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Abstract

We de¯ne the class of local L¶evy processes. These are L¶evy processes
time changed by an inhomogeneous local speed function. The local speed
function is a deterministic function of time and the level of the process
itself. We show how to reverse engineer the local speed function from
traded option prices of all strikes and maturities. The local L¶evy processes
generalize the class of local volatility models. Closed forms for local speed
functions for a variety of cases are also presented. Numerical methods for
recovery are also described.

1 Introduction
Local volatility models (Dupire (1994), Derman and Kani (1994)), were de-
veloped as a class of one dimensional Markov models with continuous sample
paths that reprice all the traded European options. These models generalize
the Black and Scholes (1973) and Merton (1973) models by making the instan-
taneous volatility of the stock returns a deterministic function of time and the
stock price. Such a function is called the local volatility function. The risk
neutral dynamics is fully speci¯ed on setting the growth rate of the stock at
the instantaneous interest rate less the dividend yield. The resulting model is
widely used for pricing contingent claims written on the stock price, including
a variety of path dependent options.
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The local uncertainty of a local volatility model is Gaussian with zero skew-
ness and kurtosis equal to 3. It seems desirable in this context to accomodate
a local uncertainty that allows for both skewness and excess levels of kurtosis.
Many researchers have already noted for a variety of purposes, that one should
introduce the possibility of jumps (Bakshi, Cao and Chen (1999), Bates (1996)).
We have argued in prior research that the use of a jump process with in¯nite
activity, i.e. one allowing in¯nitely many jumps in any time interval, e®ectively
subsumes the need for an additional di®usion component (Carr, Geman, Madan
and Yor (2002)). We therefore replace the local di®usive risk neutral dynamics
by a local exposure to a L¶evy process. This class of processes is increasingly
being used in the study of ¯nancial market prices (Eberlein, Keller and Prause
(1998), Barndor®-Nielsen and Shephard (2001), Geman, Madan and Yor (2001),
Eberlein, Kallsen, Kristen (2003)).

L¶evy processes o®er a wide class of candidates for an alternative represen-
tation. We wish to formulate in this paper a class of local L¶evy models that
also reprice all the traded European options and provide a richer risk neutral
dynamics.

We view the local volatility model in its equivalent formulation of modelling
log prices as a Brownian motion running at the speed of the square of the local
volatility function. Our essential idea is to replace Brownian motion with a
L¶evy process running at what we call the local speed function. Our local speed
function is still a deterministic function of the level of the stock price and time.
The L¶evy process involved in this procedure is ¯xed through time and it is only
its speed that is space time dependent. This generalizes the role of Brownian
motion, a particular L¶evy process, in the local volatility model.

In a direct analogy with the contribution of the local volatility model, we
show how to recover the local speed function from quoted option prices. Our
¯nal results are comparable to local volatility models, except that we employ
a transform of the calendar spread in place of the calendar spread to infer the
speed function.

We provide some explicit examples associated with particular local L¶evy
models permitting closed form recovery of local speed functions from option
prices. The recovery function can in these cases be seen as a direct generalization
of the comparable result for local volatility models. For other L¶evy processes we
describe procedures for numerical solutions, that still permit an e±cient recovery
of the local speed function. We also consider the \arithmetic" (Bachelier) case
where options are written directly on a martingale, as opposed to a positive,
exponential martingale. These results could be of ¯nancial interest in markets
for options written on the pro¯t and loss distribution of a portfolio of hedge
funds directly.

The outline of the paper is as follows. Section 2 presents the details of
the one dimensional Markov model describing the risk neutral dynamics for the
discounted asset price and presents the general integral equation to be solved for
recovery of the local speed function. The derivation for the local speed recovery
procedure is given in section 3. In section 4 we consider a speci¯c local L¶evy
process permitting closed form recovery. The arithmetic case is developed in
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section 5. Numerical procedures are presented in section 6. Section 7 concludes.

2 Local L¶evy Models
We begin by recalling brie°y the local volatility model and the associated pro-
cedure for recovering the local volatility function from traded option prices. Let
S(t) denote the price of the stock at time t; 0 · t · H: Suppose the continuously
compounded interest rate is r and the dividend yield is ´; also continuously com-
pounded. The risk neutral dynamics for the stock price in the local volatility
model is given by the following stochastic di®erential equation

dS = (r ¡ ´)Sdt + ¾(S; t)SdW (t) (1)

where W = (W (t); 0 · t · H) is a standard Brownian motion and ¾(S; t) is the
local volatility function.

The relevance of the formulation (1) is quite extensive from the perspective
of constructing Markov processes that match the marginals of general stochastic
processes. Gyongy (1986) showed that one could associate with a general Ito
process a one dimensional Markov process of the type (1) with a view to match-
ing marginals. This question has also been studied from other perspectives in
Madan and Yor (2002).

Let C(K; T) denote the price at time zero, of a European call option of
maturity T and strike K. Dupire (1994), Derman and Kani (1994) showed that
one may recover the local speed function from the prices of traded options using
the formula

¾2(K; T) = 2
CT + ´C + (r ¡ ´)KCK

K2CKK
: (2)

We generalize equation (1) by allowing for jumps in the stock price. We
denote the size of the jump in the log price at any time by x: The L¶evy measure
k(x)dx speci¯es the arrival rate of jumps of size x per unit time. In analogy
with the local volatility function, we introduce a local speed function a(S; t)
that measures the speed at which the L¶evy process is running at time t when
the stock price is at the level S:

In addition to the exposure to the Brownian motion, our stock price process
is also exposed to the compensated jump martingale with compensator

º (dx;du) = a(S(u); u)k(x)dxdu: (3)

The risk neutral dynamics for the stock price are now given by

dS = (r ¡ ´)S(t )dt + ¾(S(t ); t)dW (t) (4)

+
Z 1

¡1
S(t ) (ex ¡ 1) (m(dx; du) ¡ º(dx; du))

where m(dx; du) is the counting measure associated with the jumps in the log-
arithm of the stock price.
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The formulation of the compensator in (3) alters local volatility by running
the L¶evy process at a speed that is a deterministic function of the stock price
and time. Alternatively, one could scale the jump sizes instead. In the case of
Brownian motion, scaling and time changing are equivalent operations by the
scaling property of Brownian motion, but for general L¶evy processes these are
di®erent operations. Time changing leads to tractable results while scaling is
much more complicated.

The objective of this paper is to show how one may recover the local speed
function a(S; t) from traded option prices in the context of a known local volatil-
ity function ¾(S; t): Of particular interest is the case of pure jump processes,
i.e. ¾ = 0: In this case the stock has no di®usion exposure. The solution for
the local speed function employs in a critical way a convolution transform with
the \double exponential tail" of the L¶evy measure. We now de¯ne the double
exponential tail of a L¶evy measure.

We start by de¯ning the double tail of a L¶evy measure k(x) as

Ã(z) =
½ R z

¡1
R x

¡1 k(u)dudx z < 0R 1
z

R 1
x k(u)dudx z > 0 : (5)

The double tail integrates the tail of the L¶evy measure in both directions twice
and hence we refer to it as the double tail. It is important as it measures
quadratic variation, which may be observed on applying integration by parts
two times, and we have

Z 1

¡1
Ã(z)dz =

1
2

Z 1

¡1
x2k(x)dx:

The double exponential tail Ã e(z) employs an exponential weighting and we
have

Ãe(z) =

8
>><
>>:

R z
¡1 dx ex R x

¡1 k(u)du z < 0
R 1

z dx ex
R 1

x k(u)du z > 0

Equivalently one may write

Ãe(z) =

8
>><
>>:

R z
¡1 (ez ¡ ex) k(x)dx z < 0
R 1

z (ex ¡ ez )k(x)dx z > 0

: (6)

The exponential double tail may be viewed as the price of instantaneous out-
of-the-money call and put options struck at ez :

The solution for the local speed function is

a(K; T) =
b(ln(K); T )

K2CKK
(7)
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where the convolution transform of b with the exponential double tail is
Z 1

¡1
b(y; T )Ãe(k ¡ y)dy = cT + ´c + (r ¡ ´ +

¾2(ek ; T)
2

)ck ¡ ¾2(ek; T )
2

ckk

k =
Def

ln(K)

c(k; T) =
Def

C (ek ;T ):

We see that in equation (7) the local speed function is related to calendar
spreads and butter°y spread prices, much as it is in the local volatility case,
except that we have a convolution integral of the e®ective function with the
double exponential tail replacing the direct use of the calendar spread. This
spreading occurs to account for the distribution of the jump sizes across the
real line.

The solution of equation (7) for the local speed function a(S; t) requires a
prior speci¯cation of the local volatility component ¾(S; t): In the special case
when this is zero and we have a pure jump process the convolution of b and Ã is
comparable to the use of the calendar spread in the recovery of local volatility.
In both cases one is essentially retrieving the local quadratic variation as a
measure of the speed.

3 Recovering Local Speed Functions from Op-
tion Prices

The integrated form of the risk neutral stock price dynamics of equation (4)
may be written in the form

S(t) = S(0) +
Z t

0
S(u )(r ¡ ´)du (8)

+
Z t

0
S(u )¾(S(u ); u)dW (u)

+
Z t

0

Z 1

¡1
S(u ) (ex ¡ 1) (m(dx; du) ¡ º (dx; du))

Note that the drift for the stock return is indeed r¡´; and the martingale terms
admit both continuous and jump components. This decomposition is useful in
evaluating expectations of functions of the stock price, like a call option payo®.
We shall in particular employ a generalization of Ito's lemma to convex functions
known as the Meyer-Tanaka formula (see for example Meyer (1976), Dellacherie-
Meyer (1980), and Yor (1978) for the speci¯c formulation below). In particular,
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for the call option payo® at maturity we have

(S(T ) ¡ K)+ = (S(0) ¡ K )+ +
Z T

0
1S(u )>KdS(u) (9)

+
1
2

Z T

0
1(S(u )=K)¾2(S(u); u)S2(u)du

+
X

u·T

1S(u )>K (K ¡ S(u))+ + 1S(u )<K(S(u) ¡ K)+

We see, in the case of zero interest rates and dividend yields, that the payo®
to the call option is made up of intrinsic value and a time value represented by
the value of the last two terms (the second term, in this case has zero value as
the stock is a martingale). The second integral denotes the value at K of the
continuous local time La

T ; a 2 R, which is globally de¯ned as
R 1

¡1 f(a)La
T da =

R T
0 f (S(u ))d hSciu where dhSciu = ¾2(S(u); u)S2(u)du; and is here applied

formally to the Dirac measure f (a) = ±K(a): The discontinuous component of
local time is made up of just the crossovers whereby one receives S(u) ¡ K on
crossing the strike into the money while one receives (K ¡ S(u)) on crossing the
strike out of the money.

The next step is to compute expectations on both sides of (9). For this we
introduce q(§; u) the transition density that the stock price is § at time u given
that at time 0 it is at S(0): We may write the expectation of the equation (9)
in terms of the call price function and the function q(Y;u) as

erT C(K; T ) = (S(0) ¡ K)+ +
Z T

0

Z 1

K
dY q(Y; u)Y (r ¡ ´)du (10)

+
1
2

Z T

0
q(K; u)¾2(K; u)K2du

+
Z T

0

Z 1

K
dY q(Y;u)

Z ln(K
Y )

¡1
(K ¡ Y ex)º (dx; du)

+
Z T

0

Z K

0
dY q(Y;u)

Z 1

ln(K
Y )

(Y ex ¡ K)º (dx; du)

We now specialize our L¶evy system to that of a time changed L¶evy process
as described in equation (3). In this case we obtain

erT C (K; T) = (S(0) ¡ K )+ +
Z T

0

Z 1

K
dY Y q(Y; u)(r ¡ ´)du

+
1
2

Z T

0
q(K; u)¾2(K; u)K2du

+
Z T

0

Z 1

K
dY q(Y; u)a(Y; u)

Z ln( K
Y )

¡1
(K ¡ Y ex)k(x)dxdu

+
Z T

0

Z K

0
dY q(Y; u)a(Y; u)

Z 1

ln(K
Y )

(Y ex ¡ K)k(x)dxdu
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Finally di®erentiating the equation (10) with respect to T we get

rerT C + erT CT = (r ¡ ´)
Z 1

K
q(Y; T )Y dY

+
¾2(K; T )K2

2
q(K; T)

+
Z 1

K
dY Y q(Y; T )

Z ln(K
Y )

¡1
(eln( K

Y ) ¡ ex)º(dx; du)

+
Z K

0
dY Y q(Y; T )

Z 1

ln( K
Y )

(ex ¡ eln( K
Y ))º (dx; du)

We now solve for CT , noting some elementary properties of the relationship
between call prices and the risk neutral density. In particular we note

e¡rT
Z 1

0
Y q(Y; T )dY = C ¡ KCK

e¡rT q(K; T ) = CKK

Solving for CT we get that

CT = ¡´C ¡ (r ¡ ´)KCK +
¾2(K; T)K2

2
CKK (11)

+
Z 1

K
dY Y CY Y a(Y; T)

Z ln( K
Y )

¡1
(eln( K

Y ) ¡ ex)k(x)dx

+
Z K

0
dY Y CY Y a(Y; T)

Z 1

ln( K
Y )

(ex ¡ e ln( K
Y ))k(x)dx:

We now recognize the double exponential tail in the integral terms. In terms
of this exponential double tail we may write the calendar spread value, CT ; as

CT = ¡´C ¡ (r ¡ ´)KCK +
¾2(K; T )K2

2
CKK (12)

+
Z 1

0
CY Y Y a(Y; T )Ãe

µ
ln

µ
K
Y

¶¶
dY

When there are no jumps in the process for X and Ã ´ 0; equation (12) is
identical to the equation employed in inferring local volatilities from market call
prices. In the opposite case, when there is no continuous martingale component
we have the result

CT + ´C + (r ¡ ´)KCK =
Z 1

0
CY Y Y a(Y; T )Ãe

µ
ln

µ
K
Y

¶¶
dY (13)

It is now useful to rewrite equation (13) in terms of k = ln(K); y = ln(Y )
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and c(k; T ) = C(ek; T ): With this substitution we may rewrite (12) as

cT + ´c +
µ

r ¡ ´ +
¾2(ek ;T )

2

¶
ck ¡ ¾2(ek ; T)

2
ckk (14)

=
Z 1

¡1
b(y; T)Ãe(k ¡ y)dy

where b(y; T ) = e2yCY Y a(ey ; T)

The forward speed function, a(Y; T ); may be identī ed as

a(Y; T ) =
b(ln(Y ); T )

Y 2CY Y
: (15)

We may identify from the convolution transform (14) with the exponential
double tail the function b(y; T ) at each maturity using data on option prices.
Equation (15) then determines the forward speed function for the local L¶evy
model. For speci¯c L¶evy measures the convolution equation (14) may be solved
in closed form to yield explicit solutions for the Markov process from data on
option prices. The next section presents such examples.

4 Closed form local L¶evy models
This section presents an example of an explicit expression for the local speed
function in terms of the derivatives of the call price function. The result is
obtained for a specī c class of driving L¶evy processes and generalizes similar
expressions known for local volatility. The solution method relies on recognizing
the inverse of the convolution operator in our convolution transform equation.

We associate to a L¶evy density its exponential double tail as de¯ned by
equation (6). We also associate with the exponential double tail, the convolution
operator

¤Ãe : f ! ¤Ãe(f )

where
¤Ãe(f )(x) =

Z 1

¡1
Ãe(x ¡ y)f (y)dy:

Some discussion of such operators from an analytic point of view are found
in Hirsch and Lacombe (1999). Our interest in identifying the forward speed
function of the price process lies in inverting this operator.

It turns out that for certain L¶evy measures k; ¤Ãe
is the resolvent operator

V¸ of a certain L¶evy process (Yt; t ¸ 0) with L¶evy density k; for a given ¸; more
precisely

¤Ãe
(f )(x) = cV¸(f )(x) (16)

´ cEx

·Z 1

0
e¡¸tf (Yt)dt

¸
:
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Denote by pt(x ¡ y) the density of Yt under Px ; then if equation (16) holds
(See, Sato (1999), Bertoin (1998)) we have that

Ãe(x ¡ y) = c
Z 1

0
dt e¡¸tpt(x ¡ y)

i.e.

Ãe(x) = c
Z 1

0
dt e¡¸tpt(x) (17)

´ cv¸(x); x 2 R:

Our interest in this situation comes from the fact that if equation (17) holds,
then our convolution transform is related to the resolvent V¸ by (16) and thanks
to the relationship between the in¯nitesimal generator A of (Yt) and its resolvent
(V¸) we have:

(¸I ¡ A) V¸ = I: (18)

We recognize in equation (18) the inverse of our convolution transform operator
as, in general, an integro-di®erential operator.

If we wish to solve
¤Ãe

(f ) = g

then from equation (16)

V¸(f ) =
1
c
g

and from equation (18) we deduce that

f =
1
c

(¸g ¡ Ag) ;

that is we have inverted the convolution transform operator ¤Ãe
: An example

illustrates the details.
Consider the L¶evy measure de¯ned by the asymmetric negative exponential

L¶evy measure:

k(x) =
½

¯ exp(Gx) x < 0
exp(¡Mx) x > 0 :

where G is positive and M is greater than one. Such a jump component has
been studied extensively in a ¯nancial context by Kou (2002) and Kou and
Wang (2003). The double exponential tail of this L¶evy measure is given by

Ãe(z) =

8
>><
>>:

¯ exp(¡(G+1)jz j)
G2+G z < 0

exp(¡(M¡1)z)
M2¡M z > 0

: (19)

On the other hand, let us consider V¸ for (B(u) + ¹u;u ¸ 0); Brownian
motion with drift ¹; we shall write v(¹)

¸ (x) for the resolvent density. We use the
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well known fact that, (see, e.g. Biane-Yor (1988) for discussions about the law
of (Bu; u · Tµ2=2) ) if Tµ2=2 denotes an exponential variable with parameter
µ2=2 independent from (B(t); t ¸ 0) then: B(Tµ2=2) has the Laplace distribution

µ
2

exp(¡µ jxj)dx: (20)

Hence it follows that

µ2

2
v(0)

µ2=2(x) =
µ
2

exp(¡µ jxj) :

Equivalently we may write

v(0)
µ2=2(x) =

1
µ

exp (¡µ jxj) (21)

We now compute v(¹)
µ2=2; with the help of the Cameron-Martin relationship:

µ2

2
E

·Z 1

0
dt e¡ µ2

2 tf (Bt + ¹t)
¸

=
µ2

2
E

·Z 1

0
dt e¡ µ2+¹2

2 tf (Bt)e¹Bt

¸

=
µ

µ2

º 2

¶
º2

2

Z 1

0
dt e¡ º2

2 tE
£
f (Bt)e¹Bt

¤
; º2 = µ2 + ¹2

=
µ

µ2

º 2

¶
º
2

Z 1

¡1
f (x)e¹xe¡ºjxjdx; from (21)

=
µ

µ2

2º

¶ ½Z 0

¡1
dx f (x)e¡(º+¹)jxj +

Z 1

0
dx f (x)e¡(º¡¹)x

¾

It follows that

v(¹)
µ2=2(x) =

8
>><
>>:

1
º exp(¡(º ¡ ¹)x) x > 0
1
º exp(¡(º + ¹)jxj) x < 0

(22)

which generalizes (21).
We now start with Ã e de¯ned by equation (19) and determine c; ( µ2

2 ); ¹ such
that we have

Ãe(x) = cv(¹)
(µ2=2)(x):

We must have

M ¡ 1 = º ¡ ¹
G + 1 = º + ¹

It follows that

º =
G + M

2

¹ = 1 +
G ¡ M

2
µ2 = º2 ¡ ¹2 = M ¡ 1 + (M ¡ 1)G
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We must also have
1

M2 ¡ M
=

¯
G2 + G

=
c
º

or
c =

º
M 2 ¡ M

=
G + M

2(M2 ¡ M)

We have to restrict the parameter ¯ in our L¶evy measure by

¯ =
G2 + G
M 2 ¡ M

:

For this case we may write the solution for the forward speed function
explicity as

a(K; T ) =

³
µ2

2 I ¡ 1
2D2 ¡ ¹D

´
(cT + ´c + (r ¡ ´)ck )

K2CKK

A particularly instructive case for comparison with the results for local volatility
is when we take r = ´ = 0: In this case we have

a(K; T) =
1

K2CKK

µ
µ2

2
CT ¡ 1

2
K2CKKT ¡ (

1
2

+ ¹)KCKT

¶
(23)

=
µ2CT

2K 2CKK
¡ CKKT

2CKK
¡ ( 1

2 + ¹)CKT

KCKK

The formula (23) can be contrasted with results known for local volatility where
we get

¾2(K; T ) =
2CT

K2CKK
:

5 The Arithmetic Case
We develop in this section the results for recovery of the forward speed function
from data on prices of options written on the level of a real valued martingale
for various strikes and maturities. To distinguish the development from the pre-
vious section we use di®erent notation and write the process for the underlying
martingale H as

H(t) = H(0)+
Z t

0
³(H(u); u)dB(u)+

Z t

0

Z 1

¡1
h(m(dh; du)¡a(H(u); u)w(h)dhdu)

where w(h) is a L¶evy density for a base L¶evy process that is time changed by
the integral dependent on the past of the process H; in accordance with

Z t

0
a(H(u); u)du:
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The volatility coe±cient ³ is a deterministic function of the level of the martin-
gale and calendar time and B(t) is a standard Brownian motion.

We suppose that for real valued strikes, denoted by L; and for expiration
dates, denoted by T , there are options trading at time 0 that payo® at time T
the value

(H (T) ¡ L)+

with current prices that we denote by v(L; T ).
Following the analysis of section 3, and noting that here we work directly

with expectations or forward prices, yields the result

(H(T) ¡ L)+ = (H(0) ¡ L)+ +
Z T

0
1H(u )>LdH(u) +

1
2

Z T

0
1(H(u )=L)

³2(u)
2

du

+
Z T

0
1H(u )>L(L ¡ H(u))+du +

Z T

0
1H(u )<L(H(u) ¡ L)+du:

Taking expectations, and noting that since H is a martingale, the second term
will be zero, we get in terms of the transition densities q(H; u) that

v(L; T ) = (H(0) ¡ L)+ +
1
2

Z T

0
q(L; u)³2(L; u)du

+
Z T

0
du

Z 1

L
dH q(H; u)a(H; u)

Z L¡H

¡1
(L ¡ H ¡ h)w(h)dh

+
Z T

0
du

Z L

¡1
dH q(H; u)a(H; u)

Z 1

L¡H
(H + h ¡ L)w(h)dh:

Di®erentiation with respect to maturity T then yields

vT = q(L; T )
³2(L;T )

2

+
Z 1

L
dH q(H;T )a(H; T)

Z L¡H

¡1
(L ¡ H ¡ h)w(h)dh

+
Z L

¡1
dHq(H; T)a(H; T )

Z 1

L¡H
(h ¡ (L ¡ H))w(h)dh

Introducing the function Ã de¯ned here by

Ã(z) =

8
>><
>>:

R 1
z (h ¡ z)w(h)dh z > 0

R z
¡1(z ¡ h)w(h)dh z < 0

we may write that

vT =
vLL

2
³2(L;T ) +

Z 1

¡1
dZ vZZa(Z; T)Ã(L ¡ Z):
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The function Ã is now seen to be just the double tail of the L¶evy measure as
de¯ned in (5).

For the case where there are no jumps we get the well known result of local
volatility models that

³2(L; T ) =
2vT

vLL
:

Our interest is in the opposite case when ³ = 0 and Ã is the double tail of a
L¶evy process. In this case we obtain the convolution transform equation

vT =
Z 1

¡1
dZ vZZ a(Z; T )Ã(L ¡ Z) (24)

that is to be solved for a:
We develop in particular the solution for the case of a symmetric, double

exponential L¶evy density

w(h) = µ exp (¡µ jhj)

for which the relevant Ã function is

Ã (z) =
1
µ

exp (¡µ jzj)

that we recognize as the resolvent density of Brownian motion given by equation
(21). It follows that the solution for a is

a(L; T) =
1

vLL

µ
¸vT ¡ 1

2
vLLT

¶
; (25)

where ¸ = µ2=2:

6 Numerical Procedures
For more general L¶evy processes in either the geometric or arithmetic case the
basic convolution transform equations (14, and 24) may be solved numerically.
Here we develop the procedures illustratively for the variance gamma L¶evy pro-
cess introduced in Madan, Carr and Chang (1998), and Carr, Geman, Madan
and Yor (2002). The L¶evy measure for this process is de¯ned as kV G(x)dx where

kV G(x) =

8
>><
>>:

exp(¡Mx)
x x > 0

exp(¡G jxj)
jxj x < 0

and the L¶evy process is one of in¯nite activity that accomodates a negative
skewness by taking G > M and calibrates well option prices across all strikes,
at any ¯xed maturity.
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In the geometric case, we denote the double exponential tail of the V G L¶evy
measure by ÃGV G(z); and for the arithmetic case we denote the double tail by
ÃAV G(z): On computation we obtain the following expressions for the requisite
double tails.

ÃGV G(z) =

8
>><
>>:

R
(M¡1)z

e¡u

u du ¡ ez
R

Mz
e¡u

u du z > 0

e¡jz j R
Gjz j

e¡u

u du ¡
R

(G+1)jzj
e¡u

u du z < 0

and

ÃAV G(z) =

8
>><
>>:

e¡Mz

M ¡ z
R 1

M z
e¡u

u du z > 0
e¡Gjzj

G ¡ jzj
R

G jzj
e¡u

u du z < 0
The basic equation to be solved is of the form

Z 1

¡1
Ã(x ¡ y)f (y) = g(x) (26a)

where the function g(x) is obtained from the data on option prices. We de¯ne
the Fourier transforms of f ,g by

bf(») =
Z 1

¡1
ei»yf(y)dy; bg(») =

Z 1

¡1
ei»xg(x)dx

If the function Ã (z) has a Fourier transform, bÃ then from the relationship
of Fourier transforms to convolutions we have from equation (26a) that

bf (») =
bg(»)
bÃ(»)

:

and we may obtain f (y) using the inverse Fourier transform applied to bf (»):
The transform of bg(») is numerically constructed from the calibration of

market prices. However, in many cases of interest we may analytically obtain
bÃ(») the Fourier transform of the double exponential tail. We present here the
result for the CGMY model studied in Carr, Geman, Madan and Yor (2002),
that generalizes the variance gamma. In this case we obtain on integration that

bÃ(») =
Z 0

¡1
ei»x

Z x

¡1
(ex ¡ ey )C

e¡G jxj

jxj1+Y dx

+
Z 1

0
ei»x

Z 1

x
(ey ¡ ex) C

e¡Mx

x1+Y dx

=
¡(¡Y )

i»(1 + i»)

2
664

(M ¡ (1 + i»))Y ¡ MY

¡(1 + i»)
¡
(M ¡ 1)Y ¡ M Y

¢

+(G + 1 + i»)Y ¡ GY

¡(1 + i»)
¡
(G + 1)Y ¡ GY

¢

3
775

The ¯nal result follows by applying integration by parts twice to the integrals
on the two sides.
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7 Conclusion
This paper de¯nes the class of local L¶evy processes as one dimensional Markov
processes that are obtained by time changing a prespeci¯ed L¶evy process. In
practice one would choose the L¶evy process with respect to its ability to ex-
plain short maturity call option prices across the strike domain. The specī c
time change is inhomogeneous and is given as the integral of a deterministic
function of the price level and calendar time, called the local speed function.
It is shown how this local speed function may be recovered from information
on the prices of traded options of all strikes and maturities. In this regard, the
paper generalizes the local volatility models to permit local dynamics that are
capable of independently calibrating market skews. This reduces the burden on
the volatility function in calibrating the model to data, and it is expected that
such a move will produce more reasonable forward return distributions for the
risk neutral asset returns.

For a variety of elementary cases, closed forms for the local speed function
are presented in both the case of the exponential and arithmetic L¶evy processes.
For practical implementation, Fourier methods, already known to be highly
successful in calibrating models to option data are extended here to the recovery
of the local speed function from information on market implied volatilities across
the maturity and strike dimensions.
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