More precisely, the dynamics of the log-volatility are typically
very well modeled by a fractional Brownian motion with Hurst parameter around 0.1, that
is a process with Hölder regularity of order 0.1. Furthermore, using a fractional Brownian
motion with small Hurst index also enables us to reproduce very accurately the features of
the volatility surface, see [11, 32].

The fact that for basically all reasonably liquid assets, volatility is rough, with the same order
of magnitude for the roughness parameter, is of course very intriguing. Thus we also aim in
this work at understanding how such a surprising feature can be generated. Some elements
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in this direction are already provided in [44]. Here we want to go further and investigate the
behavior of the long term volatility in our microscopic model encoding the main stylized facts
of modern market microstructure. We wish to show that the rough nature of the volatility
naturally emerges from typical behaviors of market participants at the high frequency scale.

Our tick-by-tick price model is based on a bi-dimensional Hawkes process, very much inspired
by the approaches in [6, 7, 43]. A bi-dimensional Hawkes process is a bivariate point process
(N+

t , N
−
t )t≥0 taking values in (R+)

2 and with intensity (λ+t , λ
−
t ) of the form

(

λ+t
λ−t

)

=

(

µ+

µ−

)

+

∫ t

0

(

ϕ1(t− s) ϕ3(t− s)
ϕ2(t− s) ϕ4(t− s)

)

.

(

dN+
s

dN−
s

)

.

Here µ+ and µ− are positive constants and the functions (ϕi)i=1,...4 are non-negative with
associated matrix called kernel matrix, see Section 2.1 for further details. Hawkes processes
have been introduced by Hawkes in [36]. They are said to be self-exciting, in the sense that the
instantaneous jump probability depends on the location of the past events. Hawkes processes
are nowadays of standard use in finance, not only in the field of microstructure but also in risk
management or contagion modeling, see among many others [2, 6, 10, 16, 20, 26, 28, 43, 44].
It is explained in [6] that a relevant model for the ultra high frequency dynamic of the price
Pt of a large tick asset1 is simply given by

Pt = N+
t −N−

t .

Thus, in this approach, N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t] and N−
t to the number of downward jumps. Hence, the instantaneous prob-

ability to get an upward (downward) jump depends on the arrival times of the past upward
and downward jumps. Furthermore, by construction, the price process lives on a discrete grid,
which is obviously a crucial feature of high frequency prices in practice. Statistical properties
of this model have been studied in details in [6]. In particular, it is shown that such dynamic
is very convenient in order to reproduce the commonly observed bid-ask bounce effect.

This simple tick-by-tick price model enables us to encode very easily the following important
stylized facts of modern electronic markets in the context of high frequency trading:

i) Markets are highly endogenous, meaning that most of the orders have no real economic
motivation but are rather sent by algorithms in reaction to other orders, see [30, 34]
and Section 2.1.3 for more details.

ii) Mechanisms preventing statistical arbitrages take place on high frequency markets. In-
deed, at the high frequency scale, building strategies which are on average profitable is
hardly possible, see [1].

iii) There is some asymmetry in the liquidity on the bid and ask sides of the order book.
This simply means that buying and selling are not symmetric actions. Indeed, consider
for example a market maker, with an inventory which is typically positive. He is likely
to raise the price by less following a buy order than to lower the price following the same
size sell order. This is because its inventory becomes smaller after a buy order, which
is a good thing for him, whereas it increases after a sell order, see [17, 18, 38, 40, 57].

1A large tick asset is an asset whose bid-ask spread is almost always equal to one tick and therefore
essentially moves by one tick jumps, see [23].
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iv) A significant proportion of transactions is due to large orders, called metaorders, which
are not executed at once but split in time by trading algorithms, see [4, 47].

In a Hawkes process framework, the first of these properties corresponds to the case of so-
called nearly unstable Hawkes processes, that is Hawkes processes for which the stability
condition is almost saturated. This means the spectral radius of the kernel matrix integral
is smaller than but close to unity, see [30, 34, 43, 44]. The second and third ones impose a
specific structure on the kernel matrix and the fourth one leads to functions ϕi with heavy
tails, see [44]. The parametrization of our price process corresponding to the four properties
above is developed in more details in Sections 2.1 and 3.1.

In this work, we study the long term behavior of such Hawkes-based ultra high frequency
price models, for which the parameters are consistent with the four mentioned properties of
market microstructure. Doing so, we investigate the macroscopic price dynamics arising from
a situation where the four ingredients above are put together. More precisely, we start with
the case of a Hawkes-based model where Properties i, ii and iii only are satisfied. Our first
result states that in this setting, the macroscopic dynamic of the price is that of a Heston
stochastic volatility model as introduced in [39], where the volatility is (negatively) correlated
with the price. Hence leverage effect is produced. This extends some results in [43] where a
non-correlated Heston limit is obtained. Then, when in addition Property iv is encoded in
our microscopic model, we show that a so-called rough-Heston model, where the volatility is
rough and negatively correlated with the price, is generated at low frequency. More precisely,
as in [32], the volatility process is driven by a fractional Brownian motion with Hurst param-
eter smaller than 1/2.

Of course our results are not the first ones relating high frequency dynamics to long term
behaviors with stochastic volatility. The most famous example is probably that of Nelson who
shows in [52] that in specific settings, GARCH processes converge to (uncorrelated) stochas-
tic volatility models, see also [22, 25, 48]. However, to our knowledge, we provide the first
natural, non ad-hoc approach allowing for leverage effect, and even rough volatility, in the
long term limit of the price dynamic.

The paper is organized as follows. In Section 2, we parametrize our Hawkes-based microscopic
price model so that Properties i, ii and iii are satisfied. Then we show that after proper
rescaling, this price converges in the long run to a Heston stochastic volatility model where
leverage effect is observed. In Section 3, we incorporate Property iv into our microscopic
model and prove that it leads to a rough Heston model at the macroscopic scale, where
leverage effect is still generated. Some proofs are relegated to Section 4 and some useful
technical results are given in an appendix.

2 From high frequency features to leverage effect

We build in this section a Hawkes-based microscopic tick-by-tick model in which Properties
i, ii and iii are satisfied. This leads us to a specific parametrization of our Hawkes process.
We show that after suitable rescaling, the long term price dynamic becomes that of a Heston
model. We start by defining our microscopic price model.
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2.1 Building a suitable microscopic price model

2.1.1 The Hawkes process framework

We consider a tick-by-tick price model based on a bi-dimensional Hawkes process Nt =
(N+

t , N
−
t ), with intensity λt = (λ+t , λ

−
t ) defined by

(

λ+t
λ−t

)

=

(

µ+

µ−

)

+

∫ t

0

(

ϕ1(t− s) ϕ3(t− s)
ϕ2(t− s) ϕ4(t− s)

)

.

(

dN+
s

dN−
s

)

,

where µ+ and µ− are positive constants and

φ =

(

ϕ1 ϕ3

ϕ2 ϕ4

)

: R+ → M2(R∗
+)

is a kernel matrix whose components ϕi are positive and locally integrable. Inspired by
[6, 7, 43], our model for the ultra high frequency transaction price Pt is simply given by

Pt = N+
t −N−

t .

Thus N+
t is the number of upward jumps of one tick of the asset in the time interval [0, t]

and N−
t is the number of downward jumps of one tick of the asset in the time interval [0, t].

Let us now interpret the intensity process λ+t (interpretation for λ−t goes similarly). At time
t, the probability to get a new one-tick upward jump between t and t+ dt is given by λ+t dt.
This probability can be decomposed into three terms:

• µ+dt, which is the Poissonian part of the intensity and therefore corresponds to the
probability that the price goes up because of some exogenous reason.

•
(

∫ t

0
ϕ1(t−s)dN+

s

)

dt, which is the probability of upward jump induced by past upward

jumps.

•
(

∫ t

0
ϕ3(t− s)dN−

s

)

dt, which is the probability of upward jump induced by past down-

ward jumps.

In particular, we see here that when the ϕi have suitable shapes, it is easy to reproduce the
bid-ask bounce effect by imposing a high probability of upward (resp. downward) jump right
after a downward (resp. upward) jump.

2.1.2 Encoding Properties ii and iii

We now provide a specific structure on the parameters of the intensity process so that Prop-
erties ii and iii are satisfied in our model. Property ii is the no-statistical arbitrage condition.
In a high frequency setting, this amounts to say that on average, there should be essentially
as many upward as downward jumps on any given time-period. We translate this within our
Hawkes framework noting that

E[N+
t ] =

∫ t

0
E[λ+s ]ds, E[N−

t ] =

∫ t

0
E[λ−s ]ds,
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and

E[λ+t ] = µ+ +

∫ t

0
ϕ1(t− s)E[λ+s ]ds+

∫ t

0
ϕ3(t− s)E[λ−s ]ds,

E[λ−t ] = µ− +

∫ t

0
ϕ2(t− s)E[λ+s ]ds+

∫ t

0
ϕ4(t− s)E[λ−s ]ds.

Therefore we obtain that a simple and natural way to implement the no-statistical arbitrage
condition is to set E[λ+t ] = E[λ−t ] by imposing

µ+ = µ− and ϕ1 + ϕ3 = ϕ2 + ϕ4.

In term of microscopic price movements, Property iii, which states that the ask side is more
liquid than the bid side, can be translated as follows: the conditional probability to observe
an upward jump right after an upward jump is smaller than the conditional probability to
observe a downward jump right after a downward jump. In our Hawkes framework, it amounts
to have ϕ1(x) < ϕ4(x) or similarly ϕ3(x) > ϕ2(x) when x is close to zero. For simplicity and
technical convenience, we in fact make the more restrictive assumption that there exists some
β > 1 such that

ϕ3 = βϕ2.

Therefore we assume the following structure for the intensity process:

(

λ+t
λ−t

)

= µ

(

1
1

)

+

∫ t

0
φ(t− s).

(

dN+
s

dN−
s

)

, (1)

where

φ =

(

ϕ1 βϕ2

ϕ2 ϕ1 + (β − 1)ϕ2

)

,

with µ > 0 and β ≥ 1. We now explain how to deal with Property i.

2.1.3 Dealing with Property i: Nearly unstable Hawkes processes

Property i states that modern markets are highly endogenous. To understand how this high
degree of endogeneity can be translated through our Hawkes-based price model, let us consider
for simplicity a one-dimensional Hawkes process Ñt with intensity

λ̃t = µ̃+

∫ t

0
ϕ̃(t− s)dÑs,

where µ̃ > 0 and ϕ̃ is a non-negative measurable function such that its L1 norm ||ϕ̃||1 satisfies
||ϕ̃||1 < 1. This last constraint is called stability condition and plays the same role as that
which states that the coefficient of an order 1 auto-regressive process has to be smaller than
one, see [43]. In particular, this condition ensures the existence of a stationary solution for
the intensity (when time starts at −∞). Such one-dimensional Hawkes processes are usually
considered to model order flows, see [9] and the references therein. So Ñt can typically be
viewed as the number of transactions in the time interval [0, t].

From a probabilistic viewpoint, the cluster representation of Hawkes processes, see [37], en-
ables to see Ñ as a population process. In this population, migrants arrive following a Poisson
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process with intensity µ̃. Each migrant gives birth to children according to an inhomogeneous
Poisson process with intensity ϕ̃. Then each child also gives birth to children according to an
inhomogeneous Poisson process with intensity ϕ̃ and so on. Coming back to financial markets,
let us consider a dichotomy between “economic” (or exogenous) orders, which are executed
because some market participants have a fundamental will to buy or sell, and endogenous
orders, which are just sent in reaction to other orders. In the Hawkes context, it is therefore
very natural to make the following interpretation: exogenous orders correspond to migrants
and endogenous orders to descendants of migrants, see [30, 34, 43].

Now remark that each migrant, or descendant of a migrant, has on average ‖ϕ̃‖1 children.
Hence a migrant has on average

∑

k≥1

‖ϕ̃‖k1 =
‖ϕ̃‖1

1− ‖ϕ̃‖1

descendants. Now, the number of people in a “family” being the number of descendants
plus one (the plus one corresponding to the initial migrant), the proportion of descendants
in the whole population is given by ||ϕ̃||1. In our financial interpretation, it means that ||ϕ̃||1
corresponds to the proportion of endogenous orders in the market. Hence, to get a model
which is in agreement with Property i, we need to take ||ϕ̃||1 smaller than but close to unity.
This situation is called nearly unstable case, and is actually in agreement with the empirical
measurements for ||ϕ̃||1 made in [5, 30, 34].

Let us now come back to our bi-dimensional Hawkes process of interest with intensity de-
fined by (1). In the same way as in the one-dimensional case, one can define the degree of
endogeneity as the spectral radius of the kernel matrix integral, that is

S(
∫ ∞

0
φ(s)ds) = ‖ϕ1‖1 + β‖ϕ2‖1,

where S denotes the spectral radius operator. We want to assume that this spectral radius
is smaller than but close to unity. To do so, we introduce an asymptotic framework, in the
spirit of [43, 44]. More precisely, we work on a sequence of probability spaces (ΩT ,FT ,PT ) ,
indexed by T > 0, on which NT = (NT,+, NT,−) is a bi-dimensional Hawkes process defined
on [0, T ] and with intensity of the form

λTt =

(

λT,+t

λT,−t

)

= µT

(

1
1

)

+

∫ t

0
φT (t− s).dNT

s . (2)

For given T , the probability space is equipped with the filtration (FT
t )t≥0, where FT

t is the
σ-algebra generated by (NT

s )s≤t. Respecting the constraints on the parameters given in (1)
and taking into account the discussion above about the endogeneity of the market, we make
the following assumption on λTt .

Assumption 2.1. We have µT > 0 and

φT = aTφ, φ =

(

ϕ1 βϕ2

ϕ2 ϕ1 + (β − 1)ϕ2

)

,
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where β ≥ 1, ϕ1 and ϕ2 are two positive measurable functions such that

S(
∫ ∞

0
φ(s)ds) = ‖ϕ1‖1 + β‖ϕ2‖1 = 1

and aT is an increasing sequence of positive numbers converging to one.

From now on, our microscopic price process is given by

P T
t = NT,+ −NT,−.

Thus, under Assumption 2.1, we are indeed working in the nearly unstable case since

S(
∫ ∞

0
φT (s)ds) = aT .

Therefore, our microscopic price process P T reproduces Properties i, ii and iii. We now focus
on the asymptotic behavior of P T .

2.2 The macroscopic limit with leverage of the high frequency model

We give in this section our convergence result for the microscopic price towards a Heston
model. In fact such result can be found in [43] in the case β = 1. As in [43], we need to
consider the following assumption on the asymptotic framework and the kernel function.

Assumption 2.2. There exist positive parameters λ, µ and m such that

T (1− aT ) →
T→∞

λ, µT = µ,

and

S(
∫ ∞

0
xφ(x)dx) = m <∞.

It is well-explained in [43] that assuming that the kernel L1 norm aT goes to unity in such a
way that T (1 − aT ) is of order one is the only asymptotic framework enabling us to recover
a non-degenerate limit. Now let

ψT =
∑

k≥1

(φT )∗k,

where (φT )∗1 = φT and for k > 1, (φT )∗k(t) =
∫ t
0 φ

T (s)(φT )∗(k−1)(t − s)ds. The following
technical assumption is also required in [43].

Assumption 2.3. The function ψT is uniformly bounded and φ is differentiable such that
each component φij satisfies ||φ′ij ||∞ <∞ and ||φ′ij ||1 <∞.

The uniform boundedness assumption here is not really restrictive. Indeed, as it will be clear
from the computations in Section 2.3.2, a sufficient condition for it is the fact that the largest
eigenvalue of φ is non-increasing, see also [43]. In our model, this is for example the case if
both ϕ1 and ϕ2 are non-increasing.
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When β = 1, under Assumptions 2.1, 2.2 and 2.3, it is proved in [43] that the rescaled price
process

1

T
P T
tT =

NT,+
tT −NT,−

tT

T
converges in law over [0, 1] towards a Heston model defined by

Pt =
1

1− (‖ϕ1‖1 − ‖ϕ2‖1)

∫ t

0

√

XsdWs,

with

dXt =
λ

m
(
2µ

λ
−Xt)dt+

1

m

√

XtdBt, X0 = 0,

where W and B are two independent Brownian motions.

However, when β = 1, the important Property iii about the liquidity asymmetry between the
bid and ask sides of the order book is not reproduced in the dynamic of the microscopic price.
Our first main theorem below shows that this property, encoded by the fact that β > 1, is
the microscopic feature at the origin of leverage effect at low frequency.

Theorem 2.1. Under Assumptions 2.1, 2.2 and 2.3, as T tends to infinity, the rescaled
microscopic price

1

T
P T
tT =

NT,+
tT −NT,−

tT

T
, t ∈ [0, 1],

converges in law for the Skorokhod topology to the following Heston model:

Pt =
1

1− (‖ϕ1‖1 − ‖ϕ2‖1)

√

2

1 + β

∫ t

0

√

XsdWs,

with

dXt =
λ

m

(

(β + 1)
µ

λ
−Xt

)

dt+
1

m

√

1 + β2

1 + β

√

XtdBt, X0 = 0,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t =
1− β

√

2(1 + β2)
dt.

Hence, putting Properties i, ii and iii together in a simple but reasonable way (through the
microscopic price P T ), we naturally obtain stochastic volatility and leverage effect in the long
run. Indeed, when β > 1, the asymmetry in the liquidity at the microstructural level gen-
erates a negative correlation between low frequency price returns and volatility increments.
Nevertheless, Properties i and ii are also crucial in order to obtain Theorem 2.1. In fact, no
stochastic volatility can be obtained without Property i and the failure of Property ii would
lead to a drift process in the limit.

Finally, note that from a technical point of view, to our knowledge, this result is the first
scaling limit of a microscopic price process inducing leverage effect in the long run in a non
ad-hoc way.

We now give in the next section a general result about the convergence of nearly unstable
multidimensional Hawkes processes. This result is the key element of the proof of Theorem
2.1.
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2.3 Convergence of nearly unstable multidimensional Hawkes processes

2.3.1 Setting

In order to show Theorem 2.1, we study the convergence of a general sequence of nearly
unstable d-dimensional Hawkes processes defined on [0, T ], with T tending to infinity. We
keep the notation NT for our Hawkes process of interest whose intensity λT is defined by

λTt = µT1+

∫ t

0
φT (t− s).dNT

s ,

where µT > 0 and φT = aTφ, with aT an increasing sequence of positive numbers converging
to unity, and the matrix φ : R+ → Md(R∗

+) has integrable components such that

S(
∫ ∞

0
φ(s)ds) = 1.

We furthermore assume that for any t ≥ 0, φ(t) is diagonalizable on R. We write λ1(t) ≥ .. ≥
λd(t) for the eigenvalues of φ(t)∗ (here ∗ refers to the transpose operator) and v1, ..., vd for
the corresponding eigenvectors. We assume that these eigenvectors do not depend on t (as it
is the case under Assumption 2.1). We also recall that from Frobenius-Perron theorem, for
i ≥ 2, |λi(t)| < λ1(t) = S

(

φ(t)
)

and v1 can be taken in R
d
+.

2.3.2 Intuition for the result and theorem

We now provide some non-rigorous developments which are helpful in order to understand
the asymptotic behavior of the multidimensional process NT . We work under Assumptions
2.2 and 2.3. Let

MT
t = NT

t −
∫ t

0
λTs ds

be the martingale associated to NT . We have

λTt = µT1+

∫ t

0
φT (t− s).dMT

s +

∫ t

0
φT (t− s).λTs ds.

Using Lemma A.1 in Appendix together with Fubini theorem and the fact that the convolution
product ψT ∗ φT satisfies ψT ∗ φT = ψT − φT , we get

λTt = µT1+ µT

∫ t

0
ψT (t− s)ds.1+

∫ t

0
ψT (t− s).dMT

s , (3)

where
ψT =

∑

k≥1

(φT )∗k =
∑

k≥1

akTφ
∗k.

Therefore

E[λTt ] = µT1+ µT

∫ t

0
ψT (t− s)ds.1 (4)

and

E[λTtT ] = µT1+ µTT

∫ t

0
ψT
(

T (t− s)
)

ds.1.
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The function ψT being uniformly bounded and µT being constant equal to µ > 0, we get that
λTtT is of order T . Thus a natural rescaling in time and space leads us to consider for t ∈ [0, 1]
the process

CT
t =

1

T
λTtT .

From (3), we obtain

CT
t =

µ

T
1+ µ

∫ t

0
ψT
(

T (t− s)
)

ds.1+

∫ t

0
ψT
(

T (t− s)
)

.dM
T
s ,

with M
T
t =MT

tT /T . Note that since

〈MT ,MT 〉t = diag(

∫ t

0
λTs ds),

we get that

E[〈MT
,M

T 〉t] =
1

T 2
E
[

diag(

∫ tT

0
λTs ds)

]

= diag(

∫ t

0
E[CT

s ]ds)

is bounded. Now remark that for each i ∈ {1, ..., d}, using a recursion, we easily see that for
any k ≥ 1, v∗i .φ

∗k(t) = λ∗ki (t)v∗i . Consequently, defining for i ∈ {1, ..., d}

ψT
i =

∑

k≥1

akTλ
∗k
i ,

we have
v∗i .ψ

T = ψT
i v

∗
i .

Hence we can write the dynamic of v∗i .C
T
t as follows:

v∗i .C
T
t =

µ

T
(v∗i .1) + µ(v∗i .1)

∫ t

0
ψT
i

(

T (t− s)
)

ds+

∫ t

0
ψT
i

(

T (t− s)
)

(v∗i .dM
T
s ). (5)

Thus, to understand the asymptotic behavior of v∗i .C
T as T goes to infinity, we need to study

that of the functions ψT
i (T.). To do so, one can compute the Fourier transform ψ̂T

j (T.) of

ψT
j (T.) for each j ∈ {1, ..., d}. We have

ψ̂T
j (T.)(z) =

∫

x∈R+

ψT
j (Tx)e

ixzdx =
1

T

∑

k≥1

akT
(

λ̂j(z/T )
)k

=
aT λ̂j(z/T )

T
(

1− aT λ̂j(z/T )
)
.

Now, as T goes to infinity, λ̂j(z/T ) tends to ‖λj‖1 and recall that ‖λj‖1 < 1 for j ≥ 2. Thus,
for j ≥ 2, ψT

j (T.) should asymptotically vanish, as should consequently be the case for v∗j .C
T .

For j = 1, using Assumption 2.2 we have

lim
T→∞

T (λ̂1(z/T )− 1) = iz

∫ ∞

0
xλ1(x)dx = izm.

Therefore, in that case,

ψ̂T
1 (T.)(z) =

aT λ̂1(z/T )

T (1− aT )− aTT (λ̂1(z/T )− 1)
→

T→∞

1

λ− izm
,

11



which is the Fourier transform of

x ∈ R+ → 1

m
e−

λ
m
x.

Hence we can expect that ψ1(Tx) converges to
1
me

− λ
m
x.

Let us now deduce from the preceding computation the behavior of v∗1 .C
T . From (5), this

quantity can be written

v∗1 .C
T
t =

µ

T
(v∗1 .1) + µ(v∗1 .1)

∫ t

0
ψT
1

(

T (t− s)
)

ds+

∫ t

0
ψT
1

(

T (t− s)
)

√

(v21)
∗.CT

s dB
T
s , (6)

where v21 = (v21,i)1≤i≤d and

BT
t =

∫ tT

0

v∗1 .dM
T
s

√

T (v21)
∗.λTs

. (7)

The sequence of processes BT has been specifically chosen since the associated sequence of
quadratic variations converges to identity. Thus the limit of BT is a Brownian motion.

Now define an orthonormal basis (e1, .., ed) of R
d such that e∗1.v1 > 0 and

span(e2, .., ed) = span(v2, .., vd)

and set v′ = e1− 1
e∗
1
.v1
v1. Note that v

′ belongs to span(v2, .., vd). Decomposing v21 in the basis

(e1, ..., ed), we get

(v21)
∗.CT

t =
e∗1.v

2
1

e∗1.v1
(v∗1 .C

T
t ) + (e∗1.v

2
1)
(

(v′)∗.CT
t

)

+
∑

2≤i≤d

(e∗i .v
2
1)(e

∗
i .C

T
t ).

Thus, since for any vector v ∈ span(v2, ..., vd), v
∗.CT

t converges to zero, we deduce that
(v21)

∗.CT
t has the same asymptotic behavior as

e∗1.v
2
1

e∗1.v1
(v∗1 .C

T
t ).

Therefore, letting T go to infinity in (6), we can expect v∗1.C
T
t to be solution of the following

stochastic differential equation:

Xt =
µ

m

∫ t

0
e−

λ
m
(t−s)ds(v∗1 .1) +

1

m

√

e∗1.v
2
1

e∗1.v1

∫ t

0
e−

λ
m
(t−s)

√

XsdBs.

This exactly corresponds to a Cox-Ingersoll-Ross process since it can be rewritten

dXt =
λ

m

(µ

λ
(v∗1 .1)−Xt

)

dt+
1

m

√

e∗1.v
2
1

e∗1.v1

√

XtdBt, X0 = 0.

Hence, using the decomposition of CT
t in the basis (e1, ..., ed) given by

CT
t =

1

e∗1.v1
(v∗1 .C

T
t )e1 +

(

(v′)∗.CT
t

)

e1 +
∑

2≤i≤d

(e∗i .C
T
t )ei,

we finally obtain the following theorem whose rigorous proof is given in Section 4.1.
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Theorem 2.2. Under the setting of Section 2.3.1 together with Assumptions 2.2 and 2.3,
the multidimensional process (CT

t , B
T
t )t∈[0,1] converges in law for the Skorokhod topology to

( 1
e∗
1
.v1
Xe1, B) where B is a Brownian motion and X satisfies the following (one-dimensional)

Cox-Ingersoll-Ross dynamic:

dXt =
λ

m

(µ

λ
(v∗1 .1)−Xt

)

dt+
1

m

√

e∗1.v
2
1

e∗1.v1

√

XtdBt, X0 = 0.

Theorem 2.2 is a general result about the asymptotic behavior of multidimensional nearly
unstable Hawkes processes. We see in particular that the non-degeneracy concentrates around
the first eigenvector. Also, from Theorem 2.2, we obtain an immediate corollary given below
which will enables us to prove Theorem 2.1.

2.3.3 Application to our microscopic model

Let us consider a bi-dimensional Hawkes processes sequence NT = (NT,+, NT,−) with inten-
sity λT = (λT,+, λT,−) as in Assumption 2.1. In this case,

λ1 = ϕ1 + βϕ2, λ2 = ϕ1 − ϕ2,

and

v1 =

(

1
β

)

, v2 =

(

1
−1

)

.

We therefore have the following corollary of Theorem 2.2 which will lead us to the long term
limit of our microscopic price model.

Corollary 2.1. Under Assumptions 2.1, 2.2 and 2.3, the process (CT,+
t , CT,−

t , BT
t )t∈[0,1] con-

verges in law for the Skorokhod topology to ( 1
β+1X,

1
β+1X,B) where B is a Brownian motion

and X satisfies the following (one-dimensional) Cox-Ingersoll-Ross dynamic:

dXt =
λ

m
(
µ

λ
(β + 1)−Xt)dt+

1

m

√

1 + β2

1 + β

√

XtdBt, X0 = 0.

Here X essentially corresponds to a limiting volatility process. The Brownian motion in the
dynamic of X comes from the limit of BT , the process defined in (7) and driven by v∗1 .dM

T
s .

In our microscopic model, MT = (MT,+,MT,+). As will be clear from the proof of Theorem
2.1, the Brownian motion driving the price in Theorem 2.1 arises from the limiting behavior
of MT,+ −MT,+. Hence, the emergence of leverage effect in the limit is due to the non-zero
covariation between v∗1 .dM

T
s and MT,+ −MT,+.

3 From high frequency features to rough volatility

3.1 Encoding Property iv

In Section 2, we have built a microscopic Hawkes-based price model compatible with Prop-
erties i, ii and iii. Theorem 2.1 states that it converges in the long run to a classical Heston
model. However, Property iv, that is the wide presence of metaorders on the market, which
is a crucial feature of high frequency markets, is not encoded in such model. As explained

13



in [44], this can be translated in the Hawkes framework by considering the model defined
by Assumption 2.1 but under the condition that the kernel matrix exhibits a heavy tail, as
observed in practice, see [8, 34]. Consequently, we need to replace Assumption 2.2 in order
to get a slowly decreasing behavior for the kernel matrix. This also implies a modification
of the asymptotic setting in order to retrieve a non-degenerate scaling limit, see [44]. More
precisely, in this section, instead of Assumption 2.2 we consider the following one:

Assumption 3.1. There exist α ∈ (1/2, 1) and C > 0 such that

αxα
∫ ∞

x
λ1(s)ds →

x→∞
C.

Moreover, for some λ∗ > 0 and µ > 0,

Tα(1− aT ) →
T→∞

λ∗ > 0, T 1−αµT →
T→∞

µ.

Of course, the first eigenvalue under Assumption 2.1 being ϕ1 + βϕ2, Assumption 3.1 on λ1
can also be expressed in term of the asymptotic behavior of ϕ1 and ϕ2. Note that in practice,
estimated values for α are actually close to 1/2, see [8, 34]. We now give the asymptotic
behavior of our price model under Assumption 3.1.

3.2 The rough macroscopic limit of the high frequency model

Let λ = αλ∗/
(

CΓ(1 − α)
)

. We have the following result for the long term limit of our
microscopic model compatible with Properties i, ii, iii and iv.

Theorem 3.1. Under Assumptions 2.1 and 3.1, as T tends to infinity, the rescaled micro-
scopic price

√

1− aT
µTα

P T
tT , t ∈ [0, 1],

converges in the sense of finite dimensional laws to the following rough Heston model:

Pt =
1

1− (‖ϕ1‖1 − ‖ϕ2‖1)

√

2

β + 1

∫ t

0

√

YsdWs,

with Y the unique solution of

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ

(

(1 + β)− Ys
)

ds+
1

Γ(α)

∫ t

0
(t− s)α−1λ

√

1 + β2

λ∗µ(1 + β)

√

YsdBs,

where (W,B) is a correlated bi-dimensional Brownian motion with

d〈W,B〉t =
1− β

√

2(1 + β2)
dt.

Furthermore, the process Yt has Hölder regularity α− 1/2− ε for any ε > 0.
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Remark 3.1. Theorem 3.1 states the convergence in the sense of finite dimensional laws and
not in Skorokhod topology. The latter does not hold in general. Nevertheless, we have the
convergence for the Skorokhod topology of the integrated price

∫ t

0

√

1− aT
µTα

P T
sTds

to
∫ t
0 Psds. Such convergence also holds for the rescaled microscopic price itself under the

additional assumption ϕ1 = ϕ2.

Compared to Theorem 2.1, the only significant difference in the limiting dynamic here is the
kernel (t − s)α−1 appearing in the two integrals in the volatility process Yt. Such kernel is
similar to that which allows to define a fractional Brownian motion. Indeed, recall that a
fractional Brownian motion WH with Hurst parameter H ∈ (0, 1) can be built through the
Mandelbrot-van Ness representation:

WH
t =

1

Γ(H + 1/2)

∫ 0

−∞

(

(t− s)H− 1

2 − (−s)H− 1

2

)

dWs +
1

Γ(H + 1/2)

∫ t

0
(t− s)H− 1

2dWs. (8)

Thus, the tail exponent α in Theorem 3.1 corresponds to a Hurst parameter α− 1/2. Our α
belonging to (1/2, 1) and in practice being close to 1/2, the Hurst parameter associated to our
limiting volatility is (much) smaller than 1/2. Therefore, the volatility trajectories are much
rougher than that of a Brownian motion and this is why we call our process rough Heston
model.

Hence, we have finally shown that when put together in a simple but sufficiently realistic
framework, Properties i, ii, iii and iv, which are obvious stylized facts of market microstruc-
ture, lead to rough volatility and leverage effect. To our knowledge, this is the first result
explaining from an agent-based point of view (although in reduced form) the rough stochastic
nature of volatility and in addition leverage effect.

The proof of Theorem 3.1 is given in Section 4.4. As for Theorem 2.1 it is based on a result
on general multidimensional Hawkes processes (but here with heavy tail) which we explain in
the next section.

3.3 Convergence of heavy-tailed nearly unstable multidimensional Hawkes

processes

We give in this section a general result for the asymptotic behavior of heavy-tailed nearly
unstable multidimensional Hawkes processes. This result will be the key to the proof of
Theorem 3.1. We consider the same setting as in Section 2.3.1 but we work here under
Assumption 3.1. This will imply that the result we can obtain here is slightly weaker than
that of Theorem 2.2. In particular the sequence of intensities is typically not tight and thus
cannot converge. However, the same kind of non-rigorous computations as in Section 2.3.2
still enables us to obtain intuition about the result as explained below.
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3.4 Intuition for the result and theorem

As in Section 2.3.2, we consider a suitable renormalization of the intensity, namely we work
with the process

CT
t =

1− aT
µT

λTtT , t ∈ [0, 1].

Remark that in the setting of Section 2.3.2, the intensity is multiplied by 1/T . This can be
done since under Assumption 2.2 the factor (1 − aT )/µT is of order 1/T . This is no longer
the case under Assumption 3.1.

Following the same computations as in Section 2.3.2, we obtain

v∗i .C
T
t = (1− aT )(v

∗
i .1) + (v∗i .1)

∫ t

0
ρTi (t− s)ds+

∫ t

0
ρTi (t− s)(v∗i .dM̃

T
s ),

where ρTi = T (1 − aT )ψ
T
i (T.) and M̃T

t = MT
tT /(TµT ), which is a martingale such that

E[〈M̃T , M̃T 〉t] is bounded. Hence we need to study the behavior of ρTi .

In the same way as in Section 2.3.2, using its Laplace transform we get that ρTi should vanish
as T goes to infinity for i ≥ 2. For i = 1, we have

ρ̂T1 (z) =

∫ ∞

0
ρT1 (x)e

−zxdx = (1− aT )ψ̂
T
1 (z/T ) = (1− aT )

aT λ̂1(z/T )

1− aT λ̂1(z/T )
.

Then, integrating by parts and using that ‖λ1‖ = 1, we get

λ̂1(z) =

∫ ∞

0
λ1(x)e

−zxdx = 1− z

∫ ∞

0

∫ ∞

x
λ1(u)due

−zxdx.

Therefore,

λ̂1(z) = 1− zα
∫ ∞

0
(
x

z
)α
∫ ∞

x/z
λ1(u)dux

−αe−xdx.

Hence, using Assumption 3.1 together with the dominated convergence theorem we obtain

λ̂1(z) = 1− C

α
Γ(1− α)zα + o

z→0
(z).

From this, we easily deduce that for z > 0,

ρ̂T1 (z)→
λ

λ+ zα
,

which is the Laplace transform of the Mittag-Leffler density function fα,λ defined in Appendix
A.4. Consequently, using the same arguments as in Section 2.3.2, we get that CT

t should
essentially satisfy

CT
t →

T→∞

1

e∗1.v1
Yte1,

where Y is solution of the following rough stochastic differential equation:

Yt = (v∗1 .1)F
α,λ(t) +

1√
µλ∗

√

e∗1.v
2
1

e∗1.v1

∫ t

0
fα,λ(t− s)

√

YsdBs,
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with Fα,λ(t) =

∫ t

0
fα,λ(s)ds. In fact, this last equation is equivalent to that of a rough

Cox-Ingersoll-Ross process:

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ(v∗1 .1− Ys)ds+

1

Γ(α)

∫ t

0
(t− s)α−1 λ√

µλ∗

√

e∗1.v
2
1

e∗1.v1

√

YsdBs,

see Proposition 4.9.

Thus, the preceding computations seem to indicate that in the heavy tail case, the renor-
malized intensity process should converge to a rough Cox-Ingersoll-Ross process. Contrary
to the light tail case, this intuition is actually not correct in general when the kernel matrix
has a slowly decreasing behavior. However, it still holds provided we consider the integrated
intensity instead of the intensity itself. We now give the rigorous result.

For t ∈ [0, 1], let us define

XT
t =

1− aT
Tαµ

NT
tT , ΛT

t =
1− aT
Tαµ

∫ tT

0
λTs ds, ZT

t =

√

Tαµ

1− aT
(XT

t − ΛT
t ).

We have the following theorem.

Theorem 3.2. Under the setting of Section 2.3.1 together with Assumption 3.1, the process
(ΛT

t ,X
T
t , Z

T
t )t∈[0,1] converges in law for the Skorokhod topology to (Λ,X,Z) where

Λt = Xt =
1

e∗1.v1
(

∫ t

0
Ysds)e1

and for 1 ≤ i ≤ d,

Zi
t =

∫ t

0

√

e1,i
e∗1.v1

YsdB
i
s,

where (B1, .., Bd) is a d-dimensional Brownian motion and Y is the unique solution of the
following rough stochastic differential equation:

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ(v∗1 .1− Ys)ds+

1

Γ(α)

∫ t

0
(t− s)α−1 λ√

µλ∗

√

e∗1.v
2
1

e∗1.v1

√

YsdBs,

with

B =
1

√

e∗1.v
2
1

d
∑

i=1

√

e1,iv
2
1,iB

i.

Furthermore, Y has Hölder regularity α− 1
2 − ε for any ε > 0.

The rigorous proof of Theorem 3.2 is given in Section 4.3.
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3.4.1 Application to our microscopic model

As for Theorem 2.2, Theorem 3.2 has an immediate corollary which will be crucial in the
proof of Theorem 3.1. Let us consider a bi-dimensional Hawkes processes sequence NT =
(NT,+, NT,−) with intensity λT = (λT,+, λT,−) as in Assumption 2.1. We have the following
result.

Corollary 3.1. Under Assumptions 2.1 and 3.1, the process (ΛT
t ,X

T
t , Z

T
t )t∈[0,1] converges in

law for the Skorokhod topology to (X,X,Z) where

Xt =
1

β + 1

∫ t

0
Ysds

(

1
1

)

, Zt =

∫ t

0

√

1

β + 1
Ys

(

dB1
s

dB2
s

)

,

where (B1, B2) is a bi-dimensional Brownian motion and Y is the unique solution of the
following rough stochastic differential equation:

Yt =
1

Γ(α)

∫ t

0
(t− s)α−1λ((1 + β)− Ys)ds+

1

Γ(α)

∫ t

0
(t− s)α−1λ

√

1 + β2

λ∗µ(1 + β)

√

YsdBs,

with

B =
B1 + βB2

√

1 + β2
.

4 Proofs

From now on, c denotes a positive constant independent of T that may vary from line to line.

4.1 Proof of Theorem 2.2

In this proof, which is quite inspired by [43], the notations defined in Section 2.3.2 are in
force. We start with a lemma often used in the sequel.

4.1.1 A useful lemma

We have the following result.

Lemma 4.1. Let fT : R+ → R be a sequence of measurable functions such that for some
c > 0 and any x1 ≥ 0, x2 ∈ R, x3 ≥ 0, x4 ≥ 0 and T > 0:

a) fT ∈ L
1(R+) ∩ L

2(R+) and
∫

x≥0 |fT (x)|2dx →
T→∞

0,

b) |fT (x1)| ≤ c,
c) |f̂T (x2)| ≤ c(1 ∧ 1

|x2|
),

d) |fT (x3)− fT (x4)| ≤ cT |x3 − x4|.

Then, under the setting of Section 2.3.1 together with Assumptions 2.2 and 2.3, the process

(

∫ t

0
fT (t− s)dM

T
s )t∈[0,1]

converges to zero in probability as T goes to infinity, uniformly over compact sets (u.c.p.).

The proof of Lemma 4.1 is given in Appendix A.1.
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4.1.2 Convergence of v∗i .C
T for i ∈ {2, ..., d}

We now consider the convergence of CT on the vector space span(v2, .., vd). The following
proposition holds.

Proposition 4.1. Let 2 ≤ i ≤ d. Under the setting of Section 2.3.1 together with Assump-
tions 2.2 and 2.3, vi

∗.CT converges u.c.p. to zero as T goes to infinity.

Proof:

Recall first Equation (5):

v∗i .C
T
t =

µ

T
(v∗i .1) + µ(v∗i .1)

∫ t

0
ψT
i (T (t− s))ds+

∫ t

0
ψT
i (T (t− s))(v∗i .dM

T
s ).

To get the result, it is therefore enough to show that the family of functions (ψT
i (T.))T>0 satis-

fies the four points of Lemma 4.1. Point b) is easily obtained from the fact that v∗i .ψ
T = ψT

i v
∗
i

together with the uniform boundedness of ψT due to Assumption 2.3.

Now remark that from Assumption 2.3, we deduce that λi(x) tends to zero as x goes to infinity.
Then, using integration by parts on the Fourier transform of λi together with Assumption
2.3, we obtain

|λ̂i(ω)| ≤
(

(|λi(0)| +
∫ ∞

0
|λ′i(x)|dx)

1

|ω|
)

∧ ‖λi‖1. (9)

Point c) follows using that

|ψ̂T
i (T.)(ω)| =

|aT λ̂i(ω/T )|
|T
(

1− aT λ̂i(ω/T )
)

|
≤ |aT λ̂i(ω/T )|
T (1− ‖λi‖1)

≤ c(1 ∧ 1

|ω| ).

We also obtain from the previous inequality that ψ̂T
i (T.) is square-integrable and so is ψT

i (T.).
Moreover by Parseval equality, we have

∫

x≥0
|ψT

i (Tx)|2dx =
1

2π

∫

ω∈R
|ψ̂T

i (T.)(ω)|2dω ≤ c

∫

ω∈R

|λ̂i(ω/T )|2
T 2(1− ‖λi‖1)2

dω ≤ c

T

∫

z∈R
|λ̂i(z)|2dz.

Since λ̂i is square-integrable, the right hand side of the last inequality tends to zero and thus
a) is obtained.

Finally d) is shown using that ψT
i = aTλi + aTλi ∗ ψT

i to write

|(ψT
i )

′(Tx)| = T |aTλ′i(Tx) + aT (λ
′
i ∗ ψT

i )(Tx) + aTλi(0)ψ
T
i (Tx)|

≤ T (‖λ′i‖∞ + ‖λ′i‖1‖ψT
i ‖∞ + |λi(0)|‖ψT

i ‖∞).

4.1.3 Convergence of v∗1 .C
T

We have just shown that v∗i .C
T tends to zero for i ∈ {2, ..., d}. The fact that ‖λi‖1 < 1 for

i ∈ {2, ..., d} was crucial in order to obtain this result. We now treat the term v∗1 .C
T , recalling

that ‖λ1‖1 = 1. We have the following result.
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Proposition 4.2. Under the setting of Section 2.3.1 together with Assumptions 2.2 and 2.3,
the process (v∗1 .C

T
t , B

T
t )t∈[0,1] converges in law for the Skorokhod topology to (X,B) where B

is a Brownian motion and X satisfies the following Cox-Ingersoll-Ross dynamic:

dXt =
λ

m
(
µ

λ
(v∗1 .1)−Xt)dt+

1

m

√

e∗1.v
2
1

e∗1.v1

√

XtdBt, X0 = 0.

Proof:

Rewriting v∗1 .C
T Let

ST
t =

d
∑

i=2

(e∗i .C
T
t )(e

∗
i .v

2
1) +

(

(v′)∗.CT
t

)

(e∗1.v
2
1).

From Proposition 4.1, we get that ST
t tends u.c.p. to zero. We have

(v21)
∗.CT

t = ST
t +

e∗1.v
2
1

e∗1.v1
v∗1 .C

T
t ,

which together with (6) leads to the following expression for v∗1 .C
T :

v∗1 .C
T
t =

µ

T
(v∗1 .1) + µ(v∗1 .1)

∫ t

0
ψT
1 (Ts)ds +

∫ t

0
ψT
1

(

T (t− s)
)

√

ST
s +

e∗1.v
2
1

e∗1.v1
(v∗1 .C

T
s )dB

T
s .

Convergence of ψT
1 (T.) For x ≥ 0, let us define

fT (x) = ψT
1 (Tx)−

1

m
exp(−λx

m
).

We have seen in Section 2.3.2 that fT (x) should be close to zero as T goes to infinity. More
precisely, we have the following proposition whose proof is given in [43]:

Proposition 4.3. Under the setting of Section 2.3.1 together with Assumptions 2.2 and 2.3,
fT satisfies Properties a), b), c) and d) of Lemma 4.1.

The Cox-Ingersoll-Ross like dynamic of v∗1.C
T We can write

v∗1 .C
T
t = RT

t +
µ

m
(v∗1 .1)

∫ t

0
exp(−λs

m
)ds +

1

m

√

e∗1.v
2
1

e∗1.v1

∫ t

0
exp(−λ(t− s)

m
)
√

v∗1 .C
T
s dB

T
s ,

with

RT
t =

µ

T
(v∗1 .1) + µ(v∗1.1)

∫ t

0
fT (s)ds+

∫ t

0
fT (t− s)(v∗1 .dM

T
s ) (10)

+
1

m

∫ t

0
exp(−λ(t− s)

m
)
(

√

ST
s +

e∗1.v
2
1

e∗1.v1
(v∗1 .C

T
s )−

√

e∗1.v
2
1

e∗1.v1
(v∗1 .C

T
s )
)

dBT
s .
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Then, using integration by parts, we get that

∫ t

0
exp(−λ(t− s)

m
)
√

v∗1 .C
T
s dB

T
s

is equal to
∫ t

0

√

v∗1 .C
T
s dB

T
s − λ

m

∫ t

0

∫ s

0
exp(−λ(s− u)

m
)
√

v∗1 .C
T
u dB

T
u ds.

This can be rewritten

∫ t

0

√

v∗1.C
T
s dB

T
s − λ

√

e∗1.v1
e∗1.v

2
1

∫ t

0
v∗1.C

T
s −RT

s − µ

λ
(v∗1 .1)

(

1− exp(−λs
m

)
)

ds.

Consequently,

v∗1 .C
T
t = UT

t +

∫ t

0

λ

m

(µ

λ
(v∗1 .1)− v∗1 .C

T
s

)

ds+
1

m

√

e∗1.v
2
1

e∗1.v1

∫ t

0

√

v∗1 .C
T
s dB

T
s , (11)

with

UT
t = RT

t +
λ

m

∫ t

0
RT

s ds.

Convergence of UT We now show that UT converges u.c.p. to zero. This vanishing be-
havior comes from that of fT and ST . Of course it is enough to prove that RT converges to
zero. From Proposition 4.3 together with Lemma 4.1, it is obvious that the first three terms
in (10) tend to zero. We now treat the last term.

First, remark that

|
√

ST
s + βv1.CT

s −
√

βv1.CT
s | ≤

√

|ST
s |,

which tends to zero as T goes to infinity thanks to Proposition 4.1. Furthermore, observe
that since 〈MT ,MT 〉 = diag(

∫ .
0 λ

T ) and λT ≥ µ1, we have

E

[

∫ tT

0

(v21)
∗.dMT

s

T (v21)
∗.λTs

]2
= E

[

∫ tT

0

(v41)
∗.λTs ds

T 2
(

(v21)
∗.λTs

)2

]

≤ E

[

∫ tT

0

(v41)
∗.λTs ds

T 2µ
(

(v41)
∗.λTs

)

]

. (12)

We get that this is smaller than c/T and consequently goes to zero. Therefore, BT is a
sequence of martingales with bounded jumps whose quadratic variation, given by

[BT , BT ]t = t+

∫ tT

0

(v21)
∗.dMT

s

T (v21)
∗.λTs

,

tends to identity. Using Theorem VII-3.11 in [42], this implies that BT converges in law
towards a Brownian motion B for the Skorokhod topology. From Theorem 2.6 in [45], the
convergence to zero of

1

m

∫ t

0
exp(−λ(t− s)

m
)
(

√

ST
s +

e∗1.v1
e∗1.v

2
1

(v∗1 .C
T
s )−

√

e∗1.v1
e∗1.v

2
1

(v∗1 .C
T
s )
)

dBT
s

follows and finally we get that UT tends to zero.
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End of the proof of Proposition 4.2 We have that v∗1 .C
T
t can be written as in (11) and

furthermore (BT , UT ) converges in law for the Skorokhod topology to (B, 0). Proposition 4.2
readily follows from Theorem 5.4 in [46].

4.1.4 End of proof of Theorem 2.2

Decomposing CT in the basis (e1, ..., ed):

CT
t =

d
∑

i=2

(e∗i .C
T
t )ei +

(

(v′)∗.CT
t

)

e1 +
1

e∗1.v1
(v∗1 .C

T
t )e1,

we immediately obtain Theorem 2.2 from Proposition 4.1 together with Proposition 4.2.

4.2 Proof of Theorem 2.1

4.2.1 Convenient rewriting of P T

We start by writing conveniently our rescaled price P T
tT /T . We have

1

T
P T
tT =

NT,+
tT −NT,−

tT

T
=

∫ tT

0

dMT,+
s − dMT,−

s
√

T (λT,+s + λT,−s )

√

λT,+s + λT,−s

T
+

∫ tT

0

λT,+s − λT,−s

T
ds.

Furthermore,

λT,+t − λT,−t =

∫ t

0
aT (ϕ1(t− s)− ϕ2(t− s))(dNT,+

s − dNT,−
s )

=

∫ t

0
aTλ2(t− s)(dMT,+

s − dMT,−
s ) +

∫ t

0
aTλ2(t− s)(λT,+s − λT,−s )ds.

Thus, from Lemma A.1, we obtain

λT,+t − λT,−t =

∫ t

0
ψT
2 (t− s)(dMT,+

s − dMT,−
s ).

Then, using Fubini theorem, we get
∫ x

0
λT,+s − λT,−s ds =

∫ x

0

(

∫ x−s

0
ψT
2 (u)du

)

(dMT,+
s − dMT,−

s ).

Hence our rescaled price process P T
tT /T can finally be written

∫ t

0

√

CT,+
s + CT,−

s dW T
s −
∫ t

0

∫ ∞

T (t−s)
ψT
2 (u)du(dM

T,+
s −dMT,−

s )+

∫ ∞

0
ψT
2 (u)du(M

T,+
t −MT,−

t ),

with

W T
t =

∫ tT

0

dMT,+
s − dMT,−

s
√

T (λT,+s + λT,−s )
,

and therefore

1

T
P T
tT =

1

1− aT (‖ϕ1‖1 − ‖ϕ2‖2)

∫ t

0

√

CT,+
s + CT,−

s dW T
s −RT

t , (13)

with

RT
t =

∫ t

0

∫ ∞

T (t−s)
ψT
2 (u)du(dM

T,+
s − dM

T,−
s ).
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4.2.2 Convergence of RT

We have the following proposition.

Proposition 4.4. Under Assumptions 2.1, 2.2 and 2.3, RT tends u.c.p. to zero.

Proof.

From Lemma 4.1, it is enough to show that the sequence of functions

gT (x) =

∫ ∞

Tx
ψT
2 (u)du

satisfies Properties a), b), c) and d) of Lemma 4.1. The fact that b) holds is obvious since

|gT (z)| ≤
∫ +∞

0
|ψT

2 (x)|dx ≤ ||λ2||1
1− ||λ2||1

.

Then we remark that

ĝT (z) =

∫

a≥0
ψT
2 (a)

eiza/T − 1

iz
da,

which shows that Property c) holds. Property d) is obtained from the fact that

|(gT )′(x)| = T |ψT
2 (Tx)| ≤ cT.

Finally, we use Fubini theorem to write
∫

x≥0
|gT (x)|2dx =

∫

x≥0;a,b>Tx
ψT
2 (a)ψ

T
2 (b)dadbdx =

1

T

∫

a,b≥0
(a ∧ b)ψT

2 (a)ψ
T
2 (b)dadb.

Consequently,
∫

x≥0
|gT (x)|2dx ≤ 1

T

∫

a≥0
a|ψT

2 (a)|da
∫

b≥0
|ψT

2 (b)|db ≤
c

T

∑

k≥1

∫

a≥0
a|λ2|∗k(a)da.

By recursion, we get that for k ≥ 1,
∫

a≥0
a|λ2|∗k(a)da = k||λ2||k−1

1

∫

a≥0
a|λ2|(a)da <∞.

Eventually
∫

x≥0
|gT (x)|2dx ≤ c/T

and a) easily follows.

4.2.3 Convergence of (W T , BT )

In the same way as for the quadratic variation of BT in the proof of Theorem 2.2, we easily
get the following convergence in probability:

[W T ,W T ]t →
T→∞

t, [BT , BT ]t →
T→∞

t.

Moreover, we have the following proposition.
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Proposition 4.5. Under Assumptions 2.1, 2.2 and 2.3,

[W T , BT ]t →
T→∞

1− β
√

2(1 + β2)
t

in probability.

Proof.

Using [MT ,MT ] = diag(NT ), we write

[W T , BT ]t =

∫ tT

0

dNT,+
s − βdNT,−

s

T

√

λT,+s + λT,−s

√

λT,+s + β2λT,−s

=

∫ t

0

CT,+
s − βCT,−

s
√

CT,+
s +CT,−

s

√

CT,+
s + β2CT,−

s

ds+ εTt ,

with

εTt =

∫ tT

0

dMT,+
s − βdMT,−

s

T

√

λT,+s + λT,−s

√

λT,+s + β2λT,−s

.

Since 〈MT ,MT 〉 = diag(
∫ .
0 λ

T ) and λT ≥ µ1, we easily get

E[(εTt )
2] = E

[

∫ tT

0

1

T 2(λT,+s + λT,−s )

]

≤ 1

2µT
→

T→∞
0.

Furthermore, from Corollary 2.1, (CT,+, CT,−) converges in law for the Skorokhod topology
to
(

1
β+1X,

1
β+1X

)

. The set of zeros of a Cox-Ingersoll-Ross process on a finite interval being
of Lebesgue measure zero, we deduce that

CT,+
t − βCT,−

t
√

CT,+
t + CT,−

t

√

CT,+
t + β2CT,−

t

tends u.c.p. to
1− β

√

2(1 + β2)
.

Thus we deduce that

[BT ,W T ]t →
T→∞

1− β
√

2(1 + β2)
t.

4.2.4 End of the proof of Theorem 2.1

Consider (13). From Proposition 4.4, RT tends to zero. Then using Theorem VII-3.11 in [42]
together with Proposition 4.5, we obtain that (W T , BT ) converges in law for the Skorokhod
topology to a correlated bi-dimensional Brownian motion (W,B) such that

〈W,B〉t =
1− β

√

2(1 + β2)
t.
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Furthermore, from Corollary 2.1 we get that (
√
CT,+ + CT,−, BT ) converges in law for the

Skorokhod topology to (
√

2
β+1X,B), where X is a Cox-Ingersoll-Ross process driven by B

and defined in Corollary 2.1. Using Theorem 2.6 in [45], we deduce that

∫ t

0

√

CT,+
s + CT,−

s dW T
s

converges in law for the Skorokhod topology to

∫ t

0

√

2Xs

1 + β
dWs,

which ends the proof.

4.3 Proof of Theorem 3.2

We now give the proof of our theorem on the convergence of general nearly unstable Hawkes
processes with heavy tail. This proof is quite inspired from [44].

4.3.1 C-tightness of (ΛT ,XT , ZT )

We have the following proposition.

Proposition 4.6. Under the setting of Section 2.3.1 together with Assumption 3.1, the se-
quence (ΛT ,XT , ZT ) is C-tight and

sup
t∈[0,1]

‖ΛT
t −XT

t ‖ →
T→∞

0

in probability. Moreover if (X,Z) is a possible limit point of (XT , ZT ), then Z is a continuous
martingale with [Z,Z] = diag(X).

Proof:

C-tightness of XT and ΛT Recall that as in (3), we can write

λTt = µT1+ µT

∫ t

0
ψT (t− s)ds.1+

∫ t

0
ψT (t− s).dMT

s .

Using that

∫ .

0
(f ∗ g) = (

∫ .

0
f) ∗ g, we get

E[NT
T ] = E[

∫ T

0
λTs ds] = TµT1+ µT

∫ T

0
sψT (T − s)ds.1.

Consequently,

1∗.E[NT
T ] = TµTd+ µT1

∗.(

∫ T

0
sψT (T − s)ds).1

and therefore

1∗.E[NT
T ] ≤ cTµT

(

1 + S(
∫ ∞

0
ψT (s)ds)

)

≤ c
TµT
1− aT

≤ cT 2α.
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Thus, we obtain that
E[XT

1 ] = E(ΛT
1 ) ≤ c.

Each component of XT and ΛT being increasing, we deduce the tightness of each component
of (XT ,ΛT ). Furthermore, the maximum jump size of XT and ΛT being 1−aT

Tαµ which goes to

zero, the C-tightness of (XT ,ΛT ) is obtained from Prop.VI-3.26 in [42].

C-tightness of ZT It is easy to check that

〈ZT , ZT 〉 = diag(ΛT ),

which is C-tight. From Theorem VI-4.13 in [42], this gives the tightness of ZT . The maximum
jump size of ZT vanishing as T goes to infinity, we obtain that ZT is C-tight.

Convergence of XT − ΛT We have

XT
t − ΛT

t =
1− aT
Tαµ

MT
tT .

From Doob’s inequality, we get for each component

E[ sup
t∈[0,1]

|ΛT
t −XT

t |2] ≤ cT−4α
E[MT

T ]
2.

Since [MT ,MT ] = diag(NT ), we deduce

E[ sup
t∈[0,1]

|ΛT
t −XT

t |2] ≤ cT−2α.

This gives the uniform convergence to zero in probability of XT − ΛT .

Limit of ZT Let (X,Z) be a possible limit point of (XT , ZT ). We know that (X,Z) is
continuous and from Corollary IX-1.19 of [42], Z is a local martingale. Moreover, since

[ZT , ZT ] = diag(XT ),

using Theorem VI-6.26 in [42], we get that [Z,Z] is the limit of [ZT , ZT ] and [Z,Z] = diag(X).
By Fatou’s lemma, the expectation of [Z,Z] is finite and therefore Z is a martingale.

4.3.2 Convergence of v∗i .X
T for i ≥ 2

Here also, we observe a vanishing behavior in the direction of the eigenvectors vi for i ≥ 2.
More precisely, we have the following result.

Proposition 4.7. Under the setting of Section 2.3.1 together with Assumption 3.1, if X is
a possible limit point of XT , then for i ≥ 2 we have vi

∗.X = 0.

Proof:

From (3), using Fubini theorem together with the fact that

∫ .

0
(f ∗ g) = (

∫ .

0
f) ∗ g, we get

∫ t

0
λTs ds = tµT1+ µT

∫ t

0
sψT (t− s)ds.1+

∫ t

0
ψT (t− s).MT

s ds.
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Therefore, for t ∈ [0, 1], we have the decomposition

ΛT
t = T1 + T2 + T3, (14)

with
T1 = (1− aT )tuT1,

T2 = T (1− aT )uT

∫ t

0
sψT

(

T (t− s)
)

ds.1,

T3 = T 1−α/2

√

1− aT
µ

∫ t

0
ψT
(

T (t− s)
)

.ZT
s ds,

with uT = µT /(µT
α−1) tending to one.

Now recall that for 1 ≤ i ≤ d,

ψT
i =

∑

k≥1

akTλ
∗k
i , ρTi = T (1− aT )ψ

T
i (T.),

and define

F T
i =

∫ .

0
ρTi (s)ds.

For i ≥ 2, using that

|F T
i (t)| ≤

∫ t

0
T (1− aT )|ψT

i (Ts)|ds ≤ (1− aT )

∫ ∞

0
|ψT

i (s)|ds ≤ (1− aT )
‖λi‖1

1− ‖λi‖1
.

we get the uniform convergence to zero of F T
i . Thanks to this together with integration by

parts, we deduce the convergence to zero of v∗i .T2 since

v∗i .T2 = uT (v
∗
i .1)

∫ t

0
F T
i (s)ds.

For v∗i .T3 we write

v∗i .T3 =
1

√

µ(1− aT )Tα

∫ t

0
F T
i (t− s)(v∗i .dZ

T
s ).

The quadratic variation of ZT being ΛT which is uniformly bounded in expectation, we have

E[(v∗i .T3)
2] ≤ c

µ(1− aT )Tα

∫ t

0

(

F T
i (s)

)2
ds.

The convergence of v∗i .T3 to zero follows. Finally, from Proposition 4.6 we have that if X is
a limit point of XT , then X is also a limit point of ΛT . Therefore, we obtain v∗i .X = 0.
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4.3.3 Convergence of v∗1 .X
T

The term v∗1 .X
T is the non-vanishing one. Indeed, for (Z,X) a possible limit point of

(ZT ,XT ), using the same approach as in [44], we obtain

T ∗
2 .v1 →

T→∞
(v∗1 .1)

∫ t

0
sfα,λ(t− s)ds

and

T ∗
3 .v1 →

T→∞

1√
λ∗µ

∫ t

0
fα,λ(t− s)(v∗1 .Zs)ds.

Then, letting T go to infinity in the decomposition (14) we easily deduce the following propo-
sition.

Proposition 4.8. Under the setting of Section 2.3.1 together with Assumption 3.1, if (Z,X)
is a possible limit point of (ZT ,XT ), then the process v∗1 .X satisfies the following equation:

v∗1.Xt = (v∗1 .1)

∫ t

0
sfα,λ(t− s)ds+

1√
λ∗µ

∫ t

0
fα,λ(t− s)(v∗1 .Zs)ds.

4.3.4 A first version of Theorem 3.2

We now prove of version of Theorem 3.2 where Y is specified in a different way. Let (X,Z)
be a possible limit point of (XT , ZT ). From Proposition 4.8, in the same way as the proof of
Theorem 3.2 in [44], we can show that

v∗1 .Xt =

∫ t

0
Ysds,

where Y satisfies

Yt = (v∗1 .1)F
α,λ(t) +

1√
λ∗µ

∫ t

0
fα,λ(t− s)(v∗1 .dZs).

Using Proposition 4.7 together with the decomposition ofXt in the orthonormal basis (e1, ..., ed):

Xt =
d
∑

i=2

(e∗i .Xt)ei +
(

(v′)∗.Xt

)

e1 +
1

e∗1.v1
(v∗1 .Xt)e1,

we get

Xt =
1

e∗1.v1
(v∗1 .Xt)e1 =

1

e∗1.v1
(

∫ t

0
Ysds)e1.

From Proposition 4.6, we have that

[Z,Z] = diag(X) =
1

e∗1.v1
(

∫ t

0
Ysds)diag(e1).

Thus we can use Theorem V-3.9 in [54] to show the existence of a d-dimensional Brownian
motion (B1, ..., Bd) such that for 1 ≤ i ≤ d,

Zi
t =

1
√

e∗1.v1

√
e1,i

∫ t

0

√

YsdB
i
s.
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Finally, in the same way as the proof of Theorem 3.2 in [44], we obtain that Y satisfies

Yt = (v∗1 .1)F
α,λ(t) +

√

e∗1.v
2
1

λ∗µ(e∗1.v1)

∫ t

0
fα,λ(t− s)

√

YsdBs, (15)

where B is a Brownian motion defined by

B =
1

√

e∗1.v
2
1

∑

1≤i≤d

√
e1,iv1,iB

i.

and that Y has Hölder regularity α− 1/2 − ε, for any ε > 0.

4.3.5 End of the proof of Theorem 3.2

We eventually provide here the proposition showing that from (15), Y can be written under
the form of the rough stochastic differential equation given in Theorem 3.2 and stating the
uniqueness of the solution of this equation. Theorem 3.2 follows immediately.

Proposition 4.9. Let λ, ν, θ be positive constants, α ∈ (1/2, 1) and B a Brownian motion.
The process V is solution of the following rough stochastic differential equation:

Vt = θFα,λ(t) + ν

∫ t

0
fα,λ(t− s)

√

VsdBs (16)

if and only if it is solution of

Vt =
1

Γ(α)

∫ t

0
(t− s)α−1λ(θ − Vs)ds+

λν

Γ(α)

∫ t

0
(t− s)α−1

√

VsdBs. (17)

Furthermore, both equations admit a unique strong solution.

Proof:

The existence of a solution to (16) has already been proved deriving (15). Let V be a solution
to (16) and write

K = I1−αV,

where I1−α is the fractional integral operator of order (1 − α), see Appendix A.3. Using
stochastic Fubini theorem, see for example [58], and integration by parts, we get

Kt = θ

∫ t

0
I1−αfα,λ(u)du+ ν

∫ t

0
I1−αfα,λ(t− u)

√

VudBu.

Moreover, since I1−αfα,λ(t) = λ
(

1 − Fα,λ(t)
)

, see Appendix A.4, using stochastic Fubini
theorem, we obtain

Kt = λθ

∫ t

0

(

1− Fα,λ(u)
)

du+ νλ

∫ t

0

√

VudBu − λ

∫ t

0
ν

∫ s

0

√

Vuf
α,λ(s− u)dBuds.

Hence,

Kt = λθ

∫ t

0

(

1− Fα,λ(u)
)

du+ νλ

∫ t

0

√

VudBu − λ

∫ t

0

(

Vs − θFα,λ(s)
)

ds
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and finally

Kt = λ

∫ t

0
(θ − Vu)du+ λν

∫ t

0

√

VudBu.

Now recall that we have
Vt = D1−αKt,

where the fractional differentiation operator D1−α is defined in Appendix A.3. Thus we get

Vt =
1

Γ(α)

d

dt

∫ t

0
λ

∫ s

0
(s− u)α−1(θ − Vu)duds+

1

Γ(α)

d

dt

∫ t

0
λν

∫ s

0
(s− u)α−1

√

VudBuds

and finally, again from Fubini theorem,

Vt =
1

Γ(α)
λ

∫ t

0
(t− u)α−1(θ − Vu)du+

1

Γ(α)
λν

∫ t

0
(t− u)α−1

√

VudBu.

Therefore V is solution of (17). Using a straightforward generalization of the main result in
[51], we deduce the uniqueness of such a solution.

4.4 Proof of Theorem 3.1

First, remark that in the same way as in Section 4.2, we can write

√

1− aT
Tαµ

P T
tT =

1

1− aT (‖ϕ1‖1 − ‖ϕ2‖1)
(ZT,+

t − ZT,−
t )−RT

t ,

with

RT
t =

∫ t

0

(

∫ ∞

T (t−s)
ψT
2 (u)du

)

(dZT,+
s − dZT,−

s ).

Using Corollary 3.1, we deduce that

1

1− aT (‖ϕ1‖1 − ‖ϕ2‖1)
(ZT,+

t − ZT,−
t )

converges in law for the Skorokhod topology to the rough Heston dynamic P defined in The-
orem 3.1.

Note that when ϕ1 = ϕ2, R
T = 0. Thus, in this case, we obtain the convergence in law for

the Skorokhod topology of the rescaled microscopic price to P . For the general case, we can
prove the convergence of RT to zero in the sense of finite dimensional laws as follows. We
have

E[(RT
t )

2] ≤ c

∫ t

0

(

∫ ∞

Ts
ψT
2 (u)du

)2
ds.

Let G =
∑

k≥1 |ϕ1 − ϕ2|∗k. Note that G is integrable since
∫∞
0 |ϕ1 − ϕ2| < 1. Hence

E[(RT
t )

2] ≤ c
(

T−1/2(

∫ ∞

0
G)2 + (

∫ ∞

T 1/2
G)2

)

,

which vanishes as T tends to infinity. The result follows.
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Remark 4.1. Note that

sup
t∈[0,1]

|
∫ t

0

∫ ∞

Ts
ψT
2 (u)duds| ≤ c

(

T−1/2

∫ ∞

0
G+

∫ ∞

T 1/2

G
)

,

which vanishes as T goes to infinity. Then, using Fubini theorem, we get that

∫ t

0
RT

s ds =

∫ t

0

∫ t−s

0

(

∫ ∞

Tu
ψT
2

)

du(dZT,+
s − dZT,−

s )

converges u.c.p. to zero. Thus, as stated in Remark 3.1, the integrated rescaled microscopic
price converges in law for the Skorokhod topology to

∫ t
0 Psds.
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A Appendix

A.1 Proof of Lemma 4.1.

This result has already been proved in [44] in dimension one. We need to generalize it for
d ≥ 2. Inspection of the proof in [44] shows that the tightness of

HT
t =

∫ t

0
fT (t− s)dM

T
s

holds the same way when the dimension is larger than one. So we just need to check the finite
dimensional convergence of Y T to zero. Using that 〈MT ,MT 〉 =

∫ .
0 λ

T , we get

E[‖HT
t ‖22] =

1

T 2
E
[

∫ tT

0
fT (t− s/T )2

d
∑

i=1

λTs,ids
]

=
1

T 2

∫ tT

0
fT (t− s/T )2

d
∑

i=1

E[λTs,i]ds.

Using (3) together with the fact that v∗i .ψ
T = ψT

i v
∗
i , we obtain that for any i ∈ {1, .., d} and

s ≥ 0,

E[v∗i .λ
T
s ] = µ(v∗i .1)

(

1 +

∫ s

0
ψT
i (u)du

)

.

Thus

|E[v∗i .λTs ]| ≤ µ|v∗i .1|
(

1 +
∑

k≥1

∫ ∞

0
akT |λi|∗k(u)du

)

≤ µ|v∗i .1|
1

1− aT ‖λi‖1
≤ cT.

Hence for any i ∈ {1, .., d}, E[λTs,i] ≤ cT . Therefore

E[‖HT
t ‖22] ≤ c

∫ ∞

0
fT (s)2ds →

T→∞
0

and soHT
t tends in probability to zero giving the finite dimensional convergence of the process.
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A.2 Wiener-Hopf equations

The following result is used extensively in this work to solve Wiener-Hopf type equations, see
for example [7].

Lemma A.1. Let g be a measurable locally bounded function from R to R
d and φ : R+ →

Md(R) be a matrix-valued function with integrable components such that S(
∫∞
0 φ(s)ds) < 1.

Then there exists a unique locally bounded function f from R to R
d solution of

f(t) = g(t) +

∫ t

0
φ(t− s).f(s)ds, t ≥ 0

given by

f(t) = g(t) +

∫ t

0
ψ(t− s).g(s)ds, t ≥ 0,

where ψ =
∑

k≥1

φ∗k.

A.3 Fractional integrals and derivatives

The fractional integral of order r ∈ (0, 1] of a function f is defined by

Irf(t) =
1

Γ(r)

∫ t

0
(t− s)r−1f(s)ds,

whenever the integral exists. Its fractional derivative of order r ∈ [0, 1) is given by

Drf(t) =
1

Γ(1− r)

d

dt

∫ t

0
(t− s)−rf(s)ds,

whenever it exists.

A.4 Mittag-Leffler functions

Let (α, β) ∈ (R∗
+)

2. The Mittag-Leffler function Eα,β is defined for z ∈ C by

Eα,β(z) =
∑

n≥0

zn

Γ(αn+ β)
.

For (α, λ) ∈ (0, 1) × R+, we also define

fα,λ(t) = λtα−1Eα,α(−λtα), t > 0,

Fα,λ =

∫ t

0
fα,λ(s)ds, t ≥ 0.

The function fα,λ is a density function on R+ called Mittag-Leffler density function.
For α ∈ (1/2, 1), fα,λ is square-integrable and its Laplace transform is given for z ≥ 0 by

f̂α,λ(z) =

∫ ∞

0
fα,λ(s)e

−zsds =
λ

λ+ zα
.

Finally, we can show that
I1−αfα,λ(t) = λ

(

1− Fα,λ(t)
)

.

Further properties of fα,λ and Fα,λ can be found in [35, 49, 50].
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