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SUMMARY

In this paper we present an arbitrage pricing framework for valuing
and hedging contingent equity index claims in the presence of a sto-
chastic term and strike structure of volatility. Our approach to sto-
chastic volatility is similar to the Heath-Jarrow-Morton (HJM)
approach to stochastic interest rates. Starting from an initial set of
index options prices and their associated local volatility surface, we
show how to construct a family of continuous time stochastic processes
which define the arbitrage-free evolution of this local volatility surface
through time. The no-arbitrage conditions are similar to, but more
involved than, the HJM conditions for arbitrage-free stochastic move-
ments of the interest rate curve. They guarantee that even under a
general stochastic volatility evolution the initial options prices, or
their equivalent Black-Scholes implied volatilities, remain fair.

We introduce stochastic implied trees as discrete implementations of
our family of continuous time models. The nodes of a stochastic
implied tree remain fixed as time passes. During each discrete time
step the index moves randomly from its initial node to some node at
the next time level, while the local transition probabilities between
the nodes also vary. The change in transition probabilities corresponds
to a general (multifactor) stochastic variation of the local volatility
surface. Starting from any node, the future movements of the index
and the local volatilities must be restricted so that the transition prob-
abilities to all future nodes are simultaneously martingales. This
guarantees that initial options prices remain fair. On the tree, these
martingale conditions are effected through appropriate choices of the
drift parameters for the transition probabilities at every future node,
in such a way that the subsequent evolution of the index and of the
local volatility surface do not lead to riskless arbitrage opportunities
among different option and forward contracts or their underlying
index.

You can use stochastic implied trees to value complex index options, or
other derivative securities with payoffs that depend on index volatil-
ity, even when the volatility surface is both skewed and stochastic.
The resulting security prices are consistent with the current market
prices of all standard index options and forwards, and with the
absence of future arbitrage opportunities in the framework. The calcu-
lated options values are independent of investor preferences and the
market price of index or volatility risk. Stochastic implied trees can
also be used to calculate hedge ratios for any contingent index security
in terms of its underlying index and all standard options defined on
that index.
________________________
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Zou for helpful conversations. We are also grateful to Barbara Dunn
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INTRODUCTION
 The Black-Scholes theory of options pricing [Black 1973] assumes that
stock prices are stochastic and vary lognormally, but that future stock
volatilities, interest rates and dividend yields are known and determinis-
tic. The theory is based on the exclusion of arbitrage: an option’s payoff
can be replicated by that of a time-varying portfolio of stock and riskless
bonds, and must therefore at any time have the same value as the portfo-
lio. The most compelling consequence of this arbitrage-free approach is
that options values are preference-free: investors of all risk preferences
can agree on the unique fair value of an option. This transcendent qual-
ity of the theory has led to its great practical success, spawning more
than two decades of intensive research that extended it to other underly-
ers and relaxed its basic assumptions so as to better match the observed
behavior of options markets and underlyers. The current generation of
models, even though they treat underlyers more realistically and can be
calibrated to prevailing options market prices, are still based on an arbi-
trage-free approach, admitting no arbitrage opportunities in their theo-
retical framework.

The history of interest rate options pricing illustrates this development.
Original models were simple adaptations the Black-Scholes formula with
bonds, rather than stocks, as the underlyers. Today, most interest rate
options pricing models assume interest rates themselves are stochastic
and mean-reverting, allow for several stochastic factors, and can be cali-
brated to observed initial bond prices (and their volatilities), while con-
straining future interest-rate evolution to be arbitrage-free. These
models fall into two basic families. Equilibrium models1 consider inter-
est rate processes depending on one or more state variables and are
derived from general equilibrium arguments. The market prices of risk
are then derived from associated characteristics of the yield curve (such
as level, slope, curvature, etc.) or bond prices. In general these models
are not calibrated to all current bond prices, and may therefore contain
initial arbitrage violations. Arbitrage-free models, in contrast, are cali-
brated to all initial bond prices and also admit no future arbitrage viola-
tions. They achieve this in two different ways. The first class2 use
stochastic interest rate processes that automatically generate arbitrage-
free future scenarios, and equip the process with enough parameters to
be forcibly calibrated to the initial traded bond prices. The second class3,
instead, start with exogenously specified stochastic process for bond
prices or forward rates. They then derive constraints on the evolution of
bond prices or forward rates so that no future arbitrages occur.

1.  See, for example, Cox, Ingersoll and Ross [1985].
2.  See, for example, Vasicek [1977], Black, Derman and Toy [1990].
3.  See, for example, Ho and Lee [1986], Heath-Jarrow and Morton [1992].
1
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The history of stochastic volatility modeling is shorter but still similar to
the history of stochastic interest rates. Existing stochastic volatility
models fall into two basic families. Complete-market models4 specify con-
ditions under which the financial market is complete in the presence of
the volatility risk. They posit (if necessary) hypothetical traded volatility
instruments that can be used to hedge the volatility risk and complete
the market. Contingent claim prices in these models depend critically on
the price dynamics of the volatility instruments and may also implicitly
depend on the market price(s) of volatility risk. Equilibrium models5

tend to assume (rather than derive) some parametric form for the sto-
chastic evolution of the index and its volatility in equilibrium, and then
derive implicit options valuation formulas which depend on the parame-
ters of the process. The traded options prices are then inverted for the
unknown parameters.

Complete-market models can be somewhat arbitrary and sometimes
unnatural because of the specific assumptions they make about the
hypothetical volatility instruments. The equilibrium volatility models
have the drawback that the choice of the parametric form for the under-
lying stochastic processes remains largely arbitrary. In addition, it is
usually difficult to invert complex and non-linear options prices to obtain
the parameters. Finally, ad hoc specification of the market prices of risk
can lead to violations of arbitrage6.

In this paper we propose a new arbitrage-based approach to contingent
claims valuation with stochastic volatility7, similar to the Heath-Jarrow-
Morton (HJM) methodology for stochastic interest rates8. We begin with
a continuous time economy with multiple factors. We work with local
(forward) volatilities, instead of implied volatilities (or option prices),
imposing an exogenous stochastic structure on the local volatility sur-
face. The primacy of the local volatility surface in our work is analogous
to that of the forward rate curve in the HJM framework. Our model
takes as given the initial local volatility surface and posits a general
multi-factor continuous time stochastic process for its evolution across
time. To ensure that this process is consistent with an arbitrage-free
economy we characterize the conditions which guarantee absence of

4. See, for example, Merton [1973], Cox and Ross [1976], Johnson and Shanno [1987],
Eisenberg and Jarrow [1994].
5.  See, for example, Wiggins [1977], Hull and White [1977], Stein and Stein [1991].
6.  See Cox, Ingersoll and Ross [1985], Heath, Jarrow and Morton [1992].
7. Presented in Risk Advanced Mathematics for Derivatives Conference, New York,
December 1997.
8. For attempts in this direction see, for example, Dupire [1993] and Bruno Dupire in the
Proceedings of Risk Derivatives Conference, Brussels, February 1997.
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explicit arbitrage opportunities (at any future time) among the various
option (and futures) contracts defined and traded on the underlying index.
Under these conditions markets are complete and contingent claim valua-
tion is preference-free. Unfortunately, in contrast to the HJM conditions,
here the arbitrage-free conditions are complex and non-linear (integral)
equations, which are difficult to use in their continuous form.

We then introduce Stochastic Implied Trees as a discrete-time framework
where the volatility surface undergoes multi-factor (arbitrage-free) sto-
chastic variations. Here we work with trinomial stochastic implied trees9.
The location of the nodes in this kind of tree are fixed but the transition
probabilities vary stochastically as time changes and index level moves. As
time evolves, the index level moves randomly from node to node while local
volatilities (and concurrently the transition probabilities) fluctuate sto-
chastically across the tree. Starting from any initial node, the future move-
ments of the index and the local volatility surface must be restricted so
that total transition probabilities to all future nodes are simultaneously
martingales. On the tree, these martingale conditions can be satisfied by
making an appropriate choice of the drift parameter for every future node.
In the discrete time framework defined by the stochastic implied tree, this
process step-by-step guarantees absence of arbitrage opportunities among
different option (and forward) contracts and the underlying index.

We draw extensively on the analogy between interest rates and volatility
throughout this paper. We begin by reviewing the concept of the local (for-
ward) volatility surface and the effective theory of volatility which it
defines. The local volatility surface is the options world analogue of the for-
ward interest rate curve. Standard option prices calculated using today’s
local volatility surface match their market prices, just as the bond prices
calculated from today’s forward rate curve match their market prices. The
dynamics of standard option prices, as defined by today’s local volatility
surface, albeit arbitrage-free, is based on the assumption of non-stochastic
volatility, as portrayed by the static (non-random) nature of the local vola-
tility surface. This effective dynamics of option prices is analogous to the
deterministic, but arbitrage-free, bond price dynamics which result from a
static forward rate curve. To allow stochastic dynamics we introduce exog-
enous stochastic structure on the effective theory. This is to say that we
allow general (multi-factor) fluctuations of the local volatility surface as
time and spot index level change. We impose dynamical conditions which
explicitly guarantee absence of arbitrage among standard options, for-
wards and the underlying index. This process will augment an effective
theory of volatility to a full stochastic theory of volatility in a manner
which is the hallmark of the HJM approach to stochastic interest rates.

9.  See Derman, Kani and Chriss [1996], Kani, Derman and Kamal [1996].
3
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LOCAL VOLATILITY SURFACE:
THE EFFECTIVE THEORY OF
VOLATILITY
We can think of local volatility σK,T as the market’s consensus esti-
mate of instantaneous volatility at the future market level K and
future time T. Local volatilities corresponding to different future
market levels and times together comprise the local volatility surface.
The local volatility surface indicates the fair value of future index
volatility at future market levels and times as implied by the spec-
trum of available standard option (and forward contract) prices.

The relationship between the local volatilities and option prices (or
implied volatilities) in the options world is analogous to the relation-
ship between the forward rates and bond prices (or yield-to-maturi-
ties) in the fixed income world. We can calculate the forward interest
rates fT corresponding to the future times T from the spectrum of
zero-coupon bond prices BT with different maturities T, using a well-
known formula

(EQ 1)

Similarly, we can calculate the local volatility σK,T corresponding to
the future market level K and time T from the spectrum of standard
option prices CK,T , with different strikes K and maturities T, using
the formula

(EQ 2)

The riskfree discount rate r and the dividend yield δ in Equation 2
are both assumed to be constant. Also, the quantities which we will
discuss throughout this paper are usually evaluated at a specific
times t or spot prices S, and contain other explicit or implicit (deter-
ministic or stochastic) parameters which we may omit for brevity. For
example, the quantities in Equations 1 and 2 are evaluated at the
present time and spot price, hence , etc.

Equations 1 often serves as a general definition for forward rates,
regardless of the specific nature of the interest rate process. It can be
shown10 that under very general assumptions, forward rates are
risk-adjusted expectations of future short rates

(EQ 3)

10.  See, for example, Jamshidian [1993].

f T
1

BT
------

dBT

dT
---------–=

σ2
K T, 2

T∂
∂CK T, r δ–( )K

K∂
∂CK T, δCK T,+ +

 
 
 

K2

K2

2

∂
∂ CK T,

-------------------------------------------------------------------------------------=

f T f T t0( )= σK T, σK T, t0 S0,( )=

f T E T( ) r T( )[ ]=
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The Effective Interest Rate
Theory
The expectation  is performed at the present time and with
respect to a measure known as the T-maturity forward risk-adjusted
measure. The precise description of this measure is not necessary for
our purposes here. The only thing to remember is that Equation 1
gives us a direct way for extracting these expectations of future short
rates from the traded bond prices.

Similarly, it can be shown that local volatilities are risk-adjusted
expectations of future instantaneous volatilities. More precisely, local
variance σ2

K,T is a risk-adjusted expectation of future instantaneous
variance σ2(T) at time T as

(EQ 4)

Here the expectation is performed at the present time and
market level, and with respect to a new measure which we call the K-
strike and T-maturity forward risk-adjusted measure, as described in
Appendix A. Again the precise details about the measure are unim-
portant at this point, only that these expectations can be directly
extracted from the market prices of standard options, as given by
Equation 2.

A static (non-random) local volatility surface defines an effective the-
ory of volatility in the same way as a static forward rate curve defines
an effective theory for interest rates. In an effective theory, specific
expectations (or integrals) of some or all of the underlying stochastic
variables are extracted from the current prices of the traded assets,
and are subsequently assumed to remain unchanged as time evolves.
The effective dynamics which results is based on some of the sources
of uncertainty being “effectively” integrated out of the full stochastic
theory. Let us briefly review the interest rate case first.

In the effective interest rate setting, the forward rate curve is evalu-
ated from the available bond prices at time t0, and is assumed to
remain unchanged thereafter as time t evolves, thus for all :

(EQ 5)

As Figure 1 illustrates, this procedure integrates all sources of inter-
est rate stochasticity out of the original theory, and therefore, the
effective dynamics of the rates in the effective theory is completely
deterministic. As physical time t elapses, the spot rate (or short rate)
r(t) rolls along the static forward rate curve, coinciding with the for-
ward rate at time t:

(EQ 6)

E T( ) …[ ]

σK T,
2 E K T,( ) σ2 T( ) ][=

E K T,( ) …[ ]

t t0≥

f T t( ) f T=

r t( ) f t=
5
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The dynamics of zero-coupon bond prices is also deterministic and is
described by a simple backward equation:

(EQ 7)

This equation, with the aid of Equation 6, shows that the asset price
dynamics in the effective theory is local and arbitrage-free. Equation
7 is also the dual of the forward equation satisfied by the zero-coupon
bond prices:

(EQ 8)

The forward equation is merely a restatement of Equation 1, and
holds by the definition of the forward rates regardless of specific
assumptions concerning the behavior of interest rates.

The backward equation describes propagation forward in physical
time, for a fixed maturity. More precisely, it relates the prices of a T-
maturity bond at different time points t, with earlier times in terms
of the later ones. This is best understood by introducing the forward
propagator (or forward Green’s function) pt,t', which relates bond
prices at times t and t', with , for any T-maturity bond, through a
simple relationship:

(EQ 9)

The forward propagator pt,t' describes bond price evolution forward in
physical time, as illustrated by Figure 2(a). It satisfies the backward
and forward differential equations with boundary conditions pt,t = 1:

; (EQ 10)

d
dt
----- f t– 

  BT t( ) 0=

d
dT
------- f T+ 

  BT t( ) 0=

FIGURE 1. In an effective theory defined by a static forward rate curve,
short rate follows the instantaneous forward rates.

0 t1

r(t 1)

ra
te

t2

r(t 2)

time

fT

t t'≤

BT t( ) pt t', BT t'( )=

d
dt
----- f t– 

  pt t', 0= d
dt'
------ f t'+ 

  pt t', 0=
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and for any , the composition relation:

(EQ 11)

Similarly, the forward equation describes propagation backward in
maturity time, for a fixed physical time. More precisely, it relates the
prices of bonds with different maturities T, but at a fixed time t, with
longer maturity bonds in terms of the shorter maturity ones. The
backward propagator11 φT,T' relates zero-coupon bond prices of matu-
rities T and T', with , at any fixed time t, using the relation

(EQ 12)

The backward propagator φT,T' describes bond price evolution back-
ward in maturity time, as depicted by Figure 2(b). It also satisfies the
forward and backward equations with boundary conditions φT,T = 1:

; (EQ 13)

and, for any , the composition relation

11.  The forward and backward propagators for a static yield curve are both simply

equal to the discount function i.e .

t t̃ t'≤ ≤

p t t',( ) p t t̃,( )p t̃ t',( )=

pu v, φu v, f τ τd
u

v

∫–
 
 
 

exp= =

T' T≤

BT t( ) φT T', BT' t( )=

d
dT
------- f T+ 

  φT T', 0= d
dT'
-------- f T'– 

  φT T', 0=

T' T̃ T≤ ≤

FIGURE 2. Forward propagator describes the evolution of bond prices
forward in physical time. Backward propagator describes evolution
of bond prices backward in maturity time.

BT(t) BT(t')

t t'

(T)

BT' (t) BT (t)

T' T

(t)

(a) forward propagator (b) backward propagator
φT,T' :pt,t' :
7
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The Effective Volatility
Theory
(EQ 14)

In the effective volatility setting, the local volatility surface is calcu-
lated using the spectrum of available option prices (and futures) at
time t0, and is assumed to remain unchanged thereafter as time t and
index price S change:

(EQ 15)

This procedure amounts to averaging out all sources of stochastic vol-
atility, leaving the index price uncertainty as the only source of
uncertainty left within the theory. The resulting effective dynamics
only depends on the index price and time and, as a function of these
variables, is deterministic. As the physical time t elapses and index
price St moves, the instantaneous volatility σ(t) follows along the
local volatility surface, as depicted in Figure 3, coinciding with the
local volatility at time t and level St:

(EQ 16)

This is consistent with an equilibrium (effective) index price process
described by the stochastic differential equation:

(EQ 17)

where µt is the index’s expected return and dZt is the standard
Wiener measure at time t. In this process the instantaneous volatility
is a known (deterministic) function of time t and index price St.
Implied Tree models are the discrete frameworks for implementing
the (effective) dynamics represented by Equation 17. The dynamics of

φT T', φ
T T̃, φ

T̃ T',=

σK T, t S,( ) σK T,=

FIGURE 3. In an effective theory represented by a static local volatility
surface, instantaneous volatility σ(t) at time t follows the local
volatility at time t and index price St.
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σ(t1)

t2

σ(t2)

time

le
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time
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local

(t1,S1)
(t2,S2)

σ t( ) σt St,=

dSt

St
-------- µtdt σt St, dZt+=
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standard option prices in the effective theory is described by the
backward equation:

(EQ 18)

Since the only remaining source of uncertainty is the index price, the
standard options are completely hedgeable (using index as the hedge)
within the effective theory. Equations 16 and 18 then show that the
option price dynamics in this theory is arbitrage-free. Equation 18 is
also the dual of the forward equation satisfied by the standard option
prices:

(EQ 19)

This forward equation is the same as Equation 2 and holds by the
definition of local volatility, regardless of any specific assumptions
about the behavior of volatility.

The forward propagator pt,S,t',S' describes the relationship between
the option prices at the two points (t, S) and (t', S'), with , for any
K-strike and T-maturity standard option, through the relation

(EQ 20)

The forward propagator pt,S,t',S' describes option price evolution for-
ward in time and index price, as illustrated by Figure 4(a). We can
define the forward transition probability density function p(t,S,t',S') in
terms of the forward propagator as p(t,S,t',S') = er(t'-t) pt,S,t',S'. It
describes the total probability that the index price will reach level S'
at time t', given that the index price at time t is S. The mathematical
properties of pt,S,t',S' and p(t,S,t',S') are discussed in Appendix B.

The backward propagator ΦK,T,K',T' describes the relationship
between prices of two standard options corresponding to strike-matu-
rity pairs (K,T) and (K',T'), with , at a fixed time t and index
price S, as

(EQ 21)

t∂
∂ r δ–( )S

S∂
∂ 1

2
---σ2

S t, S2
S2

2

∂
∂ r–+ +

 
 
 

CK T, t S,( ) 0=

T∂
∂ r δ–( )K

K∂
∂ 1

2
---σ2

K T, K2
K2

2

∂
∂

– δ+ +
 
 
 

CK T, t S,( ) 0=

t t'≤

CK T, t S,( ) pt S t' S', , , CK T, t' S',( ) S'd

0

∞

∫=

T' T≤

CK T, t S,( ) ΦK T K' T', , , CK' T', t S,( ) K'd

0

∞

∫=
9
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As Figure 4(b) illustrates, We can also define the effective theory back-
ward transition probability density function Φ(K,T,K',T') in terms of the
backward propagator as Φ(K,T,K',T') = eδ(T-T') ΦK,T,K',T' . Appendix B dis-
cusses some of the mathematical properties of ΦK,T,K',T' and Φ(K,T,K',T').

We can use Equation 17, either by performing simulations or by using
implied tree methods, to price and hedge complex options, with the
knowledge that the standard options initially used to derive the local
volatility surface will have model prices which match their market val-
ues. In spite of this calibration, if the volatility has a substantial sto-
chastic behavior, the prices and hedge ratios of most options with path-
dependent or volatility-dependent payoffs will not be accurately repre-
sented by the effective theory results. The reason is simply that effec-
tive theory results are based on the assumption that local volatilities
are static or, equivalently, that the instantaneous volatility is substan-
tially a function of the market level (and time). This is a good assump-
tion in situations where the volatility exhibits strong correlation to the
market level and, hence, can be viewed predominantly as a function of
it. For most equity index option markets, for example, this more or less
holds, specially for shorter dated options. On the contrary, in the cur-
rency options markets or in longer dated equity (and most other)
options markets, the volatility is predominantly stochastic and the
effective theory of static local volatilities is not valid. We must there-
fore move towards a full stochastic framework by allowing general
multi-factor stochastic variations of the volatility surface.

FIGURE 4. Forward propagator describes the evolution of standard prices
in physical time and index price. Backward propagator describes the
evolution of option prices in maturity time and strike price.
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CK,T

CK,T

CK,T (t',S1')
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...
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(t,S)

(K, T)(K',T')
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CK1',T'

CK2',T'

CKn',T'

...
...

...

(t,S)

(t,S)

(t,S)

(t,S)

(a) forward propagator (b) backward propagator
pt,S,t',S': ΦK,T,K',T':
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TOWARDS A STOCHASTIC
THEORY OF VOLATILITY

The Stochastic Interest
Rate Theory
To allow for stochastic dynamics we must introduce exogenous sto-
chastic structure on the effective theory. In general, there are few
restrictions on the choice of this structure. One important restriction,
which is the cornerstone of the arbitrage framework, is the absence of
any explicit future arbitrage opportunities in the final stochastic the-
ory. Another restriction is how close the number or the behavior of
the stochastic factors are to what is empirically observed. For now, we
will consider very general (but sufficiently regular) stochastic struc-
tures and discuss the conditions which must be imposed upon them
to guarantee the absence of arbitrage. Let us briefly examine the sto-
chastic interest rate theory first.

Figure 5 illustrates the dynamics of the forward rates in the stochas-
tic framework. Here, the forward rate curve is allowed to fluctuate
stochastically with several independent stochastic factors repre-
sented by Brownian motions Wi, i = 1, ...,n, with factor volatilities

generally depending on both maturity T and time t, according
to the stochastic differential equation:

(EQ 22)

In the family of processes described by Equation 22, the volatility
coefficients reflect the sensitivities of specific maturity forward
rates to the random shocks introduced by the Brownian motions Wi.
These coefficients are left unrestricted, except for mild measurability
and integrability conditions, and can depend on the past histories of

0 t1

r(t1)

ra
te

r(t 0)

time

FIGURE 5. In a stochastic interest rate theory spot rate r(t) follows the
instantaneous forward rate ft(t).
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i
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∑+=

ϑi
T t( )
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The Stochastic Volatility
Theory
the Brownian motions Wi. The drift coefficients must also sat-
isfy mild measurability and integrability conditions, but must be fur-
ther constrained by the no-arbitrage requirement.

The spot rate at time t, r(t), is the instantaneous forward rate at time
t, i.e, . The stochastic integral equation satisfied by the
spot rate is found by integrating Equation 22 and evaluating the
result at T = t. It is given by

(EQ 23)

It has been argued by Heath, Jarrow and Morton, that there will be
no explicit arbitrage opportunities in the theory defined by Equation
23 if (and only if) the drift coefficients are of the form:

(EQ 24)

Here , i = 1, ..., n, denote the market prices of risk, which can not
explicitly depend on maturity T but are otherwise arbitrary. Under
these conditions, they have shown that markets are complete and
contingent claims prices are independent of the market prices of risk.

Our goal is to introduce a similar stochastic structure on the local
volatility surface. To do so, we allow the surface to undergo stochastic
fluctuations with several independent stochastic factors, W0, W1,
...,Wn, based on the following stochastic differential equation12:

(EQ 25)

We include W0 = Z, the index price’s source of uncertainty, among the
factors so that the stochastic variations of the local volatility surface
may depend on the prevailing market level. The family of processes
of Equation 25 defines a multi-factor dynamics for the local volatility
surface, as illustrated by Figure 6. These processes can be integrated,

12. The variable S in the expression for local volatility σΚ,Τ(t, S) is included for nota-
tional purposes and does not imply dependence solely on the spot index level. In fact,
local volatilities generally depend on the entire history of the index price and other
stochastic factors. Aside from time t and index price S, all other variables have been
explicitly omitted from expressions for local volatilities, drifts and factor volatilities.
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starting from a fixed (non-random) initial local volatility surface
σK,T(0,S0) at time t = 0, as

(EQ 26)

The factor volatility reflects the sensitivity of local volatilities
σK,T(t,S), across the whole surface, to the shock introduced by the
Brownian motion Wi. Except for mild measurability and integrability
conditions13, the family of factor volatilities are unrestricted, generally
depending on time and index price, and on the factors or their past histo-
ries. However, for the sake of brevity we have omitted explicit references
to all variables other than time t and index price S from the expressions
for factor volatilities, and we will do the same for other quantities such
as drift coefficients and local volatilities.

The spot volatility (or instantaneous volatility) at time t, σ(t), is the
instantaneous local volatility at time t and level St, i.e

(EQ 27)

It describes the variability of index price return process, as given by the
differential equation

13. The factor volatility functions are assumed to be positive, adapted and
jointly measurable with respect to the Borel σ-algebra restricted to , for
some fixed maximum time T*. They must also satisfy , i = 0, ...,n, to
assure regularity of spot volatility process, and certain additional integrability conditions
to assure regularity of the standard option price processes.

FIGURE 6. In a stochastic volatility theory instantaneous volatility σ(t)
follows the local volatility σSt,t (t,St), at time t and index price St.
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The HJM Conditions and the
Stochastic Theory of Interest
Rates
(EQ 28)

or its integral form

(EQ 29)

where µt is the index’s expected return. Setting T = t and K = St in
Equation 26 we find the stochastic integral equation satisfied by the
spot volatility as

(EQ 30)

The drift coefficients must also satisfy mild measurability
and integrability conditions, but they must be further restricted by
the requirement that the stochastic theory described by Equations 28
and 30 disallows explicit arbitrage opportunities among the standard
options, forwards and their underlying index. This is similar to the
HJM arbitrage conditions on the spot rate process. Let us briefly
examine (a variation of) the HJM argument below.

The bond price dynamics corresponding to the forward rate process of
Equation 85 is, by applying Ito’s lemma, described by the stochastic
integral equation

(EQ 31)

The symbol here denotes the variational (or functional) derivative
with respect to the function f evaluated at u. The first term in this
equation describes precisely the effective theory bond price dynamics
restricted to the fixed forward rate curve fT(t) at time t. The next two
terms describe the bond price dynamics resulting from the stochastic
variations of the effective theory (defined by fT(t)) during the next
infinitesimal time interval dt.

It follows from the definition of the forward rates (Equation 1) that
the price of a T-maturity zero-coupon bond with unit face, at time t, is
given by

dSt

St
-------- µtdt σ t( )dWt

0+=

St S0 µuSu ud
0

t

∫ σ u( )Su Wu
0d

0

t

∫+ +=

σ2 t( ) σ2
t St, 0 S0,( ) αt St, u Su,( ) ud

0

t

∫ θi
t St, u Su,( ) Wi

ud
0

t

∫
i 0=

n

∑+ +=

αK T, t S,( )

dBT t( ) r t( )BT t( )dt
δBT t( )
δ f u t( )----------------- f u t( )d u +d

t

T

∫+=

1
2
---

δ2BT t( )
δ f u t( )δ f u' t( )---------------------------------- f u t( )d f u' t( )d ud u'd

t

T

∫t

T

∫
δ

δ f u
----------



QUANTITATIVE STRATEGIES TECHNICAL NOTES
Goldman
Sachs
(EQ 32)

From this expression it is simple to see that for any u ( ):

(EQ 33)

Another way of seeing this is by noticing how the forward and back-
ward propagators, pt,t' and φT,T', corresponding to an otherwise fixed
(non-random) forward rate curve, respond to sudden changes of a
specific forward rate fu along the curve. It is simple to see that pt,t'
satisfies the following relation, as depicted in Figure 7(a):

(EQ 34)

and, as shown in Figure 7(b), that φT,T' satisfies the relation:

(EQ 35)

These relations combined, respectively, with Equations 9 and 12,
again lead to Equation 33.

Similarly, we can show that for the second order varia-
tional derivatives are given by:

BT t( ) f u t( ) ud
t

T

∫– 
 exp=

t u T≤ ≤

δBT t( )
δ f u t( )----------------- B– T t( )=

FIGURE 7. Sensitivity of the forward and backward propagators pt,t'
and φT,T' to the sudden changes of the forward rate fu.

(a) forward propagator (b) backward propagator
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THE NO-ARBITRAGE CONDITIONS
AND THE STOCHASTIC THEORY OF
VOLATILITY
(EQ 36)

The special fu-independent form of variational relations 33-36 can
be directly attributed to the special form of the functional relation-
ship between the zero-coupon bond prices and the forward rates as
described by Equation 32. This feature underlies the special sim-
plicity of no-arbitrage conditions in the HJM framework.

Using Equations 22, 33 and 36 inside Equation 31 we find

(EQ 37)

If the drift coefficients satisfy the no-arbitrage conditions of
Equation 24 for some set of market prices of risk , then Equa-
tion 37 shows that in terms of the equivalent measure

, defined by the Brownian motions
, i = 1, ..., n, the dynamics of zero-coupon bond

prices is:

(EQ 38)

Therefore, {dWi ; i = 1,...,n} defines an equivalent martingale mea-
sure under which the rescaled bond prices for all
maturities T are jointly martingale. Under this measure the inter-
est rate contingent claims prices are independent of the market
prices of risk and, hence, remain preference-free.

The standard option prices CK,T(t,S) are functionals of the local vol-
atilities at time t and market level S, just as bond prices BT(t) are
functionals of the forward rates at time t. As a result, the dynami-
cal variations of the local volatility surface induce correpsonding
dynamical variations of the standard option prices. During a time
interval dt, the index price moves and the local volatilities also
change. We can think of the local volatility changes as comprised of
two components. A predictable component, due to movements of
time and index price restricted to the static local volatility surface
σK,T(t,S) at time t and level S, and a non-predictable (stochastic)
component due to dynamic fluctuations away from this surface. It is
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somewhat simpler, but entirely equivalent, to work with the transi-
tion probabilities, instead of option prices. The transition probability,
PK,T(t,S), describes the total probability that the index price will
reach level K at time T, given that the index price at time t is S, when
both the index price and volatility are stochastic. It is related to the
option prices CK,T(t,S) through a general and well-known14 formula:

(EQ 39)

The dynamical evolution of transition probabilities PK,T(t,S) based on
the local volatility process of Equation 26 is given by the stochastic
integral equation:

(EQ 40)

All the probability and local volatility expressions in this equation
are evaluated at (t,S). The first term describes the effective dynamics
of the transition probabilities PK,T(t,S) restricted to the fixed local
volatility surface σK,T(t,S), prevailing at time t and level S. The
bracket symbol, , therefore, expresses the fact that in this
term the future volatility is a deterministic function of the future
time T and market level K, given by σK,T(t,S) viewed as function of
these two variables. The next two terms describe the dynamical vari-
ations of the transition probabilities resulting from the stochastic
fluctuations of the local volatility surface during the next instant of
time dt.

Contrary to Equation 32, in general there are no explicit expressions
describing the functional relationship between option prices and local
volatilities. Therefore, we can not directly compute the variational

14.  See Breeden and Litzenberger [1978].
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derivatives in Equation 40. Instead, we can look at the variations of
the forward and backward transition probabilities with respect to the
specific local volatilities. As shown in Appendix C and illustrated in
Figure 8, the forward transition probability p(t,S,t',S'), associated
with the non-random local volatility surface σK,T(t,S) prevailing at
time t and spot price S, has the following variational derivative with
respect to the local volatility σv,u(t,S) on the surface, corresponding to
future maturity u and market level v:

(EQ 41)

FIGURE 8. Sensitivity of the forward and backward transition
probabilities p(t,S,t',S') and Φ(K,T,K',T') to the sudden changes of the
local volatility σv,u.
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This relation holds for any u in the range , otherwise the vari-
ational derivative is equal to zero. Similarly, the backward transition
probability Φ(K,T,K',T') satisfies, for , the relation

(EQ 42)

and zero otherwise. Using Equations 21 and 39, the standard option
prices CK,T(t,S) and transition probabilities PK,T(t,S) satisfy similar
relationships for :

(EQ 43)

and

(EQ 44)

in which the effective transition probabilities and corre-
spond to the static local volatility surface σK,T(t,S) prevailing at time
t and market level S. In arriving at Equations 43 and 44 we have also
used the following identities:

(EQ 45)

(EQ 46)

(EQ 47)

As discussed in Appendix B, these identities are all consequences of
the fact that the effective theory associated with σK,T(t,S) embodies
all the information necessary for pricing standard options of all
strikes and maturities correctly.

Taking the variational derivatives of both sides of Equations 41 and
42 with respect to the local volatility σv',u' we find the second order
variational derivatives as

(EQ 48)
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for any , and

(EQ 49)

for . Figure 9 gives a graphical depiction of these identi-
ties. The standard option prices CK,T(t,S) and transition probabilities
PK,T(t,S) satisfy similar relationships for :

(EQ 50)

(EQ 51)

Using these relations, Appendix D proves that Equation 40 leads to

(EQ 52)

if and only if, for any S, K and , the drift functions αK,T(t,S) sat-
isfy the following no-arbitrage conditions

(EQ 53)

where and for i = 1, ...,n are arbitrary but independent of K
and T, and where the equivalent measure { } is defined by

 ; (EQ 54)
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FIGURE 9. Second order variational derivatives of the forward and
backward transition probabilities p(t,S,t',S') and Φ(K,T,K',T') with
respect to the local volatilities.
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StOCHASTIC IMPLIED TREES
The quantities denote the market prices of risk associated with the
volatility risk factors Wi, i = 1, ..., n, while µ - (r-δ) is the market price
of risk associated with the index price risk factor W0. Equation 52
shows that under the no-arbitrage conditions the measure { ; i =
1, ...,n} is an equivalent martingale measure, with respect to which
the rescaled index price and rescaled option prices for all strikes and
maturities are simultaneously martingales.

These no-arbitrage conditions in the present case are significantly
more involved than the HJM no-arbitrage conditions described in the
previous section. The basic reason is that local volatilities span a
(two-dimensional) surface on which (forward and backward) propaga-
tion depends, in a rather complicated and non-linear manner, on the
structure of local volatilities across the whole surface. This is evident
by the apparent complexity of Equations 44 and 51 as compared to
the simplicity of the corresponding Equations 33 and 36 in the inter-
est rate framework. It is, therefore, rather difficult to use the no-arbi-
trage conditions for stochastic volatility in their continuous form
directly.

In the next section we introduce Stochastic Implied Trees as a dis-
crete-time framework for describing arbitrage-free stochastic varia-
tions of the local volatility surface.

Figure 11 gives a schematic illustration of the dynamics in a stochas-
tic volatility theory. As the physical time moves forward, the index
price changes and, simultaneously, all local volatilities on the volatil-
ity surface undergo multi-factor stochastic variations.

Πi

dW
i

FIGURE 11. Schematic illustration of the dynamics of the index price
and local volatility surface in a stochastic volatility theory.
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To provide a more quantitative description of this stochastic
dynamics we choose to work within a discrete-time framework
described by a Stochastic Implied Tree. These trees are extensions
of the standard (non-stochastic) implied trees, which are used to
describe effective volatility models (see Derman, Kani and Chriss
[1996]). Figure 12 shows an example of a 1-year, 5-period standard
implied trinomial tree which is calibrated to a market where at-the-
money implied volatility is 25% and there is an implied volatility
skew of 0.5% point per 10 strike points. In an implied trinomial tree

FIGURE 12. Example of an Implied Trinomial Tree describing an
effective volatility theory.
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the location of the nodes, or the state space, is more or less arbitrarily.
Once the state space is fixed, however, the transition probabilities at
different nodes are determined from the requirement that standard
options and forwards with strike prices coinciding with those nodes
and maturing at different periods of the tree all have prices using the
tree which match their market prices. Since local volatility at any
node depends on the nodal levels and the transition probabilities to
the nearby nodes, the local volatilities at different nodes are also
determined in this way.

Stochastic implied trinomial trees are extensions of the implied trino-
mial tree in which the transition probabilities are, in addition,
allowed to vary stochastically, with several stochastic factors, as time
elapses and index level moves. The index level is allowed to move
randomly from node to node, while the local volatilities, and simulta-
neously the transition probabilities corresponding to the future
nodes, all vary stochastically across the tree. This behavior is shown
in Figure 13.

Starting from any initial node, the possible future movements of the
local volatility surface must be restricted to guarantee absence of any
arbitrage opportunities in the discrete theory represented by the sto-
chastic implied tree. As discussed earlier, this is equivalent to the
requirement that the total transition probabilties to all future nodes
be simultaneously martingales on the tree. This is also the same as

FIGURE 13. In a Stochastic Implied Tree, as the index moves from node
A to node B in a single time step, the local volatilities and transition
probabilities, for every node on the future subtree beginning at node
B, vary stochastically with multiple stochastic factors.

A

B
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Our Notation in Discrete Time
the requirement that all rescaled standard option prices be simulta-
neously martingales on the tree. As Figure 14 shows, during the time
interval ∆t, the spot price will move randomly (by amount ∆S) to one
of the nearby nodes and, at the same time, the local volatility surface
will assume one of its N possible configurations, w1, ...,wN. As a
result, the total transition probability PK,T(t,S) to any given future
node (K,T) also moves to one of its several possible values P(i)

K,T(t+∆t,
S+∆S), i = 1, ..., M, during this time interval. To guarantee no-arbi-
trage, PK,T must be a martingale (fair game), that is it must equal
the expectation , under some (equivalent) measure, of its future val-
ues P(i)

K,T for all the future nodes (K,T) on the tree.

To make positivity manifest, it is more convenient to redefine the
drift and volatility functions in Equation 25 as and

, l = 0, ..., n, and begin by discretizing the following
continuous-time differential equation:

(EQ 55)

We let the integer pair (i,j) label the node (ti,Sj) describing the cur-
rent location (i.e (t,S)) of the index at the ith step of the simulation.

t t +∆t

P K,T

P (1)
K,T

P (M)
K,T

FIGURE 14. During a time step ∆t, the total transition probability PK,T
will move to one of M values P(i)

K,T , i = 1, ...,M, as index price moves
randomly to one of the nearby nodes and the local volatility surface
assumes one of N possible configurations.

t t +∆t

w

w 1

w N

αK T, αK T, σK T,
2→

θl
K T, θl

K T, σK T,
2→

dσ2
K T, t S,( )

σ2
K T, t S,( )

------------------------------- αK T, t S,( )dt θl
K T, t S,( )dWt

l

l 0=

n

∑+=
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We also let the pair (n,m) label the future node (tn,Sm) corresponding
the future time and level (i.e (T,K)). Then the discrete form of Equa-
tion 55 can be written as

(EQ 56)

The vector (∆Wi
0, ∆Wi

1, ..., ∆Wi
n) is random and is drawn, at time i,

from the sample space of the increments of n independent Brownian
motions Wl.

The volatility parameters are pre-specified but the drift
parameters must be determined from the no-arbitrage
requirements that the total probabilities of arriving at the
future node (n,m) from the (fixed) initial node (i,j) must be jointly
martingales for all future nodes (n,m). As we shall argue below, these
martingale conditions are precisely enough to completely determine
all the drift parameters step by step during the simulation process.

A Stochastic Implied Tree simulation begins with the construction of
a trinomial implied tree calibrated to today’s prices of standard
options and forwards. The simulation begins at the node (0,0) of this
tree. During the first simulation step the drift parameters ,
for all future nodes (m,n), are determined from the martingale condi-
tions on the total probabilities . Figure 15 illustrates that

∆σ2
m n, i j,( ) σ2

m n, i j,( ) αm n, i j,( )∆ti θm n,
l i j,( )∆Wi

l

l 0=

n

∑+=

θm n,
l i j,( )

αm n, i j,( )
Pm n, i j,( )

αm n, 0 0,( )

Pm n, 0 0,( )

FIGURE 15. The drift parameter α0,0(0,0) in a Stochastic Implied Tree is
determined from the martingale condition on the total transition
probability P1,2(0,0).

(0,0)

(1,2)

(0,0)

(1,2)

(0,0)

(1,2)

a0,0(0,0)

P1,2 (0,0) is martingale
25



26

QUANTITATIVE STRATEGIES TECHNICAL NOTESSachs
Goldman
the drift parameter is determined from the martingale con-
dition for This also guarantees that the transition probabili-
ties and are martingales. The reason is that these
probabilities are constrained by two extra conditions which must
hold irrespective of the specific behavior of the local volatilities:

(EQ 57)

The first condition is the normalization condition, requiring that the
sum of the three total transition probabilities at time t1 must be
unity. The second is the forward condition, requiring that the t1-
maturity forward price at time t0 must match its risk-neutral value.

In a similar way, the three drift parameters , and
are determined from the martingale conditions of the three

total transition probabilities , and . The
remaining transition probabilities and will then
also be martingales due to the normalization and forward conditions
at time t2. In this way all drift parameters will be deter-
mined during the first simulation step. Finally, to complete this step
we draw a random vector (∆W0

0, ∆W0
1, ..., ∆W0

n) from the sample
space of the increments of Wi at time t0, and use this vector to simul-
taneously arrive at a (random) new location for the index price and
new values for all future local volatilities. Equation 56 is used
directly with i = j = 0 to calculate the new local volatility values from
this choice of the random vector. As for the index price, we use the
random number ∆W0

0 to determine which of the three possible future
nodes (i.e (1,2), (1,1) or (1,0)) does the index price moves to during
time interval ∆t. Figure 16 gives one simple possible method for

α0 0, 0 0,( )
P1 2, 0 0,( )

P1 1, 0 0,( ) P1 0, 0 0,( )

P1 0, 0 0,( ) P1 1, 0 0,( ) P1 2, 0 0,( )+ + 1=

P1 0, 0 0,( )S1 0, P1 1, 0 0,( )S1 1, P1 2, 0 0,( )S1 2,+ + S0 0, e
r δ–( ) t1 t0–( )

=

α1 2, 0 0,( ) α1 1, 0 0,( )
α1 0, 0 0,( )

P2 4, 0 0,( ) P2 3, 0 0,( ) P2 2, 0 0,( )
P2 1, 0 0,( ) P2 0, 0 0,( )

αm n, 0 0,( )

FIGURE 16. Determining which node the index price will go to during
one simulation step using the renormalized random number ∆Wi

0.

(i, j)

(i+1, j+2) if ∆Wi
0 >= Pm + Pd

(i+1, j+1) if ∆Wi
0>= Pd and∆Wi

0 < Pm + Pd

(i+1, j) if ∆Wi
0 < Pd

Pu = Pu
(i,j)

Pd = Pd
(i,j)

Pm = Pm
(i,j)
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A SIMPLE EXAMPLE
doing this starting from an arbitrary initial node (i,j). First ∆Wi
0 is

renormalized to represent a uniformly-distributed random number
between 0 and 1. Let Pu(i,j), Pm(i,j) and Pd(i,j) denote the one period
transition probabilities, prevailing at time ti and index price Sj, from
the node (i,j) to the up, middle and down nodes at time ti+1. We then
compare our random number with these three probabilities. If it is
smaller than Pd(i,j), we move the index price to the down node. On
the other hand, if the random number is greater than the sum Pu(i,j)
+ Pm(i,j), we allow the index price to move to the up node. In every
other case we move the index price to the middle node at the next
time period.

We can continue this procedure, step-by-step, for any point (i,j) along
a simulated path through the stochastic implied tree. First, all the
drift parameters are determined from the martingale condi-
tions on . Appendix E gives the necessary details for doing
this calculation. Subsequently, these drift parameters are used to
generate arbitrage-free (random) movements of the future local vola-
tility surface as the index price moves randomly forward across the
tree. We can generate many such sample paths through the tree.
Along each path, the movements of the index price and the local vola-
tility surface are random realizations of an arbitrage-free dynamics,
which step-by-step guarantees absence of arbitrage opportunities
among different standard option (and forward) contracts and their
underlying index within the discrete time framework of the stochas-
tic implied tree.

Consider a one-factor stochastic volatility model with a lognormal
volatility of volatility structure, as described by the following pair of
stochastic differential equations:

where . For the purpose of this example we take the
volatility coefficient to be constant, so that the factor W1 has the
interpretation of a simultaneous constant (proportional) shift in all
local volatilities. All the other quantities can depend on t, S, factors
W0 and W1 or their past values. More specifically, we consider a 1-
year, 5-period example with the initial term and strike structure of

αm n, i j,( )
Pm n, i j,( )

dS
S

------ µdt σdW0+=

dσ2
K T,

σ2
K T,

----------------- αK T, dt θdW1+=

σ t( ) σt St, t St,( )=

θ
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volatility given by an at-the-money implied volatility of 20% and a
constant skewness of 0.5% per 10 strike points. For instance, ini-
tially a 80 strike option of any maturity has implied volatility of
21%. Let the riskfree discount rate be equal to 10%, dividend yield
5% and the volatility (of volatility) parameter = 30%. We choose
the state space of the stochastic implied trinomial tree to be the
same as a standard (CRR- type) trinomial tree with constant vola-
tility of 20%. Figure 17 shows this state space. It also shows the
local volatilities and total transition probabilities, corresponding to
various nodes of this tree, at the initial time t = 0. As we expect,

θ

FIGURE 17. The state space of a Stochastic Implied Trinomial Tree, the
local volatility surface and the total transition probability distribution
on the tree at the initial time t = 0.
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local volatilities increase as the index level decreases roughly twice
as fast as implied volatilities. Also the probability distribution is
skewed (around the forward price) towards the lower index levels.
The first step toward the construction of the stochastic implied tree is
to determine the drift coefficients at time t0 = 0. Appendix E
gives the formulas for directly calculating these coefficients, which

αm n, 0 0,( )

FIGURE 18. The first step of the Stochastic Implied Tree construction
consists of determining all the drift coefficients αm,n(0,0), at time t0 =
0, from the martingale conditions for the total probabilities Pm,n(0,0).

1.000
0.182

0.275 0.281 0.267 0.251
0.493 0.376 0.311 0.271

0.071 0.112 0.135

0.066 0.070 0.083

0.016 0.037

0.026 0.028
0.011

0.003

0.1970.2060.232

total probs Pm,n(0,0):

-0.044
-0.184 -0.037 0.009
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-0.369 -0.195
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drifts αm,n(0,0):

choose a random vector (∆W0, ∆W1) -> (up, up)
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0.191 0.189 0.188
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local volsσm,n(0,0):

step 1
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are shown in Figure 18. We can justify the numbers by examining
what can happen to the total transition probabilities during the next
time interval ∆t. All local volatilities will simultaneously move, with
probability of 1/2, to their up values, , or their down val-
ues, , as given by

1.000
0.175

0.343 0.278 0.243 0.220
0.346 0.303 0.256 0.226

0.103 0.142 0.154

0.107 0.089 0.102

0.027 0.055

0.046 0.042
0.021

0.005

0.1970.2090.311

up total probs P(u)
 m,n(0,0):

1.000
0.190

0.206 0.284 0.291 0.282
0.640 0.448 0.367 0.315

0.038 0.082 0.116

0.026 0.051 0.063

0.006 0.018

0.006 0.014
0.001

0.001

0.1980.2030.154

down total probs P(d)
 m,n(0,0):

1.000
0.182

0.275 0.281 0.267 0.251
0.493 0.376 0.311 0.271

0.071 0.112 0.135

0.066 0.070 0.083

0.016 0.037

0.026 0.028
0.011

0.003

0.1970.2060.232

average total probs (P(u)
m,n(0,0)+P(d)

m,n(0,0))/2:

FIGURE 19. Up- and down- values of local volatilities and total
transition probabilities corresponding the first simulation step.
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with given in Figure 18. As a result, all transition probabil-
ities also change across the tree, simultaneously moving to their up
values, , or to their down values, , each with
probability of 1/2. Figure 19 shows that with the present choice of
drift coefficients the initial total probabilities are precisely equal to
the average value of their up and down values. To complete the step 1
we draw a pair of independent random numbers between 0 and 1, say

αm n, 0 0,( )

P u( )
m n, 0 0,( ) P d( )

m n, 0 0,( )

FIGURE 20. During the step 2 of the simulation, the drift coefficients
αm,n(1,2), at time t1 = 0.25, are determined from the martingale
conditions for the total probabilities Pm,n(1,2).
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local volsσm,n(1,2):
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drifts αm,n(1,2):
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step 2
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(0.853, 0.612). Since 0.853 is greater than the sum of prevailing
down and middle probabilities, 0.493+0.232 = 0.725, as discussed in
Figure 16 we move the index to the node (1,2). Also, since 0.612 is
greater than 1/2 we move all local volatilities to their up values,
before we begin the next simulation step. The step 2 of the simula-

FIGURE 21. During the step 3 of the simulation, the drift coefficients
αm,n(2,3), at time t2 = 0.50, are determined from the martingale
conditions for the total probabilities Pm,n(2,3).

0.192 0.186
0.197

0.164local volsσm,n(2,3):

0.048

1.000 0.529 0.389
0.213 0.213

0.258 0.298
0.051
0.001

total probs Pm,n(2,3):

-0.044 0.113
-0.235

-0.182drifts αm,n(2,3):

choose a random vector (∆W0, ∆W1) -> (up, up)

step 3
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tion is precisely the same as step 1, except confined to the subtree
that begins at the node (1,2). As shown in Figure 20, again the mar-
tingale conditions on the total probabilities are used to
solve for the drift coefficients at time t1 = 0.25, and then
these coefficients, together with a pair of random numbers, are used
to determine jointly the new values for the index price and the future

Pm n, 1 2,( )
αm n, 1 2,( )

FIGURE 22. During the step 4 of the simulation, the drift coefficients
αm,n(3,5), at time t3 = 0.75, are determined from the martingale
conditions for the total probabilities Pm,n(3,5).

0.180local volsσm,n(3,5):

0.183

1.000 0.584
0.232

total probs Pm,n(3,5):

-0.044drifts αm,n(3,5):

choose a random vector (∆W0, ∆W1) -> (down, - )

step 4
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local volatilities. Steps 3 and 4 are also quite similar and their
results have been shown in Figures 21 and 22, repsectively.

In this example, we chose a simple two-state (up and down) repre-
sentation for the stochastic movements of the local volatility sur-
face during the time step . We could instead choose any
equivalent representation of the same process with m states, for
any integer m > 1. There are infinite number of equivalent repre-
sentations for any choice of m. If the model is well-behaved, these
discrete representations should all converge to the same continu-
ous-time process as goes to zero. However, a representation with
large number of states may converge substantially faster than the
two-state representation we chose here. Table 1 shows the calibra-
tion results for a 50000 path simulation on the 5-period tree
described above.

TABLE 1. Calibration results of a 50000-path simulation on a 1-year, 5-
period Stochastic Implied Tree.

The fourth and fifth columns give, respectively, the standard (non-
stochastic) implied trinomial tree and the Stochastic Implied Tree
results for a series of standard European-style call and put options
used to calibrate the trees. The results are seen to agree well.

Strike
Price

Option
Type

Black-
Scholes

Price

Standard
Implied

Tree Price

Stochastic
Implied

Tree Price

130 call 1.142 1.118 1.176

120 call 2.629 2.764 2.775

110 call 5.332 5.529 5.556

100 call 9.628 9.395 9.432

90 put 2.452 2.566 2.556

80 put 0.840 0.936 0.928

70 put 0.202 0.244 0.230

∆t

∆t
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Pricing of Some Contracts
with Payoffs Based on Realized
Volatility
CAVIAT: Since the location of the nodes (i.e the state space) of the
stochastic implied trinomial tree is fixed throughout, it may not be
possible to fit very large local volatilities, which may occur at various
nodes and at different times during the simulation, with transition
probabilities which lie between 0 and 1. In such cases, we must over-
write the unacceptable transition probabilities (or, equivalently, the
local volatilities) at those nodes15. Even though, this overwrite proce-
dure makes for an imperfect calibration to the initial smile (and, the-
oretically, a violation of arbitrage), it must be diligently adhered to,
in order to keep the simulation process meaningful. We can define
overwrite ratio as the number of overwrites per future node, per sim-
ulation path. In the previous example, the overwrite ratio for 5 peri-
ods and 50000 paths is found to be 2.7%, indicating that only a
relatively small portion of the calculated local volatilities have been
overwritten.

Consider a realized variance forward contract16, defined as a forward
contract on the realized variance of index returns, , with strike
price K and payoff at the contract maturity. Table 2 shows
the valuation results for a 1-year realized variance contract with zero
strike price, using 20-period, 10000 path stochastic implied tree sim-
ulations with four different volatility of volatility parameters θ = 0%,
20%, 30%, 50%. To make the results more clear, we choose a flat ini-
tial volatility smile with a constant implied volatility of 20% for all
standard European options. Also the discount rate and dividend yield
are both chosen to be zero.

TABLE 2. Prices of a zero-strike realized variance forward contract for
different values of the volatility of volatility parameter.

It is clear from this table that the price of a realized variance forward
contract is independent of the volatility of volatility parameter, and is

15. This also occurs in the standard implied trees. See, for instance, Derman, Kani
and Chriss [1996].
16.  See also Investing in Volatility, Derman etal. [1996].

θ  0% 20%  30% 50%

price 399.81 400.37 401.10 400.69

Σ2

Σ2 K–( )
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what one would expect from a static 20% flat initial implied volatility
surface. In fact, it can be shown that under very general conditions
(see footnote 14) the price of this forward contract depends only on
the initial volatility surface and not on the specific stochastic aspects
of the volatility process. More precisely, it’s price equals the dis-
counted value of the expected (equilibrium) total index return vari-
ance during the life of the contract. As discussed earlier, this
expectation is fully embodies in today’s local volatility surface. There-
fore, we are able to price this forward contract by using an effective
theory (θ = 0), as the second column in the table indicates. This is
quite analogous to our ability to price index forwards contracts using
the static initial forward curve without any specific knowledge of the
stochastic behavior of the future index prices, or to price straight
bonds using the initial yield curve with no specific knowledge of the
behavior of future interest rates.

Now consider a realized variance (call) option contract with strike
price K whose payoff at maturity is given by . Table 3
shows the valuation results for 1-year realized variance call options
with different strike prices, under precisely the same conditions as
before.

TABLE 3. Prices of realized variance call option contracts with different
strike prices and volatility of volatility parameters.

According to this table the price of a realized variance option contract
increases with the volatility of volatility parameter. This result
should be expected as most options’ prices increase when their under-
lyer price becomes more volatile. Furthermore, like most options, the
pricing and hedging of a realized variance option contract depends
crucially on our choice of the stochastic volatility model.

θ  0% 20%  30% 50%

400 0.00 48.336 65.784 95.742

500 0.00 14.745 31.221 56.096

600 0.00 3.391 11.780 25.211

700 0.00 0.203 1.682 4.654

Max Σ2 K– 0,( )

K
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HEDGING THE INDEX AND
VOLATILITY RISKS IN STOCHASTIC
VOLATILITY MODELS

MORE REALISTIC STOCHASTIC
VOLATILITY MODELS
Appendix D gives conditions for the existence and uniqueness of an
equivalent martingale measure in multi-factor stochastic volatility
models. Under these conditions the markets are complete and, given a
contingent claim C, there exists an admissible self-financing trading
strategy (Harrison and Pliska [1981]) involving the index S, the money
market account B, and (any) n different standard options , i =
1,...,n, which replicate this contingent claim:

a.e.

This replication strategy is dynamical, so that the hedge ratios NB, NS
and Ni, i = 1, ..,n, are in general functions of time and other dynamical
variables.

To find the hedge ratios NS and Ni we must separately move the index
price S and introduce n independent shocks Wi (possibly corresponding
to the n independent factors) to the initial local volatility surface, and
subsequently reprice the contingent claim and the n hedge standard
options. For the simple model in our examples, we find these hedge
ratios from solving the following system of equations

This system has a unique solution if the sensitivity matrix on the right
hand side is non-singular. This is true if , i.e when the sen-
sitivity of the option to a parallel shift in the local volatility surface is
positive. This condition holds for any standard option with non-zero
strike price.

In the previous example, all instantaneous changes of the volatility
surface are caused by a single source of randomness, a parallel shift
factor. However, empirical analyses17 of the daily changes of the vola-
tility surface for index options reveals other important sources of ran-
domness. A more realistic stochastic volatility model may be, for
example, given by the following pair of stochastic differential equa-
tions:

17.  To be presented in an upcoming Quantitative Strategies Research Note.

Ci CKi Ti,=

NBB NSS NiCi

i 1=

n

∑+ + C=

1 C1∂ S∂⁄

0 C1∂ W1∂⁄
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N1

C∂ S∂⁄

C∂ W1∂⁄
=

C1 W1∂⁄∂ 0>

dS
S

------ µdt σdW0+=

dσ2
K T, t S,( )

σ2
K T, t S,( )

------------------------------- αK T, t S,( )dt θ1dW1 θ2e λ T t–( )– dW2 θ3e η K S–( )– dW3+ + +=
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SUMMARY
where and are all constants. The first
factor has the same interpretation as before, whereas the second and
third factors may be interpreted as the term structure factor and
skewness factor, respectively. The shocks to the local volatility surface
resulting from these factors are shown in the figure below:

In this paper we discussed an arbitrage pricing approach to contin-
gent claims valuation with stochastic volatility similar to the Heath-
Jarrow-Morton (HJM) methodology for stochastic interest rates. We
began with a continuous time economy with multiple factors, and
posited a general multi-factor continuous time stochastic process for
the evolution of the local volatility surface. We characterized the con-
ditions which guarantee absence of arbitrage opportunities among
the various option and forward contracts defined on the underlying
index. Under these conditions markets are complete and contingent
claim valuation is preference-free. However, these no-arbitrage condi-
tions are non-linear and difficult to use in their continuous form. We
then introduced the Stochastic Implied Tree as a discrete-time
framework for implementing our family of models. Starting from any
initial node, we can guarantee absence of future arbitrages by choos-
ing appropriate drift parameters for every future node. This proce-
dure guarantees arbitrage-free future movements of the index and
local volatility surface in the discrete-time world defined by the sto-
chastic implied tree. We can use Stochastic Implied Trees to price
contingent claims with payoffs which depend on the index and index
volatility, when the volatility surface is skewed and stochastic. The
resulting contingent claim prices are independent of the market
prices of risk. They are also consistent with the current market prices
of all standard options and forwards defined on the underlying index
and with the absence of any future arbitrage opportunities.

σ t( ) σt St, t St,( )= θ1 θ2 θ3 λ η, , , ,

(a) parallel shift (b) term structure (c) skewness
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APPENDIX A: Expectation
Definitions of Local Volatility
This appendix provides expectation definitions for local volatility. It
begins with Equation 2 as the definition of local volatility and derives
the expectation relationships between local volatilities and future
instantaneous volatilities, given the assumption that the equivalent
martingale measure exists.

Under the equivalent martingale measure, the index price evolution
is given by the stochastic differential equation

(EQ 58)

where the riskless discount rate r and continuously compounded div-
idend yield δ are assumed to be constant, is the instantaneous vol-
atility at time t and is a standard Brownian motion under
this measure, as discussed in the text. Let denote the expec-
tation corresponding to this measure, given the information available
at time t (with the index level at S = St). Aside from the spot index
level, the information at time t generally includes the past index lev-
els, the values of the n (independent) stochastic factors Wi (governing
the stochastic behavior of volatility) and their past histories. Under
the equivalent martingale measure rescaled option prices are mar-
tingales. Therefore, the price, , at time t and market level S
of a standard European-style (call) option, with strike K and matu-
rity T, with terminal value  is given by

(EQ 59)

Differentiating this equation once with respect to K gives

(EQ 60)

where θ(.) is the Heaviside function. Differentiating twice with
respect to K gives

(EQ 61)

where δ(.) is the Dirac delta function. Lastly, differentiating with
respect to T gives

(EQ 62)
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A formal application of Ito’s lemma to the option’s terminal payoff
leads to the identity

(EQ 63)

Taking Expectations of both sides of this equation and using Equa-
tion 58 leads to

(EQ 64)

The first term in this expression can be rewritten as

(EQ 65)

Inserting this relation and multiplying both sides of Equation 64 by
the discount factor , and using Equations 59 and 60 we obtain

(EQ 66)

Replacing this expression for the last term in Equation 62 gives

(EQ 67)

Finally, using conditional expectations we can write

(EQ 68)

which together with Equation 61, can be inserted back into Equation
67 to arrive at

(EQ 69)

The right hand side of this equation is precisely the definition of the
local variance , as defined in Equation 2. It follows that

(EQ 70)
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The local variance is, therefore, the conditional expectation
of the instantaneous variance of index returns at the future time T,
contingent on index level ST being equal to K. If the instantaneous
index volatility is only a function of the spot index level and time, i.e.
if σt = σ(St , t), then

(EQ 71)

Since the right hand side is independent of t and S, in this case the
local volatility surface remains static as time t evolves and index
level S changes. This situation corresponds to an effective theory
where all sources of volatility uncertainty, other than the future time
t and the future index level S, are effectively averaged out of the the-
ory, leaving an effective volatility which is only a function of t and S.

In the general stochastic setting the dynamics of local volatilities is
described by the stochastic differential equation

(EQ 72)

As discussed in the text, , i = 0, ...,n, are independent Brownian
motions under the equivalent martingale measure and the volatility
coefficients are some given functions of time t, index level S and
factor values Wi

t , or the past histories of these variables. The drift
coefficients have similar dependencies, but are constrained
by the requirement of no-arbitrage. In an effective theory

for all values of t and S, as seen by Equation 71, thus
the drift and volatility coefficients are all identically equal to zero.

The denominator on the right hand side of Equation 70 is the total
transition probability  (see Equation 39):

(EQ 73)

Since , for all values of K and T, are jointly martingales under
the equivalent martingale measure, the stochastic differential equa-
tion governing their evolution has the form

(EQ 74)
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The numerator on the right hand side of Equation 70 is also a mar-
tingale under this measure. Therefore, by taking differentials of both
sides of this equation and applying Ito’s lemma we find that

(EQ 75)

Let us define a new measure, , specifically depend-
ing on K and T. From Equations 72 and 75 we observe that under this
new measure local variance  is a martingale, i.e

(EQ 76)

We call this measure the K-strike and T-maturity forward risk-
adjusted measure in analogy with T-maturity forward risk-neutral
measure in interest rates (see Jamshidian [1993]). Letting
denote expectations with respect to this new measure, we can write
Equation 70 as

(EQ 77)

Therefore, in the K-strike and T-maturity forward risk-adjusted mea-
sure the local variance is the expectation of future spot vari-
ances at time T. This is analogous to the similar situation in
interest rate world where the forward rate is the T-maturity for-
ward risk-adjusted expectation of the future spot rates at time T.
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APPENDIX B: Mathematics of
Effective Theories
In this appendix we describe several mathematical relationships sat-
isfied by the propagators, transition probabilities and the standard
option prices in the effective volatility theories.

The forward propagator in an effective volatility theory
describes the (standard) option price evolution forward in time and
index price. It satisfies the same backward equation as option prices,
a dual forward equation and the boundary condition
for all time t. Alternatively we can work with the forward transition
probability density function, , which is defined in terms of
the forward propagator as . The forward
transition probability, with boundary condition ,
satisfies the following backward equation

(EQ 78)

its dual forward equation

(EQ 79)

and, for any , the Chapman-Kolmogorov relation

(EQ 80)

The forward transition probability (propagator) relates prices of a
standard option, with fixed strike K and maturity T, at different time
and market levels according to

(EQ 81)

Differentiating this relation twice and evaluating it at leads to

(EQ 82)

Similarly, the backward propagator describes option price
evolution backward in maturity time and strike price. It satisfies the
same forward equation as the option prices, its dual backward equa-
tion, and the boundary condition for all T. Alter-
natively we can work with the backward transition probability
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density function, , which is defined in terms of the back-
ward propagator as . The backward
transition probability density function, with the boundary condition

, satisfies the following forward equation

(EQ 83)

its dual backward equation

(EQ 84)

and, for any , the chapman-Kolmogorov relation

(EQ 85)

The backward transition probability (propagator) relates prices of
standard options, with different strikes and maturities, at a fixed
time t, , and market level S according to

(EQ 86)

Differentiating this relation twice and evaluating it at leads to

(EQ 87)
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APPENDIX C: Local Volatility
Variational Formulas in
Effective Volatility Theories
In this appendix we derive variational formulas describing sensitiv-
ity of the transition probabilities (propagators) to a specific local vola-
tility on the volatility surface. We work within the context of effective
theories, (formally) changing the local volatility corresponding to a
single future time and market level, while leaving all other local vol-
atilities unchanged.

We begin by studying the relationship between transition probabili-
ties and local volatilities in a discrete time setting. We then take the
continuous-time limit by letting the spacing go to zero. Consider one
period forward transition probabilities p*u, p*m and p*d, from the
index level S* at time t* to the three nearby index levels S*u, S*m
and S*d at time t*+ ∆t*, as shown in the figure below:

Let denote the one-step forward price and
the local volatility, corresponding to the initial node (t*,S*). The three
transition probabilities in the figure add up to one, and are further
constrained by the forward and volatility conditions, i.e

(EQ 88)

(EQ 89)

(EQ 90)

We can solve these expressions for transition probabilities in terms of
the local volatility. The results are

(EQ 91)

(EQ 92)

and .
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Now consider the forward transition probability , describ-
ing the total probability that starting with the level S at time t the
index will move to the level S' at the future time t', in the effective
theory context. We can isolate the sensitivity of this transition proba-
bility to a specific local volatility , corresponding to the future
time and future market level , using the Chapman-Kol-
mogorov relation of Equation 80. In discrete-time this contribution is
isolated in the following figure:

This figure describes the following decomposition of the total transi-
tion probability:

(EQ 93)

terms with no sensitivity to σS*,t*

Taking the variational derivative with respect to  gives

(EQ 94)
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From Equations 91 and 92, and ignoring o(∆t*) terms, we have

(EQ 95)

(EQ 96)

. (EQ 97)

where we used the approximation . Insert
these relations back in Equation 94 leads to

(EQ 98)

In the limit  we find the desired result

(EQ 99)

Similarly, the variational derivative of the backward transition prob-
ability  to the local volatility  with  is
found using the figure:

and can be written as
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APPENDIX D: The No-Arbitrage
Conditions and the Existence
of the Equivalent Martingale
Measure in Stochastic Volatility
Theories
This appendix presents a proof of the no-arbitrage drift conditions of
Equation 53. We also make the usual assumptions about the regular-
ity, measurability and integrability of various quantities. A more rig-
orous treatment will need to address these issues.

Let us begin with Equation 40 in the text, describing the stochastic
process followed by the total transition probability in a sto-
chastic volatility theory:

The first term describes differential changes of the transition proba-
bility restricted to the effective theory defined by the (non-random)
local volatility surface prevailing at time t and market level
S. Restricted to this surface, coincides with the effective
theory total transition probability and the instantaneous
volatility coincides with the local volatility . Therefore, in
view of Equation 78, the following backward equation holds:

Using this expression, Equations 25 and 99, and some manipulations
we arrive at

Note that the effective theory transition probabilities p(..) implicitly
depend on t and S, whether or not they contain these variables
explicitly.
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Now assume that the drift parameters satisfy the following
relations with  and (so far) arbitrary functions , i = 1, .., n:

Then we can define a new measure { , i = 0, .., n} by

; (i = 1, ..,n)

in terms of which we have

The measure { , i = 0, .., n } is an equivalent martingale probabil-
ity measure. Applying the arguments of Harrison and Kreps [Harri-
son 1979] we can show that this equivalent martingale measure is
unique if (and only if) the market prices of risk  and ,
i = 1, .., n, remain independent of strike price K and maturity T.
Under these conditions the markets are complete and contingent
claims valuation follows the standard methods of Harrison and
Pliska [Harrison 1989] and remains independent of market prices of
risk.
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APPENDIX E: Computing Drift
Parameters in Arbitrage-Free
Stochastic Volatility Theories
This appendix derives formulas for calculating drift parameters from
the no-arbitrage conditions in stochastic volatility theories. We work
in the discrete time context of the stochastic implied trinomial trees
and show how to inductively calculate the arbitrage-free drift param-
eters for all future nodes from the martingale conditions on the total
transition probabilities to the neighboring nodes at the next time
step.

We begin our analysis at the (i+1)th step of the simulation, at time ti,
with index level at node (i,j) of the stochastic implied tree. Our objec-
tive is to calculate the arbitrage-free drift parameters , to all
future nodes (n, m) at future times tn for . We calculate the drift
parameter iteratively, using the results of the previous iter-
ation steps and the condition that the total transition probability

, from the node (i,j) to the node (n+1,m+2), is a martin-
gale under all possible future movements of the local volatility sur-
face. This situation is shown in the following figure:
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The figure shows the subtree which starts at the initial node (i,j). All
the future movements of the index and local volatilities will be con-
fined to the nodes of this subtree. Our iteration for calculating drift
parameters for all subtree nodes begins with the calculation
of the drift parameter at the initial node, , and continues for-
ward to subsequent time steps beginning with the highest node at
each time step.

To make matter simple, for now let us assume that the only possible
movements of the local volatility surface during the next instant ∆t
are up or down (proportionately), with some constant volatility , as
in our example in the text, i.e

Suppose that we have calculated the drift parameters for every node
before time tn, and also for every nodes at time tn which lies above
the node (n,m), shown in dark in the figure. We must now calculate

from the previously known quantities and the martingale
condition on the total probability , of arriving at the node
(n+1, m+2) at the next time step. We can decompose the contributions
to this probability into two components as follows:

As in the figure, p denotes the one period up transition probability
from the node (n,m) to the node (n+1, m+2). The first term describes
the contribution of the node (n,m) to the total transition probability,
stemming from all the paths which go through this node before arriv-
ing at (n+1,m+2). The second term describes the contribution of all
the nodes lying above the node (n,m) to this transition probability.

Consider now the next instant ∆t in time where all future local vola-
tilities will simultaneously move either to their up state, ,
or to their down state . Since transition probabilities are
direct functions of local volatilities, then all probabilities will also
simultaneously move to their up or down states, i.e

αm n, i j,( )
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2
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The quantities and depend on drift parame-
ters and other quantities known from the previous iteration steps,
but remain unknown as they depend on the unknown drift
parameter . We have previously discussed the structure of
this dependence in Equations 91 and 92. The one period transition
probability depends linearly on the local variance , i.e

, with coefficients A and B depending only on the
position of the nodes, which are fixed and known. Hence

Using this and previous relations, we can now determine the
unknown drift parameter from the martingale condition for
the (known) total probability :

Therefore the desired formula is

This result can be readily extended to the cases where the local vola-
tility surface can move to any number (more than two) of possible
states during a time step, has multiple stochastic factors, or has fac-
tor volatilities which are more complicated functions of time, market
level, factor values or their past histories.
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