
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/314516644

Fractional Black-Scholes Option Pricing, Volatility Calibration and Implied

Hurst Exponents

Article  in  SSRN Electronic Journal · January 2016

DOI: 10.2139/ssrn.2793927

CITATIONS

0
READS

118

2 authors:

Emlyn James Flint

Peregrine Securities

36 PUBLICATIONS   38 CITATIONS   

SEE PROFILE

Eben Mare

University of Pretoria

34 PUBLICATIONS   41 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Emlyn James Flint on 05 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/314516644_Fractional_Black-Scholes_Option_Pricing_Volatility_Calibration_and_Implied_Hurst_Exponents?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/314516644_Fractional_Black-Scholes_Option_Pricing_Volatility_Calibration_and_Implied_Hurst_Exponents?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emlyn_Flint?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emlyn_Flint?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emlyn_Flint?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eben_Mare?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eben_Mare?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pretoria?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eben_Mare?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Emlyn_Flint?enrichId=rgreq-82faccfede9672baaaaa600d65293756-XXX&enrichSource=Y292ZXJQYWdlOzMxNDUxNjY0NDtBUzo1MzUyMjE1OTY0MTgwNDhAMTUwNDYxODE4MDE2Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


FRACTIONAL BLACK-SCHOLES OPTION PRICING, VOLATILITY CALIBRATION AND 

IMPLIED HURST EXPONENTS IN A SOUTH AFRICAN CONTEXT 

 

 ABSTRACT 

This paper addresses several theoretical and practical issues in option pricing and 

implied volatility calibration in a fractional Black-Scholes market. In particular, we 

discuss how the fractional Black-Scholes model admits a non-constant implied 

volatility term structure when the Hurst exponent is not 0.5, and that one-year implied 

volatility is independent of the Hurst exponent and equivalent to fractional volatility. 

Building on these observations, we introduce a novel eight-parameter fractional Black-

Scholes inspired, or FBSI, model. This deterministic volatility surface model is based 

on the fractional Black-Scholes framework and uses Gatheral’s (2004) SVI 

pamaterisation for the fractional volatility skew and a quadratic parameterisation for 

the Hurst exponent skew. The issue of arbitrage-free calibration for the FBSI model is 

addressed in depth and it is proven in general that any FBSI volatility surface is free 

from calendar-spread arbitrage. The FBSI model is empirically tested on implied 

volatility data on a South African equity index as well as the USDZAR exchange rate. 

Results show that the FBSI model fits the equity index implied volatility data very well 

and that a more flexible Hurst exponent parameterisation is needed to accurately fit 

the USDZAR implied volatility surface data. 

Key words: Fractional Brownian motion, Hurst exponent, implied volatility, calibration, 

equity, currency, volatility surface 
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1. INTRODUCTION 

Contingent claims on underlying assets are typically priced under the framework 

introduced by Black and Scholes (1973). This framework assumes, inter alia, that the 

log returns of the underlying asset are normally distributed. However, many 

researchers have shown that this assumption is violated in practice. Cont (2001) put 

forth several ‘stylised facts’ of empirical asset returns, defined as “statistical properties 

found to be common across a wide range of instruments, markets and time periods” 

(p. 224). periods. These include the properties of heavy tails, volatility clustering, 

leptokurtosis and long memory. While countless authors have studied the implications 

of these stylised facts across a variety of market applications, this paper addresses an 

issue which has heretofore not received much attention. More specifically, this paper 

considers several theoretical and practical issues in the pricing of contingent claims 

when the underlying is assumed to display long memory. 

Hurst (1951) proposed a statistical metric – and its estimation methodology – for 

measuring the long-term memory embedded within a given system. This metric is now 

commonly referred to as the Hurst exponent, index or parameter and is denoted by 

𝐻 ∈ [0,1]. For a given time series, 𝐻 < 1 2⁄  implies that the series displays negative 

long-term autocorrelation (or anti-persistence), 𝐻 = 1 2⁄  implies zero long-term 

autocorrelation and 𝐻 > 1 2⁄  implies that the series displays positive autocorrelation. 

In financial calculus parlance, this would be equivalent to a stochastic process 

displaying mean-reversion, no memory or momentum respectively. A stochastic 

process with high 𝐻 > 1 2⁄  will also be smoother than the same process with low 𝐻 <

1 2⁄  because it is less likely to move against the underlying trend. 

Mandelbrot and van Ness (1968) were the first researchers to suggest the use of the 

Hurst exponent in financial markets. Specifically, they suggested that financial asset 

prices displayed some form of long-memory and introduced fractional Brownian 

motion (fBm) – a new class of Gaussian random functions – for modelling the log 

increments in asset price processes. The fBm for a given Hurst exponent 𝐻 (see, for 

example, Biagini et al., 2008) is the continuous Gaussian process {𝐵𝐻(𝑡), 𝑡 ∈ 𝑹+}, with  

𝔼[𝐵𝐻(𝑡)] = 0                                                                                                                                    

𝔼[𝐵𝐻(𝑡), 𝐵𝐻(𝑠)] =
1

2
[𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠|2𝐻].                                                                 (1) 



From Equation (1), it is clear that the standard Brownian motion is simply a special 

case of fBm where 𝐻 = 1 2⁄ . For all other values of 𝐻 though, the fBm process will 

have dependent increments. Mandelbrot (2013), and the references contained therein, 

provides an excellent summary of the early applications of the fBm theory in financial 

markets. A sample of the more recent studies is given below. 

Karuppiah and Los (2005) consider long-term dependence of Asian currencies finding 

empirical Hurst exponents between 0.3 and 0.5 and thus implying anti-persistent 

behaviour. In contrast, they note that equities  typically exhibit persistent behaviour, 

with Hurst exponents estimated between 0.6 and 0.7. (See also Peters (1989, 1994), 

for example.). Simonson (2003) demonstrates that Nordic electricity spot prices can 

be modelled using fractional Brownian motion with a Hurst exponent of approximately 

0.4. Alvarez-Ramirez et al. (2002) conclude that crude oil price formations are 

stochastically persistent with long-term memory processes at work. Long-term 

dependence (as well as heavy tailed distributions) in financial data has been 

established by Anderson and Bollerslev (1996) and Müller et al. (1998) using high 

frequency financial data. More recent work by Tzouras et al. (2015) employs the Hurst 

exponent to model memory-dependent properties in share indices and oil prices. See 

also, Alvarez-Ramirez et al. (2008) and Serinaldi (2010). Cajueiro and Tabak (2004) 

as well as Rejichi and Aloui (2012) use the Hurst exponent to test the evolving 

efficiency of emerging equity markets. 

 

Hu and Øksendal (2003) derived closed-form solutions for contingent claim valuation 

in a fractional Black-Scholes market, where the standard Brownian motion in the asset 

price process is replaced with a fBm (see also Necula, 2002). Their work was extended 

by Elliot and van der Hoek (2003). Specifically, for a market with a risk-free asset 𝐴 

and a risky stock 𝑆, a fractional Black-Scholes market is defined as 

𝑑𝐴(𝑡) = 𝑟𝐴(𝑡)𝑑𝑡,                                             𝐴(0) = 1;   𝑟 > 0                                               

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵𝐻(𝑡),                𝑆(0) = 𝑠 > 0;   𝜎 > 0                                (2) 

where 0 ≤ 𝑡 ≤ 𝑇, 𝑟 and 𝜇 are constant drift parameters and 𝜎 is a constant scale 

parameter. From this, Hu and Øksendal (2003) derive the fractional Black-Scholes 

value of a European call option 𝐶𝑓(∙)  at time 𝑡 with strike 𝐾 and term 𝜏 = 𝑇 − 𝑡 as 



𝐶𝑓(𝑆𝑡, 𝐾, 𝜏, 𝑟, 𝜎, 𝐻) = 𝑆𝑡Φ(𝑑1̂) − 𝐾−𝑟𝜏Φ(𝑑2̂),                                                                  (3)        

where Φ is the standard cumulative normal distribution function and 

𝑑1̂ =
𝑙𝑛 (

𝑆𝑡

𝐾) + 𝑟𝜏 +
1
2 𝜎2𝜏2𝐻

𝜎𝜏𝐻
,                                                                                                                  

𝑑2̂ = 𝑑1̂ − 𝜎𝑇𝐻.                                                                                                                                            

As with the seminal Black-Scholes option pricing formula (Black and Scholes, 1973), 

one can infer the valuation formula for a European put option 𝑃𝑓(∙) with strike 𝐾 and 

term 𝜏 via put-call parity. Furthermore, a dividend yield 𝑞 can be added to the above 

equations in a similar manner to Merton’s (1973) extension of the standard Black-

Scholes framework. 

Although already stated above, Equation (3) makes it clear that setting 𝐻 = 1 2⁄  simply 

gives one the classical Black-Scholes (1973) option pricing formula. Therefore, 

assuming that the risk-free rate and dividend yield are known, fBm option prices are 

fully described by two parameters: the Hurst exponent 𝐻 as a measure of long-

memory, and the volatility of the stock 𝜎 after controlling for long-memory. 

This paper is organised as follows. Section 2 is devoted to the links between standard 

Black-Scholes (1973) volatility and fractional Black-Scholes volatility. We also 

demonstrate how to calculate realistic implied volatility surfaces by assuming 

parameterisations of the fractional volatility and the Hurst parameter. In Sections 3 

and 4 we demonstrate how arbitrage free calibration would be conducted. Section 5 

deals with South African equity index and currency examples – we provide market 

implied Hurst parameters. We conclude in Section 6. 

2. IMPLIED VOLATILITY IN A FRACTIONAL BLACK-SCHOLES MARKET  

Since the early 1970s, option pricing has been characterised by the seminal Black-

Scholes option pricing formula, which gives a simple bijective mapping between an 

option’s price and the formula’s volatility parameter 𝜎𝐵𝑆, termed the option’s “implied 

volatility”. Under the idealised, theoretical assumptions of the Black-Scholes 

framework, implied volatility is a constant. However, when implied volatility is plotted 

against option strikes for a fixed expiry, one observes a ‘skew’ or ‘smile’ pattern in 

practice, largely driven by the non-normality of the underlying asset return distribution 

Jacobson
Sticky Note



and the supply-demand dynamics within the selected derivatives market (Dupire, 

2006). Furthermore, when implied volatility is plotted against option term for a fixed 

strike, one observes a non-constant relationship, referred to as the term structure of 

implied volatility.  

In reality then, implied volatility is a function of an option’s strike and term. The 

practitioner’s convention in derivatives markets is to speak of separate implied volatility 

skews (or smiles) for individual option expiries. A collection of implied volatility skews 

is referred to as an implied volatility surface, which in itself is dynamic, changing with 

the underlying market conditions (see, for example, Cont and da Fonseca, 2002). The 

implied volatility surface at time 𝑡 is denoted as 𝜎𝐵𝑆(𝐾, 𝜏, 𝑡). 

Hu and Oksendal (2003) showed that the variance of the log returns of the stock 

process in a fractional Black-Scholes market is given by 

𝕍𝑎𝑟 [𝑙𝑛 (
𝑆𝑡+𝜏

𝑆𝑡
)] =  𝜎𝑓

2𝜏2𝐻 ,                                                                                               (4) 

where 𝜎𝑓 is the volatility parameter specific to the fractional setting, hereafter referred 

to as fractional volatility. Equating this expression with the equivalent formula in the 

standard Black-Scholes market (i.e. substituting in 𝐻 = 1 2⁄  above and dropping strike- 

and time-dependence for now) yields the relationship 

𝜎𝐵𝑆(𝜏) = 𝜎𝑓𝜏𝐻−
1
2.                                                                                                           (5) 

Equation (5) has three clear implications. Firstly, even for constant fractional volatility 

and Hurst parameters, the Black-Scholes implied volatility term structure is described 

by a power function rather than a constant. This is the same functional form used in 

Heston’s (1993) stochastic volatility model and is also the deterministic term structure 

function postulated by many market practitioners (Gatheral, 2006). As displayed in 

Figure 1, 𝐻 > 0.5 gives an up-sloping term structure, 𝐻 = 0.5 gives a constant value, 

and 𝐻 < 0.5 gives a downward-sloping term structure.  



 

Figure 1: Possible implied volatility term structures in a fractional Black-Scholes 

market for different Hurst exponents and 𝜎𝑓 = 20%. 

Secondly, the standard and fractional Black-Scholes models give the same implied 

volatility – and thus option price – for 𝜏 = 1, regardless of the specified Hurst exponent. 

This is also evident from Figure 1. It follows that if one assumes constant fractional 

model parameters, then it must be that 𝜎𝑓 = 𝜎𝐵𝑆(1).  

Thirdly, there is no implicit strike-dependence in the fractional Black-Scholes model. 

This means that the single volatility term structure would apply to all option strikes, 

which is not consistent with reality.  At the very least, one would need to introduce 

strike-dependence into the fractional volatility parameter in order to match the 𝜏 = 1 

implied volatility skew, which is independent of Hurst exponent by construction. The 

simplest deterministic model used in practice that gives a reasonable description of 

the implied volatility skew around current spot levels is a quadratic equation (Dumas, 

Fleming and Whaley, 1998):i  

𝜎𝑓(𝑋) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2,                                                                                       (6) 

where 𝑋 is the ratio of the option strike 𝐾 to the current spot price 𝑆𝑡, generally termed 

‘moneyness’. The 𝛽𝑖 parameters account for the level, slope and curvature of the 

volatility skew respectively. Figure 2 illustrates how different Hurst exponents can 

affect the constructed implied volatility surface for a fractional volatility skew (i.e. one-

year implied skew) indicative of equity index option markets. 

While the surfaces shown in Figure 2 are generally quite realistic, neither captures the 

universal property that all implied volatility surfaces based on martingale models flatten 

out with term (Rogers and Tehranchi, 2008). This inconsistency is particularly evident 
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for the 𝐻 = 0.6 surface, which displays increasing skew and curvature across term. In 

general, for the majority of index volatility surfaces the Hurst exponent would need to 

be below 0.5 for low strikes and above 0.5 for high strikes to ensure that the surface 

levels off across term. In contrast, for currency implied volatility surfaces which show 

considerably more convexity than their equity index counterparts, one would expect 

the Hurst exponent to be below 0.5 for both very high and very low option strikes. 

While these expectations stem purely from the mathematics of Equation (5) and the 

shape of volatility surfaces observed in practice, given the stylised facts already known 

about each asset class, it would seem plausible to assume that there is an underlying 

economic rationale to the strike profile of the Hurst exponent. This point will be 

revisited later but for now, we simply observe that realistic index and currency volatility 

surfaces would require a strike-dependent Hurst exponent.  

 

Figure 2: Indicative implied volatility surfaces for a given one-year volatility skew for 

𝐻 = {0.4, 0.6}. 

Figure 3 displays the implied volatility surface constructed when using a similar 

deterministic quadratic function as per Equation (6) for the Hurst exponent. Notice the 

significant level of skew achieved at very short option terms – a feat which many 

stochastic volatility models struggle to achieve (Gatheral, 2006) – in combination with 

a substantially flatter surface at longer terms.  

While the quadratic formulations used here are purely for pedagogical purposes, it is 

evident that even these simple parameterisations provide one with a high degree of 

flexibility for modelling realistic volatility surfaces in the fractional Black-Scholes 

framework. Moreover, the idea of using strike-dependent fractional parameters in 
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Equation (5) provides one with the basis for a robust but simple volatility surface 

model.  

  

Figure 3: Indicative implied volatility surface for fractional volatility and Hurst 

exponent modelled as a quadratic function of strike. 

3. ARBITRAGE-FREE FRACTIONAL BLACK-SCHOLES INSPIRED VOLATILITY 

SURFACES 

Creating arbitrage-free parameterisations of the implied volatility surface is extremely 

important for derivatives trading and risk management in practice and has been given 

considerable attention in the literature (Damghani and Kos (2013), Gatheral and 

Jacquier (2013), Roper (2010), Lee (2004), and references therein). In this section, 

we consider a fractional Black-Scholes inspired, or FBSI, parameterisation of the 

volatility surface: a combination of the fBm framework outlined in Section 2 and the 

stochastic volatility inspired (SVI) model of Gatheral (2004) for the strike-dependent 

fractional volatility parameter. 

Carr, Geman, Madan and Yor (2003) introduced the idea of static arbitrage, and Carr 

and Madan (2005) identified the sufficient conditions - eliminating call spread, butterfly 

spread and calendar spread arbitrages – for ensuring that a set of option prices 

excludes all static arbitrage. Roper (2010) extended this line of research to find the 

corresponding set of necessary and sufficient conditions to ensure that the volatility 

surface was free from all static arbitrages. Following the notation of Gatheral and 

Jacquier (2013), we outline these conditions - no calendar spread arbitrage and no 

butterfly spread arbitrage – below.  



Let us define 𝑘 = 𝑙𝑛(𝐾 𝐹⁄ ) as the log moneyness measured relative to the forward 𝐹 

and 𝑤(𝑘, 𝜏) = 𝜏𝜎𝐵𝑆
2 (𝑘, 𝜏) as the total implied variance surface.  Then, assuming that 

dividends are proportional to the underlying asset price, the volatility surface 𝑤 is free 

of calendar spread arbitrage if and only if 

𝜕𝜏𝑤(𝑘, 𝜏) ≥ 0,            ∀ 𝑘 ∈ ℝ, 𝜏 > 0.                                                                                (7) 

Furthermore, each time slice of the volatility surface 𝑤(𝑘) is free from butterfly spread 

arbitrage if and only if the corresponding density function is non-negative, or 

equivalently 

𝑔(𝑘) ≔ (1 −
𝑘𝑤′(𝑘)

2𝑤(𝑘)
)

2

−
𝑤′(𝑘)2

4
(

1

𝑤(𝑘)
+

1

4
) +

𝑤′′(𝑘)

2
≥ 0,         ∀𝐾 ∈ ℝ        (8) 

and 

lim
𝑘→∞

𝑑+(𝑘) = lim
𝑘→∞

(
−𝑘

√𝑤(𝑘)
+

√𝑤(𝑘)

2
) = −∞.                                                              (9)  

Note that 𝑤′(𝑘)  and 𝑤′′(𝑘) refer to the first and second derivatives respectively. 

Damghani and Kos (2013) give a necessary but not sufficient butterfly spread 

condition which they state is commonly used in practice: 

|𝜕𝑘𝑤(𝑘, 𝜏)| ≤ 4,      ∀ 𝑘 ∈ ℝ, 𝜏 > 0.                                                                                   (10) 

Let us now consider the fractional Black-Scholes framework as per Section 2. It follows 

from Equation (5) that the total implied variance surface at a given time can be written 

as 

𝑤(𝑘, 𝜏) = 𝜎𝑓
2(𝑘)𝜏2𝐻(𝑘)

= 𝜈𝑓(𝑘)𝜏2𝐻(𝑘),
                                                                                                   (11) 

where the formulations for fractional variance 𝜈𝑓 = 𝜎𝑓
2 and Hurst exponent remain fully 

general. Applying the condition in Equation (7), we have that Equation (11) is free from 

calendar spread arbitrage if and only if 

2𝜈𝑓(𝑘)𝐻(𝑘)𝜏2𝐻(𝑘)−1 ≥ 0,      ∀ 𝑘 ∈ ℝ, 𝜏 > 0.                                                                        (12)        

Given that 𝐻 ∈ [0,1] by construction and 𝜈𝑓 > 0, it is trivial to see that Equation (12) 

will hold true at all times. Therefore, regardless of the parameterisations specified for 



fractional volatility and Hurst exponent, the fractional Black-Scholes volatility surface 

is always free from calendar spread arbitrage. The same conclusion cannot be easily 

discerned for butterfly spread arbitrage. 

As mentioned above, we limit our focus to Gatheral’s (2004) SVI model as a candidate 

for the fractional variance function. The SVI model is one of the most widely used 

deterministic volatility functions in the equity derivatives market and is also commonly 

used by foreign exchange derivatives practitioners. Although Gatheral and Jacquier 

(2013) have recently proposed several alternative formulations of the models 

parameters, we consider the original ‘raw’ parameterisation for simplicity. For a given 

parameter set 𝜒 = {𝑎, 𝑏, 𝜌, 𝑚, 𝜎}, the SVI model for total implied variance is given by 

𝑤(𝑘; 𝜒) = 𝑎 + 𝑏 {𝜌(𝑘 − 𝑚) + √(𝑘 − 𝑚)2 + 𝜎2},                                                 (13) 

where 𝑎 ∈ ℝ gives the overall level of variance, 𝑏 ≥ 0 gives the angle between the left 

and right asymptotes, |𝜌| < 1 determines the orientation of the curve, 𝑚 ∈ ℝ controls 

the horizontal positioning of the curve, and 𝜎 > 0 adjusts the smoothness of the curve 

vertex. Gatheral (2004) also imposes the condition that 𝑎 + 𝑏𝜎√1 − 𝜌2 ≥ 0 in order to 

ensure that 𝑤(𝑘; 𝜒) ≥ 0 for all 𝑘 ∈ ℝ. Gatheral further states that in order to meet the 

necessary (but not sufficient) condition for no butterfly arbitrage as per Equation (10), 

one must have 

𝑏(1 + |𝜌|) ≤
4

𝜏
.                                                                                                               (14) 

Although Roper (2010) showed that a parameter set which satisfies Equation (14) can 

still breach the more stringent Equation (8) and thus admit butterfly arbitrage, Gatheral 

(2004), among others, suggests that the SVI parameter sets calibrated to real market 

data are arbitrage-free. 

As noted in Section 2, fractional variance is equivalent to one-year total implied 

variance and is thus independent of the Hurst exponent. Therefore, one can directly 

apply Equations (13) and (14) in order to find the necessary arbitrage-free SVI 

parameter ranges. Specifically, for the 𝜏 = 1 fractional variance time slice, the 

necessary condition for no butterfly arbitrage is 0 ≤ 𝑏 ≤
4

1+|𝜌|
.  



Similarly ensuring no-arbitrage across all volatility time slices is not as easy because 

of the strike-dependent Hurst exponent. Taking the derivative with respect to strike of 

the total variance surface as per Equation (11), we have 

|𝜕𝑘𝑤(𝑘, 𝜏)| = |𝜏2𝐻(𝑘)(𝜈′(𝑘) + 𝑣(𝑘) ln(𝜏) 2𝐻′(𝑘))| ≤
4

𝜏
.                                                  (15) 

Even for simple 𝐻(𝑘) functions, it is not obvious what the necessary arbitrage-free 

parameter ranges should be. However, it is a straightforward, if somewhat long-

winded, exercise to directly calculate the values of 𝑔(𝑘) for a given Hurst 

parameterisation and thus enforce the necessary Hurst parameter ranges during 

calibration to remove any butterfly spread arbitrage.    

4. CALIBRATING FBSI SURFACES AND IMPLIED HURST EXPONENTS   

Building from Sections 2 and 3, we formally define the fractional Black-Scholes 

inspired, or FBSI, parameterisation of total implied variance as follows: 

𝑤(𝑘, 𝜏) = 𝜈𝑓(𝑘)𝜏2𝐻(𝑘)                                                

𝜈𝑓(𝑘) = 𝑎 + 𝑏 {𝜌(𝑘 − 𝑚) + √(𝑘 − 𝑚)2 + 𝜎2}

𝐻(𝑘) = 𝛽0 + 𝛽1𝑘 + 𝛽2𝑘2.                                       

                                                        (16) 

Motivated by the observations in Sections 2 and 3, and in the absence of prior 

knowledge, the choice of a quadratic function for the Hurst exponent seems a 

reasonable guess. In this case, 𝛽0 ∈ [0,1] represents the at-the-money (ATM) level,  

𝛽1 the slope and 𝛽2 the curvature of the Hurst exponent respectively.ii The function 

𝑔(𝑘) can be calculated analytically from Equation (16) and used to ensure that, in 

conjunction with the SVI parameter bounds given in Section 2, the calibrated 𝛽𝑖 

parameters do not introduce butterfly arbitrage at any time slice. The complete 

volatility surface is thus a function of eight parameters, 𝜒𝑓 = {𝑎, 𝑏, 𝜌, 𝑚, 𝜎, 𝛽0, 𝛽2, 𝛽3}. 

Given the reliance on the SVI model to parameterise the fractional variance, it makes 

sense to augment existing SVI calibration algorithms for the additional Hurst exponent 

parameters. De Marco and Martini (2009) outline a robust quasi-explicit calibration 

process for the SVI model which produced a reliable and stable parameter set. 

Through a clever change of variables, the initial five-dimensional SVI minimisation 

problem is recast into a much simpler two-dimensional problem, with the remaining 

three variables having (quasi-) explicit solutions within the new framework. This ‘2+3’ 



procedure is robust to initial guesses and provides stable, arbitrage-free SVI 

parameters. In a similar vein, we reformulate the raw eight-parameter FBSI model 

calibration into a ‘5+3’ procedure, with the three Hurst parameters supplementing the 

two SVI parameters as per De Marco and Martini (2009). Testing shows that this 

procedure is also generally robust to initial guesses and fast to implement. The FBSI 

model and calibration procedure thus gives one a robust means of modelling the full 

volatility surface and also of deriving the implied Hurst exponent across the full 

moneyness range at any given time.      

To the authors’ best knowledge, the only other research to date that considers similar 

fBm-based volatility surface parameterisations is the fBm variance term structure 

model posited by Li & Chen (2014).iii  Based on the relationship between implied 

volatility in the Black-Scholes framework and implied volatility in the fBm framework, 

Li and Chen (2014) show that one can estimate both the fractional volatility and the 

Hurst exponent from traded option data via linear regression. Consider the logarithm 

of the power function given in Equation (5): 

ln[𝜎𝐵𝑆(𝜏)] = ln(𝜎𝑓) + (𝐻 −
1

2
) ln(𝜏).                                                                     (17) 

Li and Chen (2014) suggest using ordinary least squares (OLS) to estimate the 

fractional volatility and implied Hurst exponent by regressing the logarithm of ATM 

implied volatility against the logarithm of term. In this way, one is able to calculate a 

single fractional volatility and Hurst exponent from the option data. Li and Chen further 

suggest replacing the Black-Scholes implied volatilities in Equation (17) with the 

model-free implied volatilities of Britten-Jones and Neuberger (2000), which can be 

calculated in practice by applying the standard VIX methodology at all observed option 

terms. The use of model-free implied volatility as dependent variable has the benefits 

of removing dependence on any specific pricing model and of using information from 

all traded options rather than only ATM options.iv However, despite incorporating 

information from the full volatility surface, this method still only allows one to model the 

term structure of implied volatility.  



5. EMPIRICAL FBSI SURFACES AND HURST EXPONENTS: A SOUTH 

AFRICAN EXPERIMENT 

The FBSI and Li and Chen (LC) model are calibrated to two sets of South African 

option market data. The first data set consists of 529 weekly observations of implied 

volatility skews for listed futures options on the FTSE/JSE Top40 index (Top40) over 

the period 5 September 2005 to 30 November 2015. Top40 options are the most 

actively and liquid traded derivative contracts in South Africa. These options trade on 

the South African Futures Exchange (SAFEX) on the basis of implied volatility and the 

option price is calculated using the Black (1976) option pricing formula.  The weekly 

implied volatility skews were obtained from Peregrine Securities and generally cover 

a strike range of 75–125% of the forward price. The second data set consists of 146 

weekly observations of implied volatility skews for listed futures options on the South 

African Rand (USDZAR) exchange rate over the period 11 February 2013 to 30 

November 2015. The volatility skews initially cover a range of 80–120% of the forward 

price up to November 2014 and thereafter cover a 70–130% range. This data was also 

obtained from Peregrine Securities. 

5.1. FBSI INDEX VOLATILITY SURFACES 

Let us first consider results for the index volatility surfaces. Figure 4 compares the 

Top40 index performance since September 2005 versus the fractional volatility and 

Hurst exponents from the calibrated FBSI volatility surface model and the LC volatility 

term structure model.  

 

Figure 4: Top40 Index performance plotted with the ATM fractional volatility and 

Hurst exponents from the calibrated FBSI and LC models respectively, September 

2005 to November 2015. 
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Visual inspection confirms the well-documented inverse relationship between index 

performance and fractional volatility (i.e. one-year implied volatility) and also suggests 

a positive relationship between index performance and the Hurst exponent, particularly 

evident during the 2008 financial crisis. This is confirmed by the moderately positive 

correlation values of 0.47 and 0.45 displayed for each model respectively in Table 1. 

There are also times when one sees significant changes in the Hurst exponent without 

any large associated downturns in the index. For example, the Hurst exponent fell 

materially from a high of 0.67 down to 0.46 during the first half of 2013, while the index 

remained range-bound around the 35000-level. Over the same period, fractional 

volatility also remained fairly stable between 16–18% and only picked up briefly around 

the middle of 2013. This suggests that the Hurst exponent and fractional volatility 

capture somewhat different aspects of the uncertainty within the index and thus 

provide one with more detailed information on the underlying price process. 

This suggestion is borne out by the correlation between fractional volatility and the 

Hurst exponent given in Table 1. Although it is negative as one would expect, it is 

considerably lower in absolute terms than the correlations displayed between the 

respective parameters and the underlying index returns. Therefore, deconstructing the 

single implied volatility number into a long-memory component and a long-memory-

conditioned volatility component may well have useful application in a wide range of 

financial applications, including derivatives trading, risk management and dynamic 

asset allocation. For example, discrete delta-hedging strategies could potentially be 

improved by incorporating the Hurst exponent as a means of identifying how rough or 

smooth the index returns are likely to be and also whether the index is currently more 

likely to mean-revert or continue trending. For now, we leave application of the implied 

Hurst exponent for future research. 

Table 1: Correlation matrix of weekly log returns on Top40 Index and associated 

implied volatility parameters, September 2005 to November 2015. 

  Top40 LC 𝝈𝒇 LC Hurst  FBSI 𝝈𝒇 FBSI Hurst 

Top40 1     

LC 𝝈𝒇 -0.516 1    

LC Hurst 0.473 -0.338 1   

FBSI 𝝈𝒇 -0.514 0.992 -0.339 1  

FBSI Hurst 0.448 -0.313 0.956 -0.284 1 



Notice that the ATM FBSI fractional volatility time series is nearly identical to the LC 

fractional volatility series, with a correlation of 0.99. The ATM Hurst exponent time 

series is also very similar across models with a correlation of 0.96, although slight 

deviations are evident in the final two years of the sample period. This high degree of 

equivalence indicates that the FBSI model provides sufficient flexibility to model the 

ATM term structure accurately even while fitting the complete index volatility surface. 

Figure 5 confirms this by displaying the Top40 traded volatility surface and its 

calibrated FBSI counterpart as at 30 May 2011. The modelled surface mirrors the 

market surface very well at most terms and moneyness levels, although there are a 

couple of small areas on the market surface where the power law model assumption 

is violated.  

 

Figure 5: Top40 and calibrated FBSI implied volatility surface as at 30 May 2011. 

The reason why the FBSI model fits the equity surfaces so well is shown in Figure 6. 

The calibrated FBSI parameter curves are compared to those obtained from 

separately fitting the LC term structure models at each moneyness level. For our data, 

this equates to running 51 independent regressions, which ensures a very accurate fit 

of the surface thanks to the use of 102 parameters. Although clearly not a viable 

candidate for modelling the surface directly, this LC ‘multi-model’ provides one with an 

excellent means of evaluating whether the quadratic and SVI functions provide 

sufficient flexibility for capturing the required strike-dependence in fBm volatility 

parameters.   

As Figure 6 shows, the fractional volatility curves from both models are essentially 

equivalent, while the FBSI Hurst exponent shows a slight deviation from the LC multi-

model curve above the 105% moneyness level. This discrepancy is responsible for 



the difference at high moneyness levels and very short terms between the traded and 

fitted volatility surfaces in Figure 5. 

 

 

Figure 6: Calibrated fractional volatility and Hurst exponent skews from the FBSI 

and LC models as at 30 May 2011. 

5.2. FBSI CURRENCY VOLATILITY SURFACES 

Figure 7 displays the FBSI and LC model parameters from February 2013 in 

comparison to the underlying USDZAR foreign exchange rate. In contrast to the results 

given in Section 5.1, there are significant differences between the FBSI and LC Hurst 

exponents evident across the full sample period. The FBSI Hurst exponent is almost 

always lower than its LC counterpart and the positive correlation of 0.36 is much lower 

than one would expect given that both time series represent the same parameter. 

Fractional volatility is far more similar across the two models, with a correlation of 0.83. 

There are still noticeable differences though, with FBSI fractional also generally lower 

than LC fractional volatility across the period.  
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Figure 7: USDZAR performance plotted with the ATM fractional volatility and Hurst 

exponents from the calibrated FBSI and LC models respectively, February 2013 to 

November 2015. 

Table 1 also displays the expected positive relationship between exchange rate and 

fractional volatility (𝜌 = 0.44). Interestingly, a similar but negative relationship is 

evident between exchange and LC Hurst exponent (𝜌 = −0.44) but not for the FBSI 

Hurst parameter (𝜌 = −0.16). Furthermore, note that while the USDZAR has 

consistently trended upwards over the sample period, both Hurst exponent and 

fractional volatility parameters remained largely range-bound for most of the period. 

Only over the last year has one seen a slight decline in Hurst levels and a concurrent 

increase in fractional volatility levels as the size of the weekly exchange rate moves 

has grown. Finally, Table 1 reveals that the correlation between LC parameters is 

weak and negative, while that between the FBSI parameters is instead mildly positive. 

This again suggests a certain level of independence between the two implied volatility 

components.  

Table 2: Correlation matrix of weekly log returns on USDZAR and associated 

implied volatility parameters, February 2005 to November 2015. 

  USDZAR LC 𝝈𝒇 LC Hurst  FBSI 𝝈𝒇 FBSI Hurst 

USDZAR 1     

LC 𝝈𝒇 0.438 1    

LC Hurst -0.442 -0.175 1   

FBSI 𝝈𝒇 0.451 0.834 -0.360 1  

FBSI Hurst -0.159 -0.149 0.359 0.240 1 
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The large differences between the FBSI and LC parameters indicate that, in its current 

form, the FBSI model is unable to adequately replicate the currency implied volatility 

surface. Figures 8 and 9 depict the problem for an example currency surface as at 28 

April 2015. The traded volatility skews are significantly sloped for strikes above the 

forward level and remain so even for longer terms. In contrast, the surface is less 

sloped for strikes below the forward level and flattens off a fair degree with term. 

However, because the short-term implied volatility skew flattens out at lower 

moneyness levels, so does the curvature of the respective term structures.  

 

Figure 8: Top40 and calibrated FBSI implied volatility surface as at 30 May 2011. 

Combining these observations implies that the Hurst exponent would need to be 

convex but also include inflection points at low moneyness levels and possibly also at 

high moneyness levels, as shown in the lower panel of Figure 9. The assumed 

quadratic function is not capable of this and thus the calibrated Hurst function 

represents a trade-off between matching the required level of ATM convexity and 

minimising the mismatch for far out of the money volatility points. Therefore, we would 

suggest using a different functional form for the Hurst exponent in the currency 

derivatives space. Given the need for an inflection point in the Hurst exponent curve, 

the most obvious starting point would be a third-order polynomial. For now, we leave 

this remark as an avenue for future research. The calibrated FBSI volatility surface in 

Figure 8 still manages to capture most of the traded surface’s characteristics with the 

added benefit of being fully analytic; an important consideration when valuing exotic 

derivatives under local volatility. 



 

 

Figure 9: Calibrated fractional volatility and Hurst exponent skews from the FBSI 

and LC models as at 30 May 2011. 

6. CONCLUSION 

This paper addresses several theoretical and practical issues in option pricing and 

implied volatility calibration in a fractional Black-Scholes market. We start off by 

discussing how options can be priced when the noise component of the underlying 

risky asset is driven by a fractional Brownian motion. We then describe the links 

between standard Black-Scholes volatility and fractional Black-Scholes volatility and 

highlight two important observations. Firstly, the fractional Black-Scholes model 

admits a non-constant implied volatility term structure when the Hurst exponent is not 

equal to0.5. More specifically, this term structure is described by a power function and 

is up-sloping (down-sloping) when the Hurst exponent is greater (less) than 0.5. 

Secondly, one-year implied volatility is independent of the Hurst exponent and 

equivalent to fractional volatility. 

Building on these two observations, we show how one can construct realistic implied 

volatility surfaces by assuming simple parameterisations for the fractional volatility and 

Hurst exponent. In particular, we introduce the eight-parameter fractional Black-

Scholes inspired, or FBSI, model. This novel deterministic volatility surface model is 

based on the fractional Black-Scholes framework and uses Gatheral’s (2004) SVI 
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paramaterisation for the fractional volatility skew and a quadratic parameterisation for 

the Hurst exponent skew. One benefit of this model is that it provides one with a 

parsimonious decomposition of the implied volatility surface into an independent long-

memory component and a conditional volatility component. Such a decomposition 

could be usefully applied in a wide range of financial applications, including derivatives 

trading, risk management and dynamic asset allocation. 

We address the issue of arbitrage-free calibration for the FBSI model in depth and 

prove in general that any FBSI volatility surface will be free from calendar-spread 

arbitrage. Although one cannot make a similar statement about butterfly spread 

arbitrage, we show that it is simple to control for this during the calibration process 

because of the fully analytical form of the surface.  

Finally, we test the FBSI model empirically against Li and Chen’s (2014) volatility term 

structure model using implied volatility surfaces on South African listed Top40 Index 

futures options and on listed USDZAR currency futures options. We find that the FBSI 

model fits the equity implied volatility surfaces very well and, furthermore, that the 

decomposition of implied volatility into its long-memory and fractional volatility 

components provides one with more detailed information on the true uncertainty in the 

underlying asset price process. The currency implied volatility surfaces provide more 

of a calibration challenge for the FBSI model because of a flattening in the term 

structure at far out of the money strikes. The calibrated FBSI volatility surface still 

manage to capture most of the traded surfaces’ characteristics with the added benefit 

of being fully analytic; an important consideration when valuing exotic derivatives 

under local volatility. 
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