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Abstract

We study the accuracy of a wide variety of estimators of asset price variation constructed from

high-frequency data (so-called “realized measures”), and compare them with a simple “realized

variance” (RV) estimator. In total, we consider almost 400 different estimators, applied to 11 years

of data on 31 different financial assets spanning five asset classes, including equities, equity indices,

exchange rates and interest rates. We apply data-based ranking methods to the realized measures

and to forecasts based on these measures. When 5-minute RV is taken as the benchmark realized

measure, we find little evidence that it is outperformed by any of the other measures. When using

inference methods that do not require specifying a benchmark, we find some evidence that more

sophisticated realized measures significantly outperform 5-minute RV. In forecasting applications,

we find that a low frequency “truncated” RV outperforms most other realized measures. Overall,

we conclude that it is difficult to significantly beat 5-minute RV.
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1 Introduction

In the past fifteen years, many new estimators of asset return volatility constructed using high fre-

quency price data have been developed (see Andersen et al. (2006), Barndorff-Nielsen and Shephard

(2007) and Meddahi et al. (2011), inter alia, for recent surveys and collections of articles). These

estimators generally aim to estimate the quadratic variation or the integrated variance of a price

process over some interval of time, such as one day or week. We refer to estimators of this type

collectively as “realized measures.” This area of research has provided practitioners with an abun-

dance of alternatives, inducing demand for some guidance on which estimators to use in empirical

applications. In addition to selecting a particular estimator, these nonparametric measures often

require additional choices for their implementation. For example, the practitioner must choose the

sampling frequency to use and whether to sample prices in calendar time (every x seconds) or tick

time (every x trades). When both transaction and quotation prices are available, the choice of

which price to use also arises. Finally, some realized measures further require choices about tuning

parameters such as a kernel bandwidth or “block size.”

The aim of this paper is to provide guidance on the choice of realized measure to use in applica-

tions. We do so by studying the performance of a large number of realized measures across a broad

range of financial assets. In total we consider almost 400 realized measures, across seven distinct

classes of estimators, and we apply these to 11 years of daily data on 31 individual financial assets

covering five asset classes. We compare the realized measures in terms of their estimation accuracy

for the latent true quadratic variation, and in terms of their forecast accuracy when combined with

a simple and well-known forecasting model. We employ model-free data-based comparison meth-

ods that make minimal assumptions on properties of the efficient price process or on the market

microstructure noise that contaminates the efficient prices.

The fact that the target variable in this analysis (quadratic variation) is latent, even ex-post,

creates an obstacle to applying standard techniques. Previous theoretical research on the selection

of estimators of quadratic variation has often focused on recommending a sampling frequency, or

other tuning parameter, based on the underlying theory using plug-in type estimators of nuisance
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parameters. For some estimators, a formula for the optimal sampling frequency under a set of

assumptions is derived and can be computed using estimates of higher order moments, see Bandi

and Russell (2008) among others. However, these formulas are usually heavily dependent on as-

sumptions about the microstructure noise and efficient price process, such as independence of the

noise from the price, serial correlation, etc.

Previous empirical work on the choice of realized measure has been based on a relatively ho-

mogeneous collection of assets (most commonly, constituents of the Dow Jones Industrial Average

index) or on results from simulations, see Aı̈t-Sahalia and Mancini (2008), Gatheral and Oomen

(2010), Andersen et al. (2011) and Ghysels and Sinko (2011). The benefit of using simulations is

that the true volatility is known to the researcher, and no inference is required to rank the alter-

native realized measures; the drawback is the potential sensitivity of the results to specific choices

for the price process or the noise process. Our analysis extends previous work on this topic by

considering a large, relatively heterogeneous collection of assets, which provides an opportunity

to compare realized measures in environments with varied price processes and market microstruc-

tures. By using real and varied financial data, we avoid having to specify any form for the market

microstructure process, which could lead to a bias in favor of one or another realized measure.

Our objective is to compare a large number of available realized measures in a unified, data-

based, framework. We use the data-based ranking method of Patton (2011a), which makes no

assumptions about the properties of the market microstructure noise, aside from standard moment

and mixing conditions. The main contribution of this paper is an empirical study of the relative

performance of estimators of daily quadratic variation from 7 types of realized measures using

data from 31 financial assets spanning different classes. We use transactions and quotations prices

from January 2000 to December 2010, sampled in calendar time and tick-time, for many sampling

frequencies ranging from 1 second to 15 minutes. We use the “model confidence set”of Hansen

et al. (2011) to construct sets of realized measures that contain the best measure with a given

level of confidence. We are also interested whether a simple RV estimator with a reasonable choice

of sampling frequency, namely 5-minute RV, can stand in as a “good enough” estimator for QV.

This is similar to the comparison of more sophisticated volatility models with a simple benchmark

3



model presented in Hansen and Lunde (2005). We use the step-wise multiple testing method of

Romano and Wolf (2005), which allows us to determine whether any of the 390 or so competing

realized measures is significantly more accurate than a simple realized variance measure based on

5-minute returns. We also conduct an out-of-sample forecasting experiment to study the accuracy

of volatility forecasts based on these individual realized measures, when used in the “heterogeneous

autoregressive” (HAR) forecasting model of Corsi (2009), for forecast horizons ranging from 1 to

50 trading days.

The remainder of this paper is organized as follows. Section 2 provides a brief description of the

classes of realized measures. Section 3 describes ranking methodology and tests used to compare

the realized measures. Section 4 describes the high frequency data and the set of realized measures

we construct. Our main analysis is presented in Section 5, and Section 6 concludes.

2 Measures of asset price variability

To fix ideas and notation, consider a general jump-diffusion model for the log-price p of an asset:

dp (t) = µ (t) dt+ σ (t) dW (t) + κ (t) dN (t) (1)

where µ is the instantaneous drift, σ is the (stochastic) volatility, W is a standard Brownian motion,

κ is the jump size, and N is a counting measure for the jumps. In the absence of jumps the third

term on the right-hand side above is zero. The quadratic variation of the log-price process over

period t+ 1 is defined

QVt+1 = plim
n→∞

n∑
j=1

r2
t+j/n (2)

where rt+j/n = pt+j/n − pt+(j−1)/n

where the price series on day t+1 is assumed to be observed on a grid of n times
{
pt+1/n, ..., pt+1−1/n, pt+1

}
.

See Andersen et al. (2006) and Barndorff-Nielsen and Shephard (2007) for surveys of volatility es-

timation and forecasting using high frequency data. The objective of this paper is to compare
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the variety of estimators of QV that have been proposed in the literature to date. We do so with

emphasis on comparisons with the simple realized variance estimator, which is the empirical analog

of QV:

RVt+1 =
n∑

j=1

r2
t+j/n.

2.1 Sampling frequency, sampling scheme, and sub-sampling

We consider a variety of classes of estimators of asset price variability. All realized measures require

a choice of sampling frequency (e.g., 1-second or 5-minute sampling), sampling scheme (calendar

time or tick time), and, for most assets, whether to use transaction prices or mid-quotes. Thus even

for a very simple estimator such as realized variance, there are a number of choices to be made.

To examine the sensitivity of realized measures to these choices, we implement each measure using

calendar-time sampling of 1 second, 5 seconds, 1 minute, 5 minutes and 15 minutes. We also

consider tick-time sampling using samples that yield average durations that match the values

for calendar-time sampling, as well as a “tick-by-tick” estimator that simply uses every available

observation. Subsampling,1 introduced by Zhang et al. (2005), is a simple way to improve efficiency

of some sparse-sampled estimators. We consider subsampled versions of all the estimators (except

estimators using tick-by-tick data, which cannot be subsampled).2 The sub-sampled version of

RV (which turns out to perform very well in our analysis), was first studied as the “second best”

estimator in Zhang et al. (2005), and is called the “average RV” estimator in Andersen et al. (2011)

and Ghysels and Sinko (2011).

In total we have 5 calendar-time implementations, 6 tick-time implementations, and 5+6–1=10

corresponding subsampled implementations, yielding 21 realized measures for a given price series.

Estimating these on both transaction and quote prices yields a total of 42 versions of each realized

measure. Of course, some of these combinations are expected to perform poorly empirically (given

the extant literature on microstructure biases and the design of some of the estimators described

1Subsampling involves using a variety of “grids” of prices sampled at a given frequency to obtain a collection of
realized measures, which are then averaged to yield the “subsampled” version of the estimator. For example, 5-minute
RV can be computed using prices sampled at 9:30, 9:35, etc. and can also be computed using prices sampled at 9:31,
9:36, etc.

2In general, we implement subsampling using a maximum of 10 partitions.

5



below), and by including them in our analysis we thus have an “insanity check” on whether our

tests can identify these poor estimators.

2.2 Classes of realized measures

The first class of estimators is standard realized variance (RV), which is the sum of squared intra-

daily returns. This simple estimator is the sample analog of quadratic variation, and in the absence

of noisy data, it is the nonparametric maximum likelihood estimator, and so is efficient, see An-

dersen et al. (2001b) and Barndorff-Nielsen (2002). However, market microstructure noise induces

serial auto-correlation in the observed returns, which biases the realized variance estimate at high

sampling frequencies (see Hansen and Lunde (2006b) for a detailed analysis of the effects of mi-

crostructure noise). When RV is implemented in practice, the price process is often sampled sparsely

to strike a balance between increased accuracy from using higher frequency data and the adverse

effects of microstructure noise. Popular choices include 1-minute, 5-minute (as in the title of this

paper), or 30-minute sampling.

We next draw on the work of Bandi and Russell (2008), who propose a method for optimally

choosing the sampling frequency to use with a standard RV estimator. This sampling frequency

is calculated using estimates of integrated quarticity3 and variance of the microstructure noise.

These authors also propose a bias-corrected estimator that removes the estimated impact of market

microstructure noise. Since the key characteristic of the Bandi-Russell estimator is the estimated

optimal sampling frequency, we do not vary the sampling frequency when implementing it. This

reduces the number of versions of this estimator from 42 to 8.

The third class of realized measures we consider is the first-order autocorrelation-adjusted RV

estimator (RVac1) used by French et al. (1987) and Zhou (1996), and studied extensively by Hansen

and Lunde (2006b). This estimator was designed to capture the effect of autocorrelation in high

frequency returns induced by market microstructure noise.

The fourth class of realized measures includes the two-scale realized variance (TSRV) of Zhang

et al. (2005) and the multi-scale realized variance (MSRV) of Zhang (2006). These estimators

3Estimates of daily integrated quarticity are estimated using 39 intra-day prices sampled uniformly in tick-time.
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compute a subsampled RV on one or more slower time scales (lower frequencies) and then combine

with RV calculated on a faster time scale (higher frequency) to correct for microstructure noise.

Under certain conditions on the market microstructure noise, these estimators are consistent at

the optimal rate. In our analysis, we set the faster time scale by using one of the 21 sampling

frequency/sampling scheme combinations mentioned above, while the slower time scale(s) are cho-

sen to minimize the asymptotic variance of the estimatorm using the methods developed in the

original papers. It is worth noting here that “subsampled RV”, which we have listed in our first

class of estimators, corresponds to the “second-best” form of TSRV in Zhang et al. (2005), in that

it exploits the gains from subsampling but does not attempt to estimate and remove any bias in

this measure. We keep any measure involving two or more time scales in the TSRV/MSRV class,

and any measures based on a single time scale are listed in the RV class.

The fifth class of realized measures is the realized kernel (RK) estimator of Barndorff-Nielsen

et al. (2008). This measure is a generalization of RVac1, accommodating a wider variety of mi-

crostructure effects and leading to a consistent estimator. Barndorff-Nielsen et al. (2008) present

realized measures using several different kernels, and we consider RK with the “flat top” versions

of the Bartlett, cubic, and modified Tukey-Hanning2 kernel, and the “non-flat-top”Parzen kernel.

The Bartlett and cubic kernels are asymptotically equivalent to TSRV and MSRV, and modified

Tukey-Hanning2 was the recommended kernel in Barndorff-Nielsen et al. (2008) in their empirical

application to GE stock returns. The non-flat-top Parzen kernel was studied further in Barndorff-

Nielsen et al. (2011) and results in a QV-estimator that is always positive while allowing for depen-

dence and endogeneity in the microstructure noise. We implement these realized kernel estimators

using the 21 sampling frequency/sampling scheme combinations mentioned above, and estimate

the optimal bandwidths for these kernels separately for each day, using the methods in Barndorff-

Nielsen et al. (2011). The realized kernel estimators are not subsampled because Barndorff-Nielsen

et al. (2011) report that for “kinked” kernels such as the Bartlett kernel, the effects of subsampling

are neutral, while for the other three “smooth” kernels, subsampling is detrimental. (The RVac1

measure corresponds to the use of a “truncated” kernel, and subsampling improves performance,

so we include the subsampled versions of RVac1 in the study.)
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The sixth class of estimators is the “realized range-based variance” (RRV) of Christensen and

Podolskij (2007) and Martens and Van Dijk (2007). Early research by Parkinson (1980), Andersen

and Bollerslev (1998) and Alizadeh et al. (2002) show that the properly scaled, daily high-low

range of log prices is an unbiased estimator of daily volatility when constant, but is more efficient

than squared daily open-to-close returns. Correspondingly, Christensen and Podolskij (2007) and

Martens and Van Dijk (2007) apply the same arguments to intra-day data, and improve on the

RV estimator by replacing each intra-day squared return with the high-low range from a block of

intra-day returns. To implement RRV, we use the sampling schemes described above, and then use

block size of 5, following Patton and Sheppard (2009a), and block size of 10, which is close to the

average block size used in Christensen and Podolskij’s application to General Motors stock returns.

Finally, we include the maximum likelihood Realized Variance (MLRV) of Aı̈t-Sahalia et al.

(2005), which assumes that the observed price process is composed of the efficient price plus i.i.d.

noise such that the observed return process follows an MA(1) process, with parameters that can

be estimated using Gaussian MLE. This estimator is shown to be robust to misspecification of the

marginal distribution of the microstructure noise by Aı̈t-Sahalia et al. (2005), but is sensitive to

the independence assumption of noise, as demonstrated in Gatheral and Oomen (2010).

The total number of realized measures we compute for a single price series is 199, so an asset

with both transactions and quote data has a set of 398 realized measures.4

2.3 Additional realized measures

Our main empirical analysis focuses on realized measures that estimate the quadratic variation of

an asset price process. From a forecasting perspective, work by Andersen et al. (2007) and others

has shown that there may be gains to decomposing QV into the component due to continuous

4Specifically, for RV, TSRV, MSRV, MLRV, RVac1, RRV (with two choices of block size) and RK (with 4 dif-
ferent kernels), 11 not-subsampled estimators, which span different sampling frequencies and sampling schemes, are
implemented on each of the transactions and midquotes price series. In addition, we estimate 2 bias-corrected Bandi-
Russell realized measures and 2 not-bias-corrected BR measures (calendar-time and tick-time sampling) per price
series. These estimators account for 11×11×2 + (2+2)×2 = 250 of the total set. RV, TSRV, MSRV, MLRV, RVac1
and RRV (m=5 and 10) also have 10 subsampled estimators per price series, and there are 4 subsampled BR esti-
mators per price series, which adds 7×10×2 + 4×2 = 148 subsampled estimators to the set. In total, this makes
250+148=398 estimators.
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variation (integrated variance, or IV) and the component due to jumps (denoted JV):

QVt+1 = plim
n→∞

n∑
j=1

r2
t+j/n =

∫ t+1

t
σ2 (s) ds︸ ︷︷ ︸

IVt+1

+
∑

t<s≤t+1

κ2 (s)︸ ︷︷ ︸
JVt+1

(3)

Thus for our forecasting application in Section 5.6, we also consider four classes of realized measures

that are “jump robust”, i.e., they estimate IV not QV. The first of these is the bi-power variation

(BPV) of Barndorff-Nielsen and Shephard (2006), which is a scaled sum of products of adjacent

absolute returns. The second class of jump-robust realized measures is the quantile-based realized

variance (QRV) of Christensen et al. (2010). The QRV is based on combinations of locally extreme

quantile observations within blocks of intra-day returns, and requires choice of block length and

quantiles. It reported to have better finite sample performance than BPV in the presence of jumps,

and additionally is consistent, efficient and jump-robust even in the presence of microstructure

noise. For implementation, we use the asymmetric version of QRV with rolling overlapping blocks5

and quantiles approximately equal to 0.85, 0.90 and 0.96, following their empirical application to

Apple stock returns. The block lengths are chosen to be around 100, with the exact value depending

on the number of filtered daily returns, and the quantile weights are calculated optimally following

the method in Christensen et al. (2010). QRV is the most time-consuming realized measure to

estimate, and thus is not further subsampled.

The third class of jump-robust realized measures are the “nearest neighbor truncation” estima-

tors of Andersen et al. (2008), specifically their “MinRV” and “MedRV” estimators. These are the

scaled square of the minimum of two consecutive intra-day absolute returns or the median of 3 con-

secutive intra-day absolute returns. These estimators are more robust to jumps and microstructure

noise than BPV, and MedRV is designed to handle outliers or incorrectly entered price data.

The final class of jump-robust measures estimators is the truncated or threshold realized vari-

ance (TRV) of Mancini (2009, 2001), which is the sum of squared returns, but only including returns

5Christensen et al. (2010) refers to this formulation of the QRV as “subsampled QRV”, as opposed to “block QRV”,
which has adjacent non-overlapping blocks. However, we do not use this terminology as this type of “subsampling”
is different from the subsampling we implement for the other estimators.
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that are smaller in magnitude than a certain threshold. We take the threshold to be 4
√
n−1BPVt,

where n is the number of sampled intra-day returns and BPVt is the previous day’s bi-power

estimate using 1-minute calendar-time sampling of transactions prices.

In total, across sampling frequencies and subsampling/not subsampling we include 206 jump-

robust realized measures in our forecasting application, in addition to the 398 estimators described

in the previous section.

3 Comparing the accuracy of realized measures

We examine the empirical accuracy of our set of competing measures of asset price variability using

two complementary approaches.

3.1 Comparing estimation accuracy

We first compare the accuracy of realized measures in terms of their estimation error for a given

day’s quadratic variation. QV is not observable, even ex post, and so we cannot directly calculate

a metric like mean-squared error and use that for the comparison. We overcome this by using the

data-based ranking method of Patton (2011a). This approach requires employing a proxy (denoted

θ̃) for the quadratic variation that is assumed to be unbiased, but may be noisy.6 This means that

we must choose a realized measure that is unlikely to be affected by market microstructure noise.

Using proxies that are more noisy will reduce the ability to discriminate between estimators, but

will not affect consistency of the procedure. We use the squared open-to-close returns from trades

prices (RVdaily) for our main analysis, and further consider 15-minute RV, 5-minute RV, 1-minute

MSRV and 1-minute RKth2, all computed on trades prices using tick-time sampling, as possible

alternatives.7,8 Since estimators based on the same price data are correlated, it is necessary to use a

6Numerous estimators of quadratic variation can be shown to be asymptotically unbiased, as the sampling interval
goes to zero, however this approach requires unbiasedness for a fixed sampling interval.

7These four other proxies were found to be unbiased for the RVdaily measure for the majority of assets, and in
addition, are generally much more precise.

8We use volatility proxies from different classes of realized measures (RV, MSRV and RK) to reassure the reader
that the rankings we obtain are not sensitive to the choice of proxy. Subject to the proxy being unbiased, the choice of
proxy should not (asymptotically) affect the rankings and this is indeed confirmed in our empirical results in Section
5.
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lead (or a lag) of the proxy to “break” the dependence between the estimation error in the realized

measure under analysis and the estimation error in the proxy. We use a one-day lead.9

The comparison of estimation accuracy also, of course, requires a metric for measuring accuracy.

The approach of Patton (2011a) allows for a variety of metrics, including the MSE and QLIKE

loss functions. Simulation results in Patton and Sheppard (2009b), and empirical results in Hansen

and Lunde (2005), Patton and Sheppard (2009a) and Patton (2011a) all suggest that using QLIKE

leads to more power to reject inferior estimators. The QLIKE loss function is defined

QLIKE L (θ,M) =
θ

M
− log

θ

M
− 1 (4)

where θ is QV, or a proxy for it, and M is a realized measure. With this in hand, we obtain a

consistent (as T →∞) estimate of the difference in accuracy between any two realized measures:

1

T

T∑
t=1

∆L̃ij,t
p−→ E [∆Lij,t] (5)

where ∆L̃ij,t ≡ L
(
θ̃t,Mit

)
− L

(
θ̃t,Mjt

)
and ∆Lij,t ≡ L (θt,Mit) − L (θt,Mjt) . Under standard

regularity conditions (see Patton (2011a) for example) we can use a block bootstrap to conduct

tests on the estimated differences in accuracy, such as the pair-wise comparisons of Diebold and

Mariano (2002) and Giacomini and White (2006), the “reality check” of White (2000) as well as the

multiple testing procedure of Romano and Wolf (2005), and the “model confidence set” of Hansen

et al. (2011).

9As described in Patton (2011a), the use of a lead (or lag) of the proxy formally relies on the daily quadratic
variation following a random walk. Numerous papers, see Bollerslev et al. (1994) and Andersen et al. (2006) for
example, find that conditional variance is a very persistent process, close to being a random walk. Hansen and Lunde
(2010) study the quadratic variation of all 30 constituents of the Dow Jones Industrial Average and reject the null
of a unit root for almost none of the stocks. Simulation results in Patton (2011a) show that inference based on this
approach has acceptable finite-sample properties for DGPs that are persistent but strictly not random walks, and we
confirm in Table A4, in the appendix, that all series studied here are highly persistent.
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3.2 Comparing forecast accuracy

The second approach we consider for comparing realized measures is through a simple forecast-

ing model. As we describe in Section 5.6 below, we construct volatility forecasts based on the

heterogeneous autoregressive (HAR) model of Corsi (2009), estimated separately for each realized

measure. The problem of evaluating volatility forecasts has been studied extensively, see Hansen

and Lunde (2005), Andersen et al. (2005), Hansen and Lunde (2006a) and Patton (2011b) among

several others. The latter two papers focus on applications where an unbiased volatility proxy

is available, and again under standard regularity conditions we can use block bootstrap methods

to conduct tests such as those of Diebold and Mariano (2002), White (2000), Romano and Wolf

(2005), Giacomini and White (2006), and Hansen et al. (2011).

4 Data description

We use high frequency (intra-daily) asset price data for 31 assets spanning five asset classes: individ-

ual equities (from the U.S. and the U.K.), equity index futures, computed stock indices, currency

futures and interest rate futures. The data are transactions prices and quotations prices taken from

Thomson Reuter’s Tick History. The sample period is January 2000 to December 2010, though

data availability limits us to a shorter sub-period for some assets. Short days, defined as days

with prices recorded for less than 60% of the regular market operation hours, are omitted. For

each asset, the number of short days is small compared to the total number of days – the largest

proportion of days omitted is 1.7% for ES (E-mini S&P500 futures). Across assets, we have an

average of 2537 trading days, with the shortest sample being 1759 trade days (around 7 years) and

the longest 2782 trade days. All series were cleaned according to a set of baseline rules similar to

those in Barndorff-Nielsen et al. (2009). Data cleaning details are provided in the appendix.

Table 1 presents the list of assets, along with their sample periods and some summary statistics.

Computed stock indices are not traded assets and are constructed using trade prices, and so quotes

are unavailable. This table reveals that these assets span not only a range of asset classes, but

also characteristics: average annualized volatility ranges from under 2%, for interest rate futures,
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to over 40%, for individual equities. The average time between price observations ranges from

under one second, for the E-mini S&P 500 index futures contract, to nearly one minute, for some

individual equities and computed equity indices.

[ INSERT TABLE 1 ABOUT HERE ]

Given the large number of realized measures and assets, it is not feasible to present summary

statistics for all possible combinations. Table A1 in the appendix describes the shorthand used to

describe the various estimators10, and in Table 2 we present summary statistics for a selection of

realized measures for two assets, Microsoft and the US dollar/Australian dollar futures contract.11

Tables A3 and A4 in the appendix contain more detailed summary statistics. Table 2 reveals some

familiar features of realized measures: those based on daily squared returns have similar averages

to realized measures using high (but not too high) frequency data, but are more variable, reflecting

greater measurement error. For Microsoft, for example, RVdaily has an average of 3.20 (28.4%

annualized) compared with 3.37 for RV5min, but its standard deviation is more than 25% larger

than that of RV5min. We also note that RV computed using tick-by-tick sampling (i.e., the highest

possible sampling) is much larger on average than the other estimators, more than 3 times larger

for Microsoft and around 50% larger for the USD/AUD exchange rate, consistent with the presence

of market microstructure noise.

In the last four columns of Table 2 we report the first- and second-order sample autocorrelations

of the realized measures, as well as estimates of the first- and second-order autocorrelation of the

underlying quadratic variation using the estimation method in Hansen and Lunde (2010).12 As

expected, the latter estimates are much higher than the former, reflecting the attenuation bias due

to the estimation error in a realized measure. Using the method of Hansen and Lunde (2010),

the estimated first-order autocorrelation of QV for Microsoft and the USD/AUD exchange rate

is around 0.95, while the sample autocorrelation for the realized measures themselves averages

10For example, “RV 1m ct ss” refers to realized variance (RV), computed on 1-minute data (1m) sampled in
calendar time (c), using trade prices (t), with subsampling (ss). See Table A1 for details.

11All realized measures were computed using code based on Kevin Sheppard’s “Oxford Realized” toolbox for
Matlab, http://realized.oxford-man.ox.ac.uk/data/code.

12Following their empirical application to the 30 DJIA stocks, we use the demeaned 4th through 10th lags of the
daily QV estimator as instruments.
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around 0.68. Table A4 presents summaries of these autocorrelations for all 31 assets, and reveals

that the estimated first- (second-) order autocorrelation of the underlying QV is high for all assets.

The average estimate across assets realized measures, even the poor estimators, equals 0.95 (0.92).

These findings support our use, in the next section, of the ranking method of Patton (2011a), which

relies on high persistence of QV.

[ INSERT TABLE 2 ABOUT HERE ]

5 Empirical results on the accuracy of realized measures

We now present the main analysis of this paper. We firstly discuss simple rankings of the realized

measures, and then move on to more sophisticated tests to formally compare the various measures.

As described in Section 3, we measure accuracy using the QLIKE distance measure, using squared

open-to-close returns (RVdaily) as the volatility proxy, with a one-day lead to break the dependence

between estimation error in the realized measure and error in the proxy. In some of the analysis

below we consider using higher frequency RV measures for the proxy (RV15min and RV5min),

as well as some non-RV proxies, namely 1-minute MSRV and 1-minute Tukey-Hanning2 Realized

Kernel.

5.1 Rankings of average accuracy

We firstly present a summary of the rankings of the 398 realized measures applied to the 31 assets

in our sample. These rankings are based on average, unconditional distance of the measure from

the true QV, and in Section 5.5 we consider conditional rankings.

The top panel of Table 3 presents the “top 10” individual realized measures, according to their

average rank across all assets in a given class.13 It is noteworthy that 5-minute RV does not appear

in the top 10 for any of these asset classes. This is some initial evidence that there are indeed better

13Table A6 in the appendix presents rank correlation matrices for each asset class, and confirms that the rankings
of realized measures for individual assets in a given asset class are relatively consistent, with rank correlations ranging
from 0.68 to 0.87.
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estimators of QV available, and we test whether this outperformance is statistically significant in

the sections below.

With the caveat that these estimated rankings do not come with any measures of significance,

and that realized measures in the same class are likely highly correlated14, we note the following

patterns in the results. Realized kernels appear to do well for individual equities (taking 7 of the

top 10 slots), realized range does well for interest rate futures (8 out of top 10), and two/multi-

scales RV do well for currency futures (6 out of the top 10). For computed indices, RVac1 and

realized kernels comprise the entire top 10. The top 10 realized measures for index futures contain

a smattering of measures across almost all classes. The lower panel of Table 3 presents a summary

of the upper panel, sorting realized measures by class and sampling frequency.

It is perhaps also interesting to note which price series is most often selected. We observe a mix

of trades and quotes for individual equities,15 while we see mid-quotes dominating the top 10 for

interest rate futures and currency futures. For equity index futures, transaction prices make up the

entire top 10. (Our computed indices are only available with transaction prices, so no comparisons

are available for that asset class.)

[ INSERT TABLE 3 ABOUT HERE ]

5.2 Pair-wise comparisons of realized measures

To better understand the characteristics of a “good” realized measure, we present results on pair-

wise comparisons of measures that differ only in one aspect. We consider three features: the use

of calendar-time vs. tick-time sampling; the use of transaction prices vs. mid-quotes; and the use

of subsampling. For each class of realized measures and for each sampling frequency, we compare

pairs of estimators that differ in one of these dimensions, and compute a robust t-statistic on the

average difference in loss, separately for each asset.16 Table 4 presents the proportion (across the

14See Table A5 in the appendix for a summary of the correlations between realized measures.
15In fact, decomposing this group into US equities and UK equities, we see that the top 10 realized measures for

US equities all use transaction prices, while the top 10 for UK equities all use mid-quotes, perhaps caused by different
forms of market microstructure noise on the NYSE and the LSE.

16This is done as a panel regression for a single asset, as for each measure of a specific estimator class and sampling
frequency, there are 2×2×2 = 8 versions (cal-time vs. tick time, trades vs. quotes, not subsampled vs. subsampled),
and conditioning on one of these characteristics leaves 4 versions.
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31 assets) of t-statistics that are significantly positive minus the proportion that are significantly

negative.17 A negative entry in a given element indicates that the first approach (eg, calendar-time

sampling in the top panel) outperforms the second approach.

The top panel of Table 4 reveals that for high frequencies (1-second and 5-second), calendar time

sampling is preferred to tick-time sampling, while for lower frequencies (5-minute and 15-minute),

tick-time sampling generally leads to better realized measures. Oomen (2006) and Hansen and

Lunde (2006c) provide theoretical grounds for why tick-time sampling should outperform calendar-

time sampling, and at lower frequencies this appears to be true. Microstructure noise may (likely)

play a role at the highest frequencies, and the ranking of calendar-time and tick-time sampling

depends on their sensitivity to this noise.

The middle panel of Table 4 shows that transaction prices are generally preferred to quote prices

for most estimator-frequency combinations. Exceptions are RV, MLRV and RRV at the highest

frequencies (1-tick and/or 1-second) and MSRV at low frequencies.

The lower panel of Table 4 compares realized measures with and without subsampling. Theo-

retical work by Zhang et al. (2005), Zhang (2006), Andersen et al. (2011) and Ghysels and Sinko

(2011) suggests that subsampling is a simple way to improve the efficiency of a realized measure.

Our empirical results generally confirm that subsampling is helpful, at least when using lower fre-

quency (5-minute and 15-minute) data. For higher frequencies (1-second to 1-minute), subsampling

has either a neutral or negative impact on accuracy. Interestingly, we note that for the realized

range (RRV), subsampling reduces accuracy across all sampling frequencies.

[ INSERT TABLE 4 ABOUT HERE ]

5.3 Does anything beat 5-minute RV?

Realized variance, computed with a reasonable choice of sampling frequency, is often taken as a

benchmark or rule-of-thumb estimator for volatility, see Andersen et al. (2001a) and Barndorff-

17The format of the panels in this table vary slightly: the top panel does not have a column for 1-tick sampling
as there is no calendar-time equivalent, and the lower panel does not have this column as 1-tick measures cannot
be subsampled. The lower panel does not contain the RK row, given the work of Barndorff-Nielsen et al. (2011).
Finally, the middle panel covers only 26 assets, as we only have transaction prices for the 5 computed indices.
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Nielsen (2002) for example. This measure has been used as far back as French et al. (1987), is

simple to compute, and when implemented on a relatively low sampling frequency (such as 5-

minutes) requires much less data and data cleaning. Thus it is of great interest to know whether

it is significantly outperformed by one of the many more sophisticated realized measures proposed

in the literature.

We use the stepwise multiple testing method of Romano and Wolf (2005) to address this ques-

tion. The Romano-Wolf method tests the unconditional accuracy of a set of estimators relative to

that of a benchmark realized measure, which we take to be RV computed using 5-minute calendar

time sampling on transaction prices (which we denote RV5min). This procedure is an extension

of the “reality check” of White (2000), allowing us to determine not only whether the benchmark

measure is rejected, but to identify the competing measures that led to the rejection. Formally, the

Romano-Wolf stepwise method examines the set of null hypotheses:

H
(s)
0 : E [L (θt,Mt,0)] = E [L (θt,Mt,s)] , for s = 1, 2, ..., S (6)

and looks for realized measures, Mt,s, such that either E [L (θt,Mt,0)] > E [L (θt,Mt,s)] or

E [L (θt,Mt,0)] < E [L (θt,Mt,s)] . The Romano-Wolf procedure controls the “family-wise error

rate”, which is the probability of making one or more false rejections among the set of hypotheses.

We run the Romano-Wolf test in both directions, firstly to identify the set of realized measures

that are significantly worse than RV5min, and then to identify the set of realized measures that

are significantly better than RV5min. We implement the Romano-Wolf procedure using the Politis

and Romano (1994) stationary bootstrap with 1000 bootstrap replications, and an average block

size of 10 days. A summary of results is presented in Table 5, and detailed results can be found in

the online appendix.

The striking feature of Table 5 is the preponderance of estimators that are significantly beaten

by RV5min, and the almost complete lack of estimators that significantly beat RV5min. Concerns

about potential low power of this inference method are partially addressed by the ability of this

method to reject so many estimators as significantly worse than RV5min: using daily RV as the
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proxy we reject an average of 185 estimators (out of 398) as significantly worse than RV5min, which

represents approximately half of the set of competing measures.18

We also present results using the other four proxies. These proxies are more precise, although

they are potentially more susceptible to market microstructure noise. Results from the more precise

proxies are very similar: with these better proxies we can reject almost two-thirds of competing

estimators as being significantly worse than RV5min, but we find just one asset out of 31 has any

measures that significantly outperform RV5min.19,20

The asset for which we find that RV5min is significantly beaten, the 10-year US Treasury note

futures contract (TY), is among the most frequently traded in our sample. (It is noteworthy,

however, that there are five other assets that are more or comparably liquid but for which we

find no realized measure significantly better than RV5min.21) For the 10-year Treasury note, the

realized measures that outperform RV5min include MSRV, RK and RRV all estimated using 1-

second or 5-second sampling (in calendar time or business time, with or without subsampling), and

1-minute RV and 1-minute RVac1; a collection of measures that one might expect to do well for a

very liquid asset.

It is also noteworthy, that, combining the set of estimators that are significantly worse than

RV5min (between a half and two-thirds of all estimators) with those that are significantly better

18We note here that averaging across all possible tuning parameters for a given estimator, as we do in Table 5, may
obscure the good performance of an estimator using well-chosen tuning parameters, by grouping it with estimators
using poorly-chosen tuning parameters. An alternative to this is pulling out a “reasonable” version of each estimator
from the entire set, and considering only this reduced set of “reasonable” realized measures. The difficulty with this
approach is determining ex ante the “reasonable” versions across assets with widely varying characteristics (e.g.,
computed stock indices vs. currency futures).

19We also implemented the Romano-Wolf procedure swapping the “reality check” step with a step based on the test
of Hansen (2005). This latter test is designed to be less sensitive to poor alternatives with large variances (a potential
concern in our application) and so should have better power. We found no change in the number of rejections. In
a more forceful attempt to examine the sensitivity to poor alternatives: we identified, ex ante, 72 estimators that
the existing literature would suggest are likely to have poor performance (for example, realized kernels on 15-minute
returns). We removed this group of estimators from the competing set, and conducted the Romano-Wolf procedure
on the remainder of the competing set. We found virtually no change in results of the tests – in fact, counting across
the two Romano-Wolf tests for each of 31 assets, there was only one instance where an estimator was found to have
different outcome from the original test.

20It is worth noting here that Table 5 reveals that the use of a particular measure does not lead to an apparent
improvement in the performance of measures from the same class. Specifically, using a RV as the proxy does not
“favor” RV measures, and using RK or TSRV does not favor RK or TSRV measures. The use of a one-day lead of
the proxy solves this potential problem.

21These four assets are the futures contracts on S&P500, the FTSE 100, the EuroStoxx 50, the DAX 40 and the
Euro/USD exchange rate.
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(approximately zero), leaves between one-third and one-half of the set of 398 estimators that are

not significantly different than RV5min in terms of average accuracy.

[ INSERT TABLE 5 ABOUT HERE ]

To better understand the results of the Romano-Wolf tests applied to this large collection of

assets and realized measures, Table 6 presents the proportion (across assets) of estimators that are

significantly worse than RV5min by class of estimator and sampling frequency.22 Darker shaded

regions represent “better” estimators, in the sense that they are rejected less often. Across the five

asset classes and the entire set of assets, we observe a darker region running from the top right to

the bottom left. This indicates that the simpler estimators in the top two rows (RV and RVac1)

do better, on average, when implemented on lower frequency data, such as 1-minute and 5-minute

data, while the more sophisticated estimators (RK, MSRV, TSRV and RRV) do relatively better

when implemented on higher frequency data, such as 1-second and 5-second data.23

[ INSERT TABLE 6 ABOUT HERE ]

5.4 Estimating the set of best realized measures

The tests in the previous section compare a set of competing realized measures with a given bench-

mark measure. The RV5min measure is a reasonable, widely-used, benchmark estimator, but one

might also be interested in determining whether maintaining that estimator as the “null” gives it

undue preferential treatment. To address this question, we undertake an analysis based on the

“model confidence set” (MCS) of Hansen et al. (2011). Given a set of competing realized measures,

this approach identifies a subset that contains the unknown best estimator with some specified

level of confidence, with the other measures in the MCS being not significantly different from the

true best realized measure. As above, we use the QLIKE distance and a one-day lead of RVdaily

22In this table we aggregate across calendar-time and tick-time, trade prices and quote prices, and subsampled and
not, to focus solely on the class of realized measure and sampling frequency dimensions.

23When Table 6 is replicated for the Romano-Wolf results obtained using the other four proxies given in Table 5,
we find the same patterns. These tables are available in the online appendix. Comparing across proxies, we find
that using a proxy of a certain class does not bias the Romano-Wolf results in favor of estimators of the same class.
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as the proxy for QV, and Politis and Romano’s (1994) stationary bootstrap with 1000 bootstrap

replications and average block-size equal to 10.24

The number of realized measures in the model confidence sets varies across individual assets,

from 3 to 143 (corresponding to a range of 1% to 37% of all measures), with the average size

being 40 estimators, representing 10% of our set of 398 realized measures. By asset group, index

futures and interest rate futures have the smallest model confidence sets, containing around 5% of

all realized measures, and individual equities have the largest sets, containing around 17% of all

measures. Table A7 in the appendix contains further information on the MCS size for each asset.

In Table 7, we summarize these results by reporting the proportion of estimators from a given

class and given frequency that are included in model confidence sets, aggregating results across

assets. Darker shaded elements represent the ”better” realized measures. Table 7 reveals a number

of interesting features. Focusing on the results for all 31 assets, presented in the upper-left panel,

we see that the “best” realized measure, in terms of number of appearances in a MCS, is not

5-minute RV but 1-minute RV. Realized kernels sampled at the one-second frequency also do very

well, as do TSRV and MSRV sampled at the one-second frequency.

Looking across asset classes, we see a similar pattern to that in Table 6: a dark region of good

estimators includes RV and RVac1 based on lower frequency data (5 seconds to 5 minutes) and

more sophisticated estimators (RK, MSRV, TSRV, MLRV and RRV) based on higher frequency

data (1 second and 5 seconds). We also observe that for more liquid asset classes, such as currency

futures, interest rate futures, and index futures, realized measures appear in a MCS more often

if based on higher frequency data. In contrast, for individual equities and for computed equity

indices, the preferred sampling frequencies are generally lower.

We can also use the estimated model confidence sets to shed light on the particularly poorly

performing realized measures. Across all 31 assets, we see that realized measures based on 15-

minute data almost never appear in a MCS (the only exceptions are RV and RVac1 measures for

24Similar to above, we also consider 15-minute RV, 5-minute RV, 1-minute MSRV, and 1-minute RKth2 as proxies
for QV. Again, we find that using of one of these more accurate proxies leads to greater power in the test, i.e.
smaller model confidence sets. However, the results show similar patterns to those using RVdaily as the proxy, and
importantly, we find that using a proxy of a certain class (RV, TSRV, RK) does not bias the results of the test in
favor of estimators of the same class. Detailed results can be found in the online appendix.
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individual equities). Similarly, we observe that the more sophisticated realized measures, TSRV,

MSRV, MLRV, RK and RRV are almost never in a MCS when estimated using 5-minute data: 5-

and 15-minute sampling frequencies appear to be too low for these estimators. (This is consistent

with the implementations of these estimators in the papers that introduced them to the literature,

and so is not surprising.)

Overall, the results from the previous section revealed that it was very rare to find a realized

measure that significantly outperformed 5-minute RV. The analysis in this section, which avoids the

need to specify a “benchmark” realized measure, reveals evidence that some measures are indeed

more accurate than 5-minute RV. We find that 1-minute RV and RVac1, 1-second and 5-second

realized kernels and multi-scale RV, and 5-second and 1-minute realized range estimators appear

more often in the MCS than 5-minute RV.

[ INSERT TABLE 7 ABOUT HERE ]

5.5 Variations in accuracy

The Romano-Wolf tests and model confidence sets investigate average accuracy over the sample

period, from 2000 to 2010. These 11 years contain several subperiods during which asset volatility

and market behavior were very different, and by conducting tests over the entire period we may

miss some significant differences in conditional accuracy that are averaged out over the full sample.

To investigate this further, we implement tests of relative conditional accuracy using the ap-

proach of Giacomini and White (2006). This approach can be used to study whether the relative

performance of two realized measures varies with some conditioning variable, Z. We consider two

conditioning variables: volatility, measured using the log-average RVdaily for the asset over the

previous 10 trading days, and liquidity, measured using the average log-spread for the asset over

the past 10 trading days. We estimate regressions that compare RV5min with a few of the better

performing realized measures identified in the previous section, namely, 5-second MSRV, 1-minute

RVac1, and 5-second RKth2.25 We also include 1-minute RV and RVdaily to study the accuracy

25The fact that we examine realized measures identified as “good” in previous analysis of course biases the interpre-
tation of any subsequent tests of unconditional accuracy. In this section we focus on whether the relative performance
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gains from using higher-frequency price data. All of these estimators are computed on transaction

prices with calendar-time sampling. We estimate this model using an unbalanced panel frame-

work, allowing for different unconditional relative accuracy across assets, but imposing a common

coefficient on the conditioning variable. For a given pair of realized measures (M i
0,t,M

i
j,t ), we

estimate:

L(θ̃it,M
i
0,t)− L(θ̃it,M

i
j,t) = αi,j + βjZ

i
t−1, for t = 1, 2, ...T ; i = 1, 2, ..., 31 (7)

where θ̃it is the volatility proxy, a lead of RVdaily. A positive value of βj indicates that higher values

of Z lead to an improvement in the performance of the alternative realized measure, M i
j,t, relative

to M i
0,t =RV5min. We estimate this panel model for all 31 assets jointly, and also for subpanels

comprising of assets from a single class.

The t-statistics for the coefficient on Z from the panel regressions are presented in Table 8. For

daily squared returns we see that all coefficients on volatility are negative and strongly significant for

all but the class of currency futures. This reveals that daily squared returns, which are significantly

worse than RV5min unconditionally, perform even worse when volatility is high. We find a similar

result for MSRV, RK and 1-minute RV, with their relative performance declining in highly volatile

markets, however these results are both driven purely by the set of computed indices, which is the

set where the MSRV, RK and 1-minute RV measures did not perform well unconditionally.

Using recent liquidity, measured via the bid-ask spread, we find that the relative performance of

MSRV and the 1-minute RV estimators compared to RV5min declines as spreads increase (i.e., as

liquidity decreases). For both of these realized measures, this is true when using all assets, and is

driven by significant results for the class of individual equities and index futures. The performances

of RK and RVac1, on the other hand, do not appear to be significantly affected by changes in market

liquidity.

[ INSERT TABLE 8 ABOUT HERE ]

of these measures varies significantly with some conditioning variable Z, and the problem of pre-test bias does not
arise here.
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5.6 Out-of-sample forecasting with realized measures

The results above have all focussed on the relative accuracy of realized measures for estimating

quadratic variation. One of the main uses of estimators of volatility is in the production of volatility

forecasts, and in this section we compare the relative accuracy of forecasts based on our set of

competing realized measures. We do so based on the simple heterogeneous autoregressive (HAR)

forecasting model of Corsi (2009). This model is popular in practice as it captures long memory-

type properties of quadratic variation, while being simpler to estimate than fractionally integrated

processes, and performs well in volatility forecasting, see Andersen et al. (2007) for example.26 For

each realized measure, we estimate the HAR model using the most recent 500 days of data:

θ̃t+h = β0,j,h + β1,j,hMjt + β2,j,h
1

5

4∑
k=0

Mj,t−k + β3,j,h
1

22

21∑
k=0

Mj,t−k + εjt, (8)

where Mjt is a realized measure from the competing set, and θ̃t+h is the volatility proxy (the

squared open-to-close return for day t+h). We estimate this regression separately for each forecast

horizon, h, ranging from 1 to 50 trading days, and from those estimates we obtain a h-day ahead

volatility forecast, which we then compare with our volatility proxy. We re-estimate the model

each day using a rolling window of 500 days.

In addition to the 398 realized measures we have analyzed so far, for forecasting analysis we

also consider some “jump-robust” estimators of volatility. These measures, described in Section

2.3, are designed to estimate only the integrated variance component of quadratic variation, see

equation 2. The inclusion of these estimators is motivated by studies such as Andersen et al. (2007)

and Patton and Sheppard (2011) which report that the predictability of the integrated variance

component of quadratic variation is stronger than the jump component, and thus there may be gains

to separately forecasting the two components. Using a HAR model on these jump-robust realized

measures effectively treats the jump component as unpredictable, while using a HAR model on

estimators of QV (our original set of 398 measures) treats the two components as having equal

26Alternatives to this specification include a simple AR(1), as used by Aı̈t-Sahalia and Mancini (2008), an AR(p),
as in Andersen et al. (2011), or a MIDAS regression, as in Ghysels and Sinko (2011). These models are all similar in
structure and the results we obtain below are unlikely to differ greatly across these choices of forecasting model.
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predictability. Extending our set to include 206 jump-robust measures increases its total number

to 604 realized measures.

For each forecast horizon between one day and 50 days we estimate the model confidence set

of Hansen et al. (2011). It is not feasible to report the results of each of these estimates for

each horizon, and so we summarize them in two ways. Firstly, in Figure 1 below we present the

size of the MCS, measured as the proportion of realized measures that are included in the MCS,

across forecast horizons. From this figure we observe that the MCSs are relatively small for short

horizons, consistent with our results in Section 5.4 and with the well-known strong persistence in

volatility. As the forecast horizon grows, the size of the MCSs increase, reflecting the fact that for

longer horizons more precise measurement of current volatility provides less of a gain than for short

horizons. It is noteworthy that even at horizons of 50 days, we are able to exclude around 35%

of realized measures from the MCS, averaging across all 31 assets. This proportion varies across

asset classes, with the proportion of estimators included at h = 50 being around 22% for the liquid

class of interest rate futures, and being almost 100% (i.e., no realized measures are excluded) for

the illiquid class of computed equity indices.

[ INSERT FIGURE 1 ABOUT HERE ]

In Table 9 we study these results in greater detail. This table has the same format as Table 7,

and reports the proportion of realized measures from a given class and given frequency that belong

to a model confidence set, aggregating results across assets and forecast horizons between 1 and 5

days. As in Table 7, darker shaded elements represent the better realized measures. What is most

striking about this table is the relative success of the jump-robust realized measures for volatility

forecasting. For each of the 5 asset classes, the best measure is one of truncated-RV (TRV) at

the 5-minute or 15-minute frequency, or quantile-RV at the 5-minute frequency. This pattern is

consistent across all asset classes: the best realized measures for volatility forecasting appear to be

jump-robust measures, estimated using relatively low (5- or 15-minute) frequency data.

[ INSERT TABLE 9 ABOUT HERE ]
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In Figure 2 below we present the proportion (across assets) of model confidence sets that contain

RV5min and TRV5min (both computed on trades prices with calendar-time sampling), for each

forecast horizon. We see that, across all assets, RV5min appears in around 40% of MCSs for shorter

horizons, rising to around 70% for longer horizons.27 RV5min does best for currency futures, equity

index futures and computed indices, and relatively poorly for interest rate futures. Figure 2 also

presents the corresponding proportion for truncated RV5min, and we see that this measure does

almost uniformly better than RV5min, with the exceptions being for the individual equities and

index futures on longer forecast horizons. TRV5min does particularly well for currency futures and

interest rate futures.

[ INSERT FIGURE 2 ABOUT HERE ]

Our study of a broad collection of assets and a large set of realized measures necessitates

simplifying the analysis in several ways, and a few caveats to the above conclusions apply. Firstly,

these results are based on each realized measure being used in conjunction with the HAR model

of Corsi (2009). This model has proven successful in a variety of volatility applications, but it

is by no means the only relevant volatility forecasting model in the literature, and it is possible

that the results and rankings change with the use of a different model. Secondly, by treating the

prediction of future QV as a univariate problem, we have implicitly made a strong assumption

about the predictability of volatility attributable to jumps, either that it is identical to that of

integrated variance, or that it is not predictable at all. A more sophisticated approach might treat

these two components separately. Thirdly, we have only considered forecasting models based on a

single realized measure, and it may be possible that a given realized measure is not very useful on

its own, but informative when combined with another realized measure.

27Note that this analysis only counts RV5min computed in calendar time, using transaction prices, and not sub-
sampled. Thus this represents a lower bound on the proportion of MCSs that include any RV5min.
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6 Summary and conclusion

Motivated by the large body of research on estimators of asset price volatility using high frequency

data (so-called “realized measures”), this paper considers the problem of comparing the empirical

accuracy of a large collection these measures across a range of assets. In total, we consider almost

400 different estimators, applied to 11 years of data on 31 different financial assets across five asset

classes, including equities, indices, exchange rates and interest rates. We apply data-based ranking

methods to the realized measures and to forecasts based on these measures, for forecast horizons

ranging from 1 to 50 trading days.

Our main findings can be summarized as follows. Firstly, if 5-minute RV is taken as the

benchmark realized measure, then using the testing approach of Romano and Wolf (2005) we find

very little evidence that it is significantly outperformed by any of the competing measures, in

terms of estimation accuracy, across any of the 31 assets under analysis. If, on the other hand,

the researcher wishes to remain agnostic about the “benchmark” realized measure, then using the

model confidence set of Hansen et al. (2011), we find that 5-minute RV is indeed outperformed

by a small number of estimators, most notably 1-minute RV and RVac1, and 1- and 5-second

realized kernels and MSRV. Finally, when using forecast performance as the method of ranking

realized measures, we find that 5-minute or 15-minute truncated RV provides the best performance

on average, which is consistent with the work of Andersen et al. (2007), who find that jumps are

not very persistent. The rankings of realized measures vary across asset classes, with 5-minute

RV performing better on the relatively less liquid classes (individual equities and computed equity

indices), and the gains from more sophisticated estimators like MSRV and realized kernels being

more apparent for more liquid asset classes (such as currency futures and equity index futures).

We also find that for realized measures based on frequencies of around five minutes, sampling in

tick time and subsampling the realized measure both generally lead to increased accuracy.
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Table 1
Decription of Price Data

Assets Dates T
Avg. Avg. Avg.
Ann. Trade Quote
Vol Dur. Dur.

U.S. Equities
KO Coca-Cola 1/3/2000 12/31/2010 2766 18.8 7.6 2.6
SYY Sysco 1/3/2000 12/31/2010 2766 22.1 12.5 3.4
IFF Intl. Flavors & Fragrances 1/3/2000 12/31/2010 2767 23.9 26.6 5.4
MSFT Microsoft 1/3/2000 12/31/2010 2763 24.5 2.7 1.5
LSI LSI corp. 1/3/2000 12/31/2010 2767 48.5 15.6 3.8
U.K. Equities
DGE Diageo 1/4/2000 12/31/2010 2769 23.9 15.8 3.6
SAB SABMiller 1/4/2000 12/31/2010 2733 27.9 23.6 3.8
VOD Vodaphone 1/4/2000 12/31/2010 2770 29.5 7.0 2.3
RSA RSA Ins. 1/4/2000 12/31/2010 2768 39.1 28.1 6.4
SDR Schroders 1/4/2000 12/31/2010 2757 45.8 52.4 8.7
Index futures
JNI Nikkei 225 1/4/2000 10/29/2010 2644 15.2 3.5 0.9
ES e-mini S&P 500 1/3/2000 12/31/2010 2750 14.6 0.5 0.2
FFI FTSE 100 1/4/2000 10/29/2010 2707 15.6 1.9 0.5
STXE EuroStoxx50 1/3/2000 12/30/2010 2782 17.9 2.0 0.7
FDX DAX 40 1/3/2000 10/29/2010 2738 17.9 1.5 0.8
Interest Rate Futures
TU 2 yr Treasury note 1/2/2003 12/31/2010 1994 1.4 7.6 0.5
FV 5 yr Treasury note 1/2/2001 12/31/2010 2486 3.5 3.0 0.3
TY 10 yr Treasury note 1/2/2001 12/31/2010 2484 5.2 1.9 0.3
US 30 yr Treasury bond 1/2/2001 10/29/2010 2449 8.1 2.4 0.4
FGBS German short term govt bond 1/3/2000 10/29/2010 2735 1.3 9.0 1.9
FGBL German long term govt bond 1/3/2000 10/29/2010 2741 4.6 2.7 1.0
Currency futures
BP British Pound 1/2/2004 12/31/2010 1762 6.7 2.9 0.4
URO Euro 1/2/2004 12/31/2010 1762 6.9 1.4 0.3
JY Japanese Yen 1/2/2004 12/31/2010 1763 7.3 3.1 0.4
CD Canadian Dollar 1/2/2004 12/31/2010 1763 8.4 4.1 0.6
AD Australian Dollar 1/2/2004 12/30/2010 1759 9.3 4.9 0.5
Market Indices
N225 Nikkei 225 1/5/2000 12/30/2010 2665 14.7 48.1 -
SPX S&P500 1/3/2000 12/31/2010 2719 16.1 15.9 -
FTSE FTSE 100 1/4/2000 12/31/2010 2762 15.9 4.9 -
STOXX50E EuroStoxx50 1/3/2000 12/30/2010 2782 18.6 15.2 -
DAX DAX 40 1/4/2006 12/30/2010 2781 19.4 2.9 -

Notes: This table presents the 31 assets included in the analysis, the sample period for each asset, and some
summary statistics: the number of observations, the average volatility (annualized, estimated using squared
open-to-close returns), the average trade duration (in seconds) and the average quote duration.
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Table 2
Summary Statistics of some sample realized measures for two representative assets

mean std dev skew kurt min max rho(1) rho(2) rho*(1) rho*(2)

Microsoft (MSFT) returns
RVdaily 3.20 2.69 6.53 72.09 0.00 112.86 0.26 0.29 0.96 0.99
RV 5m ct 3.37 2.12 4.56 36.86 0.18 63.14 0.72 0.68 0.96 0.95
RV 5m ct ss 2.73 1.97 4.75 40.05 0.07 54.96 0.65 0.62 0.97 0.95
RV 1t bt 11.24 4.51 3.75 20.96 0.27 207.58 0.94 0.92 0.99 0.98
RVac1 1m ct 3.40 2.13 5.22 53.70 0.15 81.89 0.72 0.70 0.94 0.94
RKth2 1m bt 3.19 2.11 4.76 40.18 0.13 66.49 0.70 0.65 0.96 0.95
MSRV 1m ct 3.23 2.12 4.81 41.16 0.13 68.19 0.69 0.65 0.96 0.95
MLRV 5s ct 3.21 3.62 5.02 50.41 0.26 63.32 0.80 0.77 0.95 0.93
RRVm5 1m bt 3.34 2.06 5.37 61.72 0.21 81.49 0.74 0.72 0.94 0.93

USD/AUD exchange rate (AD) returns
RVdaily 0.46 1.17 9.88 149.55 0.00 28.95 0.39 0.40 0.98 0.93
RV 5m ct 0.52 1.02 7.90 91.46 0.04 17.21 0.71 0.78 0.94 0.93
RV 5m ct ss 0.49 1.05 9.29 125.09 0.02 19.56 0.67 0.75 0.86 0.85
RV 1t bt 0.70 1.02 7.61 92.73 0.07 18.37 0.70 0.70 0.95 0.91
RVac1 1m ct 0.52 1.01 7.95 96.27 0.04 18.14 0.73 0.78 0.94 0.93
RKth2 1m bt 0.50 1.01 8.04 94.36 0.04 16.31 0.71 0.78 0.91 0.90
MSRV 1m ct 0.51 1.02 8.06 95.30 0.04 17.04 0.72 0.79 0.92 0.91
MLRV 5s ct 0.57 0.99 6.91 71.92 0.06 16.06 0.79 0.78 0.96 0.92
RRVm5 1m bt 0.54 1.00 7.29 78.92 0.05 16.25 0.78 0.79 0.95 0.91

Note: This table displays the summary statistics for several estimators for Microsoft and Australian-US
Dollar futures. Referring to the four right-most columns, ‘rho’ denotes the sample autocorrelation, and
‘rho*’ denotes the estimated autocorrelation of QV based on a realized measure, using the instrumental
variables method of Hansen and Lunde (2010).
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Table 4.
Pairwise comparisons of estimators

Calendar-time sampling vs Tick-time sampling

1s 5s 1m 5m 15m

RV -84 -74 0 23 35
RVac1 -84 -68 -3 42 29
RK -13 6 48 48 39
MSRV -45 -19 29 42 32
TSRV 35 -52 -3 32 42
MLRV -81 -45 6 42 19
RRV -61 3 55 77 81
BR 0

Transaction prices vs Mid-quote prices

1t 1s 5s 1m 5m 15m

RV 73 73 -19 -62 -81 -81
RVac1 -38 -4 -38 -54 -42 -42
RK -4 27 -15 -65 -96 -88
MSRV -42 -23 -4 77 50 -23
TSRV -65 -92 -42 -12 27 4
MLRV -31 77 23 -50 -46 4
RRV -23 69 19 23 0 23
BR 8

Not subsampled vs Subsampled estimators

1s 5s 1m 5m 15m

RV 3 6 6 29 52
RVac1 -58 -39 29 84 94
MSRV -3 0 10 19 0
TSRV 0 0 16 55 35
MLRV 0 3 6 65 77
RRV 0 -26 -19 -42 -58
BR 6

Note: This table presents results on compar-
isons of realized measures that differ only in the
sampling scheme used (top panel), price series
used (middle panel), or use of subsampling (lower
panel). For each pair of measures, a robust t-
statistic on the averae difference in loss is com-
puted. Each element of the table presents the
proportion of significantly positive t-statistics mi-
nus the proportion of significantly negative t-
statistics. A negative value indicates that the first
approach (e.g., calendar-time sampling in the top
panel) outperforms the second approach, a posi-
tive value indicates the opposite. Elements with
values less than -33 are dark-shaded; those with
values greater than 33 are light-shaded.
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Table 5.
Number of estimators that are significantly different from RV5min in Romano-Wolf Tests

Worse Better
Total

EstimatorsProxy: RV RV RV MSRV RKth2 RV RV RV MSRV RKth2
Daily 15min 1min 1min 1min Daily 15min 1min 1min 1min

KO 161 231 219 240 237 0 0 0 0 0 396
LSI 160 265 257 272 278 0 0 0 0 0 395
MSFT 243 285 272 288 290 0 0 0 0 0 396
IFF 127 238 254 259 252 0 0 0 0 0 391
SYY 129 210 206 190 190 0 0 0 0 0 392
DGE 157 318 335 231 247 0 0 0 0 0 398
VOD 179 279 351 211 212 0 0 0 0 0 397
SAB 126 322 278 312 316 0 0 0 0 0 398
SDR 116 301 295 274 277 0 0 0 0 0 394
RSA 141 291 362 165 202 0 0 0 0 0 397
TU 204 180 194 166 187 0 0 0 0 0 397
FV 192 237 220 221 236 0 0 0 0 0 398
TY 188 229 213 211 225 0 9 24 28 23 398
US 202 247 241 243 254 0 0 0 0 0 397
FGBL 183 269 266 267 268 0 0 0 0 0 398
FGBS 310 367 131 363 343 0 0 0 0 0 398
CD 120 177 178 177 178 0 0 0 0 0 398
AD 102 171 173 180 181 0 0 0 0 0 398
BP 134 166 170 165 166 0 0 0 0 0 398
URO 149 167 172 172 172 0 0 0 0 0 398
JY 139 172 178 175 172 0 0 0 0 0 398
STXE 177 60 183 280 284 0 0 0 0 0 398
JNI 250 324 331 317 318 0 0 0 0 0 394
FDX 142 145 145 182 181 0 0 0 0 0 398
FFI 150 183 182 184 185 0 0 0 0 0 398
ES 159 204 204 204 206 0 0 0 0 0 398
SPX 156 169 169 155 163 0 0 0 7 1 199
STOXX50E 123 170 168 143 166 0 0 0 0 0 199
DAX 122 148 155 147 152 0 0 0 0 0 199
FTSE 153 175 172 129 169 0 0 0 0 0 199
N225 143 159 161 161 160 0 0 0 0 0 197

Note: Results from when a potential proxy has significantly different mean from RVdaily are displayed in lighter color.
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Table 6.
Percentage of estimators that are significantly worse than RV5min

All 31 Assets Currency Futures Interest Rate Futures

1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m
RV 70 55 39 18 17 71 70 36 10 0 0 65 75 59 33 8 52 100
RVac1 30 41 27 19 49 73 0 6 0 0 40 58 36 41 19 46 81 96
RK 11 15 18 50 87 91 0 0 1 41 93 88 40 18 55 98 99 97
MSRV 21 24 13 43 93 87 0 0 0 25 98 78 25 15 8 96 98 89
TSRV 75 39 71 97 98 96 60 24 70 100 98 100 58 15 58 100 100 94
MLRV 28 38 22 22 84 78 0 6 0 0 80 80 33 34 17 83 100 85
RRV 25 35 27 22 66 95 0 0 0 1 58 100 13 19 13 50 100 98
BR 18 0 31

Individual Equities Index Futures Computed Indices

1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m
RV 65 62 54 25 0 40 60 44 30 0 23 95 100 100 100 80 20 85
RVac1 40 58 39 14 29 60 10 33 15 10 55 83 80 100 100 30 60 85
RK 0 14 3 28 71 86 10 3 10 64 100 95 5 65 45 18 80 98
MSRV 20 44 17 13 84 84 20 8 5 58 98 93 60 100 71 50 95 94
TSRV 80 49 61 91 96 92 90 49 95 100 100 98 100 100 100 100 100 100
MLRV 30 58 32 0 71 61 20 28 5 15 93 95 80 100 100 20 85 85
RRV 25 50 37 5 39 86 25 28 15 16 79 100 100 100 100 75 80 100
BR 11 5 75

Note: This table aggregates, for groups of assets (either all 31 assets or assets belonging to one class), the
Romano-Wolf test results identifying estimators that are significantly worse than the benchmark 5-minute
RV (calendar-time, trades prices) estimator. Each table cell reports the proportion of estimators of a certain
estimator class and sampling frequency (across assets, and allowing for different sampling schemes and
sampled price series) that are found to be significantly worse than the benchmark estimator in a Romano-
Wolf test.
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Table 7
Percentage of estimators that are in a 90% MCS

All 31 Assets Currency Futures Interest Rate Futures

1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m
RV 4 3 15 30 18 1 0 3 25 23 15 0 0 0 0 21 8 0
RVac1 7 6 18 27 8 0 0 15 33 15 8 0 0 0 8 8 2 0
RK 18 29 26 6 0 0 10 21 19 1 0 0 0 10 2 0 0 0
MSRV 9 24 21 3 0 0 0 39 15 5 0 0 0 24 21 0 0 0
TSRV 0 11 4 0 0 0 0 12 0 0 0 0 0 22 4 0 0 0
MLRV 9 15 22 15 0 0 0 36 35 10 0 0 0 0 23 0 0 0
RRV 15 11 17 20 2 0 5 20 18 15 0 0 4 10 22 6 0 0
BR 9 14 0

Individual Equities Index Futures Computed Indices

1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m 1t 1s 5s 1m 5m 15m
RV 10 9 13 49 33 3 0 0 30 25 0 0 0 0 0 5 25 0
RVac1 20 11 19 46 16 1 0 3 20 10 0 0 0 0 0 50 5 0
RK 34 58 54 4 0 0 0 10 3 0 0 0 50 10 28 48 0 0
MSRV 20 18 38 0 0 0 0 26 8 0 0 0 20 0 0 20 0 0
TSRV 0 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MLRV 25 11 22 29 0 0 0 21 18 0 0 0 0 0 0 40 0 0
RRV 30 11 18 45 5 0 15 8 19 0 0 0 0 0 0 0 5 0
BR 17 5 0

Note: This table aggregates, for groups of assets (either all 31 assets or assets belonging to one class), the
90% Model Confidence Sets identifying the subset containing “best” estimators. Each table cell reports
the percentage of all estimators of a certain estimator class and sampling frequency (across assets, and
aggregating estimators using different sampling schemes and sampled price series) that are found to be in
a Model Confidence Set.
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Table 8
Impact of volatility or liquidity on the relative performance of realized measures

“Other” Estimator: RV daily RV 1m RVac1 1m MSRV 5s RKth2 5s

t-stats on lagged volatility

All assets -5.71 -1.54 3.46 -3.87 -1.84
Individual Equities -3.08 2.68 0.87 1.03 1.18
Interest Rate Futures -2.00 -1.27 4.69 -1.23 -0.61
Currency Futures -1.52 -0.98 -0.09 -0.93 -0.73
Index Futures -3.75 -0.73 1.26 -1.89 -1.71
Computed Indices -4.91 -3.48 -0.09 -4.62 -2.39

t-stats on lagged liquidity

All assets -0.73 -3.49 -1.23 -2.43 -0.91
Individual Equities 0.34 -6.07 -1.53 -4.10 -1.53
Interest Rate Futures 3.22 0.57 -0.68 0.59 1.21
Currency Futures -1.41 -0.62 0.32 -0.79 -0.45
Index Futures -3.47 -2.47 -0.28 -2.21 -1.46

Note: This table presents β estimates from the panel regression
Loss(RV5mini) – Loss(Otheri) = αi +βZi + εi , where Zi is the lagged 10-day
average of ‘volatility’ as measured by daily squared returns, or ‘liquidity’ mea-
sured by the mean log(ask)–log(bid) over a day. All estimators are calendar-
time sampled, transaction price estimators. Quote data for computed indices
is not available, and so this asset class is not reported in the lower panel.
Statistically significant results (at 5% level) are bolded.
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7 Appendix

7.1 Data cleaning

All series were cleaned according to a set of baseline rules similar to those in Barndorff-Nielsen

et al. (2009). Using notation from that paper, these rules are:

P1 Prices out of normal business hours were discarded.

P2 Prices with a 1-tick reversal greater than 15 times the median spread were removed.

P3 Prices were aggregated using the median of all prices with that time stamp.

Q1 Quotes with bid above offer were removed.

Q2 Quotes with a spread greater than 15 times the daily median spread were removed

QT1 The maximum price was determined as the minimum of the maximum offer and the maximum

transaction price, plus 2 times the daily median standard deviation. The minimum price was

determined as the maximum of the minimum bid and the minimum transaction price, minus

2 times the daily spread. Transactions with prices outside of this range, or quotes where

either price was outside this range were removed.

QT2 Transactions with prices which were outside of the bid and offer over the previous 1 minute

or subsequent 1 minute were removed. No action was taken if there were no quotes during

this period.

QT3 Quotes with bids above or offers below the observed trading price range over the previous

and subsequent minute were removed.

F1 The active future was chosen according to the highest transaction volume on each trading

day, with the condition that once a future has been selected, it cannot be deselected in favor

of a new contract and then reselected. When this occurred, the unique roll date was selected

by maximizing the total transaction volume to choose a single roll date.
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On the rare occasion that a problem was detected, the problematic data points were removed

manually. Manual cleaning was needed in less than 0.1% of all days.

7.2 Additional summary statistics and results

This section summarizes some further summary statistics for the realized measures.

Our broad implementation of realized measures means that some questionable estimators are

included, and for some of these measures, we see unrealistic estimates of QV (negative or zero values,

for example) for several days. We use the following simple rule to remove the worst estimators

before proceeding to formal rankings and tests: if values of the realized measure are less than

a prespecified cutoff (0.0001 for interest rate and currency futures or 0.001 for all other assets)

for more than 5% of the sample then that estimator is removed from the competing set, and not

included in any subsequent analysis. Only 12 of the 31 assets had any realized measures removed,

and the maximum number of removed measures was seven (out of 356 measures in total). Realized

measures with a small number of unrealistic estimates are retained, and the values below the cutoff

are replaced with the previous day’s value. Table A2 records the estimators that are removed from

each competing set for each asset according to this rule. Not surprisingly, these estimators include

many that were implemented on an inappropriate sampling frequency relative to the frequency of

the available price data.

Tables A3 and A4 supplement Table 2, providing summary statistics for each individual asset.

Table A5 presents information on the correlation between the estimators. As one would expect,

the majority of the remaining estimators are highly correlated. On average, about half of the

correlations are over 0.9, and about 25% are 0.95 or higher.

Table A6 presents correlation matrices for the ranks of individual realized measures, according

to estimated accuracy, across pairs of assets in a given asset class. These rank correlations provide

insights into whether the relative performance of realized measures is similar across assets in the

same asset class.

Table A7 presents the size of the estimated model confidence set (MCS) for each individual

asset.
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Table A1
Short-hand codes for estimators.

Order: Class SamplingFreq SamplingScheme PriceSeries Subsampling

Classes of Realized Measures
RV Realized Variance
BR Realized Variance with Bandi-Russell Optimal Sampling
TSRV Two-scales realized variance
MSRV Multi-scales realized variance
RVac1 First-order autocorrelation adjusted realized variance
RKbart Realized Kernel with flat-top Bartlett kernel
RKcub Realized Kernel with flat-top cubic kernel
RKth2 Realized Kernel with flat-top Tukey-Hanning2 kernel
RKnfp Realized Kernel with non-flat-top Parzen kernel
MLRV Maximum-Likelihood realized variance
RRVm5 Realized range-based variance with block length 5
RRVm10 Realized range-based variance with block length 10

Sampling Frequency
1t tick-by-tick
1s 1-second
5s 5-second
1m 1-minute
5m 5-minute
15m 15-minute

Sampling Scheme
c calendar-time sampling
b tick (business)-time sampling

Price series
t transactions prices
q midquote

Subsampling
ss subsampled
“blank” not subsampled

Example:
RV 1m ct ss Realized variance, using 1-minute calendar time sampling of trade prices,

sub-sampled
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Table A3
Summary of Sample Means and Standard Deviations of Realized Measures

Sample Mean Sample Standard Deviation
median std dev min max median std dev min max

KO 1.78 1.88 0.32 17.24 2.83 2.55 0.96 23.00
LSI 11.53 11.13 1.07 106.98 14.66 12.37 3.12 115.60
MSFT 3.09 3.91 0.84 31.34 4.18 5.32 1.59 37.90
IFF 2.78 2.29 0.24 21.72 5.18 3.49 0.56 30.66
SYY 2.38 2.83 0.41 24.49 3.51 4.44 0.65 37.56
DGE 2.73 3.49 0.60 31.37 4.11 5.46 1.43 42.47
VOD 4.44 9.51 1.38 68.50 5.71 10.53 2.28 70.50
SAB 3.60 2.62 1.21 22.40 6.45 4.46 1.83 29.24
SDR 8.92 6.23 0.89 47.60 17.29 10.54 1.67 70.39
RSA 6.96 7.09 1.03 61.13 11.99 9.36 2.71 81.44
TU 0.01 0.01 0.00 0.09 0.02 0.01 0.01 0.11
FV 0.06 0.06 0.03 0.53 0.08 0.05 0.03 0.56
TY 0.13 0.15 0.06 1.18 0.17 0.13 0.06 1.20
US 0.32 0.41 0.14 3.22 0.39 0.29 0.13 2.73
FGBL 0.09 0.12 0.03 0.95 0.08 0.09 0.03 0.73
FGBS 0.01 0.02 0.00 0.09 0.02 0.73 0.01 2.47
CD 0.33 0.39 0.15 3.17 0.35 0.39 0.16 3.12
AD 0.50 0.58 0.19 4.74 0.99 1.10 0.39 8.72
BP 0.23 0.27 0.10 2.15 0.30 0.35 0.14 2.72
URO 0.24 0.28 0.11 2.30 0.25 0.29 0.10 2.25
JY 0.28 0.31 0.12 2.56 0.36 0.35 0.16 2.88
STXE 1.77 2.13 0.57 16.58 3.20 4.09 1.38 29.25
JNI 1.16 1.79 0.42 14.03 1.73 1.90 0.55 15.03
FDX 1.75 2.03 0.63 16.54 2.80 3.02 1.31 23.97
FFI 1.29 1.57 0.61 12.31 2.09 2.54 0.96 19.06
ES 1.26 1.99 0.58 14.64 2.64 3.56 1.17 24.14
SPX 1.10 1.17 0.04 10.49 2.51 2.23 0.10 20.52
STOXX50E 1.50 1.52 0.08 13.63 2.53 2.29 0.17 20.02
DAX 1.78 1.88 0.35 16.45 3.03 2.88 1.04 24.47
FTSE 1.04 1.04 0.05 9.46 2.10 1.60 0.12 14.45
N225 0.91 0.68 0.02 7.67 1.41 1.18 0.04 12.51

Notes: The sample mean and standard deviation of each of the 398 (or 199) realized
measures for all 31 assets were calculated. This table summarizes the summary statistics
by listing the median sample mean, the standard deviation of the sample means, and the
minimum and maximum values of sample means for a given asset. We do the same for
the collection of 398 (or 199) sample standard deviations for each asset.
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Table A4
Estimated autocorrelation of realized measures and quadratic variation

rho(1) rho(2) rho*(1) rho*(2)
mean std dev RV5m mean std dev RV5m mean std dev RV5m mean std dev RV5m

KO 0.61 0.11 0.62 0.61 0.10 0.61 0.93 0.03 0.95 0.90 0.03 0.94
LSI 0.60 0.10 0.64 0.53 0.11 0.60 0.94 0.07 0.98 0.89 0.12 0.96
MSFT 0.73 0.11 0.72 0.71 0.11 0.68 0.96 0.02 0.96 0.94 0.02 0.95
IFF 0.49 0.14 0.46 0.45 0.15 0.41 0.95 0.01 0.93 0.92 0.02 0.93
SYY 0.56 0.07 0.57 0.53 0.11 0.53 0.91 0.03 0.91 0.88 0.04 0.90
DGE 0.60 0.11 0.61 0.54 0.11 0.49 0.97 0.02 0.98 0.95 0.02 0.97
VOD 0.67 0.11 0.45 0.60 0.12 0.44 0.97 0.01 0.96 0.96 0.02 0.95
SAB 0.50 0.12 0.49 0.41 0.12 0.33 0.96 0.03 0.97 0.94 0.04 0.91
SDR 0.48 0.11 0.59 0.38 0.10 0.48 0.93 0.03 0.95 0.91 0.04 0.94
RSA 0.57 0.11 0.56 0.53 0.10 0.50 0.97 0.02 0.96 0.95 0.01 0.93
TU 0.37 0.16 0.35 0.36 0.14 0.35 0.96 0.02 0.94 0.95 0.02 0.95
FV 0.24 0.15 0.20 0.23 0.13 0.17 0.96 0.02 0.95 0.94 0.02 0.94
TY 0.30 0.18 0.19 0.27 0.16 0.16 0.97 0.01 0.96 0.94 0.02 0.94
US 0.28 0.17 0.17 0.24 0.15 0.13 0.96 0.02 0.94 0.93 0.03 0.92
FGBL 0.55 0.15 0.60 0.48 0.13 0.52 0.97 0.01 0.96 0.93 0.01 0.91
FGBS 0.29 0.30 0.58 0.25 0.26 0.49 0.93 0.16 0.96 0.82 0.28 0.94
CD 0.70 0.11 0.68 0.68 0.10 0.68 1.00 0.01 1.00 0.98 0.01 0.97
AD 0.74 0.07 0.71 0.76 0.05 0.78 0.93 0.05 0.94 0.90 0.04 0.93
BP 0.75 0.10 0.71 0.72 0.08 0.70 0.99 0.01 0.99 0.98 0.01 0.98
URO 0.65 0.12 0.63 0.60 0.12 0.58 0.98 0.01 0.98 0.96 0.01 0.95
JY 0.55 0.13 0.50 0.44 0.12 0.40 0.95 0.01 0.95 0.91 0.02 0.93
STXE 0.45 0.26 0.61 0.40 0.23 0.54 0.95 0.02 0.95 0.94 0.02 0.94
JNI 0.70 0.11 0.70 0.66 0.10 0.63 0.91 0.05 0.86 0.93 0.04 0.87
FDX 0.64 0.15 0.23 0.58 0.15 0.20 0.95 0.01 0.96 0.95 0.02 0.95
FFI 0.73 0.08 0.71 0.69 0.07 0.65 0.96 0.01 0.97 0.94 0.01 0.94
ES 0.68 0.09 0.68 0.67 0.08 0.67 0.90 0.03 0.87 0.86 0.04 0.85
SPX 0.66 0.08 0.69 0.65 0.08 0.68 0.91 0.03 0.92 0.86 0.03 0.86
STOXX50E 0.67 0.09 0.57 0.64 0.07 0.57 0.94 0.03 0.90 0.93 0.03 0.89
DAX 0.69 0.08 0.70 0.60 0.08 0.62 0.94 0.01 0.96 0.94 0.02 0.96
FTSE 0.53 0.10 0.55 0.53 0.09 0.51 0.90 0.05 0.89 0.87 0.06 0.85
N225 0.70 0.10 0.74 0.65 0.08 0.67 0.95 0.04 0.95 0.94 0.03 0.94
Average 0.57 0.12 0.56 0.53 0.12 0.51 0.95 0.03 0.95 0.92 0.04 0.93

Notes: This table lists the mean and standard deviation, by asset, of sample autocorrelations of realized measures (denoted ”rho”) and the
estimated autocorrelation of QV based on a realized measure (denoted ”rho*”), using the instrumental variables method of Hansen and Lunde
(2010). The estimates based purely on RV5min are also presented.
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Table A5
Quantiles of pairwise correlations between realized measures of a given asset

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

KO 0.53 0.63 0.68 0.76 0.85 0.92 0.96 0.98 0.99
LSI 0.37 0.48 0.57 0.70 0.82 0.91 0.96 0.97 0.99
MSFT 0.30 0.50 0.62 0.76 0.87 0.94 0.98 0.99 1.00
IFF 0.45 0.52 0.60 0.70 0.86 0.96 0.98 0.99 1.00
SYY 0.47 0.62 0.67 0.79 0.89 0.94 0.97 0.98 1.00
DGE 0.48 0.60 0.65 0.72 0.81 0.90 0.94 0.96 0.99
VOD 0.38 0.65 0.70 0.77 0.87 0.92 0.96 0.97 0.99
SAB 0.22 0.38 0.48 0.62 0.73 0.82 0.89 0.93 0.99
SDR 0.21 0.37 0.47 0.61 0.72 0.81 0.90 0.95 1.00
RSA 0.54 0.64 0.70 0.78 0.84 0.90 0.94 0.96 0.99
TU 0.49 0.58 0.63 0.72 0.81 0.89 0.94 0.96 0.99
FV 0.39 0.51 0.56 0.66 0.76 0.86 0.92 0.95 0.98
TY 0.41 0.52 0.58 0.71 0.83 0.91 0.96 0.97 0.99
US 0.30 0.43 0.51 0.65 0.80 0.91 0.96 0.97 0.99
FGBL 0.45 0.57 0.62 0.72 0.83 0.91 0.95 0.97 0.99
FGBS 0.00 0.02 0.02 0.05 0.64 0.96 1.00 1.00 1.00
CD 0.63 0.79 0.83 0.88 0.93 0.96 0.98 0.99 1.00
AD 0.73 0.85 0.88 0.92 0.96 0.98 0.99 0.99 1.00
BP 0.75 0.83 0.86 0.91 0.94 0.97 0.99 0.99 1.00
URO 0.66 0.74 0.79 0.86 0.92 0.96 0.98 0.99 1.00
JY 0.68 0.77 0.81 0.87 0.92 0.96 0.98 0.99 1.00
STXE 0.16 0.22 0.28 0.46 0.78 0.94 0.98 0.99 1.00
JNI 0.38 0.62 0.70 0.81 0.88 0.93 0.96 0.98 0.99
FDX 0.45 0.57 0.66 0.79 0.90 0.95 0.98 0.99 1.00
FFI 0.81 0.88 0.90 0.93 0.96 0.98 0.99 0.99 1.00
ES 0.74 0.84 0.87 0.92 0.96 0.98 0.99 1.00 1.00
SPX 0.68 0.81 0.84 0.89 0.93 0.97 0.99 0.99 1.00
STOXX50E 0.65 0.76 0.81 0.87 0.92 0.96 0.98 0.99 1.00
DAX 0.57 0.72 0.79 0.87 0.92 0.96 0.98 0.99 1.00
FTSE 0.46 0.64 0.72 0.80 0.88 0.95 0.98 0.99 1.00
N225 0.59 0.69 0.75 0.86 0.93 0.97 0.99 1.00 1.00
Average 0.48 0.60 0.66 0.75 0.86 0.93 0.97 0.98 1.00

Note: All values of ”1.00” are due to rounding. Actual correlation values are less
than 1.
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Table A7
Size of 90% Model Confidence Sets (QLIKE loss)

Proxy for QV
DailyRV 15min RV 5min RV 1min MSRV 1min RKth2

Total # (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
Asset Estimators

KO 396 114 28.8 8 2.0 11 2.8 8 2.0 8 2.0
LSI 395 30 7.6 8 2.0 10 2.5 6 1.5 8 2.0
MSFT 396 75 18.9 6 1.5 3 0.8 5 1.3 5 1.3
IFF 391 125 32.0 32 8.2 27 6.9 49 12.5 49 12.5
SYY 392 143 36.5 14 3.6 20 5.1 8 2.0 10 2.6
DGE 398 28 7.0 13 3.3 2 0.5 14 3.5 13 3.3
VOD 397 35 8.8 5 1.3 5 1.3 4 1.0 4 1.0
SAB 398 80 20.1 15 3.8 13 3.3 5 1.3 5 1.3
SDR 394 21 5.3 3 0.8 4 1.0 2 0.5 3 0.8
RSA 397 21 5.3 5 1.3 9 2.3 16 4.0 8 2.0
TU 397 10 2.5 27 6.8 16 4.0 30 7.6 31 7.8
FV 398 38 9.5 5 1.3 6 1.5 4 1.0 4 1.0
TY 398 20 5.0 20 5.0 24 6.0 24 6.0 23 5.8
US 397 8 2.0 15 3.8 6 1.5 15 3.8 9 2.3
FGBL 398 3 0.8 5 1.3 4 1.0 13 3.3 11 2.8
FGBS 398 37 9.3 10 2.5 2 0.5 18 4.5 16 4.0
CD 398 33 8.3 4 1.0 6 1.5 6 1.5 4 1.0
AD 398 133 33.4 6 1.5 5 1.3 5 1.3 8 2.0
BP 398 13 3.3 20 5.0 23 5.8 9 2.3 10 2.5
URO 398 9 2.3 13 3.3 6 1.5 6 1.5 6 1.5
JY 398 18 4.5 16 4.0 11 2.8 16 4.0 16 4.0
STXE 398 16 4.0 12 3.0 10 2.5 4 1.0 10 2.5
JNI 394 14 3.6 1 0.3 2 0.5 1 0.3 1 0.3
FDX 398 18 4.5 10 2.5 11 2.8 5 1.3 5 1.3
FFI 398 19 4.8 7 1.8 17 4.3 17 4.3 20 5.0
ES 398 34 8.5 8 2.0 13 3.3 9 2.3 1 0.3
SPX 398 4 1.0 4 1.0 4 1.0 22 5.5 4 1.0
STOXX50E 398 30 7.5 10 2.5 2 0.5 16 4.0 18 4.5
DAX 398 40 10.1 2 0.5 4 1.0 22 5.5 14 3.5
FTSE 398 34 8.5 24 6.0 26 6.5 22 5.5 20 5.0
N225 394 44 11.2 12 3.0 4 1.0 10 2.5 4 1.0

Notes: Columns (a) display the number of estimators included in a MCS, and columns (b) display the percentage
of total estimators that are included in a MCS.
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Proportion of Estimators in 90% Model Confidence Sets

Figure 1: This figure presents the proportion of all 604 realized measures included in the 90% model confidence set at
each forecast horizon, ranging from 1 to 50 days. The upper left panel presents the results across all 31 assets, and
the remaining panels present results for each of the 5 asset classes separately.
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Figure 2: This figure presents the proportion of 90% model confidence sets (across assets) that contain 5-minute RV
and 5-minute truncated RV, at each forecast horizon ranging from 1 to 50 days. The upper left panel presents the
results across all 31 assets, and the remaining panels present results for each of the 5 asset classes separately.
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