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Abstract

The most widely used option pricing model is the Black-Scholes model. We motivate an alternative

option pricing model called the Variance Gamma (VG) model and demonstrate its implementation in

Bloomberg.
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I Introduction

We all read the news and many of us here at Bloomberg make a living providing the news. But how can

you earn a decent living by trading on the news? For many investors and financial intermediaries, the

answer is to trade in equity options. Options give their owners the right to buy or sell some stock for a

fixed price by a fixed time. Option prices are largely driven by volatility, and volatility is largely driven by

news. Thus, news moves stock prices, and the more news that comes in, the more prices move. The more

prices move, the more valuable is a given option. Typically speaking, the more news that is anticipated to

arrive, the higher the price at which the option trades on the market. In fact, besides its intrinsic value,

the main thing that you need to know to value an option is the amount of news that will arrive by the time

the option matures. Option traders refer to this premium over intrinsic value as volatility value. Their job

is to assess this volatility value of options.

With so much of a stock option’s value tied up with news arrival, it’s worth taking a look at how news

on the underlying stock reaches the market. If you type NEWS<Go> into your Bloomberg terminal, the day’s

headlines are promptly displayed. Scanning the headlines for any particular stock, you may find multiple

news items or no news at all. As you monitor the headlines in real time searching for information on the

stock, the waiting time from one news flash to another varies quite randomly. When a news item does

come in, clicking on the headline can generally tell you whether the news is good or bad, but not what its

precise impact on the stock price will be.

With these observations in mind, let’s see how the standard option pricing model treats news arrival.

All listed (equity) stock options are American-style and the binomial model is probably the most widely

used approach for valuing these options. In the binomial model, the waiting time between price changes is

constant. In a typical implementation of the model, prices change exactly once per day, always at exactly

the same time, with the only source of uncertainty being whether the price moves up or down. So, we see

that the binomial model behaves as if news arrives at a constant rate and as if each news item has the

same relative impact on the price.
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As already indicated, the key to valuing options correctly is to accurately capture the way news arrives.

So how can we improve on this toy model of news arrival? Perhaps surprisingly, the key is to look at the

binomial model in just the right light. As Richard Feynman said in his Nobel acceptance speech:

Theories of the known, which are described by different physical ideas may be equivalent

in all their predictions and are hence scientifically indistinguishable. However, they are not

psychologically identical when trying to move from that base into the unknown. For different

views suggest different kinds of modifications which might be made and hence are not equivalent

in the hypotheses one generates from them in one’s attempt to understand what is not yet

understood.

Instead of querying a binomial model as to whether the first news arrival is good or bad, suppose

that we instead ask the model how long we have to wait until the first bad news arrives. If p ∈ (0, 1)

is the probability for each time step that good news arrives, then the probability that it takes at least n

time steps before the first bad news arrives is given by pn. This distribution of arrival times is known as

the geometric distribution and is characterized among discrete distributions as the only one having the

memoryless property — the waiting time to the next event of interest is independent of the history.

A problem with using discrete time models to capture news arrivals is that it becomes impossible for

the waiting time to the next news event to be less than the length of the time step. The standard solution

to this problem is to work with continuous time models arising from discrete time models by letting the

length of each time step get arbitrarily short. The continuous time analog of the geometric distribution is

the exponential distribution1, the unique continuous distribution with the memoryless property.

Suppose that we model the waiting times between arrivals of bad news as independent draws from

the same exponential distribution with parameter λb. Likewise, we model the waiting times to good news

arrivals as independent draws from another independent exponential distribution, with parameter λg.

1When a waiting time is exponentially distributed with parameter λ > 0, then the probability that the waiting time is at
least t > 0 is given by e−λt.
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Recall that in the binomial model, all good or bad news causes the stock price to jump up or down by a

fixed percentage amount. To allow for variation in the impact of a given type of news on stock returns,

we draw the return reaction from a gamma probability distribution with mean µ and variance ν.2 The

main advantage of working with gamma distributions is that the cumulative impact of several independent

news arrivals of the same type is also gamma distributed. Suppose that we model the successive up jumps

in stock returns arising from good news as independent draws from the same gamma distribution with

mean µg and variance νg. Likewise, we model the successive down jumps in stock returns by drawing from

an independent gamma distribution with mean µb and variance νb. Since the gamma distribution only

generates positive outcomes, we negate the draw to generate a negative return.

At this point, the return process is being modeled as the difference of two independent stochastic

processes, one accumulating the impact of good news and the other accumulating the impact of bad news.

Both of these processes are called compound Poisson processes, where the jump distribution is gamma in

both cases.

We have almost finished our modeling of news arrival, with just one more adjustment in order. The

standard Black-Scholes model assumes that returns are generated by a Brownian motion. Hence, the stock

price is taken as the position of a particle which is never at rest. In any finite time interval, there are an

infinite number of moves, all of which are infinitesimally small. As a result, the process jitters, but it does

not jump. However, an examination of the behavior of options prices at short maturity argues for both

jitters and jumps. As a result, our final model incorporates both.

Compound Poisson processes result in a finite random number of news arrivals in any finite period of

time. To induce jitter, we let the two arrival rates approach infinity. We are left with a four parameter

model which has an infinite number of jumps in any finite time interval, and whose return process is

generated as the difference of two independent gamma processes.

2If a return jump J is gamma distributed with mean µ and variance ν, then its probability density function (PDF) is

pJ(j) = C(µ, ν) × j
µ2

ν
−1 × e−

µ
ν
j for j > 0, where the required constant is C(µ, ν) ≡

(

µ
ν

)

µ2

ν /Γ
(

µ2

ν

)

and Γ(·) is the gamma
function.
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To reduce the parameter count to 3, we can set the ratio of the mean to the standard deviation to

be the same for the two gamma processes: µg
√
νg

= µb√
νb
. The Bloomberg implementation uses the following

re-parametrization of the resulting 3-parameter model.3 First, we let ν denote the common ratio of the

variance to the squared mean: ν ≡ νg

µ2
g
= νb

µ2
b

. It turns out that the parameter ν governs the excess kurtosis

of the stock return distribution. For each gamma process, the ratio of the variance rate ν to the mean

rate µ measures the width of the distribution. We introduce a parameter σ which is proportional to the

geometric mean of these ratios: σ ≡
√

2
ν

√

νg

µg

νb

µb
. Not surprisingly, the parameter σ governs the standard

deviation of the return distribution. Finally, we introduce a parameter θ which is proportional to the

difference between these two ratios: θ ≡ 1
ν

[

νg

µg
− νb

µb

]

and which turns out to have the same sign as the

skewness of the stock return distribution. The return distribution is fully described by the three parameters

σ, θ, and ν. While the three parameters are not literally equal to the second, third, and fourth moments

respectively, each parameter is the main determinant of its corresponding moment. The resulting model

is a pure jump process, in contrast to much of the existing option pricing literature.

It’s time to give this baby a name. Given its genesis, we could call our progeny the “Difference of

Two Independent Gamma Processes” model, but that’s a long name to go through life with. It turns out

that the return distribution that arises from our process results from integrating a Gaussian PDF over its

variance parameter. The weight function used in the integration is a gamma PDF. Therefore, this creation

was christened the Variance Gamma model (henceforth VG) in the seminal 1990 paper by Madan and

Seneta[4]. Over 60 papers4 have since appeared exploring the properties of the model. The model is now

described in textbooks by Joshi[3], Schoutens[7], Cont and Tankov[1], and even the venerable Hull[2]. Just

as Black-Scholes takes most option traders some time to digest, the VG model has only slowly crept into

plain sight. With the new implementation of the Bloomberg SKEW function, it is our hope that this new

model will enjoy the popularity it deserves.

3For a detailed derivation, we refer the reader to Madan, Carr, and Chang[5].
4See IDOC #2021582<GO> for this bibliography.
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II VG on Bloomberg

The VG model is available on the Bloomberg Terminal through the SKEW function. SKEW allows you to

inspect market deviations from Black-Scholes both on a strike basis and on a maturity basis. Data can

be viewed with tables, two-dimensional charts and three-dimensional charts. We will illustrate its utility

with an example.

SPX<Index>SKEW<Go> loads and displays prices for options on the S&P 500. By default it displays the

ask prices for call options with the four nearest maturities.5 We can display option premiums and VG

model premiums, but as can be seen in Figure 1, displaying option premiums isn’t especially illuminating.

They follow the expected curve — the call premiums tends to zero as the strike tends to infinity, and

tends to the line (spot-strike) as the strike tends to zero. All reasonable models will have this behavior.

Differences between models will only be visible by graphing the differences in prices between the models.

As can be seen here, the VG model closely matches the quoted premiums.

Figure 1: Premium vs. strike for the market and the VG model. The upper graph displays the premiums.
The lower graph displays the differences between the VG model prices and the market prices.

5For convenience in using SKEW, the display settings on the screen are sticky, so that each invocation retrieves the setup
you were last using, applying it to the current security.
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Displaying the Black-Scholes implied volatility as a function of strike is much more interesting (see

Figure 2). Here we see the deviation from the Black-Scholes model typical of the equity and index options

markets. (See sidebar.) The volatility at low strikes is higher than at high strikes. We see in this case that

the VG model’s implied volatilities differ from market implied volatilities by less than 0.6.

Figure 2: Implied volatility vs. strike for the VG model and for market quotes.

The deviations in implied volatility between the VG implied volatilities and the market implied volatil-

ities can be attributed to a number of factors. One point is that we try to capture the entire market at each

maturity. This means fitting the VG model simultaneously to both calls and puts. However, as is seen in

Figure 3, despite put-call parity, there are discrepancies in how puts and calls trade. Calls tend to trade

at higher implied volatilities than puts.6 Additionally, out-of-the-money options tend to be more liquid

than in-the-money options, further distorting prices when both are used. A third factor is that prices of

options at extreme strikes deviate substantially from their theoretical prices because of transaction costs.

This introduces further deviations in the model fitting in trying to accomodate these deviant pricings in

the wings.

6See, for example, Table 1 in Ofek, Richardson, and Whitelaw[6].
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Figure 3: Market implied volatility for calls and puts.

No model is perfect, of course, but in an effort to capture the overall market using the best data

available, we fit the VG model to options which are out-of-the-money. This leads to some deviation from

the market on the in-the-money sides, and also some torquing of the model at-the-money, as it transitions

from call market pricing to put market pricing.

Another useful way of viewing market volatility is to look at all options simultaneously. We can do

that with the 3D chart (see Figure 4). Plotting volatility against maturity and strike shows a flattening

volatility surface. However, you would expect to see a flattening in strike as maturity increases due to the

growth in overall variance over time. To adjust for this, we can plot volatility against maturity and time

adjusted moneyness (TAM) = ln(X/S0)/(σ
√
t), where X is the strike, S0 is the current spot price, σ is the

implied volatility, and t is the time to maturity. TAM expresses the strike in terms of standard deviations

from spot instead of in absolute terms. As can be seen in Figure 5, graphing against TAM instead of strike

shows that the skew is in fact sustained7.

Investigating volatility as a function of TAM allows for comparing volatility for different maturities as

7Because of its relationship to standard deviation, TAM is presently called “sigma” on the SKEW screen.
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Figure 4: VG implied volatility vs strike and expiry.

well as for different underlyings. You can also adjust for the initial spot price and maturity by plotting

with respect to delta, but TAM has the advantage of not compressing the entire range into a finite interval.

If you want to only adjust for the initial spot price, you can use moneyness (= ln(X/S0)) instead of TAM

or delta.

Up until now we’ve worked with mid prices. The reason is that mid pricing is most regular, in that

the pricing is uniform in maturity and, by averaging bids and asks, it reduces transaction cost effects. It’s

also important to look at the prices of actual trades. Comparing the last trade prices of a set of options is

difficult. Each trade occurred at a different time, and thus in a different environment. The biggest impact

of this is that the spot price was different when each trade occurred. It’s also unknown whether each trade

is on the bid side or the ask side.

This presents a number of problems. When displaying the implied Black-Scholes volatilities for last

trades, each implied volatility has to be computed with the spot price from the time of the trade. Similarly,

when fitting the VG model, the fact that the spot price was different for the different trades needs to be

taken into account. In the VG implementation, we adjust for this by using the spot price at the time of
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Figure 5: VG implied maturity vs TAM and expiry.

the trade to compute the option’s implied volatility.

III Conclusion

Equity option prices are largely driven by stock volatility, and stock volatility is largely driven by the

arrival of news. The Black-Scholes model doesn’t account for variability in the impact of news or in its

arrival rate, leading to a flat volatility smile, which deviates from observed market behavior. The VG

model allows for non-deterministic arrival of news, fitting observed market prices much more closely than

the Black-Scholes model. The Bloomberg SKEW function allows you to explore these relationships.
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IV Sidebar: Why not just interpolate Black-Scholes?

Developing a model which matches observed option pricing is a complex and difficult task. Even the VG

model described here still deviates somewhat from market quotes. This can lead to questioning the effort

involved. Instead of developing a sophisticated model (such as the VG model), why not just interpolate

and extrapolate prices (or Black-Scholes implied volatilities) directly?

The cost of using such a model is paid back in a number of ways. Most importantly, it gives consistent

and arbitrage-free prices for options across strike. Pricing via interpolation gives no guarantee that the

computed prices will be arbitrage-free. The problems with extrapolation are worse. How should options

with strikes outside of the traded range be priced? Reasonable pricing of these options is important for

price quotation and marking to market. Interpolation prices these options by fiat — flat extrapolation

implies one price and linear extrapolation another.

Correct computation of Greeks is important for hedging purposes and scenario analysis. Model based

Greeks can be used for accurate model based hedging. Using the delta from the Black-Scholes formula
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ignores the change in option premium arising from the change in implied volatility as the spot price moves.

Hedging with this delta will lead to greater hedging errors than necessary.

Finally, typical interpolation schemes yield volatility surfaces that have only a few continuous deriva-

tives. Smoothness is especially important when pricing American options. In the most extreme case,

piecewise linear interpolation of implied volatilities implies jumps in the density function. It’s unlikely

that the market behaves in this fashion.
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