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The SPX volatility surface as of 15-Sep-2005

Figure 1: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Term structure of at-the-money skew

Given one smile for a fixed expiration, little can be said about
the process generating it.

In contrast, the dependence of the smile on time to expiration
is intimately related to the underlying dynamics.

In particular model estimates of the term structure of ATM
volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

.

are very sensitive to the choice of volatility dynamics in a
stochastic volatility model.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 2: Term structure of ATM skew as of 15-Sep-2005, with power
law fit τ−0.44 superimposed in red.
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Stylized facts

Although the levels and orientations of the volatility surfaces
change over time, their rough shape stays very much the
same.

It’s then natural to look for a time-homogeneous model.

The term structure of ATM volatility skew

ψ(τ) ∼ 1

τα

with α ∈ (0.3, 0.5).
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Motivation for Rough Volatility I: Better fitting stochastic
volatility models

Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.
Empirically, we find that the term structure of ATM skew is
proportional to 1/Tα for some 0 < α < 1/2 over a very wide
range of expirations.

The conventional solution is to introduce more volatility
factors, as for example in the DMR and Bergomi models.

One could imagine the power-law decay of ATM skew to be
the result of adding (or averaging) many sub-processes, each
of which is characteristic of a trading style with a particular
time horizon.
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Bergomi Guyon

Define the forward variance curve ξt(u) = E [vu| Ft ].

According to [BG12], in the context of a variance curve
model, implied volatility may be expanded as

σBS(k,T ) = σ0(T ) +

√
w

T

1

2w2
C x ξ k + O(η2) (1)

where η is volatility of volatility, w =
∫ T

0 ξ0(s) ds is total
variance to expiration T , and

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (2)

Thus, given a stochastic volatility model written in forward
variance form, we can easily (at least in principle) compute this
smile approximation.
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The Bergomi model

The n-factor Bergomi variance curve model reads:

ξt(u) = ξ0(u) exp

{
n∑

i=1

ηi

∫ t

0
e−κi (t−s) dW

(i)
s + drift

}
.

(3)

The Bergomi model generates a term structure of volatility
skew ψ(τ) that is something like

ψ(τ) =
∑
i

1

κi τ

{
1− 1− e−κi τ

κi τ

}
.

This functional form is related to the term structure of the
autocorrelation function.
Which is in turn driven by the exponential kernel in the
exponent in (3).
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Tinkering with the Bergomi model

Empirically, ψ(τ) ∼ τ−α for some α.

It’s tempting to replace the exponential kernels in (3) with a
power-law kernel.

This would give a model of the form

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
which looks similar to

ξt(u) = ξ0(u) exp
{
ηWH

t + drift
}

where WH
t is fractional Brownian motion.



Motivation Modeling Pricing Exponentiation Rough Heston

History of fractional stochastic volatility models

More formally, the model

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
belongs to a larger class of fractional stochastic volatility models
that was originally shown by Alòs et al. in [ALV07] and then by
Fukasawa in [Fuk11] to generate a short-dated ATM skew of the
form

ψ(τ) ∼ 1

τγ

with γ = 1
2 − H and 0 < H < 1

2 .
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Motivation for Rough Volatility II: Power-law scaling of the
historical volatility process

The Oxford-Man Institute of Quantitative Finance makes
historical realized variance (RV) estimates freely available at
http://realized.oxford-man.ox.ac.uk. These estimates
are updated daily.

Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of vt empirically.

http://realized.oxford-man.ox.ac.uk
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SPX realized variance from 2000 to 2016

Figure 3: KRV estimates of SPX realized variance from 2000 to 2017.
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The smoothness of the volatility process

For q ≥ 0, we define the qth sample moment of differences of
log-volatility at a given lag ∆1:

m(q,∆) = 〈|log σt+∆ − log σt |q〉

For example

m(2,∆) = 〈(log σt+∆ − log σt)
2〉

is just the sample variance of differences in log-volatility at the
lag ∆.

1〈·〉 denotes the sample average.
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Scaling of m(q,∆) with lag ∆

Figure 4: logm(q,∆) as a function of log ∆, SPX.
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Scaling of ζq with q

Figure 5: Scaling of ζq with q.
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Monofractal scaling result

From the log-log plot Figure 4, we see that for each q,
m(q,∆) ∝ ∆ζq .

And from Figure 5 the monofractal scaling relationship

ζq = q H

with H ≈ 0.13.

Note also that our estimate of H is biased high because we
proxied instantaneous variance vt with its average over each

day 1
T

∫ T

0
vt dt, where T is one day.

On the other hand, the time series of realized variance is noisy
and this causes our estimate of H to be biased low.

A time series of H for SPX following the methodology of
[BLP16] is shown in the next figure.
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The time series of α̂ = H − 1
2 for SPX

Figure 10: Half year rolling-window estimates of ↵ on the realized variance measures of the daily volatility by variogram OLS
regression (3.10) with m = 3. The pink area is the 95% confidence interval by bootstrap method with B = 999. The four
vertical dashed blue lines indicate four periods of market turmoil: Lehman Brothers filing for bankruptcy, the Flash Crash,
the first bailout during Greek debt crisis and the Brexit referendum.

20
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Distributions of (log σt+∆ − log σt) for various lags ∆

Figure 6: Histograms of (log σt+∆ − log σt) for various lags ∆; normal
fit in red; ∆ = 1 normal fit scaled by ∆0.14 in blue.
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Estimated H for all indices

Estimating the relationship

〈(log σt+∆ − log σt)
2〉 = ν2 ∆2H

for all 21 indices in the Oxford-Man dataset yields:

Index H ν
SPX2.rk 0.13 0.32
FTSE2.rk 0.14 0.27
N2252.rk 0.11 0.33
GDAXI2.rk 0.15 0.28
RUT2.rk 0.12 0.33
AORD2.rk 0.08 0.36
DJI2.rk 0.13 0.32
IXIC2.rk 0.13 0.30
FCHI2.rk 0.13 0.29
HSI2.rk 0.10 0.28
KS11.rk 0.12 0.28
AEX.rk 0.14 0.29
SSMI.rk 0.18 0.22
IBEX2.rk 0.13 0.28
NSEI.rk 0.11 0.32
MXX.rk 0.09 0.33
BVSP.rk 0.11 0.31
GSPTSE.rk 0.12 0.31
STOXX50E.rk 0.12 0.34
FTSTI.rk 0.13 0.23
FTSEMIB.rk 0.13 0.30
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Universality?

In [GJR18], we compute daily realized variance estimates over
one hour windows for DAX and Bund futures contracts,
finding similar scaling relationships.

We have also checked that Gold and Crude Oil futures scale
similarly.

Although the increments (log σt+∆ − log σt) seem to be fatter
tailed than Gaussian.

In [BLP16] Bennedsen et al., estimate volatility time series for
more than five thousand individual US equities, finding rough
volatility in every case.
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A natural model of realized volatility

Distributions of differences in the log of realized volatility are
close to Gaussian.

This motivates us to model σt as a lognormal random variable.

Moreover, the scaling property of variance of RV differences
suggests the model:

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(4)

where WH is fractional Brownian motion.

In [GJR18], we refer to a stationary version of (4) as the
RFSV (for Rough Fractional Stochastic Volatility) model.
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Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm) {WH
t ; t ∈ R} is the unique

Gaussian process with mean zero and autocovariance function

E
[
WH

t WH
s

]
=

1

2

{
|t|2H + |s|2H − |t − s|2H

}
where H ∈ (0, 1) is called the Hurst index or parameter.

In particular, when H = 1/2, fBm is just Brownian motion.

If H > 1/2, increments are positively correlated.
If H < 1/2, increments are negatively correlated.
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Apparent fractality of the volatility time series

Figure 7: Volatility of SPX (above) and in the RFSV model (below).
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Remarks on the comparison

The qualitative features of simulated and actual graphs look
very similar.

Persistent periods of high volatility alternate with low volatility
periods.

H ∼ 0.1 generates very rough looking sample paths
(compared with H = 1/2 for Brownian motion).

Hence rough volatility.

On closer inspection, we observe fractal-type behavior.

The graph of volatility over a small time period looks like the
same graph over a much longer time period.

This feature of volatility has been investigated both
empirically and theoretically in, for example, [BM03].

In particular, their Multifractal Random Walk (MRW) is
related to a limiting case of the RSFV model as H → 0.
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Microstructural foundation for rough volatility

In [JR16], El Euch, Fukasawa and Rosenbaum consider a
generalization of a simple model of price dynamics in terms of
Hawkes processes due to Bacry et al. ([BM14]) with the following
properties:

Reflecting the high degree of endogeneity of the market, the
L1 norm of the kernel matrix is close to one (nearly unstable).

No drift in the price process imposes a relationship between
buy and sell kernels.

Liquidity asymmetry: The average impact of a sell order is
greater than the impact of a buy order.

Splitting of metaorders motivates power-law decay of the
Hawkes kernels ϕ(τ) ∼ τ−(1+α) (empirically α ≈ 0.6).
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The scaling limit of the price model

They construct a sequence of such Hawkes processes suitably
rescaled in time and space that converges in law to a Rough
Heston process of the form

dSt
St

=
√
vt dZt

vt = v0 +
λ

Γ(α)

∫ t

0

θ − vs
(t − s)1−α ds +

λ ν

Γ(α)

∫ t

0

√
vs dWs

(t − s)1−α

with
d〈Z ,W 〉t = ρ dt.

The correlation ρ is related to a liquidity asymmetry
parameter.
Rough volatility can thus be understood as relating to the
persistence of order flow and the high degree of endogeneity
of liquid markets.
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The Rough Heston characteristic function

Define the fractional integral and differential operators:

I 1−αf (t) =
1

Γ(1− α)

∫ t

0

f (s)

(t − s)α
ds; Dαf (t) =

d

dt
I 1−αf (t).

Remarkably, in [ER16], El Euch and Rosenbaum compute the
following expression for the characteristic function of the Rough
Heston model:

φt(u) = exp

{
θ λ

∫ t

0
h(u, s) ds + v0 I

1−αh(u, t)

}
where h(u, ) solves the fractional Riccati equation

Dαh(u, s) = −1

2
u (u + i) + λ (i ρ ν u − 1) h(u, s) +

(λ ν)2

2
h2(u, s).
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The forecast formula

In the RFSV model (4), log vt ≈ 2 νWH
t + C for some

constant C .

[NP00] show that WH
t+∆ is conditionally Gaussian with

conditional expectation

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds

and conditional variance

Var[WH
t+∆|Ft ] = c ∆2H .

where

c =
Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)
.
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The forecast formula

Thus, we obtain

Variance forecast formula

EP [vt+∆| Ft ] = exp
{
EP [ log(vt+∆)| Ft ] + 2 c ν2∆2H

}
(5)

where

EP [ log vt+∆| Ft ]

=
cos(Hπ)

π
∆H+1/2

∫ t

−∞

log vs
(t − s + ∆)(t − s)H+1/2

ds.

[BLP16] confirm that this forecast outperforms the best
performing existing alternatives such as HAR, at least at daily
or higher timescales.
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Pricing under rough volatility

Once again, the data suggests the following model for volatility
under the real (or historical or physical) measure P:

log σt = νWH
t .

Let γ = 1
2 − H. We choose the Mandelbrot-Van Ness

representation of fractional Brownian motion WH as follows:

WH
t = CH

{∫ t

−∞

dWP
s

(t − s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}
where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Then

log vu − log vt

= ν CH

{∫ u

t

1

(u − s)γ
dWP

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dWP

s

}
=: 2 ν CH [Mt(u) + Zt(u)] . (6)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!
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Pricing under P

Let

W̃P
t (u) :=

√
2H

∫ u

t

dWP
s

(u − s)γ

With η := 2 ν CH/
√

2H we have 2 ν CH Mt(u) = η W̃P
t (u) so

denoting the stochastic exponential by E(·), we may write

vu = vt exp
{
ηW̃P

t (u) + 2 ν CH Zt(u)
}

= EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (7)

The conditional distribution of vu depends on Ft only through
the variance forecasts EP [vu| Ft ],

To price options, one does not need to know Ft , the entire
history of the Brownian motion WP

s for s < t.
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Pricing under Q

Our model under P reads:

vu = EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (8)

Consider some general change of measure

dWP
s = dWQ

s + λs ds,

where {λs : s > t} has a natural interpretation as the price of
volatility risk. We may then rewrite (8) as

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

λs
(u − s)γ

ds

}
.

Although the conditional distribution of vu under P is
lognormal, it will not be lognormal in general under Q.

The upward sloping smile in VIX options means λs cannot be
deterministic in this picture.
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The rough Bergomi (rBergomi) model

Let’s nevertheless consider the simplest change of measure

dWP
s = dWQ

s + λ(s) ds,

where λ(s) is a deterministic function of s. Then from (34), we
would have

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

1

(u − s)γ
λ(s) ds

}
= ξt(u) E

(
η W̃Q

t (u)
)

(9)

where the forward variances ξt(u) = EQ [vu| Ft ] are (at least in
principle) tradable and observed in the market.

ξt(u) is the product of two terms:
EP [vu| Ft ] which depends on the historical path {Ws , s < t}
of the Brownian motion
a term which depends on the price of risk λ(s).
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Features of the rough Bergomi model

The rBergomi model is a non-Markovian generalization of the
Bergomi model:

E [vu| Ft ] 6= E[vu|vt ].

The rBergomi model is Markovian in the (infinite-dimensional)
state vector EQ [vu| Ft ] = ξt(u).

We have achieved our aim of replacing the exponential kernels
in the Bergomi model (3) with a power-law kernel.

We may therefore expect that the rBergomi model will
generate a realistic term structure of ATM volatility skew.
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The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Thus
dSt
St

=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.
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Hybrid simulation of BSS processes

In [BFG16], we simulate the rBergomi model by generating
paths of W̃ and Z with the correct joint marginals using
Cholesky decomposition.

This is very slow!

The rBergomi variance process is a special case of a Brownian
Semistationary (BSS) process.

In [BLP17], Bennedsen et al. show how to simulate such
processes more efficiently.

Their hybrid BSS scheme is much more efficient than the exact
simulation described above.
An even more efficient scheme is presented in [MP17].
However, it is still not fast enough to enable efficient
calibration of the Rough Bergomi model to the volatility
surface.
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Guessing rBergomi model parameters

The rBergomi model has only three parameters: H, η and ρ.

These parameters have very direct interpretations:

H controls the decay of ATM skew ψ(τ) for very short
expirations
The product ρ η sets the level of the ATM skew for longer
expirations.
Keeping ρ η constant but decreasing ρ (so as to make it more
negative) pushes the minimum of each smile towards higher
strikes.

So we can guess parameters in practice.
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SPX smiles in the rBergomi model

In Figure 9, we show how well a rBergomi model simulation
with guessed parameters fits the SPX option market as of
August 14, 2013, one trading day before the third Friday
expiration.

Options set at the open of August 16, 2013 so only one
trading day left.

rBergomi parameters were: H = 0.05, η = 2.3, ρ = −0.9.

Only three parameters to get a very good fit to the whole SPX
volatility surface!

Note in particular that the extreme short-dated smile is well
reproduced by the rBergomi model.

There is no need to add jumps!
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SPX smiles as of August 14, 2013

Figure 8: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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The one-month SPX smile as of August 14, 2013

Figure 9: Red and blue points represent bid and offer SPX implied
volatilities; the orange smiles is from the rBergomi simulation.
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ATM volatilities and skews

In Figures 10 and 11, we see just how well the rBergomi model can
match empirical ATM vols and skews. Recall also that the
parameters we used are just guesses!
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Term structure of ATM vol as of August 14, 2013

Figure 10: Blue points are empirical ATM volatilities; green points are
from the rBergomi simulation. The two match very closely, as they
should.
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Term structure of ATM skew as of August 14, 2013

Figure 11: Blue points are empirical skews; the red line is from the
rBergomi simulation.
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Calibration

As mentioned earlier, computation in the rBergomi model is
challenging so calibration is not easy.

Though as noted earlier, we can easily guess parameters.

We have investigated a number of approaches to calibration

Asymptotic expansions
Chebyshev interpolation
Moment matching

So far, we cannot claim to have had real success with any of
these approaches.

A recent development shows some promise however...
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The Alòs Itô decomposition formula

Following Elisa Alòs in [Alò12], let Xt = log St/K and consider the
price process

dXt = σt dZt −
1

2
σ2
t dt.

Now let H(x ,w) be some function that solves the Black-Scholes
equation.

Specifically,

−∂wH(x ,w) +
1

2
(∂xx − ∂x)H(x ,w) = 0

which is of course the gamma-vega relationship.

Note in particular that ∂x and ∂w commute when applied to a
solution of the Black-Scholes equation.
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Now, define wt(T ) as the integral of the expected future variance:

wt(T ) := E
[∫ T

t
σ2
s ds

∣∣∣∣Ft

]
.

Notice that

wt(T ) = Mt −
∫ t

0
σ2
s ds,

where the martingale Mt := E
[∫ T

0 σ2
s ds
∣∣∣Ft

]
. Then it follows that

dwt(T ) = −σ2
t dt + dMt .
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Applying Itô’s Lemma to Ht := H(Xt ,wt(T )), taking conditional
expectations, simplifying using the Black-Scholes equation and
integrating, we obtain

Theorem (The Itô Decomposition Formula of Alòs)

E [HT | Ft ] = Ht + E
[∫ T

t
∂xwHs d〈X ,M〉s

∣∣∣∣Ft

]
+

1

2
E
[∫ T

t
∂wwHs d〈M,M〉s

∣∣∣∣Ft

]
. (10)

Note in particular that (10) is an exact decomposition.
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Freezing derivatives

Freezing the derivatives in the Alòs Itô decomposition formula (10)
gives us the approximation

E [HT | Ft ] ≈ Ht + E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
∂xwHt

+
1

2
E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
∂wwHt

= Ht + (X �M)t(T ) · Ht +
1

2
(M �M)t(T ) · Ht .

Remark

The essence of the Exponentiation Theorem is that we may express
E [HT | Ft ] as an exact expansion consisting of infinitely many
terms, with derivatives in each such term frozen.
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Diamond and dot notation

Let At and Bt be stochastic processes (some combinations of Xt

and Mt). Then

(A � B)t(T ) = E
[∫ T

t
d〈A,B〉s

∣∣∣∣Ft

]
.

When (A � B)t(T ) appears before some solution Ht of the
Black-Scholes equation, the dot · is to be understood as
representing the action of ∂x and ∂w applied to Ht .

So for example

(X �M)t(T ) · Ht = E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
∂xw Ht

and so on.
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Trees

Terms such as (X �M), (M �M) and X � (X �M) are
naturally indexed by trees, each of whose leaves corresponds
to either X or M.

We end up with diamond trees reminiscent of Feynman
diagrams, with analogous rules.
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Forests

Definition

Let F0 = M. Then the higher order forests Fk are defined
recursively as follows:

Fk =
1

2

k−2∑
i ,j=0

1i+j=k−2Fi �Fj + X �Fk−1.
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The first few forests

Applying this definition to compute the first few terms, we obtain

F0 = M

F1 = X �F0 = (X �M)

F2 =
1

2
(F0 �F0) + X �F1 =

1

2
(M �M) + X � (X �M)

F3 = (F0 �F1) + X �F2

= M � (X �M) +
1

2
X � (M �M) + X � (X � (X �M))



Motivation Modeling Pricing Exponentiation Rough Heston

The first forest F1 = X �M

♦

X M
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The second forest F2

F2 =
1

2
(M �M) + X � (X �M)

♦

M M

♦

X ♦

X M
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The third forest F3

F3 = M � (X �M) +
1

2
X � (M �M) + X � (X � (X �M))

♦

M ♦

X M

♦

X ♦

M M

♦

X ♦

X ♦

X M
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Simple diamond rules

For k > 0, the kth forest Fk contains all trees with k + 2
leaves where X is counted as a single leaf, and M as a double
leaf.

Prefactor computation:

Work from the bottom up.
If child subtrees immediately below a diamond node are
identical, carry a multiplicative factor of 1

2 .
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The Exponentiation Theorem

The following theorem proved in [AGR17] follows from (more or
less) a simple application of Itô’s Lemma and the Alòs Itô
decomposition formula.

Theorem

Let Ht be any solution of the Black-Scholes equation such that
E [HT | Ft ] is finite and the integrals contributing to each forest
Fk , k ≥ 0 exist. Then

E [HT | Ft ] = e
∑∞

k=1 Fk · Ht .
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If Ht is a characteristic function

Consider the Black-Scholes characteristic function

ΦT
t (a) = e i a Xt− 1

2
a (a+i)wt(T )

which satisfies the Black-Scholes equation.

Applying Fk to Φ just multiplies Φ by some deterministic
factor.

Then
e
∑∞

k=1 Fk · ΦT
t (a) = e

∑∞
k=1 F̃k (a) ΦT

t (a)

where F̃k(a) is Fk with each occurrence of ∂x replaced with
i a and each occurrence of ∂w replaced with −1

2 a (a + i).
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Then from the Exponentiation Theorem, we have the following
lemma.

Lemma

Let
ϕT
t (a) = E

[
ei a XT

∣∣∣Ft

]
be the characteristic function of the log stock price. Then

ϕT
t (a) = e

∑∞
k=1 F̃k (a) ΦT

t (a).

Corollary

The cumulant generating function (CGF) is given by

ψT
t (a) = logϕT

t (a) = i a Xt −
1

2
a (a + i)wt(T ) +

∞∑
k=1

F̃k(a).
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Variance and gamma swaps

The variance swap is given by the fair value of the log-strip:

E [XT | Ft ] = (−i)ψT
t
′
(0) = Xt −

1

2
wt(T )

and the gamma swap (wlog set Xt = 0) by

E
[
XT eXT

∣∣∣Ft

]
= −iψT

t
′
(−i).

Remark

The point is that we can in principle compute such moments for
any stochastic volatility model written in forward variance form,
whether or not there exists a closed-form expression for the
characteristic function.
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The gamma swap

It is easy to see that only trees containing a single M leaf will
survive in the sum after differentiation when a = −i so that

∞∑
k=1

F̃′k(−i) =
i

2

∞∑
k=1

(X�)kM

where (X�)kM is defined recursively for k > 0 as
(X�)kM = X � (X�)k−1M. Then the fair value of a gamma swap
is given by

Gt(T ) = 2E
[
XT eXT

∣∣∣Ft

]
= wt(T ) +

∞∑
k=1

(X�)kM. (11)

Remark

Equation (11) allows for explicit computation of the gamma swap
for any model written in forward variance form.
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The leverage swap

We deduce that the fair value of a leverage swap is given by

Lt(T ) = Gt(T )− wt(T ) =
∞∑
k=1

(X�)kM. (12)

The leverage swap is expressed explicitly in terms of
covariance functionals of the spot and vol. processes.

If spot and vol. processes are uncorrelated, the fair value of
the leverage swap is zero.

An explicit expression for the leverage swap!
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Leverage swap from the smile

Let

d±(k) =
−k

σBS(k,T )
√
T
± σBS(k,T )

√
T

2

and following Fukasawa in [Fuk12], denote the inverse functions by
g±(z) = d−1

± (z). Further define

σ±(z) = σBS(g±(z),T )
√
T .
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Then the variance swap may be estimated from the smile
using

wt(T ) =

∫
R
dz N ′(z)σ2

−(z).

And the gamma swap may be estimated using

Gt(T ) =

∫
R
dz N ′(z)σ2

+(z).

Recall that Lt(T ) = Gt(T )− wt(T ).

We may thus compute leverage swaps in any stochastic
volatility model (in principle) and also estimate leverage swaps
from the implied volatility surface.

Model calibration is possible!
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The rough Heston model

In the zero mean reversion limit, the rough Heston model of
[ER16] may be written as

dSt
St

=
√
vt
{
ρ dWt +

√
1− ρ2 dW⊥

t

}
=
√
vt dZt

with

vu = ξt(u) +
ν

Γ(α)

∫ u

t

√
vs

(u − s)γ
dWs , u ≥ t

where ξt(u) = E [vu| Ft ] is the forward variance curve, γ = 1
2 − H

and α = 1− γ = H + 1
2 .
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The rough Heston model in forward variance form

In forward variance form,

dξt(u) =
ν

Γ(α)

√
vt

(u − t)γ
dWt . (13)

Remark

(13) is a natural fractional generalization of the classical Heston
model which reads, in forward variance form [BG12],

dξt(u) = ν
√
vt e
−κ (u−t) dWt .
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Computation of autocovariance functionals

Apart from Ft measurable terms (abbreviated as ‘drift’), we have

dXt =
√
vt dZt + drift

dMt =

∫ T

t
dξt(u) du

=
ν

Γ(α)

√
vt

(∫ T

t

du

(u − t)γ

)
dWt

=
ν (T − t)α

Γ(1 + α)

√
vt dWt .
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The first order forest

There is only one tree in the forest F1.

F1 = (X �M)t(T ) = E
[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
=

ρ ν

Γ(1 + α)
E
[∫ T

t
vs (T − s)α ds

∣∣∣∣Ft

]
=

ρ ν

Γ(1 + α)

∫ T

t
ξt(s) (T − s)α ds.
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Higher order forests

Define for j ≥ 0

I
(j)
t (T ) :=

∫ T

t
ds ξt(s) (T − s)j α.

Then

dI
(j)
s (T ) =

∫ T

s
du dξs(u) (T − u)j α + drift terms

=
ν
√
vs

Γ(α)
dWs

∫ T

s

(T − u)j α

(u − s)γ
du + drift terms

=
Γ(1 + j α)

Γ(1 + (j + 1)α)
ν
√
vs (T − s)(j+1)α dWs + drift terms.

With this notation,

(X �M)t(T ) =
ρ ν

Γ(1 + α)
I

(1)
t (T ).
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The second order forest

There are two trees in F2:

(M �M)t(T ) = E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
=

ν2

Γ(1 + α)2

∫ T

t
ξt(s) (T − s)2α ds

=
ν2

Γ(1 + α)2
I

(2)
t (T )

and

(X � (X �M))t (T ) =
ρ ν

Γ(1 + α)
E
[∫ T

t
d〈X , I (1)〉s

∣∣∣∣Ft

]
=

ρ2 ν2

Γ(1 + 2α)
I

(2)
t (T ).
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The third order forest

Continuing to the forest F3, we have the following.

(M � (X �M))t (T ) =
ρ ν3

Γ(1 + α) Γ(1 + 2α)
I

(3)
t (T )

(X � (X � (X �M)))t (T ) =
ρ3 ν3

Γ(1 + 3α)
I

(3)
t (T )

(X � (M �M))t (T ) =
ρ ν3 Γ(1 + 2α)

Γ(1 + α)2 Γ(1 + 3α)
I

(3)
t (T ).

In particular, we easily identify the pattern

(X�)kMt(T ) =
(ρ ν)k

Γ(1 + k α)
I

(k)
t (T ).
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The leverage swap under rough Heston

Using (12), we have

Lt(T ) =
∞∑
k=1

(X�)kMt(T )

=
∞∑
k=1

(ρ ν)k

Γ(1 + k α)

∫ T

t
du ξt(u) (T − u)k α

=

∫ T

t
du ξt(u) {Eα(ρ ν (T − u)α)− 1} (14)

where Eα(·) denotes the Mittag-Leffler function.

An explicit expression for the leverage swap!
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The normalized leverage swap

Given the form of equation (14), it is natural to normalize the
leverage swap by the variance swap. We therefore define

Lt(T ) =
Lt(T )

wt(T )
. (15)

In the special case of the rough Heston model with a flat forward
variance curve,

Lt(T ) = Eα,2(ρ ν τα)− 1,

where Eα,2(·) is a generalized Mittag-Leffler function. We further
define an nth order approximation to Lt(T ) as

L
(n)
t (T ) =

n∑
k=1

(ρ ν τα)k

Γ(2 + k α)
.
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A numerical example

We now perform a numerical computation of the value of the
leverage swap using the forest expansion in the rough Heston
model with the following parameters, calibrated to the SPX
options market as of April 24, 2017:

H = 0.0236; ν = 0.3266; ρ = −0.6510.
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The leverage swap under rough Heston

In Figure 12, we plot the normalized leverage swap Lt(T ) and

successive approximations L
(n)
t (T ) to it as a function of τ .

Figure 12: Successive approximations to the (absolute value of) the
normalized rough Heston leverage swap. The solid red line is the exact

expression Lt(T ); L
(1)
t (T ), L

(2)
t (T ), and L

(3)
t (T ) are brown dashed, blue

dotted and dark green dash-dotted lines respectively.
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The leverage swap under rough Heston

We note that three terms are enough to get a very good
approximation to the normalized leverage swap for all expirations
traded in the listed market. Moreover, leverage swaps are
straightforward to estimate from volatility smiles.

Remark

In practice, (15) can be used for very fast and efficient calibration
of the three parameters of the rough Heston model by minimizing
the distance between model and empirical normalized leverage
swap estimates.
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Leverage estimates using VolaDynamics

Figure 13: Leverage estimates using the VolaDynamics curves C13PM
(red) and C14PM (blue) and their respective rough Heston fits as of
24-Apr-2017. See https://voladynamics.com.

With a good volatility surface parameterization, the term
structure of normalized leverage can be robustly estimated.

https://voladynamics.com
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Summary

We uncovered a remarkable monofractal scaling relationship in
historical volatility which now appears to be universal.

This leads to a natural non-Markovian stochastic volatility
model under P.

The resulting volatility forecast beats existing alternatives.

The simplest specification of dQ
dP gives a non-Markovian

generalization of the Bergomi model.

The history of the Brownian motion {Ws , s < t} required for
pricing is encoded in the forward variance curve, which is
observed in the market.

This model fits the observed volatility surface surprisingly well
with very few parameters.

Efficient calibration of the model to the volatility surface is
now within reach.
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Elisa Alòs, Jorge A León, and Josep Vives.

On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility.
Finance and Stochastics, 11(4):571–589, 2007.

Elisa Alòs.

A decomposition formula for option prices in the Heston model and applications to option pricing
approximation.
Finance and Stochastics, 16(3):403–422, 2012.

Elisa Alòs, Jim Gatheral, and Radoš Radoičić.
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