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Abstract

In this paper, we propose a cross-sectional option momentum strategy that is based
on the risk component of delta-hedged option returns. We find strong evidence of
risk continuation in option returns. Specifically, options with a high risk component
significantly outperform those with a low risk component. The risk-based option
momentum strategy is highly profitable for different formation and holding periods,
and it is more profitable than the recently discovered option momentum strategy
of Heston et al. (2023). We show that risk-based option momentum is unrelated
to their return-based option momentum and fully subsumes its performance. The
strategy is not subject to crash risk, it is not followed by long-term reversals, and
survives the consideration of realistic levels of transaction costs. With this, our pa-
per is the first to show that risk in the forward-looking and particularly informative
options market is not only time-varying but also highly persistent over time and is
well compensated by the corresponding option returns. Finally, we investigate pos-
sible explanations for the strategy’s success. Our results are robust to alterations
of the empirical setup.
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1. Introduction

Momentum is the most pervasive and widely examined asset pricing anomaly. It was

first discovered by Jegadeesh and Titman (1993) (JT), and it is based on the notion that

assets that performed well in the past will continue to outperform in the future. The

strategy is highly profitable across asset classes (e.g., Asness, Moskowitz, and Pedersen,

2013) and offers returns that are hard to understand with standard models (see, e.g.,

Daniel, Hirshleifer, and Subrahmanyam, 1998; Li, 2018; Kelly, Moskowitz, and Pruitt,

2021). In a recent study, Heston et al. (2023) find that return momentum holds for

options, too, and demonstrate that the return-based option momentum outperforms the

stock momentum substantially.

In this paper, we propose a novel momentum strategy in the options market which

is based on the persistent patterns of the risk component of option returns. In other

words, we show that there is momentum in the component of option returns explained

by common factors that is unrelated to conventional option momentum. Specifically, we

estimate the latent factor model proposed by Kelly, Pruitt, and Su (2019). Then, we

decompose option returns into two components, a risk component that is associated with

the factors – the sum of the products of the estimated βs with the factors – and a residual

component. We find that the risk component exhibits a strong momentum pattern which

implies that options with a high risk-based return component in the previous month

continue to have a high risk component in the subsequent period.

In comparison to the option momentum discovered by Heston et al. (2023), our mo-

mentum is risk-based. With a formation period of three months and a holding period of

one month, our strategy offers an annualized Sharpe ratio of 5.19 when we ignore trans-

action costs, while the corresponding return-based option momentum strategy generates

a Sharpe ratio of 3.34. We also find that our risk-based option momentum is profitable
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for longer horizons. For example, a risk-based option momentum strategy with formation

and holding periods of 12 months generates a Sharpe ratio of 2.42, while the correspond-

ing return-based option momentum strategy offers a Sharpe ratio of just 1.57. Overall,

we find that the strategy is highly significant for formation periods from 1 to 120 months.

Consistent with Heston et al. (2023), we do not find evidence of long-term reversals. Our

results remain highly significant if we skip the most recent month in the estimation of

the momentum signal as in Jegadeesh and Titman (1993).

Our paper is related to the work of Li, Yuan, and Zhou (2023), who show that an

intraday risk-based momentum strategy is highly profitable in the stock market. In

contrast, we focus on the options market and build a risk-based momentum strategy that

is unrelated to the strategy in the equity market. To achieve this, we focus on monthly

option returns that are delta-hedged daily so as to insulate our option returns from

movements that are inherited from the underlying securities. In this way, we extract the

risk component of option returns that is due to option-specific risks. It is worth noting

that delta-hedged option returns exhibit better statistical properties, and they can be

approximated by normal distributions compared to raw option returns (e.g., Zhan, Han,

Cao, and Tong, 2022). In addition, they might contain more information regarding the

mispricing of the option (Broadie, Chernov, and Johannes, 2009).

Our analysis is based on a large set of stock and option characteristics. We employ 73

option-level characteristics from Bali, Beckmeyer, Moerke, and Weigert (2023) and 153

stock-level characteristics from Jensen, Kelly, and Pedersen (2021). We standardize all

characteristics cross-sectionally to lie between −0.5 and 0.5. To guard against overfitting

on in-sample information, we focus on characteristics with statistically significant Sharpe

ratios. Specifically, we form characteristic-managed portfolios each month that are sorted

on a single characteristic. We find that 165 portfolios (out of 226) offer significant Sharpe

ratios at the 5% significance level.
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The risk adjustment of option returns is challenging due to the options’ short ma-

turities that do not allow for robust estimation of time-series betas. Furthermore, an

option’s moneyness fluctuates with changes in the underlying stock’s price. Thus, op-

tions contracts do not have the same properties from month to month. To circumvent

this issue, Büchner and Kelly (2022) apply instrumental principal component analysis

(IPCA) of Kelly et al. (2019) for S&P 500 options, and Goyal and Saretto (2022) extend

this analysis to individual equity options. The IPCA procedure includes information from

both the option contract and the underlying security to instrument for the heterogeneity

in options’ sensitivity (βs) to latent risk factors. The extracted factors are strong pre-

dictors of the cross-section of option returns. Following Goyal and Saretto (2022), we

focus on four latent factors to describe the systematic component of equity options. We

show that the four factors can explain 17.8% of the variation in option returns and that

additional factors only incrementally improve the model’s fit. To control for potential

forward-looking bias in our estimation, we also compute the factors out-of-sample using

an expanding window.

From this IPCA model, we can estimate the risk and residual components of delta-

hedged option returns. We build risk-based option momentum portfolios by sorting op-

tions into quintiles based on the previous months’ risk momentum signal. We consider

formation and holding periods that range from one to 120 months. We do not find evi-

dence of short-term reversals, so we include the most recent month in the estimation of

the signal. An option momentum strategy based on the residual from the IPCA model

is not statistically significant. Our strategy survives the consideration of transaction

costs, and we find that the net-of-fees performance is stronger for shorter maturities of

approximately 20 days to expiration.

Our main analysis is based on equally-weighted portfolios. However, the illiquidity of

the options that we consider might be a driver of the results if it is an important im-
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pediment to trading. To this end, we consider different weighting schemes. Specifically,

we construct value-weighted and open-interest-weighted portfolios by considering the un-

derlying stock’s market capitalization and the options’ dollar open interest, respectively.

This way, we focus on more liquid options as well as options with highly liquid underlying

stocks. We find that the risk-based option momentum strategy remains highly profitable

and statistically significant for each weighting scheme. Interestingly, the return-based

option momentum generates almost 50% lower returns in comparison to the risk-based

option momentum strategy. We also show that our results are robust if we estimate the

latent factors in an out-of-sample setting, which alleviates potential concerns regarding

the role of forward-looking information in the estimation of βs.

We also examine the role of momentum crashes. Daniel and Moskowitz (2016) show

that price momentum in the stock market tends to crash after economic recessions. We

explore this possibility for risk-based option momentum and find that the strategy is not

subject to momentum crashes. This is consistent with Heston et al. (2023), who find that

the type of crash risk documented in Daniel and Moskowitz (2016) for stock momentum

does not seem to appear in the return-based option momentum. Nevertheless, volatility

might play an important role in our findings. For example, Daniel and Moskowitz (2016)

and Barroso and Santa-Clara (2015) show that the volatility exposure of a stock is a

driver of stock momentum, and they propose a scaling in the momentum strategy that

increases the investment in the strategy when volatility is low. Thus, we investigate

if the performance of the option risk-based momentum strategy depends on different

volatility regimes. We estimate the strategy’s past volatility based on a six-month rolling

window and consider subsamples for past volatilities that are above or below the full-

sample median. In contrast to the volatility dependence that is documented for stock

momentum, we find that the returns of the option risk-based momentum strategy are

larger for high-volatility regimes. Moreover, the Sharpe ratio of the strategy is comparable
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across different volatility regimes, which seems to be the result of the strategy being

compensation for risk.

We investigate possible explanations for the profitability of the risk-based option mo-

mentum strategy. Note that our risk-based option momentum strategy is inherently

“born” with a risk-based explanation. In contrast, it took many years to develop both

behavioral and rational explanations for the famous JT stock momentum (see, e.g., Chan,

Jegadeesh, and Lakonishok, 1996; Barberis, Shleifer, and Vishny, 1998; Daniel et al., 1998;

Hong and Stein, 1999). While the Heston et al. (2023) option momentum is similar to

JT stock momentum in finding momentum by sorting on past asset returns, its economic

drivers are largely unknown.

We first investigate whether option risk-based momentum and option momentum are

related and whether the profitability of one strategy subsumes the performance of the

other. We independently sort options into quintiles based on the signals of the two

strategies. We consider a formation period of three months and a holding period of one

month with no formation gap and find that option risk momentum fully subsumes the

performance of option momentum. The risk-based option momentum strategy in contrast

remains statistically and economically significant across different option momentum port-

folios, generating returns that range from 13.7% to 22.0% per year. With this analysis,

we demonstrate that risk-based option momentum dominates its return-based counter-

part. We verify this result in predictive panel regressions of delta-hedged option returns

on the lagged signal of the option risk-based momentum and option momentum as well

as a number of option-level and stock-level characteristics. We find that the coefficient of

the option risk-based momentum signal remains highly significant, while the coefficient

of the return-based momentum signal is not statistically significant.

We also show that the profitability of the option risk-based momentum strategy is
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not driven by the ability of the IPCA model to describe option returns. Specifically, we

extract the amount of return variation that the IPCA model can explain by regressing

the return of each option on the four latent factors and documenting the resulting R2.

Then, we perform an independent double sort of delta-hedged option returns on the

risk momentum signal and the estimated time-series R2. We find that risk-based option

momentum is significant regardless of the level of the R2, and interestingly the strategy

is more profitable for lower, albeit still positive, levels of R2. The latter finding highlights

the disconnect between the performance of the IPCA and the profitability of the strategy.

Another potential explanation of the performance of the option risk-based momentum

is that investors do not manage to fully adjust their expectations regarding the future

volatility of the underlying stock when investing in options. To investigate this channel,

we compute the average implied volatility of each quintile of the strategy and evaluate

the implied volatility spread, which is defined as the difference between the realized and

implied volatility. We again find a negative and statistically significant pattern. Further

analyses show that the performance of the strategy is partly driven by its ability to

short options for which their implied volatilities are expected to exceed their underlying

volatilities realized in the next month and invest in options for which the opposite is

true. Furthermore, we show that sorting options based on the risk-based momentum

signals produces a highly persistent spread between future realized and today’s implied

volatilities that lasts for more than 24 months into the future. Not only do investors fail

to adequately forecast the underlying stock’s volatility (Goyal and Saretto, 2009), their

forecast errors show remarkable persistence, which we exploit with our risk-based option

momentum strategy.

Our results are robust to a number of alterations of the empirical design. Specifically,

our estimation of the IPCA model allows for time variation in the factor realizations and

factor sensitivities (e.g., betas). We show that our results are robust when we do not allow
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for time variation in the betas or the factor realizations or when we fix both. We also

find that our strategy offers high Sharpe ratios when we estimate the latent factors using

only option or stock characteristics. Furthermore, the risk-based momentum strategy is

economically and statistically significant for at-the-money and out-of-the-money options.

Varying the number of latent factors does not change our results. A two-factor structure

is sufficient for our risk-based option momentum to significantly outperform its return-

based counterpart, additional factors further improve our strategy’s performance.

The rest of the paper is organized as follows: Section 2 provides a literature review.

Section 3 introduces the data and the methodology, Section 4 offers our main results, and

Section 5 discusses different explanations of the strategy. Section 6 includes robustness

checks, and Section 7 concludes.

2. Related Literature

Our paper contributes to two strands of the asset pricing literature. Firstly, we contribute

to the equity options literature that attempts to uncover return predictability in the cross-

section of individual option returns. Secondly, we contribute to the vast literature on the

momentum strategy.

Equity Options. The Black-Scholes model implies that options are redundant assets.

However, in markets with frictions, option prices are subject to different dimensions

of risk apart from those implied by the underlying security (e.g., Garleanu, Pedersen,

and Poteshman, 2008). Goyal and Saretto (2009) show that the implied volatility rela-

tive to the historical volatility is an important negative predictor of the cross-section of

delta-hedged call option returns. Cao and Han (2013) find a negative relationship be-

tween delta-hedged equity option returns and the idiosyncratic volatility of the underlying
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stock. Zhan et al. (2022) examine the cross-sectional predictive ability of different stock

characteristics for delta-hedged option returns and find strong evidence of predictability

for a variety of predictors. Bali et al. (2023) employ nonlinear machine learning models

and find strong evidence of out-of-sample predictability of delta-hedged option returns

using a large number of option and stock characteristics.

Stock and Option Momentum. Daniel and Moskowitz (2016) provide an early sur-

vey of the literature. More recently, Kelly et al. (2021) focus on the return-based stock

momentum and show that its payoff can be viewed as a compensation for time-varying

covariance risk with factors based on the IPCA model of Kelly et al. (2019). The authors

focus on the risk part of the strategy in the stock market by fixing the conditional factor

realization at the mean. Specifically, the authors highlight that momentum could be

characterized as a noisy estimate of a stock’s conditional beta. In contrast, we are the

first to discover the momentum pattern of risk in equity options. In addition, our setting

allows for time variation in both factor realizations and factor betas. Heston et al. (2023)

find strong evidence of momentum in the options market that is more pronounced than

other asset classes. We show that option risk-based momentum is more profitable than

option momentum and subsumes its profitability.

3. Data & Methodology

3.1. Data

Returns. We consider the universe of tradable options from OptionMetrics IvyDB

between 1996 and 2021. It is well known that stocks’ total returns (Jegadeesh and

Titman, 1993) as well as their risk component exhibit momentum (Li et al., 2023). To
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assure that our results are not confounded by momentum in the underlying, we deviate

from Heston et al. (2023) and delta-hedge our options positions every day. We follow the

definition of Bali et al. (2023). Let the option contract’s value be denoted by O, the value

of the underlying stock as S, and the risk-free rate in month t as rft . The delta-hedged

dollar gain over the period (t, t+ 1) is then given by:

Πt+1 = Ot+1 −Ot −
N−1∑
n=0

∆tn

(
Stn+1 − Stn

)
−

N−1∑
n=0

rftn
365

(Otn −∆tnStn) . (1)

We scale the dollar gain by the initial value of the investment portfolio (Cao and Han,

2013):

rt+1 =
Πt+1

|∆tSt −Ot|
. (2)

Filters. We retain at-the-money option contracts for which the bid is positive, the

offer exceeds the bid, the mid-price is at least $0.125, the relative quoted spread is at

most 50% of the mid, the implied volatility is available, and the open interest is positive.1

Furthermore, option prices need to adhere to American option bounds. Finally, we require

that the put (call) prices are monotonically increasing (decreasing) in the contract’s strike

price, iteratively retaining those contracts with the larger trading volume and a strike

price closer to the current price of the underlying. We select the contracts that expire in

roughly 50 days and retain the expiration date on which the majority of options expire.

This is typically the third Friday of the month after the next. After applying the above

filters, we choose the contract per underlying with the largest dollar open interest in

t. To limit the influence of outliers and faulty records, delta-hedged option returns are

winsorized at the 99% level.

1We define “at-the-money” as contracts for which the standardized strike
∣∣∣ log(K/S)

iv×
√
ttm

∣∣∣ ≤ 1, where S is

the underlying’s price, K the option’s strike price. ttm its time-to-maturity and iv its implied volatility.

9

Electronic copy available at: https://ssrn.com/abstract=4404190



Risk Adjustment. A risk adjustment for option returns is notoriously difficult. Their

short maturity makes it impossible to estimate βs in standard time-series regressions

(Fama and MacBeth, 1973). Furthermore, their moneyness changes whenever the un-

derlying changes. We therefore do not have access to contracts with exactly the same

properties from month to month. Büchner and Kelly (2022) address this issue and es-

timate instrumental principal component analysis (IPCA) for S&P 500 index options.

Goyal and Saretto (2022) extend this approach to equity options. IPCA relates option

i’s exposure to K latent factors Ft+1 using observable characteristics of the option, zi,t:

ri,t+1 = βi,tFt+1 + εi,t+1, βi,t = zi,tΓβ, (3)

where Γβ is the factor loading matrix. By including information about the option contract

(i.e., its implied volatility, moneyness, and maturity) and the underlying stock (i.e., the

stock’s market capitalization or book-to-market ratio) in the estimation of βs, IPCA

circumvents the issues outlined above. Furthermore, the latent factor structure in Ft+1

is estimated to best explain the cross-section of option returns in each month t+ 1. The

IPCA specification on Eq. (3) has the additional benefit that βs are time-varying and

respond to changes in the characteristics profile of option i.

The system of first-order conditions is given by:

F̂t+1 =
(
β̂′
t β̂t

)−1

β̂′
tRt+1, ∀t (4)

vec(Γ̂β) =

(
T−1∑
t=1

Z ′
tZt ⊗ F̂t+1F̂

′
t+1

)−1(T−1∑
t=1

[
Zt ⊗ F̂ ′

t+1

]′
Rt+1

)
,

where βt and Rt+1 are the stacked beta and returns of size Nt+1. Latent factor realizations

are obtained from month-by-month cross-sectional regressions of excess returns on βs

(Fama and MacBeth, 1973). Γβ are the coefficients of regressing individual option returns
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on the latent factors Ft+1 interacted with stacked characteristics Zt. We follow Kelly et al.

(2019) and estimate the system of first-order conditions with an alternating least squares

approach.

Alongside the options’ returns, IPCA requires observable characteristics in Z as input.

We rely on a large set of 73 option-level characteristics taken from Bali et al. (2023) and

153 stock-level characteristics from Jensen et al. (2021). Following standard practice in

the literature, we rank each characteristic cross-sectionally and standardize its values to

lie between −0.5 and 0.5 for each month. Finally, we also add a constant characteristic.

To guard against overfitting on in-sample information, we retain those characteristics

that produce valuable investment advice between 1996 and 2021. In each month, we

form characteristic-managed portfolios (CMPs), sorted on a single characteristic z:

xz
t+1 =

∑Nt+1

i=1 zi,t × ri,t+1

Nt+1

. (5)

Out of these 226 CMPs (+ an equally-weighted portfolio using the constant characteris-

tic), 165 generate a Sharpe ratio significant at the 5%-level. To assess a Sharpe ratio’s

statistical significance, we follow the test described in Lo (2002).2 We show the resulting

Sharpe ratios for each CMP alongside identifying information for the sorting charac-

teristic in Appendix A. We identify pairs of characteristics pairs that are correlated by

|ρ| ≥ 95%. From each identified pair, we retain that characteristic which is available for

more asset×month observations. In total, this drops 10 characteristics from our dataset

and thus leaves us with 155 (including a constant) characteristics which we use to instru-

ment variation in βs.

We follow Goyal and Saretto (2022) and use a K = 4 latent factor model to describe

the systematic component of equity option returns. In our own testing, we find that a

2We are aware of the concerns raised by Mertens (2002) about the statistical test in Lo (2002) but
follow the literature in applying it.
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Table 1: R2 of K-factor IPCA Models

The table shows the variation of option returns explained by K-factor IPCA models. The in-sample R2

and out-of-sample R2
OOS in the second row, respectively. The out-of-sample estimation uses information

until t to estimate Γβ,t of Eq. (3) are provided. We estimate ft,t+1 using a cross-sectional regression with
option returns in t + 1. This regression relies on portfolio weights known in t without using forward-
looking information.

K → 1 2 3 4 5 6

R2 0.112 0.161 0.171 0.178 0.183 0.188
R2

OOS 0.111 0.149 0.158 0.164 0.167 0.171

four-factor model describes option returns well and drives out the explanatory power of

characteristics Z not already captured by βs and factors. To illustrate this fact, Table 1

shows the fraction of variation explained by a K-factor IPCA model. We show the results

for IPCA models fitted in-sample, i.e., with all available information. We also estimate

IPCA out-of-sample. Specifically, using an expanding window, we first estimate IPCA

with information until month t to obtain Γβ,t. Next, we calculate the out-of-sample factor

return ft+1,t in a cross-sectional regression on option returns in t + 1. This regression

uses portfolio weights known in t, thereby assuring that no forward-looking information

enters the out-of-sample estimation of IPCA.

The first row shows in-sample R2s. A single-factor model already explains 11.1% of

option return variation. Increasing the number of factors K quickly increases the amount

of variation explained. The K = 4-factor model proposed by Goyal and Saretto (2022)

explains 17.8% of the variation in option returns. Increasing the number of factors further

does little to improve this. The results are fairly robust out-of-sample, a circumstance

that Kelly, Palhares, and Pruitt (2020) ascribe to the parsimonious structure of IPCA.

Most of the heterogeneity in factor sensitivities arises from variation in observable option

characteristics. This makes IPCA robust out-of-sample. Our preferred K = 4-factor

model explains 16.4% of the variation in option returns out-of-sample.
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Risk Momentum. With a description of an option’s systematic component at hand,

we can decompose its return into that the portion explained by common risk factor and

the remaining idiosyncratic part:

ri,t+1 = βi,tFt+1︸ ︷︷ ︸
= Riski,t+1

+ εi,t+1︸ ︷︷ ︸
= Residuali,t+1

(6)

From this decomposition, we construct the typical momentum signal following Jegadeesh

and Titman (1993) and Heston et al. (2023) for a formation period of f months. A

formation gap of g months may be used to exclude possible short-term reversal effects in

option returns. We find little evidence of a short-term reversal in option returns, such

that we set g = 0 in most of our analyses. Option i’s momentum signal is, therefore, the

average return for the months between t− f and t− g:

MomSignali,t =
1

f − g

f∑
τ=g

ri,t−τ . (7)

Similarly, we construct the momentum signal from the risk component alone (Li et al.,

2023):

RiskMomSignali,t =
1

f − g

f∑
τ=g

Riski,t−τ . (8)

Finally, we sort options into quintiles based on MomSignal or RiskMomSignal and follow

each quintile’s option return over a holding period of h > 0 months. We are interested in

RiskMomt+h =
h∏

τ=1

(
1 + rQ5

t+τ − rQ1
t+τ

)
− 1. (9)

which is the return on the high-minus-low spread portfolio between the highest and lowest

MomSignal. The spread returns on the RiskMomSignal quintiles are computed similarly.

13

Electronic copy available at: https://ssrn.com/abstract=4404190



4. Risk Momentum in Option Returns

4.1. Risk Momentum Outperforms Return-based Momentum

We begin our analysis with a comparison between the return-based option momentum

discovered by Heston et al. (2023) and our novelty brought on by separately considering

trends in the risk component of option returns.

In Figure 1, we show annualized Sharpe ratios for the two strategies for a variety of

different formation periods f and holding periods h. For all combinations of f and h

we find that RiskMom outperforms the return-based option momentum. For example,

a h = 1 month investment based on risk-adjusted returns over the past f = 3 months

generates an annualized Sharpe ratio of 5.19, which compares well to the 3.54 achieved

with the return-based momentum. RiskMom is also valuable for longer-term investments.

Holding the invested portfolio constant for h = 12 months achieves a Sharpe ratio of 2.25

with signals based on the risk-adjusted return over the past f = 12 months. Failing to

adjust option returns for risk decreases the trend-following Sharpe ratio to 1.59.

Table 2 compares the performance of the two trend-following strategies in option re-

turns in more detail. We also consider a momentum strategy based on the residual return

component shown in Eq. (6). Next to the returns of the high-minus-low spread portfo-

lio, we also show the results for the individual quintile portfolio sorted on either signal.

Newey and West (1987) t-statistics with twelve lags are shown in brackets below the

average annualized returns.

Panel A of Table 2 produces a number of interesting facts about the performance of

RiskMom. First, the returns of the high-minus-low spread portfolio are highly significant

for signal formation periods as short as f = 1 months up to f = 120 months. The

resulting average return, however, is decreasing in the length of this formation window.
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Fig. 1. Comparison of Risk-based and Return-based Option Momentum

The figure shows the annualized Sharpe ratios for risk-based and return-based option momentum. We
consider three different investment periods, ranging from the next month, over the next quarter, to the
next year. Furthermore, we consider a number of formation periods over which the trend-following signal
is generated.

Second, between 60% and 80% of the strategy’s returns are from its short leg. Risk-based

trend-following is especially successful in identifying previous losing options that continue

to perform poorly in the future. We investigate the role of persistence in forecast errors of

future realized variance to explain this in Section 5.3. Third, returns are monotonically

increasing across RiskMom quintiles for all formation periods considered.

This compares well to the sorts on the return-based momentum shown in Panel B:

only for formation periods of f = 24 and f = 60 months are the quintile returns mono-

tonically increasing. Overall we find that the profitability of return-based momentum is

significantly smaller in magnitude. For example, for a formation period of f = 3 months,

returns of RiskMom are more than twice as large as those of the return-based momen-

tum. Panel C shows that residual momentum is unable to produce meaningful return

spreads. In fact, we document an inverse U-shaped pattern across residual momentum

quintiles. The returns of the first and last quintile tend to be smaller than the returns of

the moderate quintile and of similar magnitude. This renders the high-minus-low returns
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insignificant.

The results shown here are equally-weighting options in each portfolio. In Section 4.3

we show that the results hold when weighting options by their dollar open interest or their

underlying’s market capitalization. We also highlight that RiskMom survives realistic

levels of transaction costs. Furthermore, we show that sorting options into deciles as

opposed to quintiles improves our results further. We decide to stick to quintile sorts for

their greater diversification benefits and an easier presentation of the results.

4.2. Long-term Investments.

In the previous section we show that the risk component of option returns generates

significantly larger momentum profits than a signal based on the overall option return

does. In that analysis, we focus on returns over the next month. In Table 3 we investigate

if RiskMom holds valuable investment advice for long-term investments. For this, we use

the risk momentum signals generated in t and hold the investment fixed for a total of

h investment months, wherein h varies between one month and a total of 120 months.

Returns are annualized to allow for easy comparison.

Panel A shows that RiskMom continues to work for longer investment periods. Consider

an investor with a h = 6 months investment horizon. A risk-based momentum signal

generated from the past three months of risk-adjusted option returns averages returns

of 13.4% per year. For a two-year investment horizon, the same information generates

returns of 6.3% per year. We find economically negligible risk-based momentum returns

only for investment horizons that are longer than two years. In total, we document

a remarkable stability of the profits generated by risk-adjusted trend-following in the

options market.

Table 2 shows that a longer formation period decreases short-term returns. In con-
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Table 2: Investment Performance

The table shows average returns of quintiles based on risk-based, return-based, and residual option
momentum for a variety of formation months. We also provide the results for the high-minus-low portfolio
(HmL). The t-statistics are presented in parentheses, which use Newey and West (1987) standard errors
with twelve lags.

Formation Portfolio

Months 1 2 3 4 5 HmL

Panel A: Risk Momentum

1 −0.156 −0.033 −0.005 0.014 0.043 0.199
(−8.12) (−2.85) (−0.50) (1.17) (3.04) (10.56)

3 −0.151 −0.032 −0.005 0.015 0.044 0.196
(−8.32) (−2.84) (−0.43) (1.33) (2.92) (11.19)

6 −0.149 −0.031 −0.003 0.016 0.044 0.193
(−8.64) (−2.75) (−0.26) (1.37) (2.89) (11.79)

12 −0.136 −0.027 −0.002 0.014 0.040 0.175
(−8.96) (−2.45) (−0.20) (1.23) (2.63) (11.42)

24 −0.118 −0.021 −0.000 0.014 0.033 0.151
(−8.98) (−1.98) (−0.02) (1.11) (2.33) (12.06)

60 −0.090 −0.015 −0.003 0.004 0.018 0.108
(−7.47) (−1.35) (−0.27) (0.32) (1.35) (10.27)

120 −0.069 −0.018 −0.008 −0.007 0.003 0.072
(−5.57) (−1.40) (−0.64) (−0.57) (0.24) (10.14)

Panel B: Momentum

1 −0.097 −0.016 −0.000 0.005 −0.030 0.067
(−6.22) (−1.42) (−0.04) (0.47) (−2.16) (6.72)

3 −0.100 −0.018 −0.001 0.004 −0.013 0.087
(−6.25) (−1.58) (−0.10) (0.36) (−0.96) (8.90)

6 −0.104 −0.017 −0.001 0.004 −0.006 0.098
(−6.40) (−1.59) (−0.05) (0.31) (−0.43) (9.37)

12 −0.103 −0.015 −0.001 0.006 0.003 0.107
(−7.23) (−1.45) (−0.09) (0.51) (0.24) (9.66)

24 −0.090 −0.011 −0.002 0.004 0.007 0.097
(−7.39) (−1.01) (−0.22) (0.35) (0.49) (9.67)

60 −0.076 −0.014 −0.003 0.001 0.005 0.081
(−6.63) (−1.31) (−0.26) (0.12) (0.34) (8.59)

120 −0.063 −0.014 −0.010 −0.006 −0.007 0.057
(−5.27) (−1.13) (−0.82) (−0.47) (−0.45) (8.55)

Panel C: Residual Momentum

1 −0.061 −0.000 −0.001 −0.015 −0.061 −0.000
(−4.23) (−0.04) (−0.07) (−1.28) (−4.53) (−0.07)

3 −0.057 −0.008 −0.003 −0.012 −0.048 0.009
(−3.95) (−0.67) (−0.30) (−1.08) (−3.53) (1.93)

6 −0.056 −0.005 −0.004 −0.016 −0.043 0.013
(−4.01) (−0.43) (−0.37) (−1.45) (−3.21) (2.36)

12 −0.049 −0.007 −0.004 −0.015 −0.035 0.014
(−3.76) (−0.66) (−0.38) (−1.30) (−2.68) (2.60)

24 −0.038 −0.005 −0.006 −0.012 −0.033 0.005
(−3.26) (−0.43) (−0.53) (−1.01) (−2.53) (1.18)

60 −0.031 −0.009 −0.010 −0.012 −0.025 0.006
(−2.71) (−0.82) (−0.87) (−1.07) (−1.85) (1.53)

120 −0.032 −0.012 −0.013 −0.015 −0.027 0.004
(−2.63) (−0.99) (−1.11) (−1.14) (−2.02) (0.80)
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Table 3: Different Investment Months and Formation Gaps

The table shows the average returns of the high-minus-low portfolios for risk-based option momentum
for a variety of formation months, formation gap, and investment months combinations. The t-statistics
are presented in parentheses, which use Newey and West (1987) standard errors with min(12, h) lags.

Formation Investment Months

Months 1 3 6 12 24 60 120

Panel A: No Formation Gap

1 0.199 0.158 0.123 0.085 0.052 0.021 0.010
(10.56) (10.96) (10.88) (11.02) (12.36) (19.26) (13.71)

3 0.196 0.164 0.133 0.094 0.059 0.024 0.012
(11.19) (11.08) (11.43) (12.53) (13.96) (19.91) (16.50)

6 0.193 0.165 0.134 0.098 0.063 0.026 0.013
(11.79) (11.39) (11.41) (13.73) (12.94) (18.78) (16.08)

12 0.175 0.152 0.128 0.097 0.064 0.026 0.014
(11.42) (11.44) (12.02) (13.99) (10.81) (15.71) (16.92)

24 0.151 0.132 0.112 0.086 0.058 0.024 0.013
(12.06) (12.34) (12.90) (13.46) (10.11) (10.31) (9.62)

60 0.108 0.097 0.083 0.066 0.047 0.022 0.013
(10.27) (11.57) (12.49) (13.25) (11.02) (7.84) (6.46)

120 0.072 0.065 0.057 0.046 0.036 0.019 0.011
(10.14) (12.42) (13.28) (15.25) (15.42) (8.61) (7.76)

Panel B: Formation Gap of 1 Month

3 0.168 0.141 0.115 0.084 0.053 0.021 0.011
(11.02) (11.21) (10.95) (12.80) (17.58) (16.05) (14.80)

6 0.171 0.150 0.123 0.091 0.058 0.024 0.013
(12.24) (11.74) (11.75) (14.79) (17.27) (15.00) (15.24)

12 0.162 0.141 0.120 0.092 0.061 0.025 0.013
(11.52) (11.63) (12.23) (14.46) (13.06) (12.90) (15.31)

24 0.142 0.125 0.107 0.082 0.056 0.024 0.013
(12.12) (12.71) (13.31) (13.87) (12.07) (12.13) (12.46)

60 0.101 0.091 0.079 0.063 0.045 0.022 0.013
(10.26) (11.89) (13.17) (13.40) (12.68) (12.61) (10.51)

120 0.070 0.062 0.055 0.046 0.036 0.019 0.011
(9.96) (11.91) (13.06) (15.69) (16.91) (13.51) (12.24)

trast, we show that it is advisable to generate risk-based momentum signals from longer

formation periods in Table 3. For example, for an investment period of h = 12 months,

basing the generation of the momentum signal on the past three to 24 months generates

larger returns of 8.6%− 9.8% compared to 8.5% for a one-month formation period.

In Panel B of Table 3, we replicate the previous analysis with a formation gap of g = 1

month. Jegadeesh and Titman (1993) propose this step in their original paper on stock

momentum to separate the momentum signal from short-term reversals prevalent in stock

returns. We find little evidence of short-term reversals in option returns. In fact, the
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returns with a formation gap in Panel B of Table 3 tend to be slightly lower than those

obtained without a formation gap in Panel A. This effect is slowly washed out as we a)

increase the formation period f , or b) the holding period h.

4.3. Liquidity and Transaction Costs

Impact of Liquidity. The previous results are based on equally weighting the returns

of the options contracts in each quintile portfolio. Differences in the overall liquidity of

each option, however, may inhibit an investor’s ability to implement the strategy with

equal weights. We, therefore, consider two alternative weighting schemes which take the

liquidity of the option and the underlying stock into account.

First, we weight options by their underlying’s market capitalization in month t. The

results are found in Table B2. Our main results hold up well: RiskMom with a formation

period of f = 3 months generates 7.8% over the next month, compared to the return-

based option momentum’s 3.5%. Most of this performance is again driven by the short

leg. The remaining patterns are very similar to the baseline results provided in Table 2.

Second, we weight options by their dollar open interest to directly incorporate a notion

of option liquidity. The results in Table B3 show a remarkable success of RiskMom. For

a formation period of f = 1 month, the strategy averages returns of 11.8% per month

(highly significant), compared to just 2.2% (insignificant if measured at the 1%-level).

Increasing the formation period to f = 3 months leaves RiskMom’s returns unchanged

but leads to better Mom profits. Still, its returns are more than 50% lower than those of

RiskMom.

Transaction Costs. While transaction costs in the options market are high (Ofek,

Richardson, and Whitelaw, 2004), Muravyev and Pearson (2020) show that effective costs
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are much lower than what option quotes imply. They show that different trader groups

can benefit from substantially lower costs. For example, their “Algo” traders pay roughly

20% of the quoted spread and the effective average spread paid in the options market

amounts to about three quarters of what is quoted. We incorporate these considerations

when investigating the impact of transaction costs on the profitability of RiskMom. While

trading the option is likely to represent the majority of costs faced by an investor following

the strategy, she will also have to rebalance her delta-hedge using the underlying on a

daily basis. We therefore include not only expected costs of trading the option but also

the implied fees of hedging with the underlying.

Finally, it is natural to assume that the investor strategically avoids options for which

the expected return fails to exceed her transaction cost expectations. One way she can

achieve this is by focusing on options for which the expected return signal is more “ex-

treme”, i.e., options which are expected to generate larger returns. We follow Heston

et al. (2023) and consider high-minus-low return spreads of decile portfolios sorted on

RiskMomSignal. At the same time, she may incorporate expected transaction costs. For

this, we first follow Heston et al. (2023) once more and consider only options with a

quoted ask-to-bid spread below 10% of the mid-quote. Second, we directly incorporate

a forecast for the transaction costs our investor is expecting to face. Let qi,t denote the

fees for contract i that the investor expects to have to pay. Then the investor’s after-cost

return expectation of option i is given by:

Enet
t [ri,t] = RiskMomSignali,t − qi,t, if RiskMomSignali,t > 0,

Enet
t [ri,t] = RiskMomSignali,t + qi,t, if RiskMomSignali,t < 0. (10)

If Enet
t [ri,t] fails to be positive for previous buys (RiskMomSignal > 0), our investor dis-

cards the option. The opposite applies to previous sells. We use the option’s current
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Table 4: The Impact of Transaction Costs

The table shows after-cost average returns for risk-based option momentum (RiskMom). We account for
both the costs of trading the options contract, as well as the daily delta-hedge with the underlying. We
assume that the investor has to pay a fraction of the quoted spreads from the option and the underlying
and that she incorporates the current quoted spread in her decision to buy and sell options. The details of
this adjustment are provided in Section 4.3. Panel A considers options with roughly 50 days to expiration
as in our main analyses. Panel B considers options that mature within the next month. Trading these
options has the benefit that the investor does not have to close the options position, which would incur
the large option transaction costs once more. We consider a simple decile-sorted strategy (Deciles), a
strategy that employs the cost-mitigation approach detailed in Section 4.3 (+ CM), and a strategy that
additionally value-weights options by their dollar open interest (+ VW). The t-statistics are shown in
parentheses and obtained with Newey and West (1987) standard errors with twelve lags.

% Quoted Option Spread + Costs of Hedging with Underlying
0% 15% 25% 50% 75% 100%

Panel A: Roughly 50 Days to Expiration

Deciles 0.279 0.123 0.019 −0.240 −0.498 −0.755
(12.77) (7.52) (1.27) (−11.71) (−15.21) (−16.20)

Deciles + CM 0.163 0.093 0.066 −0.002 −0.069 −0.137
(8.54) (5.92) (4.65) (−0.19) (−6.60) (−11.07)

Deciles + CM + VW 0.156 0.092 0.072 0.022 −0.027 −0.077
(7.69) (5.43) (4.40) (1.38) (−1.60) (−3.97)

Panel B: Roughly 20 Days to Expiration

Deciles 0.346 0.281 0.238 0.129 0.021 −0.088
(8.19) (7.49) (6.85) (4.41) (0.75) (−2.99)

Deciles + CM 0.280 0.264 0.249 0.211 0.173 0.135
(5.84) (4.60) (4.43) (3.96) (3.40) (2.76)

Deciles + CM + VW 0.339 0.319 0.306 0.275 0.244 0.212
(4.23) (3.41) (3.32) (3.07) (2.80) (2.50)

quoted bid-ask spread as a simple measure of expected transaction costs.3 Finally, she

may consider the overall liquidity of each contract and weight her portfolio by the con-

tracts’ dollar open interest. Table B3 shows that RiskMom continues to work well for

value-weighted portfolios.

Table 4 reports the results. We vary the effective spreads paid between FRAC = 15%

and FRAC = 100% of the quoted spreads of the option and the underlying. As we employ

various cost-mitigation techniques to mimic the strategic behavior of option investors

3We express the quoted bid-ask spread relative to the investment value of the hedged option portfolio,
|∆tSt −Ot|.
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following our strategy, which changes the considered sample, we also reproduce the results

in the absence of trading fees. We consider a simple decile-sorted strategy (Deciles), a

strategy following the cost-mitigation approach detailed above (Deciles + CM), as well as

a strategy that additionally value-weights option contracts by their dollar open interest

(Deciles + CM + VW).

In Panel A, we follow our main analyses and consider options that mature in roughly 50

days on the third Friday of the month after the next. For a simple decile-sorted strategy,

we find that profits turn insignificant for FRAC=25%. For larger spreads, the strategy’s

returns turn significantly negative. Employing the cost-mitigation approach detailed

above helps: returns remain highly significant for FRAC=25% but turn insignificant or

negative for larger cost levels. The same applies to the value-weighted portfolio with cost

mitigation.

Of course, if the costs of trading in the options market represent the majority of total

costs faced by our investor, she potentially benefits from trading shorter-term options.

Options that mature within the investment period alleviate the need to close the option

position at the end of month t + 1 through a second transaction in the options market.

The potential drawback of this strategy is that she could be left with a large stock

position, depending on the settlement price of the underlying relative to the option’s

strike. To understand if the benefits or drawbacks predominate, we consider a strategy

on options that expire in roughly 20 days in Panel B of Table 4. The simple decile strategy

generates significant returns for up to FRAC=50%. Returns are indistinguishable from

zero for FRAC=75% and turn negative if the investor had to pay the full quoted spread

on each contract. Employing our simple cost-mitigation approach works well. Returns

remain significant for all levels of transaction costs. Even if the investor had to pay the full

quoted spread of the option and for the daily delta-hedge, RiskMom would average 13.5%

per year, with a t-statistic of 2.76. Employing the cost-mitigation approach on value-
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Fig. 2. Cumulative Performance

The figure shows the cumulative log return of investing $1 in the return-based option momentum, risk-
based option momentum, or a short investment in the overall options market.

weighted portfolios also generates significant returns for all levels of transaction costs.

These results show that RiskMom is a viable strategy on its own even after fees. Of

course, in reality investors will likely want to a employ a number of different strategies,

which in conjunction may lead to even more profitable investments compared to the

single-strategy performance we are showing here.

4.4. Past Volatility and Option Risk Momentum

Daniel and Moskowitz (2016) show that stock momentum is prone to crashes in the

aftermath of economic recessions. Previous losers rapidly gain in value, outperform-

ing previous winners. The returns of the resulting high-minus-low momentum strategy

are negative and can wipe out much of the gains made in previous years. Daniel and

Moskowitz (2016) argue that this behavior resembles that of a short option: in most

years, the seller receives a fee, but occasionally the strategy blows up.

We show the cumulative log performance of RiskMom, Mom as well as a short in-

vestment in the dollar open interest-weighted option market. For the trend-following
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strategy, we focus on a formation period of f = 3 months and no formation gap. We find

no evidence of momentum crashes for RiskMom or Mom. In fact, the return paths are

remarkably smooth, with few overall drawdowns. The figure also illustrates the continued

outperformance of RiskMom over Mom. The cumulative log performance gap between

the two strategies increases throughout our sample. Both strategies outperform a simple

short investment in the options market. Furthermore, their performance does not de-

grade over time. This is impressive in light of Green, Hand, and Zhang (2017)’s result

that momentum, along with many other characteristic-based strategies, fail to deliver

significant returns in the stock market post-2003. For the stock market, Beckmeyer and

Wiedemann (2023) that show investors may use a simple machine learning strategy to

resurrect momentum’s profits. For the options market, we document persistently good

performance of our risk-based momentum strategy.

Daniel and Moskowitz (2016) and Barroso and Santa-Clara (2015) show that stock

momentum is significantly more robust when investors manage its volatility exposure. In

times of high volatility, the authors propose to scale back the investment in the momentum

strategy and increase the investment whenever momentum volatility is low. Following

this evidence, Barroso and Wang (2021) investigate which explanation for momentum put

forth in the literature best explains its return patterns and its positive payoff. We follow

that paper and investigate if RiskMom’s returns depend on the current volatility regime.

For this, we estimate the strategy’s past volatility on a six-month rolling basis and record

the average returns over the next month. We do so separately for the subsamples for

which the past volatility is above or below its full-sample median.

In Table 5, we show that the returns of RiskMom are larger when past volatility

was high. This is in contrast to Daniel and Moskowitz (2016) and Barroso and Santa-

Clara (2015), who show that stock momentum profits are larger after periods of low

volatility. The Sharpe ratio of RiskMom, however, is comparable across both regimes,
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Table 5: Performance by Past Volatility

The table shows average returns, t-statistics based on Newey and West (1987) standard errors with twelve
lags, and Sharpe ratios conditional on the past volatility regime. We compute the rolling volatility for
risk-based, return-based, and residual option momentum over the past twelve months and split the
sample by whether this past volatility is above or below the unconditional median.

Momentum Risk Momentum Residual Momentum

Panel A: Past Volatility Above Median

Mean 0.110 0.234 0.001
t-stat 6.505 7.788 0.177
SR 3.794 5.229 0.072

Panel B: Past Volatility Below Median

Mean 0.063 0.154 0.018
t-stat 13.937 12.115 5.786
SR 3.763 6.033 1.067

and the returns are highly significant throughout our sample. Results for return-based

option momentum are comparable but of significantly smaller magnitude both in returns

and Sharpe ratios for both regimes. The returns of residual momentum are insignificant

in periods of high volatility and significant but economically small at 1.7% per year in

periods of low volatility.

5. What Explains RiskMom?

In this section we discuss possible explanations for the remarkable returns of our RiskMom

option strategy. For this, we first examine in Section 5.1 in how far risk-based momentum

differs from standard option momentum, and show that the former subsumes the latter.

In Section 5.2 we show that RiskMom works well for all options and not just those

that the IPCA model describes best, which counters the idea that the risk-adjustment

is merely a way to drive out noise from the return process. Finally, in Section 5.3 we

relate RiskMom’s success to persistence in the forecast errors made by option investors
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about the future volatility of the underlying. Of course, our risk-based option momentum

strategy is inherently “born” with a risk-based explanation: it is based on the trend in

the risk-based option return component after all. Furthermore, the long-term investment

results in Table 3 rule out an overreaction story. Returns are persistently positive even

for holding periods up to h = 120 months.

5.1. Is Risk-Based Momentum Different?

As a first step, we perform an independent double sort on RiskMomSignal defined in

Eq. (8) and MomSignal defined in Eq. (7). This exercise allows us to understand if one of

the two strategies subsumes the performance of the other by breaking up the correlation

between them. We independently sort options into quintile portfolios for both signals

and record the average return of each of the 25 (5 × 5) portfolios. In parentheses, we

also provide the resulting t-statistics using Newey and West (1987) standard errors with

twelve lags. For both strategies, we use a formation period of f = 3 months, no formation

gap g, and an investment horizon of h = 1 month.

We find a number of striking results: first and most importantly, RiskMom fully sub-

sumes the performance of Mom. In fact, the returns of Mom are statistically insignificant

for each RiskMomSignal quintile and also lack economic significance with annualized re-

turns betwen −1.3% and 2.0%. RiskMom instead produces statistically and economically

significant returns within each MomSignal quintile. We record a U-shaped pattern for

the RiskMom high-minus-low portfolio. Its returns are highest within the extreme Mom-

Signal quintiles, at 21.8% for quintile 1, 22.0% for quintile 5, and lowest for quintile 3

at 13.7%. Furthermore, returns are monotonically increasing for all RiskMom quintiles.

For standard momentum, we only find this for the highest RiskMom quintile. Overall,

this exercise shows that RiskMom explains and dominates the returns of standard option
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Table 6: Double Sort on Risk-based and Standard Option Momentum

The table shows the average annualized returns of 25 (5×5) portfolios, independently sorted on RiskMom-
Signal and MomSignal as defined in Eq. (8) and Eq. (7). For both strategies, we use a formation period
of f = 3 months, no formation gap g, and an investment horizon of h = 1 month. We also provide the
results for the high-minus-low risk momentum portfolio (HmL). T-statistics are presented in parentheses,
which use Newey and West (1987) standard errors with twelve lags.

Mom Risk Momentum Portfolio

Portf. 1 2 3 4 5 HmL

0 −0.185 −0.046 −0.014 0.023 0.033 0.218
(−9.84) (−3.97) (−1.12) (1.75) (1.83) (12.13)

1 −0.103 −0.026 −0.003 0.014 0.036 0.139
(−5.72) (−2.18) (−0.24) (1.11) (2.57) (8.13)

2 −0.096 −0.021 0.000 0.018 0.041 0.137
(−6.31) (−1.90) (0.00) (1.56) (2.81) (7.96)

3 −0.115 −0.021 −0.000 0.017 0.045 0.161
(−6.43) (−1.72) (−0.02) (1.40) (2.87) (8.16)

4 −0.168 −0.045 −0.011 0.009 0.052 0.220
(−8.91) (−3.44) (−0.84) (0.79) (3.13) (11.37)

HmL 0.017 0.002 0.003 −0.013 0.020 0.002
(1.52) (0.24) (0.60) (−1.84) (1.46) (0.12)

momentum, warranting a deeper discussion as to why RiskMom works so well.

5.2. Explanatory Power and Risk Momentum

A possible explanation for RiskMom’s success is that the risk adjustment via IPCA

drives out noise from the option returns. The systematic component is less plagued by

measurement errors and recording issues. As a consequence, RiskMomSignal is a better

description of past returns. If this were the case, we should expect to find a positive

relationship between RiskMom’s profits and how well IPCA describes an option’s returns.

To investigate this, we first extract the amount of return variation that our IPCA

model can explain. For each option, we perform a simple time-series regression of its

returns on the K = 4 latent IPCA factors and record the resulting R2s. We do so for all

options that enter our sample for at least 24 months. Then, we perform an independent

double sort on RiskMomSignal and the R2s mentioned before. We record the resulting
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Table 7: Risk-based Option Momentum and IPCA’s R2

The table shows the results of an independent double sort into quintiles on risk-based option momentum
and the firm’s unconditional R2 from the K = 4 factor IPCA model for option returns. For RiskMom,
we use a formation period of f = 3 months, no formation gap g, and an investment horizon of h = 1
month. We also provide the results for the high-minus-low risk momentum portfolio (HmL). T-statistics
are presented in parentheses, which use Newey and West (1987) standard errors with twelve lags.

R2 Risk Momentum Portfolio

Portf. 1 2 3 4 5 HmL

1 −0.204 −0.033 −0.002 0.015 0.047 0.251
(−13.96) (−4.10) (−0.26) (1.51) (3.48) (17.90)

2 −0.136 −0.030 −0.007 0.017 0.038 0.174
(−9.28) (−2.78) (−0.72) (1.57) (2.96) (13.62)

3 −0.121 −0.027 −0.008 0.012 0.039 0.160
(−6.96) (−2.39) (−0.74) (0.91) (2.68) (8.81)

4 −0.107 −0.022 −0.003 0.014 0.046 0.153
(−6.29) (−1.78) (−0.23) (0.95) (2.51) (8.32)

5 −0.109 −0.015 0.001 0.014 0.038 0.146
(−5.51) (−1.03) (0.08) (1.00) (1.67) (5.50)

average returns of each of the 25 (5× 5) portfolios alongside their t-statistic in Table 7.

RiskMom, in fact, works best for those options with the lowest R2. Among options with

the lowest R2, the average RiskMom return amounts to a highly significant 25.1% per

year. The strategy’s returns decline monotonically for higher R2 portfolios but remain

large and importantly highly significant at 14.6% for options that IPCA explains best.

We again find a monotonic return pattern across RiskMomSignal quintiles within each

R2 bucket. All in all, RiskMom is not explained by how well IPCA itself describes an

option’s returns.

5.3. Sticky Expectations

A reasonable explanation for RiskMom’s performance is a failure of investors to adjust

their expectations of future stock volatility when investing in options. They do account

for risk in some way or another, for example, by employing a similar factor model as we

do. But the implied volatilities of options stay detached from future realized volatilities
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Table 8: RiskMom is a Sort on the Spread Between Realized and Implied Volatility

The table shows average implied (iv) and realized volatilities (rv) for quintile portfolios sorted on
RiskMomSignal of Eq. (8). We compare today’s ivt of the included options with the underlying’s rv
today t and in the next month (t+ 1) over which we measure RiskMom’s returns. We also provide the
results for the high-minus-low RiskMom portfolio.

Risk Momentum Portfolio

1 2 3 4 5 HmL

ivt 0.643 0.477 0.422 0.399 0.400 −0.243
rvt 0.545 0.443 0.407 0.394 0.410 −0.135
rvt+1 0.546 0.444 0.407 0.392 0.410 −0.137
rvt − ivt −0.095 −0.033 −0.015 −0.005 0.011 0.106
rvt+1 − ivt −0.097 −0.033 −0.015 −0.007 0.009 0.106
P(rvt+1 > ivt) 0.262 0.301 0.317 0.327 0.351 0.090

even after this risk adjustment. In line with this, Lochstoer and Muir (2022) document

that agents have slow-moving beliefs about stock volatility from survey data. They

initially underreact to volatility shocks and overreact with a delay. In Table 8, we show

that sorting in RiskMomSignal produces portfolios that have monotonically decreasing

implied volatilities. Options in the lowest quintile portfolio show an average ivt of 0.64

compared to just 0.40 for options in the highest quintile. The spread for the resulting

RiskMom strategy amounts to −0.243 for the average month. We see a similar but far

less pronounced spread in realized volatilities of the underlying: quintile 1 averages an rvt

of just 0.545 compared to 0.41 for quintile 5. Similar numbers emerge in the next month,

i.e., for rvt+1 with a high-minus-low spread of −0.137. Investors expectations of future

volatility tend to be too large for options in the lowest RiskMom quintile and roughly

correct for the highest RiskMom quintile.

Taken together, this results in a spread between rvs and ivs that a) is large at 0.106

for the HmL portfolio and b) highly persistent over time, with near equal numbers in

t and t + 1. The spread between rv and iv is an important determinant of (expected)

option returns. For example, in the standard Heston (1993) model, expected delta-hedged

option returns are a function of this differential (Cremers, Halling, and Weinbaum, 2015).
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RiskMom is able to short options with implied volatilities that are expected to exceed

the realized volatility of their underlying stock in the next month. In fact, for only 26.2%

of options in portfolio 1, we find that rvt+1 > ivt. This number increases monotonically

up to portfolio 5 (35.1%).

We next investigate the persistence of the spread between future realized volatility rvt+1

and today’s implied volatility ivt for the high-minus-low RiskMom portfolio. Specifically,

we sort options into quintiles based on RiskMomSignal in month t = 0 and investigate

the average spread between rvt+1 and ivt in months t − 12 to t + 24. The results are

shown in Figure 3. We find a number of interesting results on the persistence of volatility

spreads that RiskMom is able to capture. First, the average rvt+1 − ivt spread is always

positive, suggesting that RiskMom is able to effectively differentiate over- from under-

priced options. Second, the realized future volatility spread is high for up to 24 months

into the future, and slowly approach +4% in month t + 20. Furthermore, it is also high

in the 12 months before t, averaging above +6%. Third, the volatility spread is largest

at around the end of the formation period. In this setting we have once more opted for

a RiskMom strategy with a formation period of f = 3 months. In the first month after

the formation period, the spread between rvt+1− ivt amounts to 0.106 on average. Three

months later it is still large and above 0.08 Overall, these results suggest that RiskMom

is able to capitalize on the persistence of volatility forecast errors made by investors in

the options market.
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Fig. 3. Persistence in rvt+1 − ivt for RiskMom

The figure shows the resulting spread between time t’s implied volatility (ivt) and the realized volatility
of the underlying over the next month (rvt+1) of options sorted by RiskMomSignal in month t = 0. We
show the results for the high-minus-low RiskMom portfolio. Note that t = 0 marks the first investment
month, as we are comparing time t’s immplied volatility with realized volatility in t+ 1.

6. Robustness

Variation in Risk vs. Variation in Sensitivity To Risk. Our previous results use

a sophisticated method to adjust option returns for risk. In the IPCA model shown in

Eq. (3), both factor realizations and factor sensitivities (βs) are allowed to vary over time.

The former is estimated through period-by-period cross-sectional regressions. The latter

vary over time with observable characteristics of the option. We now assess the relative

importance of time variation in either of these parts.

In Panel A of Table 9 we fix option βs by running a time-series regression for each

option’s returns on the K = 4 factors from the IPCA model. The resulting β is thus

constant per option. To perform these regressions, we require that each option is available

in our sample for at least 24 months. This approach uses as much data as the factor

momentum methodology of Ehsani and Linnainmaa (2022), but is distinct from it and

comes with a few additional benefits. Factor momentum requires the selection of a

suitable set of factors, which not only inform us about the risk-return trade-off in the
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Table 9: Variation in Risk vs. Variation in Sensitivity To Risk

The table shows average returns, t-statistics based on Newey and West (1987) standard errors with
twelve lags, and Sharpe ratios for different ways of adjusting for risk. Specifically, instead of allowing
both factors and βs to vary over time as in our baseline specification for IPCA, we fix βs in Panel A,
which we obtain by regressing each option’s returns on the K = 4 factors. In Panel B, we instead fix the
factor realizations at their full-sample mean. Panel C fixes both factor realizations at their mean and βs
at their unconditional values.

Momentum Risk Momentum Residual Momentum

Panel A: Fixed Betas, βi × Ft+1

Mean 0.080 0.217 −0.023
t-stat 9.432 11.345 −3.386
SR 3.215 4.350 −0.907

Panel B: Fixed Factors, βi,t × F̄

Mean 0.084 0.169 0.032
t-stat 8.996 10.451 3.971
SR 3.335 3.959 1.208

Panel C: Fixed Both, βi × F̄

Mean 0.084 0.075 0.033
t-stat 8.996 3.935 4.669
SR 3.335 1.378 1.032

options market but also display return continuation. Adding useless factors or factors

that are highly correlated will greatly impact factor momentum returns. At the same

time, sorting by many factors essentially nets out much of the benefits of individual

factors and makes it difficult to understand the portfolio’s aggregate risk exposure.

Our IPCA formulation alleviates both issues, as it is designed to find a parsimonious

and low-dimensional factor structure that best fits the cross-section of option returns

using characteristic-instrumented βs. The performance of RiskMom is affected by fixing

βs. While average returns remain high at 21.7% for a strategy with a formation period

of f = 3 months, Sharpe ratios decrease substantially to 4.35 compared to almost 5.19

achieved when also allowing for time-variation in βs. Interestingly, we find some evidence

of a residual reversal in this specification. The residual portion averages modest returns
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of −2.3% per year at a Sharpe ratio of −0.91.

Instead of fixing βs, we fix factor realizations at their mean in Panel B of Table 9. This

approach is similar to Kelly et al. (2021), who seek an explanation for stock momentum

in an IPCA setting. RiskMom’s profits remain highly significant at an average return of

16.9% per year and a Sharpe ratio of 3.96. In this setup, the residual momentum works

reasonably well at a Sharpe ratio above 1.21 and average returns of 3.2% per year.

Finally, we fix both βs using the time-series regression approach detailed above as

well as factor realizations at their mean. The results are shown in Panel C of Table 9.

RiskMom’s returns remain highly significant at 7.5% per year but the Sharpe ratio drops

noticeably to 1.38. Importantly, however, the residual component did not make up for

this return drop, and its performance is comparable to the specification in Panel B. We

require temporal variation both in risk sensitivities and risk prices in order to adequately

capture the trend inherent in the risk component of option returns.

Option vs. Stock Characteristics. We next assess the relative importance of includ-

ing stock- vs. option-level information when adjusting option returns for risk. The IPCA

specification in Eq. (3) uses characteristics of an option to instrument for heterogeneity

in the sensitivities to the latent risk factors. We now restrict the information set fed into

IPCA to either option- or stock-level characteristics and refit IPCA with either informa-

tion set. Bali et al. (2023) show that option-level characteristics are most informative

about predicting future option returns but also that their interplay with information

about the underlying generates the most profitable investment advice. A breakdown of

which category each characteristic falls into is provided in Appendix A.

In Panel A of Table 10, we restrict the information set to option-level characteristics

only. Average returns drop to 16.3% but remain highly significant with a t-value above

9. The Sharpe ratio decreases from 5.19 to 4.13 but continues to outperform that of
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Table 10: Stock- vs. Option-Level Information

The table shows average returns, t-statistics based on Newey and West (1987) standard errors with twelve
lags, and Sharpe ratios for IPCA models with only stock-level or option-level information to instrument
variation in βs. In Panel A, we include only option-level characteristics. In Panel B, only stock-level
characteristics are included. A breakdown of which category each characteristic falls into is provided in
Appendix A.

Momentum Risk Momentum Residual Momentum

Panel A: Option-Level Characteristics Only

Mean 0.084 0.163 0.031
t-stat 8.996 9.587 6.567
SR 3.335 4.134 1.382

Panel B: Stock-Level Characteristics Only

Mean 0.084 0.148 0.044
t-stat 8.996 10.225 7.668
SR 3.335 3.812 2.250

the return-based option momentum. We obtain the results in Panel B using only stock -

level characteristics. Average returns are lower at 14.8% but also highly significant. The

Sharpe ratio amounts to 3.81. Residual momentum is profitable for both specifications,

suggesting that the risk adjustment achieved is insufficient to capture all trend-following

components in option returns. For our baseline strategy, which uses all information, resid-

ual momentum generates economically insignificant returns of just 1% per year. Overall,

adjusting option returns with either option- or stock-level characteristics produces a more

profitable trend-following strategy. All the same, a risk adjustment with both information

sources is beneficial with significantly larger (risk-adjusted) returns.

Controlling for Option and Stock Characteristics. Our previous analysis exam-

ines the relationship between RiskMomSignal and future delta-hedged option returns in

a non-parametric way. In this section, we run a predictive panel regression with time and

firm fixed effects of future delta-hedged option returns on the signal of option risk-based

momentum as well as the signal of option momentum and a number of controls. Specif-
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Table 11: Controlling for Option and Stock Characteristics

The table shows the results of regressing individual delta-hedged option returns ri,t+1 on the lagged
RiskMomSignal and MomSignal (both are normalized using their full sample mean and standard devi-
ation), as well as a number of option- and stock-specific characteristics, and fixed effects. As controls,
we include the option’s dollar open interest (DOI), its volatility spread iv − rv and the implied volatil-
ity slope (Vasquez, 2017), its bid-ask spread (BAS), as well as the underlying’s book-to-market ratio
(B/M), idiosyncratic volatility with respect to the Fama and French (1993) 3-factor model (IVOL), its
market equity (Size) and Jegadeesh and Titman (1993) stock momentum (StockMom). All controls are
cross-sectionally rank-standardized between −0.5 and 0.5. The table reports the coefficients from a panel
regression. T-statistics are shown in parentheses and obtained with standard errors that are clustered
by option and month.

(1) (2) (3) (4)

RiskMomSignal 0.106 0.099 0.052 0.043
(10.52) (9.96) (5.53) (4.64)

MomSignal 0.016 0.032 0.009
(1.61) (3.50) (0.92)

DOI 0.000 −0.000
(0.69) (−0.67)

iv − rv −0.082 −0.086
(−4.74) (−4.50)

iv Slope −0.077 −0.011
(−1.01) (−0.12)

BAS 0.017 0.077
(0.45) (1.46)

B/M 0.023 0.033
(2.80) (2.87)

IVOL −3.182 −3.833
(−7.02) (−7.36)

Size −0.000 −0.000
(−3.18) (−0.45)

StockMom −0.004 −0.005
(−0.94) (−0.93)

Month-FE Yes Yes Yes Yes
Option-FE No No No Yes

ically, we account for stock and option characteristics. We include the option’s dollar

open interest (DOI), its volatility spread iv − rv, the slope of its implied volatility curve

(iv Slope, Vasquez, 2017), its bid-ask spread (BAS), as well as the underlying’s book-to-

market ratio (B/M), idiosyncratic volatility with respect to the Fama and French (1993)

3-factor model (IVOL), its market equity (Size) and Jegadeesh and Titman (1993) stock

momentum (StockMom). All controls are cross-sectionally rank-standardized between

−0.5 and 0.5, and RiskMomSignal and MomSignal are normalized for easier comparison.
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Table 11 shows the results of the predictive panel regression of delta-hedged option

returns on lagged RiskMomSignal and control variables. We cluster the standard errors

by option and month. In line with our previous findings, we show that RiskMomSignal

is a strong positive predictor of delta-hedged option returns. In the second column, we

include the signal of the option momentum strategy, and we find that RiskMomSignal

remains positive and statistically significant. Instead, the coefficient of the option mo-

mentum strategy is not statistically significant. This aligns with our previous findings,

which demonstrate that option risk momentum subsumes option momentum. We also

show that our results remain significant after including option-level and stock-level control

variables, as well as option fixed effects in the regression.

Varying K. The number of latent factors K determines how well our IPCA model can

describe option returns. Our main specifications useK = 4 factors, following the evidence

in Goyal and Saretto (2022) and our own testing. In Table 12 we vary the number of

latent factors K between 1 and 6, and record RiskMom’s mean returns, its statistical

significance, and Sharpe ratio. K = 2 factors are enough for RiskMom to outperform

the return-based option momentum with an annualized mean return of 18.5% and a

Sharpe ratio of 4.88. In comparison, the return-based momentum achieves an average

return of 8.4% and a Sharpe ratio of 3.36. A single factor is insufficient to uncover

the great profitability of risk-based option momentum. Increasing the number of latent

factors improves average realized returns up to K = 4 factors. The Sharpe ratios instead

continue to increase as K increases. Our choice of K = 4 latent factors is therefore

sensible as it a) adequately explains average option returns (Goyal and Saretto, 2022), and

b) is sufficiently expressive to uncover RiskMom’s potential. Importantly, the strategy’s

returns are highly significant for all numbers of factors K.
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Table 12: Varying the Number of Latent IPCA Option Factors

The table shows average returns, t-statistics based on Newey and West (1987) standard errors with
twelve lags, and Sharpe ratios of our RiskMom strategy using IPCA models with with a varying number
of latent factors K to adjust for risk.

K → 1 2 3 4 5 6

Mean 0.082 0.185 0.192 0.196 0.194 0.194
t-stat 4.709 9.961 10.654 11.187 11.398 11.491
SR 1.854 4.881 5.066 5.188 5.210 5.235

Out-of-the-money Options. Most studies that identify sources of option return vari-

ation focus on short-term at-the-money contracts (Cao and Han, 2013; Goyal and Saretto,

2022). We follow their lead throughout our analyses. In this subsection, we instead seek

to understand if out-of-the-money puts and calls also display (risk-based) momentum.

This essentially serves as an out-of-sample test by using a completely different sample

than before. We consider out-of-the-money puts, with a standardized strike between −10

and −1, as well as out-of-the-money calls, for which the standardized strike lies between 1

and 10. We fit a separate IPCA model with K = 4 latent factors to this out-of-the-money

options sample and report the results in Table 13.

Panel A replicates our results using at-the-money contracts: RiskMom outperforms

return-based option momentum with an impressive Sharpe ratio of 5.2 and average re-

turns just shy of 20% per year. The resulting residual momentum is economically and

statistically insignificant. Panel B shows the results for out-of-the-money options. First

note that the overall profitability is subdued: the return-based option momentum gener-

ates returns of just 4.4% and a Sharpe ratio of 0.51, comparable to an investment in the

stock market. RiskMom continues to perform significantly better than the return-based

option momentum. Average returns using out-of-the-money options amount to 12.7%

with a Sharpe ratio of 1.19. We again find that momentum based on the residual is

insignificant, both economically and statistically.
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Table 13: RiskMom Based On At-the-money vs. Out-of-the-money Options

The table shows average returns, t-statistics based on Newey and West (1987) standard errors with
twelve lags, and Sharpe ratios for RiskMom using at-the-money options in Panel A and out-of-the-
money options in Panel B. We adjust for risk by fitting an IPCA model with K = 4 latent factors to
each set of options.

Momentum Risk Momentum Residual Momentum

Panel A: At-the-money Options

Mean 0.087 0.196 0.009
t-stat 8.902 11.187 1.927
SR 3.541 5.188 0.489

Panel B: Out-of-the-money Options

Mean 0.044 0.127 0.017
t-stat 2.366 6.605 1.069
SR 0.505 1.187 0.216

Out-of-Sample Risk Adjustment. To adjust option returns for risk, we rely on the

IPCA specification in Eq. (3). To estimate the model’s Γβ matrix, which maps observable

option characteristics to variation in βs, we rely on information from the full sample

available to us. Note that this only applies to the Γβ matrix and not the factors. The

factors are the result of cross-sectional regressions on realized option returns in t+1, with

portfolio weights that are already known in month t from Γβ and characteristics Zt. To

assure that our results also hold up if we perform the risk adjustment on a rolling basis,

we use the out-of-sample IPCA estimates detailed in Section 3. The resulting profits

of RiskMom are shown in Table C4. We again use the familiar strategy with a f = 3

months formation period as an example. It averages highly significant returns of 15.6%

per year and continues to work for all formation periods f considered. While there is a

slight drag on RiskMom’s performance when we avoid forward-looking information, the

strategy continues to perform well, and it continues to significantly outperform a simple

option-based momentum strategy.
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7. Conclusion

In this paper, we propose a novel cross-sectional risk-based option momentum strategy.

Specifically, we find that the risk component of option returns demonstrates a strong

momentum pattern which implies that there is risk continuation in equity options. We

focus on delta-hedged option returns to guard against movements of option prices that

are due to the underlying stocks.

Using 73 option-level and 153 stock-level characteristics, we apply IPCA to extract four

latent factors that capture a large fraction of the variation of option returns. We build

risk-based option momentum portfolios by allocating delta-hedged option returns into

quintiles based on the past performance of their risk component. We consider formation

and holding periods that range from one to 120 months. We find that a risk-based

momentum strategy with a formation period of three months and a holding period of one

month offers an annualized Sharpe ratio as high as 5.19. The strategy is highly profitable

for various formation and holding periods, remains highly profitable when accounting for

the liquidity of the options contracts, and survives realistic levels of transaction costs.

The strategy is profitable for both at-the-money and out-of-the-money options.

We also compare the performance of the option risk-based momentum strategy with

the option momentum of Heston et al. (2023). We find that our option-based risk momen-

tum is more profitable. Using double-sorts, we show that option risk-based momentum

remains highly significant for different levels of the option momentum signal. On the

other hand, option momentum is fully subsumed by risk momentum. Consistent with

Heston et al. (2023), we find no evidence of short-term or long-term reversals. The strat-

egy is significant even for longer formation periods that range from 12 to 120 months,

and, importantly, it does not exhibit momentum crashes.

Our results are robust to a number of alterations to the empirical setup. We show that
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the profitability of the strategy is unrelated to the ability of the IPCA model to describe

option returns. We find that the number of latent factors that we use in our analysis does

not drive our results. We also show that the performance of the strategy is partly driven

by its ability to short options for which the implied volatility is expected to exceed the

underlying realized volatility in the next period. Our results are robust to time-invariant

factor realizations and factor betas of the IPCA model.

Overall, our results suggest that, although options are highly risky assets, the momen-

tum based on their risk component appears the greatest among all asset classes tested so

far. High risk is indeed compensated by high returns, after all.
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Appendix A. Characteristic-Managed Portfolios

The following table shows the whole set of 224 characteristics used in the estimation of

IPCA (Eq. (3)) and the subsequent sorts into RiskMom (Eq. (6)). Alongside the feature’s

name, we provide a short description, its original source in the literature and whether it

was extracted solely from information of the underlying or if option-based information

entered. We also show the full-sample Sharpe ratios of characteristic-managed portfolio

for each characteristic (Eq. (5)) using the option sample detailed in Section 3. Finally,

we provide the statistical significance of this Sharpe ratio using the statistical test of Lo

(2002).
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Feature Description Information Source Source SR sig

age Firm age Underlying Jiang Lee and Zhang (2005) 1.39 **
ailliq Absolute illiquidity Options Cao and Wei (2010) −1.96 ***
aliq at Liquidity of book assets Underlying Ortiz-Molina and Phillips (2014) −0.70
aliq mat Liquidity of market assets Underlying Ortiz-Molina and Phillips (2014) 0.20
ami 126d Amihud Measure Underlying Amihud (2002) −2.55 ***
amihud Amihud illiquidity per bucket Options Amihud (2002) 1.63 ***
at be Book leverage Underlying Fama and French (1992) 0.88 *
at gr1 Asset Growth Underlying Cooper Gulen and Schill (2008) 0.73 ***
at me Assets-to-market Underlying Fama and French (1992) 0.66
at turnover Capital turnover Underlying Haugen and Baker (1996) 2.67 ***
atm civpiv At-the-money put vs. call implied volatility Options −1.53 ***
atm dcivpiv Change in atm put vs. call implied volatility Options An Ang Bali and Cakici (2014) −2.15 ***
atm iv At-the-money implied volatility (maturity-specific) Options −3.18 ***
be gr1a Change in common equity Underlying Richardson et al. (2005) 0.54 *
be me Book-to-market equity Underlying Rosenberg Reid and Lanstein (1985) 0.16
beta 60m Market Beta Underlying Fama and MacBeth (1973) −1.02 **
beta dimson 21d Dimson beta Underlying Dimson (1979) 0.36
betabab 1260d Frazzini-Pedersen market beta Underlying Frazzini and Pedersen (2014) −0.34
betadown 252d Downside beta Underlying Ang Chen and Xing (2006) −0.43
bev mev Book-to-market enterprise value Underlying Penman Richardson and Tuna (2007) 0.24
bidaskhl 21d The high-low bid-ask spread Underlying Corwin and Schultz (2012) −2.03 ***
bucket dvol Option bucket dollar volume Options −0.50
bucket vol Option bucket volume Options −1.41 ***
bucket vol share Relative option bucket volume Options −1.17 ***
capex abn Abnormal corporate investment Underlying Titman Wei and Xie (2004) 1.59 ***
capx gr1 CAPEX growth (1 year) Underlying Xie (2001) 0.65 **
capx gr2 CAPEX growth (2 years) Underlying Anderson and Garcia-Feijoo (2006) 0.76 **
capx gr3 CAPEX growth (3 years) Underlying Anderson and Garcia-Feijoo (2006) 0.83 ***
cash at Cash-to-assets Underlying Palazzo (2012) −1.94 ***
chcsho 12m Net stock issues Underlying Pontiff and Woodgate (2008) −1.67 ***
civpiv Near-the-money put vs. call implied volatility Options Bali and Hovakimian (2009) −0.94 **
coa gr1a Change in current operating assets Underlying Richardson et al. (2005) 1.46 ***
col gr1a Change in current operating liabilities Underlying Richardson et al. (2005) 0.94 ***
cop at Cash-based operating profits-to-book assets Underlying 1.87 ***
cop atl1 Cash-based operating profits-to-lagged book assets Underlying Ball et al. (2016) 2.11 ***
corr 1260d Market correlation Underlying Assness, Frazzini, Gormsen, Pedersen (2020) 2.98 ***
coskew 21d Coskewness Underlying Harvey and Siddique (2000) 0.59 **
cowc gr1a Change in current operating working capital Underlying Richardson et al. (2005) 0.83 **
dbnetis at Net debt issuance Underlying Bradshaw Richardson and Sloan (2006) −0.31
dciv Change in atm call implied volatility Options An Ang Bali and Cakici (2014) −1.97 ***
debt gr3 Growth in book debt (3 years) Underlying Lyandres Sun and Zhang (2008) 0.66 *
debt me Debt-to-market Underlying Bhandari (1988) 0.80
delta Delta Options Buchner and Kelly (2020) 1.26 ***

Continued on Next Page

2

E
lectronic copy available at: https://ssrn.com

/abstract=
4404190



Feature Description Information Source Source SR sig

demand pressure Option Demand Pressure Options −2.77 ***
dgp dsale Change gross margin minus change sales Underlying Abarbanell and Bushee (1998) 0.29
div12m me Dividend yield Underlying Litzenberger and Ramaswamy (1979) 1.35 ***
doi Dollar open interest Options −0.66 *
dolvol 126d Dollar trading volume Underlying Brennan Chordia and Subrahmanyam (1998) 2.47 ***
dolvol var 126d Coefficient of variation for dollar trading volume Underlying Chordia Subrahmanyam and Anshuman (2001) −3.40 ***
dpiv Change in atm put implied volatility Options An Ang Bali and Cakici (2014) −0.91 ***
dsale dinv Change sales minus change Inventory Underlying Abarbanell and Bushee (1998) −0.41
dsale drec Change sales minus change receivables Underlying Abarbanell and Bushee (1998) −1.01 ***
dsale dsga Change sales minus change SG&A Underlying Abarbanell and Bushee (1998) 0.61 *
dso Stock vs. option volume in USD Options Roll Schwartz and Subrahmanyam (2010) 3.54 ***
dvol Dollar trading volume Options Cao and Wei (2010) 0.68 *
earnings variability Earnings variability Underlying Francis et al. (2004) −2.44 ***
ebit bev Return on net operating assets Underlying Soliman (2008) 2.37 ***
ebit sale Profit margin Underlying Soliman (2008) 2.63 ***
ebitda mev Ebitda-to-market enterprise value Underlying Loughran and Wellman (2011) 1.72 ***
embedlev Embedded Leverage Options Karakaya (2014) 4.04 ***
emp gr1 Hiring rate Underlying Belo Lin and Bazdresch (2014) 0.21
eq dur Equity duration Underlying Dechow Sloan and Soliman (2004) −1.14 **
eqnetis at Net equity issuance Underlying Bradshaw Richardson and Sloan (2006) −1.82 ***
eqnpo 12m Equity net payout Underlying Daniel and Titman (2006) 1.90 ***
eqnpo me Net payout yield Underlying Boudoukh et al. (2007) 2.24 ***
eqpo me Payout yield Underlying Boudoukh et al. (2007) 1.82 ***
f score Pitroski F-score Underlying Piotroski (2000) 1.29 ***
fcf me Free cash flow-to-price Underlying Lakonishok Shleifer and Vishny (1994) 2.40 ***
fnl gr1a Change in financial liabilities Underlying Richardson et al. (2005) 1.02 ***
fric Contribution of market frictions to expected returns Options Hiraki and Skiadopoulos (2020) −1.05 ***
gamma Gamma Options Buchner and Kelly (2020) 3.61 ***
gammaps Pastor and Stambaugh liquidity measure Options Pastor and Stambaugh (2003) 0.41
gp at Gross profits-to-assets Underlying Novy-Marx (2013) 2.32 ***
gp atl1 Gross profits-to-lagged assets Underlying 2.41 ***
hkurt Historic kurtosis Options −2.10 ***
hskew Historic skewness Options −0.60 **
hvol Historic Volatility Options 1.58 ***
illiq Illiquidity Options Bao Pan and Wang (2011) 0.09
intrinsic value Intrinsic value-to-market Underlying Frankel and Lee (1998) 1.38 ***
inv gr1 Inventory growth Underlying Belo and Lin (2011) 0.70 ***
inv gr1a Inventory change Underlying Thomas and Zhang (2002) 1.56 ***
iskew capm 21d Idiosyncratic skewness from the CAPM Underlying −0.82 **
iskew ff3 21d Idiosyncratic skewness from the Fama-French 3-factor model Underlying Bali Engle and Murray (2016) −0.66 **
iskew hxz4 21d Idiosyncratic skewness from the q-factor model Underlying −0.63 *
iv Implied volatility Options Buchner and Kelly (2020) −3.55 ***
iv rank Implied volatility rank vs. last year Options −2.09 **
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Feature Description Information Source Source SR sig

ivarud30 Option implied variance asymmetry Options Huang and Li (2019) 3.03 ***
ivd Implied volatility duration Options Schlag Thimme and Weber (2020) 4.16 ***
ivol capm 21d Idiosyncratic volatility from the CAPM (21 days) Underlying −2.25 ***
ivol capm 252d Idiosyncratic volatility from the CAPM (252 days) Underlying Ali Hwang and Trombley (2003) −2.17 ***
ivol ff3 21d Idiosyncratic volatility from the Fama-French 3-factor model Underlying Ang et al. (2006) −2.36 ***
ivol hxz4 21d Idiosyncratic volatility from the q-factor model Underlying −2.41 ***
ivrv Implied volatility minus realized volatility Options Bali and Hovakimian (2009) −3.77 ***
ivrv ratio Implied volatility minus realized volatility ratio Options −3.01 ***
ivslope Implied volatility slope Options Vasquez (2017) −0.35
ivvol Volatility of atm volatility Options Baltussen van Bekkum and van der Grient (2018) −1.65 ***
kz index Kaplan-Zingales index Underlying Lamont Polk and Saa-Requejo (2001) −0.11
lnoa gr1a Change in long-term net operating assets Underlying Fairfield Whisenant and Yohn (2003) 1.79 ***
lti gr1a Change in long-term investments Underlying Richardson et al. (2005) 0.79 **
m degree Standardized strike Options −1.26 ***
market equity Market Equity Underlying Banz (1981) 2.56 ***
mid Option mid price Options 1.19 ***
mispricing mgmt Mispricing factor: Management Underlying Stambaugh and Yuan (2016) −0.12
mispricing perf Mispricing factor: Performance Underlying Stambaugh and Yuan (2016) 2.87 ***
modos Modified stock vs. option volume Options Johnson and So (2012) 2.03 ***
ncoa gr1a Change in noncurrent operating assets Underlying Richardson et al. (2005) 1.88 ***
ncol gr1a Change in noncurrent operating liabilities Underlying Richardson et al. (2005) 1.29 ***
netdebt me Net debt-to-price Underlying Penman Richardson and Tuna (2007) 1.36 ***
netis at Net total issuance Underlying Bradshaw Richardson and Sloan (2006) −1.69 ***
nfna gr1a Change in net financial assets Underlying Richardson et al. (2005) −0.53 *
ni ar1 Earnings persistence Underlying Francis et al. (2004) 0.87 ***
ni be Return on equity Underlying Haugen and Baker (1996) 2.51 ***
ni inc8q Number of consecutive quarters with earnings increases Underlying Barth Elliott and Finn (1999) 1.26 ***
ni ivol Earnings volatility Underlying Francis et al. (2004) −2.98 ***
ni me Earnings-to-price Underlying Basu (1983) 2.01 ***
niq at Quarterly return on assets Underlying Balakrishnan Bartov and Faurel (2010) 2.92 ***
niq at chg1 Change in quarterly return on assets Underlying 0.17
niq be Quarterly return on equity Underlying Hou Xue and Zhang (2015) 2.69 ***
niq be chg1 Change in quarterly return on equity Underlying 0.52
niq su Standardized earnings surprise Underlying Foster Olsen and Shevlin (1984) 0.58
nncoa gr1a Change in net noncurrent operating assets Underlying Richardson et al. (2005) 1.72 ***
noa at Net operating assets Underlying Hirshleifer et al. (2004) 2.78 ***
noa gr1a Change in net operating assets Underlying Hirshleifer et al. (2004) 1.59 ***
nopt Number of options trading Options 1.71 ***
o score Ohlson O-score Underlying Dichev (1998) −3.26 ***
oaccruals at Operating accruals Underlying Sloan (1996) 1.63 ***
oaccruals ni Percent operating accruals Underlying Hafzalla Lundholm and Van Winkle (2011) −1.61 ***
ocf at Operating cash flow to assets Underlying Bouchard, Krüger, Landier and Thesmar (2019) 2.69 ***
ocf at chg1 Change in operating cash flow to assets Underlying Bouchard, Krüger, Landier and Thesmar (2019) −0.06
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Feature Description Information Source Source SR sig

ocf me Operating cash flow-to-market Underlying Desai Rajgopal and Venkatachalam (2004) 1.88 ***
ocfq saleq std Cash flow volatility Underlying Huang (2009) −3.13 ***
ocgo Disposition Effect Options Bergsma Fodor and Tedford (2020) 1.63 ***
oi Open interest Options −1.88 ***
oistock Open interest vs. stock volume Options −1.17 ***
op at Operating profits-to-book assets Underlying 2.43 ***
op atl1 Operating profits-to-lagged book assets Underlying Ball et al. (2016) 2.61 ***
ope be Operating profits-to-book equity Underlying Fama and French (2015) 2.53 ***
ope bel1 Operating profits-to-lagged book equity Underlying 3.11 ***
opex at Operating leverage Underlying Novy-Marx (2011) −0.03
optspread Option bid-ask spread Options −1.05 ***
pba Proportional bid-ask spread Options Cao and Wei (2010) 0.65 *
pcpv Put-call parity deviations Options Ofek Richardson and Whitelaw (2004) 1.10 ***
pcratio Put-call ratio Options Blau Nguyen and Whitby (2014) 1.65 ***
pfht Modified illiquidity measure based on zero returns Options Fong Holden and Trzcinka (2017) 0.46
pi nix Taxable income-to-book income Underlying Lev and Nissim (2004) 0.61 *
pifht An extended FHT measured based on zero returns Options 0.49
pilliq Percentage illiquidity Options Cao and Wei (2010) 1.02 ***
piroll Extended Roll’s measure Options Goyenko Holden and Trzcinka (2009) 0.72 **
ppeinv gr1a Change PPE and Inventory Underlying Lyandres Sun and Zhang (2008) 1.66 ***
prc Price per share Underlying Miller and Scholes (1982) 3.09 ***
prc highprc 252d Current price to high price over last year Underlying George and Hwang (2004) 1.95 ***
pzeros Illiquidity measure based on zero returns Options Lesmond 1999 0.46
qmj Quality minus Junk: Composite Underlying Assness, Frazzini and Pedersen (2018) 2.36 ***
qmj growth Quality minus Junk: Growth Underlying Assness, Frazzini and Pedersen (2018) 0.31
qmj prof Quality minus Junk: Profitability Underlying Assness, Frazzini and Pedersen (2018) 2.67 ***
qmj safety Quality minus Junk: Safety Underlying Assness, Frazzini and Pedersen (2018) 2.53 ***
rd5 at R&D capital-to-book assets Underlying Li (2011) −2.84 ***
rd me R&D-to-market Underlying Chan Lakonishok and Sougiannis (2001) −2.98 ***
rd sale R&D-to-sales Underlying Chan Lakonishok and Sougiannis (2001) −2.18 ***
resff3 12 1 Residual momentum t-12 to t-1 Underlying Blitz Huij and Martens (2011) 0.36
resff3 6 1 Residual momentum t-6 to t-1 Underlying Blitz Huij and Martens (2011) 0.25
ret 12 1 Price momentum t-12 to t-1 Underlying Fama and French (1996) 0.88 **
ret 12 7 Price momentum t-12 to t-7 Underlying Novy-Marx (2012) 0.92 ***
ret 1 0 Short-term reversal Underlying Jegadeesh (1990) 0.39
ret 3 1 Price momentum t-3 to t-1 Underlying Jegedeesh and Titman (1993) 0.36
ret 60 12 Long-term reversal Underlying De Bondt and Thaler (1985) 2.25 ***
ret 6 1 Price momentum t-6 to t-1 Underlying Jegadeesh and Titman (1993) 0.63
ret 9 1 Price momentum t-9 to t-1 Underlying Jegedeesh and Titman (1993) 0.75 *
rmax1 21d Maximum daily return Underlying Bali Cakici and Whitelaw (2011) −1.86 ***
rmax5 21d Highest 5 days of return Underlying Bali, Brown, Murray and Tang (2017) −1.65 ***
rmax5 rvol 21d Highest 5 days of return scaled by volatility Underlying Assness, Frazzini, Gormsen, Pedersen (2020) 0.74 **
rnk182 182-day risk-neutral kurtosis Options 2.81 ***

Continued on Next Page

5

E
lectronic copy available at: https://ssrn.com

/abstract=
4404190



Feature Description Information Source Source SR sig

rnk273 273-day risk-neutral kurtosis Options 2.77 ***
rnk30 30-day risk-neutral kurtosis Options 3.81 ***
rnk365 365-day risk-neutral kurtosis Options 2.61 ***
rnk91 91-day risk-neutral kurtosis Options 3.21 ***
rns182 182-day risk-neutral skewness Options Borochin Chang and Wu (2020) 0.53
rns273 273-day risk-neutral skewness Options Borochin Chang and Wu (2020) −0.82 **
rns30 30-day risk-neutral skewness Options Borochin Chang and Wu (2020) 2.76 ***
rns365 365-day risk-neutral skewness Options Borochin Chang and Wu (2020) −1.52 ***
rns91 91-day risk-neutral skewness Options Borochin Chang and Wu (2020) 2.30 ***
roll Roll’s measure of illiquidity Options Roll (1984) 0.67 *
rskew 21d Total skewness Underlying Bali Engle and Murray (2016) −0.70 **
rvol 21d Return volatility Underlying Ang et al. (2006) −1.87 ***
sale bev Assets turnover Underlying Soliman (2008) 1.20 ***
sale emp gr1 Labor force efficiency Underlying Abarbanell and Bushee (1998) 0.11
sale gr1 Sales Growth (1 year) Underlying Lakonishok Shleifer and Vishny (1994) 0.64 **
sale gr3 Sales Growth (3 years) Underlying Lakonishok Shleifer and Vishny (1994) 0.55
sale me Sales-to-market Underlying Barbee Mukherji and Raines (1996) 1.30 **
saleq gr1 Sales growth (1 quarter) Underlying 0.64 **
saleq su Standardized Revenue surprise Underlying Jegadeesh and Livnat (2006) 0.59
seas 11 15an Years 11-15 lagged returns, annual Underlying Heston and Sadka (2008) −0.06
seas 11 15na Years 11-15 lagged returns, nonannual Underlying Heston and Sadka (2008) −0.46
seas 16 20an Years 16-20 lagged returns, annual Underlying Heston and Sadka (2008) −0.16
seas 16 20na Years 16-20 lagged returns, nonannual Underlying Heston and Sadka (2008) −0.17
seas 1 1an Year 1-lagged return, annual Underlying Heston and Sadka (2008) 0.62 **
seas 1 1na Year 1-lagged return, nonannual Underlying Heston and Sadka (2008) 0.16
seas 2 5an Years 2-5 lagged returns, annual Underlying Heston and Sadka (2008) 0.89 ***
seas 2 5na Years 2-5 lagged returns, nonannual Underlying Heston and Sadka (2008) 0.03
seas 6 10an Years 6-10 lagged returns, annual Underlying Heston and Sadka (2008) 0.42
seas 6 10na Years 6-10 lagged returns, nonannual Underlying Heston and Sadka (2008) 0.06
shrtfee Implied shorting fees Options Muravyev and Pearson (2020) 1.44 ***
skewiv IV skew Options Xing Zhang and Zhao (2010) 0.04
so Stock vs. option volume Options Roll Schwartz and Subrahmanyam (2010) 2.50 ***
stdamihud Standard deviation of Amihud’s illiquidity measure Options 1.46 ***
sti gr1a Change in short-term investments Underlying Richardson et al. (2005) 0.60 *
taccruals at Total accruals Underlying Richardson et al. (2005) 0.91 ***
taccruals ni Percent total accruals Underlying Hafzalla Lundholm and Van Winkle (2011) −1.75 ***
tangibility Asset tangibility Underlying Hahn and Lee (2009) −1.98 ***
tax gr1a Tax expense surprise Underlying Thomas and Zhang (2011) 0.95 ***
theta Theta Options Buchner and Kelly (2020) 3.29 ***
tlm30 Tail loss measure Options Vilkov and Xiao (2012) −0.17
toi Total option open interest Options 0.34
turnover Option turnover Options −1.40 ***
turnover 126d Share turnover Underlying Datar Naik and Radcliffe (1998) −1.20 ***
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Feature Description Information Source Source SR sig

turnover var 126d Coefficient of variation for share turnover Underlying Chordia Subrahmanyam and Anshuman (2001) −3.68 ***
vega Vega Options Buchner and Kelly (2020) −1.79 ***
vol Trading volume in options Options 0.04
volga Volga Options Buchner and Kelly (2020) −2.48 ***
vs change Change in weighted put-call spread Options Cremers and Weinbaum (2010) −1.77 ***
vs level Weighted put-call spread Options Cremers and Weinbaum (2010) −0.97 **
z score Altman Z-score Underlying Dichev (1998) 1.20 ***
zero trades 126d Number of zero trades with turnover as tiebreaker (6 months) Underlying Liu (2006) 1.17 ***
zero trades 21d Number of zero trades with turnover as tiebreaker (1 month) Underlying Liu (2006) 1.49 ***
zero trades 252d Number of zero trades with turnover as tiebreaker (12 months) Underlying Liu (2006) 1.19 **

Done.
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Appendix B. Value-weighted Performance

In the specification in the main text, we focus on option-based momentum strategies

that equally-weight the contracts in each quintile portfolio. In life trading, the investor

is going to incorporate the liquidity of the contracts into his investment decision. We

therefore replicate our main results of Table 2 using two weighting schemes. First, we

weight each contract by the market capitalization of the underlying in Table B2. Second,

we weight each contract by its own dollar open interest in Table B3.
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Table B2: Investment Performance – Market Capitalization Weights

Formation Portfolio

Months 1 2 3 4 5 HmL

Panel A: Risk Momentum

1 −0.071 −0.022 −0.016 −0.007 0.005 0.076
(−3.58) (−1.87) (−1.39) (−0.66) (0.45) (6.28)

3 −0.074 −0.021 −0.017 −0.006 0.004 0.078
(−4.40) (−1.58) (−1.58) (−0.55) (0.33) (8.58)

6 −0.070 −0.019 −0.014 −0.007 0.005 0.075
(−4.10) (−1.60) (−1.32) (−0.63) (0.41) (8.16)

12 −0.064 −0.021 −0.011 −0.006 0.004 0.067
(−4.04) (−1.78) (−0.96) (−0.54) (0.30) (8.26)

24 −0.059 −0.020 −0.012 −0.000 0.004 0.063
(−4.48) (−1.56) (−1.05) (−0.04) (0.34) (9.67)

60 −0.053 −0.011 −0.009 −0.003 −0.000 0.053
(−4.03) (−0.93) (−0.74) (−0.27) (−0.01) (10.50)

120 −0.041 −0.012 −0.006 0.004 −0.000 0.041
(−2.69) (−0.91) (−0.41) (0.32) (−0.04) (7.03)

Panel B: Momentum

1 −0.041 −0.013 −0.007 −0.004 −0.024 0.016
(−3.00) (−1.17) (−0.75) (−0.36) (−1.96) (2.66)

3 −0.048 −0.016 −0.006 −0.010 −0.014 0.035
(−3.47) (−1.50) (−0.53) (−0.99) (−0.93) (3.97)

6 −0.046 −0.019 −0.006 −0.008 −0.008 0.038
(−3.24) (−1.93) (−0.52) (−0.84) (−0.53) (3.80)

12 −0.052 −0.016 −0.006 −0.005 −0.002 0.049
(−4.09) (−1.68) (−0.56) (−0.45) (−0.16) (5.57)

24 −0.040 −0.009 −0.009 −0.003 0.002 0.042
(−3.06) (−0.88) (−0.87) (−0.26) (0.15) (4.81)

60 −0.035 −0.009 −0.006 −0.002 0.003 0.038
(−2.91) (−0.80) (−0.57) (−0.20) (0.21) (5.17)

120 −0.030 −0.006 −0.000 −0.003 0.009 0.039
(−2.01) (−0.48) (−0.02) (−0.25) (0.53) (3.43)

Panel C: Residual Momentum

1 −0.020 −0.006 −0.007 −0.011 −0.033 −0.013
(−1.78) (−0.53) (−0.75) (−0.97) (−2.55) (−2.15)

3 −0.016 −0.010 −0.011 −0.010 −0.027 −0.011
(−1.53) (−0.86) (−1.13) (−0.85) (−1.97) (−1.65)

6 −0.018 −0.009 −0.011 −0.012 −0.018 −0.001
(−1.56) (−0.92) (−1.02) (−1.12) (−1.15) (−0.09)

12 −0.016 −0.012 −0.007 −0.011 −0.012 0.004
(−1.47) (−1.20) (−0.71) (−0.97) (−0.81) (0.43)

24 −0.009 −0.008 −0.007 −0.011 −0.013 −0.003
(−0.76) (−0.78) (−0.67) (−0.91) (−0.82) (−0.40)

60 −0.012 −0.006 −0.005 −0.008 −0.014 −0.001
(−1.07) (−0.53) (−0.43) (−0.59) (−0.97) (−0.17)

120 −0.008 0.001 −0.005 −0.000 −0.010 −0.002
(−0.67) (0.07) (−0.39) (−0.02) (−0.59) (−0.21)
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Table B3: Investment Performance – Dollar Open Interest Weights

Formation Portfolio

Months 1 2 3 4 5 HmL

Panel A: Risk Momentum

1 −0.131 −0.042 −0.034 −0.019 −0.013 0.118
(−7.30) (−3.88) (−2.87) (−1.95) (−1.23) (8.77)

3 −0.131 −0.046 −0.028 −0.022 −0.009 0.122
(−7.82) (−3.68) (−2.62) (−1.65) (−0.76) (8.85)

6 −0.134 −0.037 −0.025 −0.023 −0.008 0.126
(−8.12) (−3.20) (−2.47) (−1.88) (−0.71) (10.17)

12 −0.122 −0.038 −0.025 −0.013 −0.012 0.110
(−8.38) (−3.02) (−2.28) (−1.30) (−0.97) (9.89)

24 −0.115 −0.036 −0.021 −0.011 −0.011 0.105
(−8.04) (−3.16) (−1.85) (−0.95) (−0.86) (9.98)

60 −0.089 −0.036 −0.016 −0.016 −0.014 0.074
(−6.47) (−3.45) (−1.38) (−1.30) (−1.28) (7.26)

120 −0.078 −0.033 −0.021 0.002 −0.014 0.064
(−5.52) (−2.50) (−1.71) (0.16) (−1.08) (6.36)

Panel B: Momentum

1 −0.092 −0.036 −0.026 −0.022 −0.070 0.022
(−6.70) (−3.15) (−2.55) (−1.87) (−6.31) (2.30)

3 −0.119 −0.039 −0.021 −0.026 −0.059 0.059
(−9.19) (−3.40) (−2.07) (−2.37) (−4.18) (4.60)

6 −0.115 −0.043 −0.021 −0.029 −0.055 0.060
(−7.65) (−3.76) (−2.23) (−2.61) (−3.52) (3.87)

12 −0.108 −0.040 −0.021 −0.025 −0.045 0.063
(−7.31) (−4.20) (−2.19) (−2.47) (−2.97) (4.62)

24 −0.102 −0.029 −0.023 −0.022 −0.040 0.062
(−9.11) (−2.90) (−2.35) (−1.87) (−2.59) (4.27)

60 −0.079 −0.027 −0.020 −0.017 −0.028 0.051
(−6.21) (−2.53) (−1.84) (−1.54) (−1.80) (4.27)

120 −0.064 −0.025 −0.015 −0.017 −0.017 0.047
(−4.84) (−1.88) (−1.23) (−1.50) (−0.94) (3.20)

Panel C: Residual Momentum

1 −0.070 −0.026 −0.021 −0.029 −0.090 −0.020
(−5.72) (−2.54) (−2.29) (−2.27) (−6.52) (−1.69)

3 −0.085 −0.029 −0.032 −0.030 −0.077 0.008
(−7.76) (−2.74) (−3.19) (−2.50) (−5.49) (0.68)

6 −0.073 −0.032 −0.036 −0.035 −0.065 0.007
(−6.38) (−2.90) (−3.13) (−3.34) (−4.56) (0.56)

12 −0.068 −0.029 −0.022 −0.034 −0.071 −0.002
(−6.28) (−2.89) (−2.09) (−3.62) (−4.39) (−0.16)

24 −0.056 −0.028 −0.024 −0.029 −0.069 −0.012
(−6.55) (−2.76) (−2.33) (−2.69) (−3.94) (−0.88)

60 −0.043 −0.020 −0.026 −0.027 −0.054 −0.011
(−4.12) (−1.96) (−2.44) (−2.02) (−3.48) (−1.04)

120 −0.035 −0.013 −0.020 −0.034 −0.042 −0.006
(−3.75) (−1.13) (−1.45) (−2.18) (−2.70) (−0.69)
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Appendix C. Performance with Out-of-Sample Risk

Adjustment

In Table C4, we replicate our main results of Table 2 using an out-of-sample risk adjust-

ment through IPCA (Eq. (3)). IPCA is estimated without forward-looking information.

Specifically, using an expanding window, we first estimate IPCA with information un-

til month t to obtain Γβ,t. Next, we calculate the out-of-sample factor return ft,t+1 in a

cross-sectional regression on option returns in t+1. This regression uses portfolio weights

known in t, thereby assuring that no forward-looking information enters the out-of-sample

estimation of IPCA.
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Table C4: Investment Performance – Out-of-Sample Risk Adjustment

Formation Portfolio

Months 1 2 3 4 5 HmL

Panel A: Risk Momentum

1 −0.142 −0.031 −0.012 −0.002 0.018 0.160
(−6.26) (−2.30) (−0.96) (−0.21) (1.45) (9.81)

3 −0.142 −0.032 −0.009 0.001 0.014 0.156
(−6.52) (−2.26) (−0.77) (0.11) (1.12) (10.39)

6 −0.139 −0.024 −0.010 0.002 0.017 0.156
(−6.70) (−1.79) (−0.86) (0.14) (1.33) (11.30)

12 −0.125 −0.024 −0.006 0.001 0.015 0.139
(−6.80) (−1.74) (−0.46) (0.06) (1.14) (11.49)

24 −0.110 −0.020 −0.005 0.005 0.014 0.125
(−7.07) (−1.51) (−0.35) (0.40) (1.07) (14.09)

60 −0.090 −0.015 −0.002 0.004 0.010 0.100
(−6.10) (−1.09) (−0.14) (0.33) (0.75) (11.88)

120 −0.064 −0.004 −0.002 0.008 0.011 0.074
(−3.81) (−0.26) (−0.13) (0.51) (0.73) (8.19)

Panel B: Momentum

1 −0.098 −0.017 −0.007 −0.006 −0.043 0.055
(−5.27) (−1.30) (−0.54) (−0.48) (−2.90) (6.24)

3 −0.101 −0.021 −0.010 −0.007 −0.027 0.074
(−5.33) (−1.61) (−0.84) (−0.54) (−1.89) (7.92)

6 −0.104 −0.019 −0.007 −0.008 −0.017 0.086
(−5.42) (−1.54) (−0.60) (−0.66) (−1.20) (7.89)

12 −0.101 −0.017 −0.008 −0.003 −0.010 0.091
(−6.04) (−1.34) (−0.63) (−0.25) (−0.71) (9.45)

24 −0.087 −0.010 −0.008 −0.003 −0.008 0.079
(−6.16) (−0.79) (−0.64) (−0.25) (−0.54) (10.68)

60 −0.077 −0.011 −0.004 0.000 −0.001 0.076
(−5.60) (−0.90) (−0.29) (0.02) (−0.06) (11.56)

120 −0.056 −0.005 −0.001 0.003 0.008 0.063
(−3.84) (−0.33) (−0.07) (0.18) (0.43) (8.62)

Panel C: Residual Momentum

1 −0.074 −0.009 −0.007 −0.018 −0.063 0.011
(−4.51) (−0.66) (−0.58) (−1.33) (−4.08) (2.40)

3 −0.070 −0.017 −0.014 −0.017 −0.049 0.021
(−4.27) (−1.35) (−1.13) (−1.30) (−3.10) (4.55)

6 −0.069 −0.013 −0.011 −0.020 −0.040 0.028
(−4.40) (−1.10) (−0.94) (−1.64) (−2.57) (5.88)

12 −0.061 −0.014 −0.012 −0.017 −0.035 0.027
(−4.39) (−1.17) (−0.94) (−1.24) (−2.30) (5.75)

24 −0.046 −0.010 −0.010 −0.014 −0.036 0.010
(−3.59) (−0.81) (−0.82) (−1.06) (−2.36) (1.62)

60 −0.036 −0.011 −0.010 −0.013 −0.024 0.012
(−2.80) (−0.85) (−0.77) (−0.90) (−1.54) (2.65)

120 −0.025 0.000 −0.006 −0.006 −0.015 0.011
(−1.86) (0.03) (−0.39) (−0.37) (−0.85) (1.63)
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