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Abstract 

The introduction of VIX futures and options has been a major financial innovation 

that will facilitate to a great extent the hedging of volatility risk. Using VIX futures, 

S&P 500 futures, S&P 500 options and S&P 500 futures options, this study examines 

alternative models within a delta-vega neutral strategy. VIX futures are found to 

outperform vanilla options in hedging a short position in S&P 500 futures call options. 

In particular, incorporating stochastic volatility and price jumps enhances hedging 

performance. 
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1. Introduction 

The 1987 crash brought volatility products to the attention of academics and 

practitioners and the Chicago Board Options Exchange (CBOE) successively launched 

Volatility Index (VIX) futures on March 26, 2004 and VIX options on February 24, 

2006. These were the first of an entire family of volatility products to be traded on 

exchanges. As shown in Figure 1, their trading volume and open interest grew 

significantly over the period of March 2004 to February 2009 for VIX futures, and 

February 2006 to September 2008 for VIX options, reflecting their economic 

importance. 

[Figure 1 about here] 

The VIX calculation isolates expected volatility from other factors that could 

affect option prices such as dividends, interest rates, changes in the underlying price and 

time to expiration. VIX options and VIX futures consequently offer a way for investors 

to buy and sell option volatility without having to deal with factors that have an impact 

on the value of an S&P 500 index (SPX) option position.  

The introduction of VIX futures and options has been a major financial 

innovation that will facilitate to a great extent the hedging of volatility risk. 

Traditionally, volatility hedging has been executed by market makers and other market 
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participants using vanilla options. For example, Carr and Madan (1998) suggest options 

on a straddle and Brenner, Ou and Zhang (2006) construct a straddle from vanilla call 

and put options to hedge volatility risk. However, under this approach delta and 

volatility must be hedged simultaneously. A slightly dissenting focus is Rebonato (1999), 

who constructs two wide strangles with different maturities so that the changes of 

underlying stock price will not affect the payoff of the portfolio. The forward-start 

strangle hedges forward volatility risk without exposure to delta and gamma risk.1 

Other than using vanilla options, Neuberger (1994) adopts the log contract to hedge 

volatility. Finally, Psychoyios and Skiadopoulos (2006) in their simulation hedge 

instantaneous volatility using a volatility call option. They conclude that a vanilla option 

is a more efficient instrument than a volatility option to hedge volatility risk. 

VIX futures and options offer pure exposure to volatility dynamics and, at least in 

theory, should provide a more effective hedge. The hedging effectiveness of the new 

VIX derivatives is an important question that has not been concluded in the literature. 

This paper addresses this question by using VIX futures, SPX futures, SPX options and 

SPX futures options to examine alternative models within a delta-vega neutral strategy.  

The risks of an option writer can be partitioned into price risk and volatility risk. 

                                                
1 Since the present value profile of a straddle as a function of spot around the at-the-money level is less 
flat than a strangle, the delta and gamma of a straddle are less close to zero than a strangle. This study 
thus uses a forward-start strangle, instead of a forward-start straddle, to hedge the forward volatility risk. 
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For the futures option writer, the volatility risk he faces includes spot and forward 

volatility risk. The forward volatility risk refers to the risk exposure induced by 

volatility randomness between the futures option’s expiry and the futures’ expiry. Since 

VIX futures settle to the 30-day forward volatility of the S&P 500, they are natural to 

hedge the forward vega risk of SPX futures options.2 A short position on SPX futures 

call options is chosen as our target instrument, since it consists of the volatility 

randomness between option’s expiry and its underlying futures’ expiry. In contrast, the 

traditional straddle or strangle strategy mainly hedges the volatility risk between current 

day and option’s expiry, denoted spot volatility risk.  

In the present literature, there are at least four sources of stochastic variations for 

SPX options: diffusive price risk, price-jump risk, volatility risk and interest rate risk. 

Bakshi, Cao and Chen (1997) find that once the stochastic volatility is modeled, the 

hedging performance may be improved by incorporating neither price jumps, nor 

stochastic interest rates into the SPX option pricing framework. Bakshi and Kapadia 

(2003) use Heston’s (1993) stochastic-volatility option pricing model to construct a 

delta-hedged strategy for a long position on SPX call options. They find that the 

volatility risk is priced and the price jump affects the hedging efficiency. Vishnevskaya 

                                                
2 Lin (2007) demonstrates the fair value to VIX futures is the forward VIX. Hence, the current price of 
VIX futures reflects the market’s expectation of the VIX level at expiration, that is, forward VIX. 
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(2004) follows the structure of Bakshi and Kapadia (2003) and constructs a 

delta-vega-hedged portfolio for a long position on the SPX call option, consisting of the 

underlying stock, another option and the money-market fund. His result suggests the 

existence of some other sources of risk.  

Guided by previous studies, the price risk, stochastic-volatility risk and 

price-jump risk apparently become the key factors when constructing a hedging strategy 

for SPX option writers. Hence, this study examines the SPX futures option model that 

allows volatility and price jumps to be stochastic, abbreviated as the SVJ model. The 

setup contains competing futures option formulas as special cases, including the 

constant-volatility (CONST) model and the stochastic-volatility (SV) model. In reality 

most futures option contracts are American-style. It is important, in principle, to take 

into account the extra value accruing from the ability to exercise the options prior to 

maturity. One can follow such a nonparametric approach as in Aït-Sahalia and Lo (1998) 

and Broadie, Detemple, Ghysels and Torrés (2000) to price American options. 

Closed-form option pricing formulas, however, make it possible to derive hedge ratios 

analytically. Therefore, for options with early exercise potential this paper computes a 

quadratic approximation for evaluating American futures options. The approximation is 

based on the one developed by MacMillan (1987), examined by Barone-Adesi and 
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Whaley (1987) for the CONST process, extended by Bates (1991) for the 

jump-diffusion process, and modified by Bates (1996) for the SV and SVJ processes. 

For the CONST process this approximation for the early exercise premium reconciles 

Whaley’s (1986) American index futures option pricing formula. For the SV and SVJ 

processes this approximation is consistent with Bates (1996) for evaluating American 

currency futures options. 

For the purpose of comparison, a forward-start strangle portfolio is proposed to 

manage forward volatility risk. This study then constructs the hedged portfolio by 

coupling these models with two hedging schemes that use either VIX futures or the 

forward-start strangle portfolio as the instruments to manage forward volatility risk. 

Our finding reveals that the VIX futures generally outperform the forward-start strangle 

portfolio over the hedging period October 20, 2004−June 30, 2005. Based on our results, 

this paper concludes that the VIX futures contract is a better hedging instrument than 

vanilla options if the target asset is a SPX futures call option. Hedging performance can 

be also improved further by incorporating price jumps into the American futures option 

pricing framework.  

The rest of this paper proceeds as follows. Next section illustrates hedging 

strategies. Pricing models for calculating delta and vega hedge ratios are presented in 
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Section 3. Section 4 summarizes data and model parameter estimation. Section 5 

analyzes empirical results. Section 6 finally concludes. 

 

2. Hedging Strategies 

A time-t short position on the 1T -matured call option written on 2T -matured SPX 

futures is used as the target portfolio, i.e. )(FCTAR
A

tt −=  for 21 TTt << . This study 

then constructs two hedging schemes to hedge the target portfolio. 

 

Hedging Scheme 1 (HS1): The instrument portfolio consists of tN  ,1  shares of 

underlying SPX futures, and tN  ,2  shares of forward-start strangle portfolios. The 

forward-start strangle portfolio consists of a short position on a 1T -matured strangle 

and a long position on a 2T -matured strangle, denoted as  

),,(),,(),,(),,( 12221121 KTSpKTScKTSpKTScINST
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E

t  and ),,( 22 KTSc
E

t  are 2K -strike SPX call options with maturities 

1T  and 2T , respectively. ),,( 11 KTSp
E

t
 and ),,( 12 KTSp

E

t
 are 1K -strike SPX put 

options with maturities 1T  and 2T , respectively. 

 

Hedging Scheme 2 (HS2): The instrument portfolio consists of tN  ,1  shares of 
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underlying SPX futures, and tN  ,2  shares of the VIX futures, i.e., 

)(F 1

VIX
TINST tt =  (2) 

where )(F 1

VIX
Tt

 is the time-t price of the VIX futures with expiry 1T .  

 

The gain or loss of this hedged portfolio is expressed by 
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The formulas of 
t

A
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t

A
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ttINST ν∂∂ /  for 

alternate models are provided in the following section. 

Next, this study couples these two hedging schemes with the CONST, the SV and 

the SVJ option models to construct six hedging strategies: HS1-CONST, HS1-SV, 

HS1-SVJ, HS2-CONST, HS2-SV, and HS2-SVJ. Assuming that there are no arbitrage 
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opportunities, the hedged portfolio tπ  should earn the risk-free interest rate r. In other 

words, the change in the value of this hedged portfolio over t∆  is expressed as 
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Hence, the hedging error is defined as the additional profit (loss) over the risk-free 

return and it can be written as 

)]()()[1(         

)]()([][)]()([      

)1()(

,22,1

,222,1

FCINSTNTFNe

FCFCINSTINSTNTFTFN

ettHE

A

ttttt

tr

A

t

A

tttttttttt

tr

tttt

−+−−

−−−+−=

−−∆=∆+

∆

∆+∆+∆+

∆
∆+ ππ

 (9) 

And the absolute hedging error through a hedging period ( tT −1 ) is calculated as 

∑
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where ttTM ∆−= /)( 1  and 1T  is the expiry of the target SPX futures call option. 

 

3. Empirical Pricing Models 

Hedging strategies are constructed using SPX futures, SPX options, SPX futures 

options and VIX futures. Therefore, their fair value and related Greeks are required for 

further empirical analyses. The most general process considered in this paper is the 

jump-diffusion and stochastic volatility (SVJ) process of Bates (1996) and Bakshi et al. 

(1997). This general process contains stochastic volatility (SV) of Heston (1993) and 
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constant volatility (CONST) of Black and Scholes (1973) and Merton (1973) as special 

cases. Consequently, pricing formulas and related Greeks for the SV model obtain as a 

special case of the general model with price jumps restricted to zero, i.e., 0=ttdNJ  

and thus Jλ = *κ = Jσ =0. Further setting stochastic volatility to constant volatility, 

pricing formulas and related hedge ratios for the CONST model are obtained. 

 

3.1 SVJ Process for the SPX Price 

Contingent claims are priced as if investors were risk-neutral and under the SVJ 

model the SPX price follows the jump-diffusion with stochastic volatility 

ttttStttJJt dNSJdSSbdS ++−= , )( ωνµλ  (11) 

where b is the cost of carry coefficient (0 for futures options and δ−r  for stock 

options with a cash dividend yield δ ). tJ  is the percentage jump size with mean *κ . 

The jumps in the asset log-price are assumed to be normally distributed, i.e., 

),(~)1ln( 2

JJt NJ σµ+ . Satisfying the no-arbitrage condition, 1)2/exp( 2* −+= JJ σµκ . 

tN  is the jump frequency following a Poisson process with mean Jλ . The 

instantaneous variance tν  of the index follows a mean-reverting square root process 

tttt ddtd , )( νννν ωνσνκθν +−=  (12) 

where νκ  is the speed of mean-reverting adjustment of tν ; /ν νθ κ  is the long-run 
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mean of tν ; νσ  is the variation coefficient of tν ; and tS ,ω  and t,νω  are two 

correlated Brownian motions with the correlation coefficient ),( ,, ttS ddcorrdt νωωρ = . 

 

3.2 Fair Value to SPX Options 

SPX options are European-style. Bakshi et al. (1997) provide the time-t value of 

SPX call and put options with strike K and maturity T  for the SVJ model: 
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for j = 1, 2. The characteristic functions 1f  and 2f  for the SVJ model are given in 

equations (A12) and (A13) of Bakshi et al. (1997). Delta and vega of the European SPX 

options are given in equation (13) of Bakshi et al. (1997). Finally, delta and vega of the 

forward-start strangle portfolio can be calculated straightforward. 

 

3.3 Fair Value to SPX Futures Options 
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Since SPX futures options are American-style, it is important, in principle, to take 

into account the extra value accruing from the ability to exercise the options prior to 

maturity. Referred to Bates (1996), the futures call option is 
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ν  is the expected average variance over the lifetime of the option conditional on no 
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The closed form solutions to the parameters 2q  and *

cy  are provided for given model 
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parameters and for given maturity 1T . Since linear homogeneity in underlying asset and 

strike holds for European options, by Euler theorem the following equations sustain: 
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Finally, the calculation for delta and vega of the futures call option is straightforward. 

 

3.4 Fair Value to VIX Futures 

From Lin (2007), the time-t fair price of the VIX futures expiring at T under the 

SVJ model is given by 
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4. Data and Parameter Estimation 

The hedging period of this study is from October 20, 2004 to June 30, 2005. 

Intraday prices for SPX futures and SPX futures options are obtained from CME. Daily 

prices for SPX options and VIX futures are retrieved from CBOE. Further, the contracts 

that are selected for empirical analyses are described as follows: First, the selected SPX 

futures contracts expire in March, June, September and December. Second, the SPX 

futures call options that expire in February, May, August and November are selected as 

the target portfolio. Third, the forward-start strangle portfolio involves in two strangles. 

This study uses the SPX options contracts that expire in February, May, August and 

November to construct a short-term strangle, and that expire in March, June, September, 

and December for another long-term strangle. Finally, the VIX futures that expire in 

February, May, August and November are selected as the hedging instrument. The 

interest rate data are daily annualized Treasury-bill rates obtained from Datastream 

database. The daily dividend-yield ratio data are obtained from the S&P Corporation. 

The data of SPX options, SPX futures options and SPX futures that violate the upper 

and lower boundaries are not included in the sample. 
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The SPX futures options that expire in the February quarterly cycle consist of 

29,804 intraday observations. This study employs the last reported quote of each 

contract for each day. Hence, there are in total 7,231 observations remained. After 

coupling with VIX futures that expire in the February quarterly cycle, there are 7,003 

observations in the sample. Since the SPX options available for constructing the 

forward-start strangle only cover the period from October 20, 2004 to June 30, 2005, 

this study further filters out the 4,521 SPX futures options and 2,482 SPX futures 

options observations remain. Table 1 reports descriptive properties of the SPX futures 

call options for each moneyness-maturity category where moneyness is defined as 

KTFt /)( . Out of 2,482 SPX futures call option observations, about 56% is 

out-of-the-money (OTM) and 40% is at-the-money (ATM). The average futures call 

price ranges from 0.1827 points for short-term (<30 days) deep out-of-the-money 

(DOTM) call options to 117.7 points for medium-term (30–60 days) deep in-the-money 

(DITM) call options. 

[Table 1 added here] 

For the forward-start strangle strategy, this study uses SPX options that expire in 

the February quarterly cycle as 1T -strangle and that expire in the March quarterly cycle 

as 2T -strangle. Therefore, the pair of ( 1T , 2T ) data must be February−March, May−June, 
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August−September and November−December. The maximum and the minimum strikes 

of SPX options available for each pair of ( 1T , 2T ) data on each day are selected as the 

two strike prices 1K  and 2K . Hence, there are four pairs of SPX options with strikes 

( 1K , 2K ) corresponding to SPX options that expire on the four pairs of ( 1T , 2T ). There 

are 692 SPX option observations selected. Hence, the strike 1K  is the minimum strike 

that is available in the options which expire in the February and March quarterly cycles 

simultaneously, and are traded on each trading date. The result shows that the selected 

strike 1K  of the SPX options is 700 index points. The strike 2K  of the SPX options 

that expire in November 2004 and February, May, and August 2005 are 1,250, 1,250, 

1,300 and 1,350, respectively. Table 2 reports sample properties of those SPX options 

that expire on the pairs of ( 1T , 2T ) from October 20, 2004 to June 30, 2005. It reports the 

average point of the SPX option and the observations for each moneyness-maturity 

category where moneyness is defined as S/K. There are in total 30,166 option 

observations, consisting of 15,083 SPX calls and 15,083 SPX puts. The average call 

prices range from 0.1628 points for short-term DOTM call options to 301.1628 points 

for long-term DITM call options. The average put prices range from 0.3092 points for 

short-term DOTM put options to 176.2546 points for long-term DITM put options. 

[Table 2 added here] 
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The vector of structural parameters Φ for alternate processes is backed out by 

minimizing the sum of the squared pricing errors between option model and market 

prices over the period, April 21, 2004 to October 19, 2004. The minimization is given 

by 

∑∑
= =

Φ
Φ−

T tN

t

N

n

nn CC
1 1

2* )]([min  (24) 

where TN  is the number of trading days in the estimation sample, 
tN  is the number 

of VIX futures, SPX options and SPX futures call options on day t, and nC  and *

nC  

are the observed and model futures or option prices, respectively. The parameters of the 

CONST, SV and the SVJ models are estimated separately each month and thus Φ  are 

assumed to be constant over a month. The assumption that the structural parameters are 

constant over a month is justified by an appeal to parameter stability (Bates, 1996; 

Eraker, 2004; Zhang and Zhu, 2006). The estimation period is chosen because the 

settlement day of the VIX futures is the third Wednesday, and the last trading day is 

Tuesday. Hence, the month is defined as the period from the third Wednesday of prior 

calendar month to the third Tuesday of this calendar month. The risk-neutral parameters 

νκ , νθ , νσ  and ρ  of the SV model are on average 5.63, 0.69, 0.53 and –0.50, 

respectively. The risk-neutral parameters νκ , νθ , νσ , ρ , Jλ , Jµ  and Jσ  of the 

SVJ model are on average 8.77, 0.65, 0.44, –0.42, 2.17, −0.35, and 0.31.  
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5. Empirical Results 

This study follows two steps to assess the hedging performance of writing a SPX 

futures call option using two hedging schemes under three SPX price processes. First, 

this study uses the previous month’s structural parameters and the current day’s (t) SPX, 

SPX futures, SPX futures options, SPX options, VIX futures and U.S. Treasury-bill 

rates to construct the hedged portfolio. Second, this study calculates the hedging error of 

day t + n, where n is the available trading dates till SPX futures call option’s expiry, and 

also rebalance the hedging portfolio. Since the quotes of each futures option are not all 

available for each day until its expiry, this study only takes rebalance on the day with 

available quote data after day t. These steps are repeated for each futures option contract 

that expires in February quarterly cycle on every trading date with quote data available 

in the sample. The hedging performance is reported in Tables 3 and 4. The average 

points of absolute hedging errors, defined as MetltHE
M

l

lMtr

tlt /|)(|
1

)(

)1(∑ =

−∆
∆−+ ∆+ , are 

presented in Table 3, where ttTM ∆−= /)( 1  and 1T  is the maturity date of SPX 

futures call options. Table 4 reports the average points of hedging errors defined as 

MetltHE
M

l

lMtr

tlt /)(
1

)(

)1(∑ =

−∆
∆−+ ∆+ . This study illustrates the hedging errors in points 

and each point represents $250.  
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In Table 3, under the CONST model, the hedging errors of HS2 range from 0.16 

points (DOTM short-term) to 4.64 points (DITM long-term), whereas HS1 has hedging 

errors from 0.83 points (OTM short-term) to 11.57 points (DITM long-term). For the 

SV model, the hedging errors of HS2 are from 0.01 points (DOTM short-term) to 4.56 

points (DITM long-term), whereas the hedging errors of HS1 range from 0.71 points 

(OTM short-term) to 7.79 points (ATM1 medium-term). For the SVJ model, HS2 has 

hedging errors from 0.01 points (DOTM short-term) to 4.53 points (DITM long-term), 

whereas HS1 has hedging errors from 0.61 points (OTM short-term) to 7.17 points 

(ATM1 medium-term). For all moneyness-maturity categories, HS2 performs better 

than HS1 and short-term SPX futures calls have smaller errors. The results are robust 

across models. The results indicate that the forward-start strangle portfolio is a less 

efficient instrument to hedge forward volatility risk than VIX futures. 

The results also show that the absolute hedging errors of the SVJ model are less 

than that of the SV model. It represents the random price jump feature commonly exists 

in the SPX price process. However, this result seems not to be consistent with those of 

Bakshi et al. (1997) and Bakshi and Kapadia (2003), which show the hedging 

superiority of the SV model relative to the SVJ model. Note that the parameter of 

jump-frequency intensity Jλ  in Bakshi et al. (1997) is 0.59, i.e. one year and half for a 
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price jump to occur. Their hedging portfolio is rebalanced daily or every five days. They 

conclude that the reason for the SV model dominates the SVJ model in terms of hedging 

performance is the chance for a price jump to occur is small in the daily or five-day 

rebalancing period. Other than the uncertain rebalance frequency in our empirical 

work,3 the estimated parameter Jλ  in our empirical work is 2.17 larger than that of 

Bakshi et al. (1997). Therefore, their reason does not hold for our empirical result. One 

possible reason is that the SPX futures options used in this study are American-style, 

while SPX options are European-style for prior research. Since the traders with 

American-style options positions have early-exercise choice and thus can take caution 

to prevent any loss from the potential jump events than the ones with European-style 

options. Thus, American-style option buyers (sellers) may even favor (hate) volatility 

risk than the ones with European-style options. In addition, given the possibility of price 

jumps, the specification of SVJ can provide more accurate parameter estimates than SV 

(Bates, 1996). Thus, the delta-vega-neutral strategy could be constructed in a more 

effective way under SVJ than SV. Thus, it is not surprising for our results showing that 

SVJ outperforms SV in terms of hedging efficiency.  

                                                
3 There are in total 169 unique SPX futures call options contracts over our hedging period, 20 October 

2004−30 June 2005. Among these data, there are 18 unique contracts can be daily rebalanced. The 

maximum rebalancing period is 26 days for only one unique contract (with May-2005 maturity on its first 

trading date, 8 March 2005). On average, the rebalancing period is 4.44 days. 
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About the maturity impact on hedging performance, the absolute hedging errors 

in general increase with maturity and the difference between HS1 and HS2 increases 

with maturity. Most of short-term options have smaller absolute hedging errors than 

medium- and long-term options. Except for the HS1 strategy under ATM1 and ATM2, 

medium-term options have smaller absolute hedging errors than long-term options. This 

result consists with Psychoyios and Skiadopoulos (2006) for ITM and OTM target 

options. They also show that the difference between hedging schemes decreases with 

maturity in case of ITM and OTM, and increases with maturity in case of ATM.  

In terms of the moneyness effect, Psychoyios and Skiadopoulos (2006) find that the 

options perform best for ATM and worse for ITM, and the difference between hedging 

schemes is minimized for ATM and maximized for ITM. Our results show that the 

absolute hedging errors of HS2 increase with moneyness except for ATM2 long-term 

options, and the relationship between the absolute hedging errors of HS1 and 

moneyness is uncertain. Therefore, the difference between HS1 and HS2 across 

moneyness remains uncertain in this study. 

[Table 3 added here] 

Theoretically, if a portfolio is perfectly hedged, it should earn the risk-free rate of 

interest, and the average hedging errors should be close to zero. In this study, the 
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hedging error is defined as the changes in the value of the hedged portfolio minus the 

risk-free return. Table 4 reports the average hedging errors. If the figure is greater (less) 

than zero, it means that the strategy gets more (less) profits than risk-free return. For 

most moneyness-maturity categories, the hedging performance through all hedging 

periods is less than risk-free rate. The average hedging error of HS2−SVJ strategy is the 

smallest in most moneyness-maturity categories.  

Noticeably, HS2 scheme is superior to HS1 scheme for the CONST model. In the 

equity market the volatility is non-constant and stock-volatility correlation is markedly 

negative. Hence, the position hedged with CONST Greeks still has unhedged exposures. 

That will let this strategy incurs additional risk exposure and incurs losses. The losses 

are most apparent for the cases when using the HS1-CONST strategy and for the 

options across medium and long maturities when using the HS2-CONST strategy. The 

findings for the CONST model come into the following conclusions. First, the VIX 

futures that are volatility sensitive can help reduce model misspecification to hedge the 

volatility risk. Second, the magnitude of error reduction works best for short-dated 

options. This is consistent with Psychoyios and Skiadopoulos’ (2006) result that the 

volatility is more stable in long-term than short-term. Compared with the SV model, 

most hedging performance of the SVJ model is smaller or comparable. It is consistent 
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with the results in Table 3 and represents the existence of the random price jump feature 

for SPX futures options. Still, the hedging performance of HS2 is better than HS1. 

[Table 4 added here] 

6. Conclusion 

This study examines the hedging performance of the VIX futures against the 

forward volatility risk. For the purpose of comparison, a forward-start strangle portfolio 

is also constructed for managing forward volatility. A short position on the SPX futures 

option is chosen as our target asset because its vega risk is related to forward volatility 

between the option’s expiry and the underlying futures’ expiry. This study then couples 

two hedging schemes (HS1 and HS2) with three SPX price processes (CONST, SV and 

SVJ) to hedge the target asset. On the one hand, SPX futures and the forward-start 

strangle portfolio are used to construct three hedging strategies (HS1−CONST, HS1−SV 

and HS1−SVJ). On the other hand, SPX futures and VIX futures are used to construct 

the other three hedging strategies (HS2−CONST, HS2−SV and HS2−SVJ).  

There are some interesting empirical findings. First, HS2 dominates HS1 in most 

moneyness-maturity categories. That is, the VIX futures contract is a more efficient 

instrument to hedge forward volatility risk than a forward-start strangle portfolio. 

Second, gauged by the absolute hedging errors, the SVJ model is the best overall 
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performer, followed by the SV model, and then by the CONST model. Third, VIX 

futures can help reduce constant-volatility model misspecification to manage the 

forward volatility risk. Our findings are in sharp contrast with that obtained by 

Psychoyios and Skiadopoulos (2006). They find that when applied to hedging a short 

position on a call option, volatility options are not better hedging instruments than 

plain-vanilla options, and that the most naïve volatility option-pricing model can be 

reliably used for pricing and hedging purposes. Further, the hedging-based ranking of 

the models is in contrast with that obtained in Bakshi et al. (1997). Bakshi et al. (1997) 

find that the SVJ does not improve over the SV’s hedging performance for a short 

position on a SPX call option. Combined with prior studies and based on our results, 

this paper concludes that the VIX futures is a better hedging instrument than standard 

options if the target option is a traditional futures option, or equivalently if the risk 

exposure is the forward volatility risk. Hedging performance can also be improved 

further by incorporating price jumps into the American-style futures option pricing 

framework. 

The contributions of this paper are threefold. First, closed-form solutions to the 

target American-style futures options under alternate SPX price processes are examined. 

Second, the concept of forward volatility risk applied to VIX futures and a forward-start 
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strangle portfolio is introduced. Third, this study derives the hedging weights of VIX 

futures and the forward-start strangle portfolio that will be convenient to practical 

participants for risk management purposes. 
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Table 1 Sample Properties of SPX Futures Call Options 

The average points of futures options ($250 per point), the average points of underlying futures ($250 per 

point) and the total number of futures options are presented in each moneyness-maturity category. The 

futures option contracts listed at CME are four quarterly and two serial, and the longest time to maturity 

for the chosen futures options is 120 days. Therefore, this study classifies those observations into 

short-term (<30 days), medium-term (30−60 days), and long-term ( 60 days≧ ). Moneyness is defined as 

KTF
t

/)( , where )(TF
t

 is the price of the SPX futures and K is the strike price of SPX futures options. 

This study classifies those futures options into deep out-of-the-money (DOTM) if KTF
t

/)( 0.94; ≦

out-of-the-money (OTM) if KTF
t

/)( ∈[0.94,0.97); at-the-money 1 (ATM1) if KTF
t

/)( ∈[0.97,1); 

at-the-money 2 (ATM2) if KTF
t

/)( ∈[1,1.03); in-the-money (ITM) if KTF
t

/)( ∈[1.03,1.06); and deep 

in-the-money (DITM) if KTF
t

/)( >1.06. The data period is from 20 October 2004 to 30 June 2005.  

 
 Moneyness Maturity  

 KTF
t

/)(  <30 30−60 60≧  Subtotal 

DOTM 0.94≦  

0.1827 0.5007 1.3969  

1156.245 1175.539 1200.946  

231 238 113 582 

OTM 0.94−0.97 

0.7433 2.5717 4.7168  

1162.678 1184.388 1203.839  

345 289 184 818 

ATM1 0.97−1 

4.9073 10.5415 12.7566  

1168.642 1181.149 1205.591  

424 196 61 681 

ATM2 1−1.03 

19.4346 24.2600 29.6692  

1171.62 1176.276 1211.154  

257 50 13 320 

ITM 1.03−1.06 

48.7425 52.0571 NA  

1171.179 1166.5 NA  

60 7 NA 67 

DITM >1.06 

81.6333 117.7000 74.2000  

1171.55 1216 1198.8  

12 1 1 14 

Subtotal  1329 781 372 2482 

 



30 

Table 2 Sample Properties of SPX Options 

The average points of the SPX options ($100 per point) and the total number of the SPX options are presented in each moneyness-maturity category. 

The SPX options are traded in CBOE. Its expiration months are three near-term months followed by three additional months from the March quarterly cycle. The 

longest time to maturity for our observations is 723 days. Therefore, this study classifies those observations into short-term (<30 days), medium-term (30–60 days), 

and long-term (≧60 days). Moneyness is defined as S/K where S is the price of the SPX and K is the strike price of SPX options. This study classifies those 

observations into deep out-of-the-money (DOTM) if S/K 0.94; ≦ out-of-the-money (OTM) if S/K∈[0.94,0.97); at-the-money 1 (ATM1) if S/K∈[0.97,1); 

at-the-money 2 (ATM2) if S/K∈[1,1.03); in-the-money (ITM) if S/K∈[1.03,1.06); and deep in-the-money (DITM) if S/K>1.06. The data period is from 20 October 

2004 to 30 June 2005. 
 
  All  Call  Put  

 Moneyness Maturity  Maturity  Maturity  

 S/K <30 30–60 60≧  Subtotal <30 30–60 60≧  Subtotal <30 30–60 60≧  Subtotal 

DOTM 0.94≦  
65.1301 83.5214 88.5615  0.1628 0.4002 0.8683  130.0973 166.6426 176.2546  

668 1852 1992 4512 334 926 996 2256 334 926 996 2256 

OTM 0.94-0.97 
27.4918 29.8519 33.4532  0.6334 2.9607 7.2748  54.3503 56.7430 59.6316  

782 1290 842 2914 391 645 421 1457 391 645 421 1457 

ATM1 0.97-1 
13.6321 20.3251 27.0631  4.5939 11.5286 19.8819  22.6703 29.1216 34.2442  

940 1294 1110 3344 470 647 555 1672 470 647 555 1672 

ATM2 1-1.03 
14.2759 21.7983 29.6033  22.8446 30.6625 39.0762  5.7072 12.9341 20.1303  

876 1086 842 2804 438 543 421 1402 438 543 421 1402 

ITM 1.03-1.06 
26.9440 31.2917 38.2495  52.1228 56.4900 65.0060  1.7651 6.0934 11.4929  

806 888 552 2246 403 444 276 1123 403 444 276 1123 

DITM >1.06 
109.4576 131.7505 151.3518  218.6059 262.5436 301.1628  0.3092 0.9574 1.5408  

3346 4992 6008 14346 1673 2496 3004 7173 1673 2496 3004 7173 

Subtotal  7418 11402 11346 30166 3709 5701 5673 15083 3709 5701 5673 15083 
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Table 3 Absolute Hedging Errors 

The figures in this table denote the average points of absolute hedging errors ($250 per point): 

MetltHE
M

l

lMtr

tlt
/|)(|

1

)(

)1(∑ =

−∆

∆−+
∆+  where ttTM ∆−= /)(  and T is the maturity date of SPX futures 

options. The hedging error between time t and time t t+ ∆  is defined as )( ttHE
t

∆+ . The instrument 

portfolio of hedging scheme 1 (HS1) consists of 
t

N
 ,1

 shares of underlying SPX futures, and 
t

N
 ,2
 

shares of forward-start strangle portfolios. The forward-start strangle portfolio consists of a short position 

on a 
1

T -matured strangle and a long position on a 
2

T -matured strangle. The instrument portfolio of 

hedging scheme 2 (HS2) consists of 
t

N
 ,1
 shares of underlying SPX futures, and 

t
N

 ,2
 shares of the VIX 

futures )(F
1

VIX
T

t
 with expiry 

1
T . The hedging period is from 20 October 2004 to 30 June 2005. The SPX 

futures option contracts listed at CME are four quarterly and two serial, and the longest time to maturity 

for the empirical observations is 120 days. Therefore, this study classifies those observations into 

short-term (<30 days), medium-term (30–60 days), and long-term ( 60 days≧ ). Moneyness is defined as 

KTF
t

/)(  where )(TF
t

 is the price of the SPX futures and K is the strike price of SPX futures options. 

This study classifies those observations into deep out-of-the-money (DOTM) if KTF
t

/)( 0.94; ≦

out-of-the-money (OTM) if KTF
t

/)( ∈[0.94,0.97); at-the-money 1 (ATM1) if KTF
t

/)( ∈[0.97,1); 

at-the-money 2 (ATM2) if KTF
t

/)( ∈[1,1.03); in-the-money (ITM) if KTF
t

/)( ∈[1.03,1.06); and deep 

in-the-money (DITM) if KTF
t

/)( >1.06. 

 
Moneyness   Maturity 

KTF
t

/)(            <30     30−60      60≧  

DOTM 

HS1 CONST 2.40  5.43  5.85  

 SV 1.85  2.40  2.90  

 SVJ 1.12  1.91  2.23  

HS2 CONST 0.16  0.19  0.28  

 SV 0.01  0.08  0.35  

 SVJ 0.01  0.08  0.35  

OTM 

HS1 CONST 0.83  6.43  6.68  

 SV 0.71  2.39  2.63  

 SVJ 0.61  2.19  2.47  

HS2 CONST 0.23  0.35  0.32  

 SV 0.07  0.72  0.79  

 SVJ 0.07  0.70  0.76  

ATM1 

HS1 CONST 4.10  9.28  10.46  

 SV 1.97  7.79  5.85  

 SVJ 1.56  7.17  2.97  

HS2 CONST 0.44  1.59  1.72  

 SV 0.34  0.72  0.82  

 SVJ 0.34  0.62  0.78  

ATM2 

HS1 CONST 1.49  3.24  10.85  

 SV 1.33  2.52  1.89  

 SVJ 1.20  2.24  1.66  
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HS2 CONST 1.05  1.04  1.07  

 SV 0.94  1.03  1.02  

 SVJ 0.50  0.70  0.86  

ITM 

 

HS1 CONST 2.95  6.35  NA 
 SV 1.81  4.45  NA 
 SVJ 1.65  2.89  NA 
HS2 CONST 1.24  2.49  NA 

 SV 1.40  2.73  NA 
 SVJ 1.36  2.62  NA 

DITM 

HS1 CONST 3.85  NA 11.57  

 SV 2.44  NA 7.11  

 SVJ 2.38  NA 5.06  

HS2 CONST 2.64  NA 4.64  

 SV 2.20  NA 4.56  

 SVJ 2.09  NA 4.53  
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Table 4 Average Hedging Errors 

The figures in this table denote the average points of hedging errors ($250 per point): 

MetltHE
M

l

lMtr

tlt
/)(

1

)(

)1(∑ =

−∆

∆−+
∆+  where ttTM ∆−= /)(  and T is the maturity date of SPX futures 

options. The hedging error between time t and time t t+ ∆  is defined as )( ttHE
t

∆+ . The instrument 

portfolio of hedging scheme 1 (HS1) consists of 
t

N
 ,1

 shares of underlying SPX futures, and 
t

N
 ,2
 

shares of forward-start strangle portfolios. The forward-start strangle portfolio consists of a short position 

on a 
1

T -matured strangle and a long position on a 
2

T -matured strangle. The instrument portfolio of 

hedging scheme 2 (HS2) consists of 
t

N
 ,1
 shares of underlying SPX futures, and 

t
N

 ,2
 shares of the VIX 

futures )(F
1

VIX
T

t
 with expiry 

1
T . The hedging period is from 20 October 2004 to 30 June 2005. The SPX 

futures option contracts listed at CME are four quarterly and two serial, and the longest time to maturity 

for our observations is 120 days. Therefore, this study classifies those observations into short-term (<30 

days), medium-term (30−60 days), and long-term ( 60 days≧ ). Moneyness is defined as KTF
t

/)(  

where )(TF
t

 is the price of the SPX futures and K is the strike price of SPX futures options. This study 

classifies those observations into deep out-of-the-money (DOTM) if KTF
t

/)( 0.94; ≦ out-of-the-money 

(OTM) if KTF
t

/)( ∈[0.94,0.97); at-the-money 1 (ATM1) if KTF
t

/)( ∈[0.97,1); at-the-money 2 

(ATM2) if KTF
t

/)( ∈[1,1.03); in-the-money (ITM) if KTF
t

/)( ∈[1.03,1.06); and deep in-the-money 

(DITM) if KTF
t

/)( >1.06. 
 

Moneyness   Maturity 

KTF
t

/)(             <30      30−60       60≧  

DOTM 

HS1 CONST −2.32  −3.25  −5.79  

 SV 0.27  −0.24  0.53  

 SVJ −0.15  −0.19  0.29  

HS2 CONST 0.09  −0.04  −0.19  

 SV 0.00  0.00  0.17  

 SVJ 0.00  0.00  0.17  

OTM 

HS1 CONST −7.42  −1.37  −4.32  

 SV −0.16  0.34  −0.53  

 SVJ −0.11  0.40  −0.26  

HS2 CONST 0.11  −0.32  −0.30  

 SV 0.02  −0.30  0.28  

 SVJ 0.02  −0.30  0.28  

ATM1 

HS1 CONST −3.36  −1.97  −6.84  

 SV −0.45  −1.48  1.13  

 SVJ −0.20  −1.40  0.94  

HS2 CONST 0.15  −0.54  −0.56  

 SV 0.10  −0.69  −0.65  

 SVJ 0.10  −0.60  −0.52  

ATM2 

HS1 CONST −1.43  −3.00  −10.84  

 SV −0.88  −1.65  1.79  

 SVJ −0.67  −0.38  1.27  

HS2 CONST 0.42  −0.93  −0.75  

 SV 0.44  −0.86  −0.85  

 SVJ 0.43  −0.25  −0.65  

ITM 

HS1 CONST −2.94  −6.28  NA 

 SV −1.75  2.80  NA 

 SVJ −1.44  1.99  NA 

HS2 CONST 0.98  −1.78  NA 
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 SV 1.11  −2.04  NA 

 SVJ 1.09  −1.94  NA 

DITM 

HS1 CONST −3.82  NA −5.72  

 SV 2.10  NA −5.13  

 SVJ 1.99  NA −4.51  

HS2 CONST 2.32  NA −4.07  

 SV 1.91  NA −3.96  

 SVJ 1.83  NA −3.53   
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Figure 1 Trading volume (VN) and open interest (OI) of VIX futures and VIX 

options across trading months, March 2004 – February 2009 and February 2006 – 

September 2008, respectively. 
 
 
 
 
 


