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ABSTRACT 

 

We divide hedging methods between single-period and multi-period. After reviewing 

some well-known hedging algorithms, two new procedures are introduced, called 

Dickey-Fuller Optimal (DFO), Mini-Max Subset Correlation (MMSC). The former is 

a multi-period, cointegration-based hedging method that estimates the holdings that 

are most likely to deliver a hedging error absent of unit root. The latter is a single-

period method that studies the geometry of the hedging errors and estimates a hedging 

vector such that subsets of its components are as orthogonal as possible to the error. 

We test each method for stability and robustness of the derived hedged portfolio. 

Results indicate that DFO produces estimates similar to the Error Correction Method, 

but more stable. Likewise, MMSC estimates are similar to Principal Component 

Analysis but more stable. Finally, a generalized Box-Tiao Canonical Decomposition 

(BTCD) method is proposed, which is of the multi-period class. BTCD estimates are 

also very stable, and cannot be related to any of the aforementioned methodologies. 

Finally, we find that all three advanced hedging methods (MMSC, BTCD, DFO) 

perform well. 

 

 

Keywords: Hedging portfolios, robustness, portfolio theory, stationarity, Maeloc 

spread, ECM, DFO, PCA, BTCD, MMSC. 
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1.- INTRODUCTION 

Hedging is an important risk management technique that is widely used in virtually all 

capital markets activities, from investment management and trading to market making 

and derivatives structuring. In all of these situations, an investor/trader is holding a 

portfolio of securities whose risk, defined as fluctuations of its market value, must be 

maintained within acceptable limits.  

 

The purpose of hedging is to reduce a portfolio’s exposure to a certain source of risk. 

Closing the positions responsible for that risk source is not always possible, either due 

to liquidity constraints or because that would impact the portfolio’s exposure to other 

desired risk sources. 

 

Hedging is also an inextricable part of an alpha generating strategy, such as pairs 

trading, equity market neutral, long-short and most “hedge” fund trading styles 

(López de Prado and Rodrigo (2004)). In that context, hedging involves removing the 

exposures on which we have no forecasting power, while leveraging our capital on 

those exposures over which we have a skill. 

 

Portfolio replication may also be viewed as an application of hedging methods, for its 

goal is to define a mimicking portfolio with minimum tracking error. The methods 

discussed henceforth can be used to “summarize” or reduce the dimension of a 

portfolio into its core components (even if those are unknown ex-ante). 

 

After reviewing a few well-known methods, we take the opportunity to extend or 

generalize some of them. Specifically, we introduce a generalized PCA method, 

applicable to any dimension or asset class. A generalized Box-Tiao Canonical 

Decomposition (BTCD) procedure is presented, which accepts any number of lags, 

regressors and forecasting horizons in the specification of its VAR system. 

 

Although unit root tests have been used to assess the quality of a hedge (like in 

Vidyamurthy (2004)), we believe that this study is the first to propose a procedure for 

computing a Dickey-Fuller (DF) optimal hedging strategy, whereby the unit root test 

statistic is the objective function. Based on our direct estimation of the DF statistic, 

we develop the DFO hedging methodology. 

 

It seems intriguing that some of the most applied hedging methods happen to be 

among the most unreliable. Regression approaches in particular are known to deliver 

unstable results, and yet they are ubiquitous (e.g., CAPM, APT and stocks’ betas). 

Besides their simplicity, a possible explanation may be that they search for a 

“concrete” solution (as opposed to “hidden” factors analysis such as PCA or BTCD). 

A good compromise would consist on developing a regression-like analysis that 

imposes a strong structure with the aim of improving the hedge’s stability. This goal 

motivates our new Mini-Max Subset Correlation (MMSC) model, as well as the 

concept of Maeloc spread. 

 

Robustness is a key characteristic of a good hedging procedure. Its absence indicates 

that the solution is either unstable or arbitrary. An unstable method delivers 

significant hedging errors and substantial transaction costs associated with its 

rebalance. In the empirical part of this study we will analyze how robust each 

procedure is, outlining which method should be preferred among those comparable. 
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Finally, among those methods that are distinct and stable, we will indicate which ones 

perform best in different hedging horizons. 

 

This paper is organized as follows. Section 2 formalizes the hedging problem. Section 

3 proposes a taxonomy of hedging methods. Section 4 reviews some of the most 

applied hedging methods, pointing out their virtues and pitfalls. Section 5 describes 

advanced hedging methods, developed to address the caveats of the traditional 

approaches. Section 6 applies the hedging methodologies to pairs of index futures, 

indicating which should be preferred in terms of stability and performance over 

different horizons. Section 7 outlines the conclusions. The Appendices complement 

the mathematical apparatus involved in these methods. 

 

 

2.- THE HEDGING PROBLEM 

From a portfolio management perspective, the hedging problem is posed in the 

following terms
2
. Let      represent the market value at observation t of a portfolio we 

wish to hedge, with t=1,…,T.       is the change in market value between observation 

t-1 and t, induced by the risk drivers we intend to hedge against. Provided a set of 

n=2,…,N variables (instruments or portfolios) available for building a hedge, the 

hedging problem consists in computing the vector of holdings ω that is optimal 

according to a particular method. The market value of the combined position of 

portfolio plus hedge, 

 

 
        ∑       

 

   

 
(1) 

 

 

is denoted spread, and 

 

  ( )          (2) 
 

 

is the hedging error after h observations. Generally speaking, portfolio managers fear 

the case that  ( ) is non-stationary in variance, because in that scenario the hedging 

error is unbounded. A special case of non-stationarity occurs when  ( ) has a unit 

root, in which situation the hedging errors follow what is commonly known as a 

random walk. This can be dealt with if we are able to find a hedging portfolio that, 

combined with   , makes  ( ) stationary. Then that hedging portfolio is said to be 

cointegrated to   , and finding it is the goal of several dynamic methods that we will 

study. 

 

We will assume that the set of instruments to form the hedge is predefined. If that is 

not the situation faced by the modeler, the selection could be done applying a standard 

factor selection algorithm
3
 on the hedging procedures presented. 

 

                                                 
2
 Other possible standpoints, such as credit risk, liquidity risk or inventory management, are beyond the 

scope of this paper. 
3
 For instance, a forward algorithm will simply require an evaluation criterion, such as the R

2
 in the 

regression case, minimum variance in the minimum risk case, residual unexplained variance in the 

PCA or BTCD cases, or DF stat in that analysis. 
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3.- A TAXONOMY OF HEDGING METHODOLOGIES 

We can divide hedging methods in two classes: 

1. Single-period, distributional-based or static methods: They make certain 

assumptions about the distribution of the portfolio and security returns. Their 

objective functions are formulated in terms of minimizing or controlling 

certain distributional parameters. In particular, they assume that random 

perturbations are IID. Such assumption is very convenient and is ubiquitous in 

the Financial literature about portfolio theory. However, there is 

overwhelming evidence that returns are serially-dependent, particularly in the 

high frequency domain (see Easley, López de Prado and O’Hara (2012) for a 

discussion). 

2. Multi-period, equilibrium or dynamic methods: Not assuming IID random 

perturbations requires dealing with the cumulative hedging error. This 

problem is addressed by multi-period hedging methods, which in turn require 

making certain assumptions regarding the serial dependence of the returns. 

Their objective functions are defined in terms of minimizing the cumulative 

hedging error that results from such dynamics. 

 

One type of hedging method is not necessarily superior to the other. The choice for a 

class and particular method will largely depend on the hedging horizon, the dimension 

of the portfolio and the statistical properties of the instruments’ returns, among other 

factors. 

 

The approaches discussed in this paper are numerous, and for convenience we must 

define a few acronyms: 

1. Single-period, distributional-based or static hedging methods: 

 OLSD: Ordinary Least Squares in Differences. 

 MVP: Minimum Variance Portfolio. 

 PCA: Principal Components Analysis. 

 ERC: Equal Risk Contribution. 

 MDR: Maximum Diversification Ratio. 

 MMSC: Mini-Max Subset Correlation. 

2. Multi-period, equilibrium or dynamic hedging methods: 

 OLSL: Ordinary Least Squares in Levels. 

 ECM: Error Correction Model. 

 DFO: Dickey-Fuller Optimal. 

 BTCD: Box-Tiao Canonical Decomposition. 

 

 

4.- A REVIEW OF EXISTING HEDGING ALGORITHMS 

We will start by reviewing some of the best known hedging methodologies. They 

incorporate multiple concepts from APT, portfolio replication, time series analysis, 

“modern” portfolio theory, spectral theory and canonical analysis among other fields. 

 

4.1.- SINGLE-PERIOD METHODS 

4.1.1.- OLS IN DIFFERENCES (OLSD) 

Despite its limitations, this is one of the most widely used methods (Moulton and 

Seydoux (1998)), perhaps because of its simplicity. 
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The regression is specified as         ∑        
 
      , where Pn, n=1,…, N 

are market values of the n-th position and n=1 corresponds to the portfolio we want to 

hedge. A necessary condition for the hedge to be effective is that the drift (α) is 

statistically insignificant. The goodness of the fit can be evaluated through the 

adjusted R
2
, and the solution is       , n=2,…,N. 

 

In summary, this approach may be applied under the conditions that     and ε is 

IID, with    (    
 ),             . This is extremely restrictive, and a pitfall 

common to single-period methods, as they assume that any change in the      

portfolio must be synchronously offset by the hedging portfolio, ∑       
 
   . It will 

not suffice to establish the stationarity of       ∑        
 
   , for that would not 

prevent         ∑       
 
    from following a random walk

4
. In other words, this 

model fails to impose any condition on the behavior of the cumulative hedging errors, 

 ( )         , implying that hedging errors may not be corrected over time. This 

is a direct consequence of the specification in differences, which has removed all 

memory of the process. This approach is also somewhat arbitrary, as switching places 

between the portfolio and one of the hedging constituents may lead to vectors ω in 

different directions. 

 

Among other reasons, these three critiques (restrictiveness, absence of error 

correction, arbitrarity) make the regression of differences an undesirable hedging 

method. 

 

4.1.2.- MINIMUM VARIANCE PORTFOLIO (MVP) 

First introduced by Markowitz (1952), it consists in solving the basic quadratic 

optimization problem, with a single linear constraint in equality
5
. Its popularity has 

grown ever since, with studies as recent as Clarke, de Silva and Thorley (2011) or 

Scherer (2010). 

 

   observations are assumed to be IID Normal. Let V be the covariance of matrix   , 

where the first column represents the covariances against the portfolio to be hedged. V 

must be invertible, thus steps should be taken to prevent singularity (Stevens, 1998). 

 

 

1'      ..

'   
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VMin






 

(3) 
 

 

This program can be solved through the lagrangian    1''
2

1
,  aVL  , 

with first order conditions 
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4
    could be I(1). 

5
 A constraint is needed to exclude the zero-holding solution. 
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Operating, aVF 11    and 
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 , and    
  

  
, j=1,…,N, to meet the constraint of unit holding of the 

hedged portfolio (first column of the covariance matrix V). 

 

We can verify that we have indeed computed the minimum through the second order 

condition. 
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This is the general convex minimization program for computing characteristic 

portfolios, of which MVP is the class that results from setting a equal to a vector of 1s 

(Grinold and Kahn, 1999).
6
 The solution corresponds to the portfolio on the left-most 

point of the efficient frontier. An empirical study of the performance of MVPs on 

stocks can be found in Luo et al. (2011). This approach presents similar caveats as the 

regression of differences (OLSD). 

 

It is worth noting that the MVP method delivers the minimum risk solution under the 

assumption of Normality, but beyond that assumption a number of alternative 

objective functions could be chosen. This would lead to CVaR and Cornish-Fisher 

related methods, to name only a couple. 

 

4.1.3.- PRINCIPAL COMPONENTS ANALYSIS (PCA) 

Steely (1990) and Litterman and Sheinkman (1991) were among the first to see the 

potential applications of the eigendecomposition of variance to hedging. Their 

analysis focused on explaining how common factors affect bond returns, which in the 

case of the term structure of interest rates they identified as parallel shift, slope and 

convexity (Lord and Pelsser, 2007). This was later applied by Moulton and Seydoux 

(1998) to construct portfolios of 3 bonds hedged against the first two principal 

components (parallel shifts and slope changes). In this paper we will generalize that 

analysis to portfolios of any size, without restricting its use to the term structure of 

interest rates. 

 

   observations are assumed to be IID Normal. Let V be the NxN covariance of 

matrix   , where the first column represents the covariances against the portfolio to 

be hedged. The target is to compute the vector of weightings β such that     is 

hedged against moves of the m largest principal components (typically, m=N-1), 

leaving the combined position solely exposed to moves of the N-m components with 

lowest variances (eigenvalues). In other words, we wish to compute a N-vector β such 

that        , where     is the transposed eigenvector matrix after having 

                                                 
6
 When working with returns, this is the ‘fully invested portfolio constraint’. It is somewhat arbitrary to 

choose a vector of 1s in the context of optimal holdings, but any other non-null number will simply re-

scale the solution. An equivalent approach would be fixing the weight of a portfolio constituent 

(numeraire) and minimizing the overall risk without imposing a constraint of the sum of weights. 
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removed the columns associated with the unhedged eigenvectors, and mii  ,1 . 

In order to explain why, we must describe a few matrix operations. 

 

        is an homogeneous system with infinite non-trivial solutions, because 

    [   ]     . In order to find a single solution, we impose 1i  on the 

    last columns. Let      be the mxm matrix which results from moving the last 

    columns (numeraires) from     to the right side of the equation, which we 

denote      . 

 
*  is the submatrix of β that excludes those mii  ,1 . This leads us to express 

the problem as                  . For              , the solution is 

unique and non-trivial, which can be computed as     [    ]
  

         . 

Finally, the holdings are obtained as    
  

  
, j=1,…,N. 

 

This approach presents the advantage of searching for a solution which hedges against 

the principal sources of risk. Like the prior two methods, it doesn’t guarantee that the 

source of risk we remain exposed to is stationary
7
. It could be argued however that, 

having the smallest variance (in differences), the stationarity of the eigenvectors with 

smallest eigenvalues is a minor concern
8
. This makes of PCA a valid, consistent 

method of hedging. 

 

4.2.- MULTI-PERIOD METHODS 

4.2.1.- OLS IN LEVELS (OLSL) 

The target is to solve      ∑       
 
      , with       , n=2,…,N. The hedge 

is effective as long as S is stationary in mean and variance, which can be tested 

through KPSS or unit root tests (ADF, PP). 

 

OLSL may not be considered a hedging procedure by itself, but a methodology that 

assesses whether the results from a regression of levels can be applied as a hedge. The 

reason is, the outcome of the ADF or KPSS style-test is not used to determine the 

vector ω, but rather to determine with what confidence we may assume that the 

hedging errors are stationary. This method has the additional disadvantage that, 

because the error correction component is not separated from the observed levels in 

the equation, the β may not accurately capture the equilibrium relationship. That 

inconvenience is formally addressed by the ECM. 

 

4.2.2.- ERROR CORRECTION MODEL (ECM) 

Engle and Granger (1987) show that if two series are cointegrated, there must exist an 

error correction representation, and conversely, if an error correction representation is 

verified, the two series are cointegrated. Following Gosh (1993) among others, the 

procedure consists on solving a dynamic equilibrium system between the portfolio 

that we wish to hedge and a hedging portfolio, estimated through a regression 

 

                                                 
7
 The components we remain exposed to have the smallest variance in differences. Once again, this 

doesn’t imply that the components are stationary in levels, as they could be I(1). 
8
 Alternatively, V could have been estimated on P rather than   , provided that the elements of P are 

stationary, which generally is not the case. 
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                   (             )     (6) 
 

where p1, p2 are the natural logarithms of market values P1, P2, and   must be tested 

to be positive (      ). The spread is characterized by the holdings (     )  

(    ), where    
  
  (see Appendix 1 for its derivation). As originally formulated, 

the approach is limited to only two variables, although an extension could be built 

upon Johansen (1991). We do not see a need for that, as that approach would not be in 

practice substantially dissimilar from the BTCD and DFO methods, discussed later. 

 

 

5.- ADVANCED HEDGING METHODS 

We are now in a position to discuss several approaches that overcome some of the 

limitations listed earlier. 

 

5.1.- MULTI-PERIOD METHODS 

5.1.1.- BOX-TIAO CANONICAL DECOMPOSITION (BTCD) 

Box and Tiao (1977) introduced a canonical transformation of a N-dimensional 

stationary autoregressive process. The components of the transformed process can 

then be ordered from least to most predictable. The authors’ original intent was not to 

produce a new hedging method, however their discovery can be adapted to this 

purpose. In short, the objective is to come up with the matrix of coefficients that 

deliver a vector of forecasts with the most predictive power over the next observation. 

To understand this procedure, it is best to start with a single-equation, two-

dimensional example, i.e. AR(1) specification, and then move up to a multi-equation, 

multi-dimensional (or VAR(L), where L is the number of lags) specification. 

 

In the AR(1) case,            , and  [  
 ]   [(     )

 ]   [  
 ]. Box-Tiao 

defined a measure of predictability, 
  
 

 
 2

2

2

2

1 1
t

t

t

t

PE

E

PE

PE 
   , as a proxy for the 

mean reversion parameter of the Orstein-Uhlenbeck (O-U) stochastic process. When 

  is small,  2

tE   dominates  2

1 tt PE   and    is almost pure noise. When   is large, 

 2

1 tt PE   dominates  2

tE   and    is almost perfectly predictable. This makes the 

connection between ECM and BTCD in the two-dimensional case evident, as O-U 

processes are a continuous time representation of discrete-time mean-reverting 

processes. 

 

Let’s move now to the VAR(1) specification. This is an system of AR(1) equations on 

each time series of a set of variables, n=1,…,N, where n=1 corresponds to the 

portfolio to be hedged. 

 



 
N

i

ntitnint PP
1

,,1,, 
 

(7) 
 

Because the explanatory variables are the same in each equation, the Multi-equation 

Least Square is equivalent to the Ordinary least squares (OLS) estimator applied to 

each equation separately, as shown by Zellner (1962). We can fit the model
9
 for the 

entire set:   tttt PPPP '

1

1

1

'

1
ˆ





 . We can derive a similar measure of predictability for 

                                                 
9
 Select only those statistically significant regressors, following a stepwise algorithm. 
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linear combinations of tP . Rewriting,   ttt PP 1 . The series’ predictability 

is then characterized as 



 '

'' 
 ,

10
 where tt PP ' .

11
 

 

We would like to compute a Nx1 vector   such that   is minimized, i.e. 






'

'' 
Min . This is equivalent to solving the generalized eigenvalue problem 

in   characterized by   0det '   .
12

 

 

A closer examination of the ratio 



'

'' 
 leads us to treat it as a generalized 

Rayleigh quotient of the form  
Bxx

Axx
xBAR

'

'

:;,  , where   'A  and B  are real 

symmetric positive-definite matrices and x is a given non-zero vector. We can reduce 

it to the standard Rayleigh quotient through the change of variables Cxz   and 

  1'1  ACCD , where C is the Cholesky decomposition of matrix B. This approach is 

useful, because we know that a standard Rayleigh quotient such as  
zz

Dzz
zDR

'

'

:,   

reaches its minimum value (the smallest eigenvalue) when z equals the eigenvector 

corresponding to the smallest eigenvalue of D. For a succinct proof of this, consider 

1x'xs.t.      

   x'AxMax
x , where A is symmetric. Take derivatives on its Lagrangian 

   1'
~

'  xxAxxxL  . The first order necessary condition, 

 
  xAxxAAx

x

xL

~

0'
~

2'' 



, and thus the Lagrange multiplier is an 

eigenvalue. 
 

1'0 



xx

xL


. Furthermore,   xxAxx '' , thus all critical 

points (and extreme values in particular) are derived from computing the eigenvectors 

of A, and the stationary values from the respective eigenvalues. The same argument 

can be used to find the maximum value of  zDR , .  

 

Assuming that   is positive definite, the solution is z2
1

*


 , where z is the 

eigenvector corresponding to the smallest eigenvalue of the matrix 2
1

'2
1 

  .
13

 

                                                 
10

 This can also be interpreted as a mean reversion coefficient. The smaller, the stronger the trend (and 

more predictable). The larger, the noisier (and more unpredictable). 
11

 Alternatively,   can be defined as a covariance matrix of tP . 

12
 This is derived from rearranging   0''    . Since 0 , it must occur that 

  0det '   . 

13
 Note that the matrix 2

1
1


 C  is symmetric in the   domain. 
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Once *  is known, there is no need to compute 
**'

*'*'

*









 , because its value 

is precisely the eigenvalue that corresponds to the eigenvector z. 

 

So much for the VAR(1) case. Now we would like to outline the solution for the case 

where L lags are used on each forecasting variables, and additional exogenous 

variables are admissible (including the possibility of an intercept): 

1. Fit ̂  on the forecasting equation, which is now of the general form      

∑ ∑             
 
   

 
                   .

14
 

2. Estimate tP̂  applying ̂ . 

3. Compute  tt PP ˆˆ ' . This is the matrix A of the generalized Rayleigh quotient. 

4. Compute the spectral decomposition of   '' WWPP tt  . This is the matrix B 

of the generalized Rayleigh quotient. 

5. Compute   '2
1

2
1

' WWPP tt



 . 

6. Compute a PCA on      2
1

''2
1

' ˆˆ


tttttt PPPPPP , which is the matrix D of the 

standard Rayleigh quotient. 

7. Determine   zPP tt
2

1
'*



 , where z  is the eigenvector associated to the 

smallest eigenvalue (  ). 

8. As a verification, we can check that the ratio 
 
  *'*'

*'*' ˆˆ





tt

tt

PP

PP
 merely recovers 

the previously selected eigenvalue  . 

9. Set a unit position on the portfolio to be hedged (i=1): *

1

* 1


 . 

 

Although computing trending portfolios is not relevant in the context of hedging, this 

procedure can also be applied to determine them. In order to deliver the most trending 

portfolio, it suffices to select z to be the eigenvector associated to the largest 

eigenvalue in Step 7. 

 

A caveat of this approach is that estimates of Γ and β usually are quite unstable, 

particularly as the number of variables increases. A classic remedy is to penalize the 

covariance estimation using, for example, a multiple of the norm of Γ,
15

 though not 

satisfactory solution seems available at the moment. 

 

5.1.2.- DICKEY-FULLER OPTIMAL (DFO) 

We have seen that ECM is a dynamic model limited to two dimensions, and that this 

limitation could be circumvented through a canonical transformation of a 

multivariate, multi-equation specification, like in BTCD. That approach introduced a 

strong structure through a system of equations, each imposing an individual 

autoregressive equilibrium condition. It may however be more convenient to search 

                                                 
14

 This allows adding an intercept and additional lags to our specification. 
15

 See d’Aspremont (2008) for an in-depth discussion, in the context of small mean-reverting 

portfolios. 
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for a joint equilibrium in cointegrated form, removing the “β” part of the structure and 

estimating Γ directly. Next, we present such alternative approach. 

 

The target is to find a vector of holdings ω for         ∑       
 
    such that the 

probability of having a unit root in the spread is minimized. Dickey and Fuller (1979) 

test whether a unit root is present in an autoregressive model, which would be the case 

should     in              . A unit root means that    follows a random 

walk, which makes its outcome unpredictable (a particular case of martingale).     

is a sufficient condition for S not being stationary. Thus, our best hope is for    . 

Since the null hypothesis is       , we are more confidence in the hedge the more 

negative the Dickey-Fuller test statistic is,    
 ̂  

  ̂

  . 

 

Said and Dickey (1984) “augmented” the test to encompass a more complicated set of 

time series models. Similar tests include Phillips and Perron (1988) and Elliot, 

Rothenberg and Stock (1996). 

 

5.1.2.1.- DIRECT ESTIMATION OF THE DF STAT 

Consider the standard autoregressive specification               , which can 

be rewritten as       (   )         . Rather than having to estimate the DF 

statistic based upon the statistical significance of β,    
 ̂  

  ̂

, through OLS, we 

would like to devise a direct estimation that does not require matrix inversions, 

multiplications, and other computationally inefficient calculations. 

 

In matrix form,        , where   [
 

   ] and   [   ( )], where    is a 

column-vector of 1s of T elements and L is the lag operator. Then,   [   ]      , 

with     [
 ∑     

 
   

∑     
 
   ∑     

  
   

] and      [
     

∑        
 
    ∑     

  
   

]. This 

can be solved in terms of  ̂    
     ( )

  ( )
  

        ( )

  ( )

, with  
 ̂
  

  
 

   ( )
  and   

  

   
  

     ( )
 

  ( )
 . Because  ̂ 

  
 

   
(   

  
     ( )
 

  ( )
 ), further operations lead to  ̂

 ̂
 

   

  ( )

√
       ( )

 

   
. Finally, 

 

 

  ̂  

        ( )

  ( )

   

  ( )

√       ( )
 

   

 
     ( )

√       ( )
 

   

 (8) 
 

 

which can be computed directly without having to make the intermediate calculations 

of [   ]      , etc. 

 

Furthermore,      ( ) can be easily updated for each new observation without having 

to re-use the whole sample, thus allowing a continuous estimation of   ̂ after a few 

basic arithmetic operations. 
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5.1.2.2.- DF STAT MINIMIZATION 

The previous epigraph has shown how to estimate the DF stat directly, in one step. 

Considering that S is a linear function of ω, and DF a function of S, we can compute 

the partial derivatives 
   ( ( ))

  
, 
    ( ( ))

   
. These in turn can be used to compute the 

vector ω that delivers a hedge with minimum DF: 

 

    
 

    
 

   ( )  ( ( ))

√
   

  ( )  ( ( ))
 

   

 
(9) 

 

 

Appendix 2 obtains the first and second analytical derivatives of our objective 

function, which can be applied on standard gradient-search algorithms. This hedge 

optimization procedure addresses the three critiques discussed in Section 4.1.1. For N 

sufficiently small, ω can be reliably computed through a brute force, grid search 

algorithm. A similar procedure could be devised on the KPSS test for stationarity. 

 

5.2.- ADVANCED SINGLE-PERIOD METHOD 

5.2.1.- MINI-MAX SUBSET CORRELATION (MMSC) 

Of the approaches discussed in the previous Sections, three seemed particularly 

interesting. DFO searched for the linear combination of positions that minimized the 

probability that the hedging error contains a unit root. PCA and BTCD looked deep 

into the geometry of the hedging set, and identified uncorrelated sources of variability 

responsible for most of the risk (Principal or Canonical Components). On the negative 

side, none of these approaches impose a balanced structure on the combined position 

(spread). For example, the DFO solution may be exceedingly biased towards a 

particular instrument with strong mean reversion, but that otherwise provides little 

hedge to the original portfolio. Detecting irrelevant hedging positions is even harder 

in the case of PCA and BTCD, since all instruments participate in the definition of 

each principal component. 

 

In this Section we will introduce a new approach, called MMSC, which imposes a 

strong balancing structure on the hedging portfolio. The mathematics of the solution 

may appear complex, but the intuition is simple: Hedging errors move the spread (i.e., 

combined portfolio + hedge positions) away from its equilibrium level. Spread 

changes should not be highly correlated to any individual position or subset of 

positions. If one particular “leg” or subset of legs is highly correlated to the spread, 

the spread is imbalanced, meaning that it is dominated by that leg or subset. Ideally, 

we should find a vector of holdings such that the maximum correlation of any leg or 

subset of legs to the spread is minimal (thus the name Mini-Max Subset Correlation). 

 

5.2.1.1.- MOTIVATION 

More formally, suppose a n-legged spread, characterized by its holdings,  , and the 

covariance matrix of value changes, V. The spread’s risk can be decomposed in terms 

of its legs’ contributions as 
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       ∑∑        

 

   

 

   

 ∑       

 

   

    ∑         

 

   

 

(10) 
 

 

Therefore, the spread’s risk is a weighted average of the instruments’ standard 

deviations, where the weightings are the product of the instrument’s holdings and 

their correlations to the spread. 

 

 
    ∑         

 

    

(11) 
 

 

One approach to risk diversification would consist in computing the Equally-weighted 

Risk Contribution (ERC) spread (see Maillard, Roncalli and Teiletche (2009) for a 

thorough study), such that 

 

 
          

   

 
    

(12) 
 

 

ERC provides better diversification than equal weights (also called “1/n”) solutions, 

but still it is under general circumstances objectionable. For example, in a portfolio of 

three assets, two of which are highly correlated, 2/3 of the risk would be allocated to 

the same exposure. 

 

A second approach is proposed by Choueifaty and Coignard (2008). These authors 

compute the vector of holdings that Maximize the Diversification Ratio (MDR), as 

defined by 

 

 
   
 

∑     
 
   

   
 

(13) 
 

 

This diversification ratio is the ratio of weighted volatilities divided by the portfolio 

volatility. MDR is an intuitive method that penalizes the risk associated with cross-

correlations, as they are accounted by the denominator but absent in the numerator of 

the maximized ratio. Still, MDR only takes into account correlation of every holding 

to the overall spread, ignoring the possibility of exposure imbalances from subsets of 

holdings. MDR does not prevent that subsets of holdings may dominate the overall 

risk, because Eq. (13) uses       (correlation of an individual holding to the spread) as 

the only balancing argument. For example, in a three asset portfolio, even though the 

correlation of every holding to the overall portfolio may be the same, the correlation 

of the subsets of 2 holdings to the overall portfolio can indeed be very imbalanced. 

This makes the solution somewhat arbitrary, as different clustering criteria (by 

country, asset class, currency, liquidity, capitalization, etc.) will yield different 

hedging vectors. The authors also acknowledge that the solution may not be unique or 

robust, particularly with ill-conditioned covariance matrices. Adding some structure 

to the optimization program would alleviate these problems. 
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The natural question becomes, for what   occurs that a portfolio is balanced, in the 

sense that the correlation of each constituent or subset of constituents to the spread is 

overall minimized? Before providing the mathematical solution to this highly-

dimensional problem, we will have to introduce a few new concepts. 

 

5.2.1.2.- SUBSET MATRIX (D) 

Consider a set X of n instruments. Let be Φ(X)-Ø the σ-algebra formed by X’s power 

set Φ(X), from which we exclude the empty set. (X, Φ(X)-Ø) constitutes our σ-field or 

measurable space. D represents our σ-algebra Φ(X)-Ø as a binary (nxN) matrix, 

12
1













n
n

i i

n
N , where 1, piD  if subset p contains instrument i, p=1, …, N, i=1, 

…, n, and 0, piD  otherwise. ND , the last column of matrix D, is an identity matrix, 

i.e. the last subset is the spread itself. 

 

Denote tiP ,  the market value associated with variable i at observation t, i=1, …, n, 

t=1,…,T. i=1 corresponds to the portfolio we wish to hedge. A vector (nx1) of 

holdings ω allows to define a n-legged spread with market value 
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i
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Additionally, we define D
*
 as the result of removing from matrix D any column 

nDDki ii  '
, where nk 1

16
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5.2.1.3.- SUBSET COVARIANCE MATRIX (B) 

Let B be a (N
*
xN

*
) matrix,  **''

1 1

*

,,

*

,, VDDDDB
n

i

n

j

jqjjipiiqp 
 

, V is the 

covariance matrix of    (which are assumed IID Normal), and ji,  represents the 

covariance of changes between instruments i and j, p=1,…,N
*
, q=1,…,N

*
. 

 

5.2.1.4.- SUBSET CORRELATION MATRIX (C) 
Let C be a (N

*
xN

*
) matrix, defined as the correlation matrix implied by B. 

  2

1

,,,,


 qqppqpqp BBBC . 

 

5.2.1.5.- MAXIMUM SUBSET CORRELATION (MSC) 

The last column of matrix C has special significance. It represents the correlation of 

each subset to the spread.   11  *

, * -,...,N, pCMaxMSC
Np

 . Note that, like any 

diagonal element of a correlation matrix, 1** ,


NN
C . 

 

5.2.1.6.- MAELOC SPREAD 

Given a set of variables n, let’s designate as Maeloc the spread characterized by a 

vector (nx1) of holdings ω such that solves the following non-linear program: 
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 Note that the last column of 
*

ND  will still be a vector of 1s. 
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1         ..

11 ,         
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ts

-,...,NpCMaxMin
Np

 

(14) 
 

 

The spread’s first leg corresponds to the portfolio we wish to hedge, and its holding is 

set to 11  . A solution to a Maeloc spread always exists and it is obviously unique
17

.  

 

As n increases, the value of N
*
 explodes, which makes this non-linear problem highly 

dimensional. To make matters worse, the objective function is by no means 

continuous nor differentiable. Traditional optimization approaches may not offer a 

viable solution to this problem. An optimization algorithm specially designed to solve 

this program is presented in Appendix 3. 

 

A Maeloc spread has the following properties: 

1. Balanced: The exposure to any k-subset is minimized. No one instrument or 

set of instruments dominates the spread. 

2. Economic: Unnecessary legs are removed, as any subset including them 

would exhibit a high correlation to the spread. See the next section for an 

explanation of how to eliminate unnecessary legs. 

3. Customizable: The algorithm converges in presence of any number of 

constrained holdings. 

4. Control over lead-lag effects: The interval used to compute changes, on 

which the covariance matrix is estimated, can be interpreted as the horizon 

beyond which lead-lag effects should be penalized. Asynchronous co-

movements occurred within that interval are indistinguishable from 

synchronous, and therefore do not increase the correlation between the spread 

and the leader. Otherwise, they will increase the correlation between the 

spread and the leader, which will impact the holdings of the Maeloc-spread in 

order to provide a hedge. 

5. Robust: Similar to robust asset allocation methods (Meucci (2005)), the 

Maeloc-spread is obtained by minimizing the impact of the worst case 

scenario (a risk driver affecting a subset highly correlated to the spread). There 

may be other vectors of holdings that could hedge better against particular risk 

drivers, but this is the solution that provides the best overall hedge (including 

the worst scenarios). 

 

MMSC’s control over lead-lag effects is an interesting feature. Lead-lag effects 

increase the correlation between the spread and the leader, which the Maeloc spread 

subdues as it balances the spread across all constituents. Although the model itself 

makes no assumption regarding the dynamics of the spread, the weights are impacted 

by the spread’s multi-period behaviour. We have classified MMSC as a single-period 

method, but in fact it can be argued to be a hybrid. 

 

5.2.1.7.- MINIMUM LEG CORRELATION (MLC) 

We define Minimum Leg Correlation (MLC) as the minimum correlation among any 

leg or subset of legs (excluding the entire spread) of the Maeloc-spread. More 

formally,  
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 kNn   ,*
, and in particular 1 ,*  kNn . 
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   11,11  **

, -,...,Nq-,...,N, pCMinMLC qp 

 

(15) 
 

We must stress that MLC is computed after the Maeloc-spread has been determined. 

MLC’s role is to determine whether there are expendable legs. Consider a C matrix of 

a spread with 3 legs. Figure 1 illustrates how the C matrix is divided into two regions 

where MSC and MLC are to be found. A low MSC (maximum of the outer area) 

indicates that the spread is well-balanced, because no leg or subset of legs dominates 

the spread. However, that the spread is well-balanced is not a sufficient condition for 

being meaningful. As Meucci (2010) shows, the potential for improving a portfolio’s 

diversification is a function of the system’s correlation. A necessary condition must 

therefore be imposed, namely that the legs and subset of legs are highly correlated 

with each other, i.e. a high MLC (minimum of the inner area). 

 

 
Figure 1 – The MSC and MLC regions of the C matrix 

 

Whereas the MSC computed on the Maeloc-spread points to the areas of the spread 

that are imbalanced, the MLC computed on the Maeloc-spread indicates which 

constituents are not playing a relevant role in terms of adding diversification. 

 

Should MLC be low, it will be easy to form a spread with low MSC (e.g., equal 

holdings of alternating sign), however meaningless it may be. In that case, the 

unnecessary instrument, responsible for reducing the value of MLC, can be easily 

identified and removed. This sequential two-step process of MSC minimization 

(Maeloc-spread determination) and MLC evaluation delivers a spread that is both, 

meaningful and well-balanced. 

 

 

6.- EMPIRICAL RESULTS 

6.1.- THE DATA 

We will discuss in this section the results of estimating the previous hedging 

procedures. The investment universe is comprised of the 11 most liquid index futures 

worldwide, converted into USD: ES1 Index (CME E-Mini S&P500), DM1 Index 

(CBOT Mini Dow Jones), NQ1 Index (CME Nasdaq 100), VG1 Index (EUREX 

Eurostoxx 50), GX1 Index (EUREX DAX), CF1 Index (Euronext LIFFE CAC), Z 1 

Index (Euronext LIFFE FTSE), EO1 Index (Euronext LIFFE Amsterdam), RTA1 

Index (ICE Mini Russell 2000), NX1 Index (CME Nikkei 225 Dollar) and FA1 Index 

(CME Mini S&P MID 400). The data source is Bloomberg’s 1-minute bar history 
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from December 31
st
 2007 to February 4

th
 2011. Contracts are rolled forwards with the 

transfer of volume from the front contract to the next. 

 

Before running a procedure over a particular combination of securities, the relevant 

data is preprocessed as follows: 

1. Alignment: Minute bars on which one of the securities did not trade are 

eliminated. 

2. Observation weight: Units traded for different securities represent different bet 

sizes. In order to assign an observation weight to each aligned 1-minute bar, 

we must make the different volumes traded of each security comparable. To 

this purpose, we multiply the units traded of each security by that security’s 

risk. The sum of these products for each time bar is that observation’s weight. 

3. Sample: At the beginning of each session, 1-minute bars are gathered for the 

previous 5 sessions. The cumulative observation weights (as derived from the 

previous point) are divided into 250 buckets, equivalent to 50 buckets per 

session. A price time series is formed by taking the price of the last transaction 

from each bucket. 

 

The result is a time series of aligned prices sampled by equidistant observation 

weights, in excess of 40,000 datapoints and 810 rebalances per combination of 

securities. 

 

6.2.- TESTING FOR STABILITY 

Each procedure is optimal under its own (utility or satisfaction) criterion, and in that 

respect we cannot prefer one over the other in-sample. For example, a measure of 

diversification based on PCA-risk decomposition will prefer PCA over the other risk 

criteria, however subjective that choice is. An objective criterion for assessing the 

quality of a hedge is its stability. Thus, we will evaluate the alternative methods, 

preferring the most stable among the similar ones. For each combination of 

instruments, we measure stability in two different ways: Dispersion of the hedging 

ratios (static stability) and dispersion of the change in the hedging ratio between 

consecutive rebalances (dynamic stability). Static instability evidences lack of 

robustness, because the solutions exhibit a greater dispersion over time. Dynamic 

instability makes a solution impracticable, due to the need for frequent and costly 

rebalances. 

 

We have computed the number of E-mini S&P500 futures to be sold as a hedge 

against one contract owned of DM1 Index, etc. Hedging ratios are estimated over the 

entire sample (LR) and sequentially re-estimated every session based on the prior 5 

sessions (SR). LR w2 is the hedge estimated over the entire sample. Avg (SR w2) is the 

average value of the hedging ratios as estimated every day using data from the 

previous 5 sessions. StDev (SR w2) is the standard deviation of the same. That gives 

us the static stability, as we are computing the dispersion of the hedging ratios against 

the overall mean that Avg (SR w2) represents. t-Stat is the ratio of the prior two. 

 

Dynamic stability is assessed in the following terms: If      is the hedging ratio of a 

particular pair at session t and        is the hedging ratio of that same pair as of the 

previous session, StDev (d1 SR w2) is the standard deviation of the change (     
      ) from between two sessions. StDev (d2 SR w2) is the standard deviation of the 
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change over 2 sessions, etc. StDev (d5 SR w2) is the standard deviation of the changes 

from each day to the week after. 

 

 
Table 1 – OLSD hedge stability 

 

 
Table 2 – ECM hedge stability 

 

 
Table 3 – MVP hedge stability 

 

 
Table 4 – PCA hedge stability 

 

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.87 -0.84 0.05 -15.66 0.05 0.06 0.06 0.06 0.06

NQ1 Index ES1 Index 1 -0.58 -0.71 0.17 -4.21 0.17 0.18 0.19 0.20 0.20

VG1 Index ES1 Index 1 -1.00 -0.94 0.37 -2.56 0.34 0.37 0.43 0.45 0.48

GX1 Index ES1 Index 1 -3.61 -4.48 2.35 -1.91 1.46 2.03 2.49 2.73 2.94

CF1 Index ES1 Index 1 -1.30 -1.20 0.55 -2.18 0.71 0.54 0.73 0.74 0.74

Z 1 Index ES1 Index 1 -1.38 -1.72 0.61 -2.82 0.56 0.73 0.78 0.73 0.74

EO1 Index ES1 Index 1 -1.67 -1.88 0.50 -3.73 0.55 0.59 0.62 0.64 0.66

RTA1 Index ES1 Index 1 -1.27 -1.54 0.34 -4.55 0.34 0.35 0.33 0.37 0.36

NX1 Index ES1 Index 1 -0.97 -1.30 0.65 -2.01 0.72 0.81 0.83 0.88 0.90

FA1 Index ES1 Index 1 -1.32 -1.49 0.24 -6.34 0.22 0.24 0.23 0.25 0.24

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.95 -0.68 0.42 -1.63 0.45 0.54 0.55 0.57 0.58

NQ1 Index ES1 Index 0 0.00 -0.51 0.24 -2.17 0.28 0.32 0.33 0.33 0.33

VG1 Index ES1 Index 1 -0.65 -0.58 0.24 -2.42 0.29 0.34 0.34 0.32 0.33

GX1 Index ES1 Index 1 -3.54 -3.11 1.18 -2.63 1.30 1.60 1.70 1.67 1.69

CF1 Index ES1 Index 1 -0.86 -0.76 0.33 -2.30 0.37 0.45 0.46 0.46 0.46

Z 1 Index ES1 Index 1 -1.53 -1.32 0.52 -2.55 0.64 0.75 0.77 0.76 0.72

EO1 Index ES1 Index 1 -1.57 -1.33 0.57 -2.32 0.68 0.78 0.80 0.77 0.79

RTA1 Index ES1 Index 1 -1.14 -0.86 0.47 -1.84 0.52 0.65 0.69 0.68 0.66

NX1 Index ES1 Index 1 -0.79 -0.72 0.35 -2.04 0.40 0.45 0.46 0.46 0.47

FA1 Index ES1 Index 1 -1.35 -1.01 0.52 -1.95 0.61 0.69 0.73 0.74 0.73

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.69 -0.55 0.16 -3.39 0.09 0.10 0.12 0.13 0.14

NQ1 Index ES1 Index 1 -0.43 -0.32 0.25 -1.30 0.21 0.22 0.27 0.28 0.30

VG1 Index ES1 Index 1 0.02 2.30 34.52 0.07 52.99 35.05 52.36 49.17 49.38

GX1 Index ES1 Index 1 -5.03 -5.94 2.51 -2.36 1.31 1.95 2.46 2.78 3.00

CF1 Index ES1 Index 1 -5.44 3.34 87.73 0.04 124.56 123.16 127.58 124.42 124.04

Z 1 Index ES1 Index 1 -2.58 -4.04 8.72 -0.46 11.40 12.04 12.07 12.50 12.50

EO1 Index ES1 Index 1 -2.82 -3.93 12.24 -0.32 19.83 17.62 17.46 17.37 17.57

RTA1 Index ES1 Index 1 -2.15 -1.91 35.06 -0.05 49.42 50.76 51.23 50.11 49.56

NX1 Index ES1 Index 1 11.07 8.00 178.92 0.04 271.81 255.03 248.89 256.51 255.36

FA1 Index ES1 Index 1 -1.87 -2.68 10.39 -0.26 15.04 14.75 14.70 14.74 14.72

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.85 -0.84 0.04 -19.25 0.03 0.03 0.04 0.04 0.04

NQ1 Index ES1 Index 1 -0.60 -0.67 0.11 -5.98 0.08 0.09 0.10 0.10 0.10

VG1 Index ES1 Index 1 -0.89 -0.90 0.29 -3.15 0.17 0.23 0.30 0.34 0.38

GX1 Index ES1 Index 1 -4.66 -5.17 2.14 -2.41 1.08 1.68 2.12 2.42 2.64

CF1 Index ES1 Index 1 -1.18 -1.20 0.49 -2.43 0.54 0.43 0.60 0.62 0.65

Z 1 Index ES1 Index 1 -1.69 -1.82 0.46 -3.95 0.26 0.38 0.44 0.48 0.49

EO1 Index ES1 Index 1 -1.96 -2.05 0.36 -5.71 0.22 0.27 0.31 0.37 0.39

RTA1 Index ES1 Index 1 -1.39 -1.61 0.29 -5.48 0.10 0.13 0.15 0.16 0.18

NX1 Index ES1 Index 1 -1.19 -1.30 0.49 -2.64 0.38 0.47 0.57 0.61 0.62

FA1 Index ES1 Index 1 -1.42 -1.54 0.22 -7.00 0.09 0.11 0.12 0.14 0.15
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Table 5 – BTCD hedge stability 

 

 
Table 6 – DFO hedge stability 

 

 
Table 7 – MMSC hedge stability 

 

Short run Avg DFO and Avg ECM vectors are very close, although DFO seems to 

provide more robust results (an average StDev(SR w2) of 0.38 for DFO compared to a 

0.48 for ECM). Likewise, short run Avg MMSC and Avg PCA vectors are very 

similar, with MMSC delivering more robust estimates (an average StDev(SR w2) 0.26 

for MMSC compared to a 0.49 for PCA).
18

 These similarities are not surprising and 

are consistent with the theory outlined earlier. DFO and ECM approach the hedging 

problem from a cointegration perspective. The difference is, ECM’s solution tries to 

maximize the R
2
 of portfolio changes, while DFO focuses on minimizing the 

probability that the cumulative hedging errors incorporates a unit root (perhaps a more 

critical question for the purpose of hedging). Like PCA, MMSC also looks into the 

geometry of the hedging problem, deriving the holdings that are most orthogonal to 

the hedging error (in terms of legs and subsets of legs). 

 

Using StDev(SR w2) from Tables 1-7, Table 8 provides the rank for each hedging 

method and pair in terms of static stability. The greatest average rank is obtained by 

BTCD and MMSC, followed by DFO. 
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 These discrepancies in stability are statistically significant beyond a 99% confidence level for an F-

test of homogeneous variances. 

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.94 -0.94 0.03 -36.67 0.02 0.02 0.02 0.02 0.02

NQ1 Index ES1 Index 1 -0.66 -0.62 0.17 -3.74 0.23 0.23 0.23 0.23 0.23

VG1 Index ES1 Index 1 -0.59 -0.68 0.04 -18.67 0.03 0.03 0.03 0.03 0.03

GX1 Index ES1 Index 1 -3.67 -3.55 0.12 -30.83 0.04 0.04 0.05 0.05 0.05

CF1 Index ES1 Index 1 -0.80 -0.90 0.04 -22.03 0.04 0.04 0.04 0.04 0.04

Z 1 Index ES1 Index 1 -1.52 -1.54 0.38 -4.02 0.54 0.54 0.55 0.55 0.55

EO1 Index ES1 Index 1 -1.56 -1.57 0.05 -29.22 0.04 0.04 0.04 0.04 0.04

RTA1 Index ES1 Index 1 -1.18 -1.11 0.07 -16.60 0.04 0.05 0.05 0.05 0.05

NX1 Index ES1 Index 1 -0.79 -0.86 0.43 -1.99 0.61 0.61 0.61 0.61 0.61

FA1 Index ES1 Index 1 -1.36 -1.27 0.08 -16.11 0.03 0.04 0.04 0.04 0.04

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.94 -0.93 0.23 -4.08 0.30 0.31 0.32 0.32 0.32

NQ1 Index ES1 Index 1 -1.18 -0.64 0.30 -2.15 0.40 0.40 0.40 0.40 0.38

VG1 Index ES1 Index 1 -0.34 -0.68 0.20 -3.33 0.28 0.29 0.29 0.29 0.29

GX1 Index ES1 Index 1 -4.40 -3.64 1.18 -3.08 1.34 1.70 1.71 1.71 1.71

CF1 Index ES1 Index 1 -0.51 -0.91 0.16 -5.80 0.19 0.22 0.22 0.22 0.22

Z 1 Index ES1 Index 1 -1.31 -1.51 0.36 -4.18 0.52 0.52 0.52 0.52 0.52

EO1 Index ES1 Index 1 -1.09 -1.58 0.22 -7.32 0.28 0.30 0.30 0.30 0.30

RTA1 Index ES1 Index 1 -1.45 -1.13 0.42 -2.68 0.56 0.60 0.60 0.60 0.60

NX1 Index ES1 Index 1 -0.03 -0.86 0.31 -2.78 0.41 0.41 0.41 0.42 0.41

FA1 Index ES1 Index 1 -1.90 -1.30 0.43 -3.05 0.46 0.57 0.61 0.62 0.62

Avg StDev t-Stat StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 LR w1 LR w2 (SR w2) (SR w2) (SR w2) (d1 SR w2) (d2 SR w2) (d3 SR w2) (d4 SR w2) (d5 SR w2)

DM1 Index ES1 Index 1 -0.86 -0.84 0.04 -20.77 0.02 0.03 0.03 0.03 0.04

NQ1 Index ES1 Index 1 -0.63 -0.69 0.10 -7.28 0.04 0.05 0.06 0.06 0.07

VG1 Index ES1 Index 1 -0.90 -0.90 0.15 -5.86 0.09 0.11 0.15 0.17 0.19

GX1 Index ES1 Index 1 -4.12 -4.27 0.98 -4.34 0.48 0.73 0.91 1.07 1.19

CF1 Index ES1 Index 1 -1.16 -1.15 0.23 -5.08 0.19 0.17 0.24 0.26 0.28

Z 1 Index ES1 Index 1 -1.62 -1.63 0.21 -7.70 0.12 0.16 0.18 0.20 0.21

EO1 Index ES1 Index 1 -1.84 -1.82 0.22 -8.37 0.13 0.18 0.21 0.24 0.26

RTA1 Index ES1 Index 1 -1.36 -1.52 0.22 -6.85 0.08 0.10 0.11 0.13 0.14

NX1 Index ES1 Index 1 -1.16 -1.18 0.23 -5.15 0.15 0.20 0.24 0.27 0.28

FA1 Index ES1 Index 1 -1.40 -1.48 0.18 -8.13 0.07 0.08 0.09 0.10 0.11
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Table 8 – Static stability ranking 

 

Dynamic stability results are broadly consistent with their static counterpart. For 

example, average StDev(d1 SR w2) for DFO is 0.47, compared to a 0.55 for ECM. 

Likewise, MMSC is only 0.14, compared to 0.29 of PCA. These discrepancies in 

stability are again statistically significant beyond the 99% confidence level for an F-

test of variance homogeneity. MMSC’s stability, both static and dynamic, makes it a 

very strong candidate in those situations where rebalancing is costly, like in the case 

of illiquid instruments. It also indicates that MMSC should be preferred to PCA when 

the sample length is limited. These advantages of MMSC are a consequence of its 

strong structure. 

 

Table 9 delivers the rankings in terms of dynamic stability per method and pair, based 

on StDev(d1 SR w2). Table 10 offers the equivalent rank, but based on StDev(d5 SR 

w2). It is interesting to note that this ranking for multi-period methods tends to 

improve as the stability horizon increases, while the same ranking worsens for single-

period methods. This result is consistent with the theory outlined earlier. 

 

 
Table 9 – Dynamic stability ranking over one session 

 

Portf. 1 Portf. 2 OLSD ECM MVP PCA BTCD DFO MMSC

DM1 Index ES1 Index 4 7 5 3 1 6 2

NQ1 Index ES1 Index 4 5 6 2 3 7 1

VG1 Index ES1 Index 6 4 7 5 1 3 2

GX1 Index ES1 Index 6 4 7 5 1 3 2

CF1 Index ES1 Index 6 4 7 5 1 2 3

Z 1 Index ES1 Index 6 5 7 4 3 2 1

EO1 Index ES1 Index 5 6 7 4 1 2 3

RTA1 Index ES1 Index 4 6 7 3 1 5 2

NX1 Index ES1 Index 6 3 7 5 4 2 1

FA1 Index ES1 Index 4 6 7 3 1 5 2

5.10 5.00 6.70 3.90 1.70 3.70 1.90Average rank

Portf. 1 Portf. 2 OLSD ECM MVP PCA BTCD DFO MMSC

DM1 Index ES1 Index 4 7 5 3 1 6 2

NQ1 Index ES1 Index 3 6 4 2 5 7 1

VG1 Index ES1 Index 6 5 7 3 1 4 2

GX1 Index ES1 Index 7 4 5 3 1 6 2

CF1 Index ES1 Index 6 4 7 5 1 3 2

Z 1 Index ES1 Index 5 6 7 2 4 3 1

EO1 Index ES1 Index 5 6 7 3 1 4 2

RTA1 Index ES1 Index 4 5 7 3 1 6 2

NX1 Index ES1 Index 6 3 7 2 5 4 1

FA1 Index ES1 Index 4 6 7 3 1 5 2

5.00 5.20 6.30 2.90 2.10 4.80 1.70Average rank
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Table 10 – Dynamic stability ranking over five sessions (one week) 

 

Next, we would like to determine which stable methods should be chosen among 

those similar. To that purpose, we have computed the correlation between procedures 

on the daily re-estimated hedging vectors. We should prefer DFO over ECM and 

MMSC over PCA, as they yield highly correlated results (see Table 11) with the first 

of each couple delivering more stable estimates (see Tables 1-8).
19

 MVP is the most 

unstable of all procedures, with an average StDev(SR w2) of 37.05 and an average 

StDev (d1 SR w2) of 54.66. OLSD’s theoretical inconsistencies make it an unreliable 

choice. BTCD is not highly correlated with DFO or MMSC, while also delivering 

stable results (average StDev(SR w2) of 0.14 and an average StDev (d1 SR w2) of 

0.16). Hence, we advocate for BTCD, DFO and MMSC as stable, mutually different 

hedging procedures. 

 

 

 

 

 

 
Table 11 – Correlation matrices of the time series of hedging vectors 
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 Applying Fisher’s transformation, a high correlation estimate such as 0.9 on 810 observations has a 

99% confidence band between 0.881 and 0.916. 

Portf. 1 Portf. 2 OLSD ECM MVP PCA BTCD DFO MMSC

DM1 Index ES1 Index 4 7 5 3 1 6 2

NQ1 Index ES1 Index 3 6 5 2 4 7 1

VG1 Index ES1 Index 6 4 7 5 1 3 2

GX1 Index ES1 Index 6 3 7 5 1 4 2

CF1 Index ES1 Index 6 4 7 5 1 2 3

Z 1 Index ES1 Index 6 5 7 2 4 3 1

EO1 Index ES1 Index 5 6 7 4 1 3 2

RTA1 Index ES1 Index 4 6 7 3 1 5 2

NX1 Index ES1 Index 6 3 7 5 4 2 1

FA1 Index ES1 Index 4 6 7 3 1 5 2

5.00 5.00 6.60 3.70 1.90 4.00 1.80Average rank

DM_ES OLSD ECM MVP PCA BTCD DFO MMSC NQ_ES OLSD ECM MVP PCA BTCD DFO MMSC

OLSD 1 0.878 0.487 0.992 0.877 0.686 0.992 OLSD 1 0.911 0.512 0.961 0.912 0.746 0.969

ECM 0.878 1 0.158 0.876 1.000 0.996 0.884 ECM 0.911 1 0.751 0.962 1.000 0.999 0.949

MVP 0.487 0.158 1 0.496 0.163 0.146 0.481 MVP 0.512 0.751 1 0.619 0.752 0.623 0.558

PCA 0.992 0.876 0.496 1 0.878 0.691 1.000 PCA 0.961 0.962 0.619 1 0.963 0.784 0.995

BTCD 0.877 1.000 0.163 0.878 1 0.768 0.886 BTCD 0.912 1.000 0.752 0.963 1 0.822 0.950

DFO 0.686 0.996 0.146 0.691 0.768 1 0.697 DFO 0.746 0.999 0.623 0.784 0.822 1 0.774

MMSC 0.992 0.884 0.481 1.000 0.886 0.697 1 MMSC 0.969 0.949 0.558 0.995 0.950 0.774 1

VG_ES OLSD ECM MVP PCA BTCD DFO MMSC GX_ES OLSD ECM MVP PCA BTCD DFO MMSC

OLSD 1 0.712 -0.111 0.964 0.730 0.704 0.943 OLSD 1 0.821 0.890 0.942 0.830 0.692 0.943

ECM 0.712 1 0.047 0.797 1.000 1.000 0.840 ECM 0.821 1 0.693 0.793 1.000 1.000 0.933

MVP -0.111 0.047 1 -0.082 0.051 0.049 -0.048 MVP 0.890 0.693 1 0.983 0.705 0.587 0.891

PCA 0.964 0.797 -0.082 1 0.810 0.774 0.986 PCA 0.942 0.793 0.983 1 0.803 0.671 0.954

BTCD 0.730 1.000 0.051 0.810 1 0.951 0.846 BTCD 0.830 1.000 0.705 0.803 1 0.832 0.936

DFO 0.704 1.000 0.049 0.774 0.951 1 0.808 DFO 0.692 1.000 0.587 0.671 0.832 1 0.785

MMSC 0.943 0.840 -0.048 0.986 0.846 0.808 1 MMSC 0.943 0.933 0.891 0.954 0.936 0.785 1

CF_ES OLSD ECM MVP PCA BTCD DFO MMSC Z_ES OLSD ECM MVP PCA BTCD DFO MMSC

OLSD 1 0.811 0.020 0.958 0.810 0.773 0.955 OLSD 1 0.927 0.120 0.940 0.921 0.914 0.950

ECM 0.811 1 -0.007 0.845 1.000 1.000 0.883 ECM 0.927 1 0.120 0.936 1.000 1.000 0.978

MVP 0.020 -0.007 1 0.000 -0.004 0.003 -0.003 MVP 0.120 0.120 1 0.147 0.127 0.126 0.139

PCA 0.958 0.845 0.000 1 0.846 0.805 0.996 PCA 0.940 0.936 0.147 1 0.934 0.924 0.983

BTCD 0.810 1.000 -0.004 0.846 1 0.944 0.882 BTCD 0.921 1.000 0.127 0.934 1 0.989 0.977

DFO 0.773 1.000 0.003 0.805 0.944 1 0.838 DFO 0.914 1.000 0.126 0.924 0.989 1 0.966

MMSC 0.955 0.883 -0.003 0.996 0.882 0.838 1 MMSC 0.950 0.978 0.139 0.983 0.977 0.966 1

EO_ES OLSD ECM MVP PCA BTCD DFO MMSC RTA_ES OLSD ECM MVP PCA BTCD DFO MMSC

OLSD 1 0.883 0.302 0.944 0.887 0.874 0.952 OLSD 1 0.846 0.035 0.958 0.837 0.740 0.963

ECM 0.883 1 0.253 0.882 1.000 1.000 0.948 ECM 0.846 1 -0.005 0.832 1.000 0.993 0.883

MVP 0.302 0.253 1 0.396 0.256 0.255 0.343 MVP 0.035 -0.005 1 0.035 0.000 0.001 0.028

PCA 0.944 0.882 0.396 1 0.887 0.877 0.983 PCA 0.958 0.832 0.035 1 0.825 0.716 0.993

BTCD 0.887 1.000 0.256 0.887 1 0.980 0.951 BTCD 0.837 1.000 0.000 0.825 1 0.847 0.878

DFO 0.874 1.000 0.255 0.877 0.980 1 0.937 DFO 0.740 0.993 0.001 0.716 0.847 1 0.759

MMSC 0.952 0.948 0.343 0.983 0.951 0.937 1 MMSC 0.963 0.883 0.028 0.993 0.878 0.759 1

NX_ES OLSD ECM MVP PCA BTCD DFO MMSC FA_ES OLSD ECM MVP PCA BTCD DFO MMSC

OLSD 1 0.838 0.018 0.927 0.833 0.728 0.925 OLSD 1 0.918 0.010 0.974 0.917 0.798 0.974

ECM 0.838 1 -0.029 0.879 1.000 0.956 0.926 ECM 0.918 1 0.033 0.925 1.000 0.995 0.947

MVP 0.018 -0.029 1 -0.006 -0.027 -0.031 -0.010 MVP 0.010 0.033 1 0.036 0.034 0.045 0.029

PCA 0.927 0.879 -0.006 1 0.878 0.745 0.990 PCA 0.974 0.925 0.036 1 0.923 0.807 0.997

BTCD 0.833 1.000 -0.027 0.878 1 0.875 0.926 BTCD 0.917 1.000 0.034 0.923 1 0.861 0.946

DFO 0.728 0.956 -0.031 0.745 0.875 1 0.791 DFO 0.798 0.995 0.045 0.807 0.861 1 0.823

MMSC 0.925 0.926 -0.010 0.990 0.926 0.791 1 MMSC 0.974 0.947 0.029 0.997 0.946 0.823 1
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6.3.- TESTING FOR HEDGING ERRORS 

Unstable methods are impracticable for operational (robustness) and economic 

reasons (rebalance cost) reasons. In the previous Section we have concluded that the 

three advanced methods (BTCD, DFO, MMSC) are the most stable among those 

similar. 

 

The paper began by enunciating the hedging problem in terms of the minimizing the 

change in value of the spread over the hedged period (recall Eqs. (1)-(2)). We can 

finally turn our attention to answer that original question. Using the hedging ratios 

estimated in the previous Section, tables 12-14 assess the performance of the three 

distinct and stable methods in terms of the standard deviation of the hedging errors. 

StDev(e1)x is the standard deviation of the hedging error over one session, divided by 

the standard deviation of price changes for the first leg (which has a weight of 1) over 

one session. 

 

 
     (  )  

 ( ( ))

 (           )

 
 (            ∑   (           )
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 (           )
 

(16) 
 

 

Similarly, StDev(e5)x is the standard deviation of the hedging error over five sessions, 

divided by the standard deviation of price changes for the first leg over five sessions. 

In other words, we are measuring the dispersion of the hedging error relative to the 

exposure of remaining unhedged over the same horizon. The smallest these 

magnitudes, the better the hedge. A reading of zero would indicate a perfect hedge, 

and a reading of one would indicate that the hedge failed to deliver any protection. 
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Table 12 – BTCD hedge performance 

 

StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 (e1)x (e2)x (e3)x (e4)x (e5)x

DM1 Index ES1 Index 0.28 0.26 0.26 0.26 0.26

NQ1 Index ES1 Index 0.60 0.56 0.49 0.43 0.39

VG1 Index ES1 Index 0.44 0.46 0.46 0.46 0.46

GX1 Index ES1 Index 0.68 0.57 0.54 0.52 0.52

CF1 Index ES1 Index 0.42 0.26 0.44 0.44 0.44

Z 1 Index ES1 Index 0.42 0.40 0.42 0.46 0.41

EO1 Index ES1 Index 0.41 0.42 0.42 0.42 0.42

RTA1 Index ES1 Index 0.40 0.41 0.41 0.40 0.40

NX1 Index ES1 Index 0.51 0.52 0.59 0.58 0.63

FA1 Index ES1 Index 0.32 0.32 0.32 0.32 0.32
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Table 13 – DFO hedge performance 

 

 
Table 14 – MMSC hedge performance 

 

For example, consider the reading of StDev(e1)x for the first spread in Table 14. This 

means the MMSC’s standard deviation of the hedging error over one session 

( ( ( ))) was 0.24 times the standard deviation of being unhedged ( (     

      )). MMSC removed more than ¾ of the exposure we had to the first leg (DM1 

Index). 

 

Average StDev(e1)x are respectively 0.42, 0.45 and 0.48 for MMSC, BTDC and DFO. 

Although MMSC does perform better, the difference is not statistically significant at 

any reasonable confidence level. 

 

Tables 15-16 provide the ranking of the three advanced hedging methods. MMSC 

delivers the best hedging performance over the horizon of one session, beating the 

two multi-period methods. However, as the horizon increases to five sessions 

(equivalent to one week), BTCD improves while MMSC worsens. This is again 

consistent with the theory presented in previous Sections. Because single-period 

methods do not take into account the serial conditionality of the hedging error, their 

performance is expected to worsen as the horizon increases. 

 

StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 (e1)x (e2)x (e3)x (e4)x (e5)x

DM1 Index ES1 Index 0.33 0.32 0.31 0.30 0.34

NQ1 Index ES1 Index 0.55 0.52 0.46 0.47 0.44

VG1 Index ES1 Index 0.51 0.46 0.46 0.47 0.50

GX1 Index ES1 Index 0.70 0.59 0.58 0.54 0.60

CF1 Index ES1 Index 0.43 0.32 0.45 0.45 0.46

Z 1 Index ES1 Index 0.46 0.45 0.44 0.40 0.41

EO1 Index ES1 Index 0.42 0.43 0.43 0.43 0.43

RTA1 Index ES1 Index 0.50 0.47 0.50 0.44 0.43

NX1 Index ES1 Index 0.56 0.55 0.58 0.57 0.57

FA1 Index ES1 Index 0.36 0.36 0.36 0.35 0.37

StDev StDev StDev StDev StDev

Portf. 1 Portf. 2 (e1)x (e2)x (e3)x (e4)x (e5)x

DM1 Index ES1 Index 0.24 0.22 0.21 0.21 0.21

NQ1 Index ES1 Index 0.40 0.41 0.41 0.41 0.41

VG1 Index ES1 Index 0.40 0.44 0.45 0.47 0.48

GX1 Index ES1 Index 0.73 0.62 0.60 0.57 0.56

CF1 Index ES1 Index 0.40 0.22 0.43 0.43 0.45

Z 1 Index ES1 Index 0.41 0.40 0.39 0.38 0.38

EO1 Index ES1 Index 0.41 0.42 0.42 0.42 0.42

RTA1 Index ES1 Index 0.39 0.39 0.39 0.38 0.38

NX1 Index ES1 Index 0.54 0.55 0.54 0.54 0.54

FA1 Index ES1 Index 0.32 0.32 0.32 0.32 0.32
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Table 15 – Ranking advanced methods in terms of the standard deviation of the 

hedging error over one session 

 

 
Table 16 – Ranking advanced methods in terms of the standard deviation of the 

hedging error over five sessions (one week) 

 

As usual, we caution against overstretching the conclusions of this study. We have 

focused our attention on the 11 most liquid Index Futures. These methodologies may 

perform differently for other asset classes and sample lengths. In a coming paper we 

will expand our study to spreads with more than two legs. 

 

 

7.- CONCLUSIONS 

After characterizing the hedging problem, we have proposed a taxonomy of existing 

methodologies. Then, we have introduced two novel hedging procedures, Dickey-

Fuller Optimal (DFO) and Mini-Max Subset Correlation (MMSC), and generalized an 

existing one, Box-Tiao Canonical Decomposition (BTCD). The first one estimates the 

vector of holdings that delivers a hedging error with the lowest probability of having a 

unit root. This is a useful property, as it limits the magnitude of the cumulative 

hedging errors. The second one computes a Maeloc spread, which is characterized by 

the holdings that generate the most orthogonal subset components. Thus, no particular 

holding or subset of holdings dominates the hedging error. 

 

We evaluate traditional and advanced hedging methods in two stages: First, we wish 

to identify which ones are robust (static stability) and practicable (dynamic stability). 

Portf. 1 Portf. 2 BTCD DFO MMSC

DM1 Index ES1 Index 2 3 1

NQ1 Index ES1 Index 3 2 1

VG1 Index ES1 Index 2 3 1

GX1 Index ES1 Index 1 2 3

CF1 Index ES1 Index 2 3 1

Z 1 Index ES1 Index 2 3 1

EO1 Index ES1 Index 2 3 1

RTA1 Index ES1 Index 2 3 1

NX1 Index ES1 Index 1 3 2

FA1 Index ES1 Index 2 3 1

1.90 2.80 1.30Average rank

Portf. 1 Portf. 2 BTCD DFO MMSC

DM1 Index ES1 Index 2 3 1

NQ1 Index ES1 Index 1 3 2

VG1 Index ES1 Index 1 3 2

GX1 Index ES1 Index 1 3 2

CF1 Index ES1 Index 1 3 2

Z 1 Index ES1 Index 3 2 1

EO1 Index ES1 Index 2 3 1

RTA1 Index ES1 Index 2 3 1

NX1 Index ES1 Index 3 2 1

FA1 Index ES1 Index 1 3 2

1.70 2.80 1.50Average rank
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Second, among the robust and practicable, we would like to discern what methods 

deliver the lowest standard deviation of hedging error. Regarding the first stage, 

historical backtests show that DFO delivers estimates close to those derived by Error 

Correction Method (ECM), although the estimates from the first are more stable over 

time. For the same reason, we should prefer MMSC estimates over Principal 

Component Analysis’ (PCA). DFO and MMSC yield distinct results, mutually and 

compared to BTCD. Of the seven hedging procedures discussed, we advocate for 

applying the last three (BTCD, DFO, MMSC) and disregard the other four (OLSD, 

ECM, MVP, PCA). Regarding the second stage, for the 11 most liquid Index Futures 

we find that all three advanced hedging methods perform well. Researchers may 

prefer one of the advanced methods over the others from a theoretical, technical or 

practical perspective, but as it relates to hedging performance, BTCD, DFO and 

MMSC deliver similar standard deviation of hedging errors. 
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APPENDIX 

 

A.1.- SPECIFICATION OF THE SIMPLE ERROR CORRECTION MODEL 

The starting point is a proportional, long-run equilibrium relationship between the 

market values of the portfolio we wish to hedge and the hedging portfolio. 

 

            (18) 
 

where K is the constant of proportionality. In log form,            , where the 

lower case indicates the natural logarithm of the variables in upper case. The dynamic 

relationship between    and    can be represented as: 

 

                                     (19) 
 

In order for this dynamic equation to converge to the long-run equilibrium (  
    

 ), it 
must occur that 

 

   
         

      
      

  (20) 
 

which leads to 

 

   
  

  

    
 

     

    
  
  

(21) 
 

and sets the general equilibrium conditions as 

 

   
  

    
 

           

(22) 
 

Let’s define        . Under such equilibrium condition, this implies that 

        and       . Then, our general dynamic equation can be re-written 

as: 

 

                   (             )     (23) 
 

where  (           ) is the “error correction” that over time corrects the cumulative 

hedging errors, hence ensuring the convergence of the spread towards the long run 

equilibrium. 

 

   , because in absence of disturbances (        ),    should converge towards its 

equilibrium level. Let’s see what occurs when we set        ,     . Then, 

          (             ). Applying the equilibrium conditions, this leaves us 

with        (               ), where          happens to be the equilibrium 

value of    for observation t-1. If                  , then    fell short of its 

equilibrium level in t-1, in which case the error correction should compensate for the 

difference (i.e.,   ought to be positive). This has the important consequence that a test 

of significance on   should be one-tailed, with       . 

 

How does this relate to the OLSD model? Consider the case that                , 

i.e. the model reached the equilibrium in observation t-1. In absence of disturbance, 
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this implies that                   (               ), which after a few 

operations reduces to              . This illustrates the fact that an OLSD model 

incorporates the unlikely assumption that the spread is already in equilibrium and it 

won’t be disturbed. 

 

Finally, the hedge is characterized by the holdings (     )  (    ), where 

   
  
 . 

 

A.2.- DERIVATIVES OF THE DF STATISTIC 

A.2.1.- FIRST DERIVATIVE 
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This gradient can be used to identify the set {  } that delivers a {  } with minimum 

DF Stat. 

 

A.2.2.- SECOND DERIVATIVE 
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A.3.- GRADIENT OPTIMIZATION OF MAELOC SPREADS 

Let 
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Ignoring the residual beyond the second term, this reduces to 
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We need to compute the first two partial derivatives. 

 

A.3.1.- FIRST DERIVATIVE 

We’ll derive 
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iii PSPwS   ,,  .

20
 

 

In order to control the cross effects on correlation, 
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 This can be seen from the linear relation PwS  . 
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 . This makes possible to adjust the 

correlation between the spread and a leg j by changing any other leg i. This will prove 

useful in presence of constraints. 

 

A.3.2.- SECOND DERIVATIVE 
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A.3.3.- TAYLOR’S EXPANSION 

Let’s denote    iPwSiiPwSPwS www
jjjjjj   ,,,  . Substituting on Taylor’s 

expansion, 
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which we solve as 
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The solution is two roots, 
a

acbb

2

42 
, of which we use the one which produces 

the smallest iw , i.e. 
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And for a=0, the unique root is  
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A.3.4.- BACKPROPAGATION FROM SUBSETS TO INSTRUMENTS 

Spreads can be thought as linear combinations of N
*
 subsets of legs, rather than n 

instruments. 

 

The series for subset i is  **

ii DXP  , where *

iD  is a Hadamar product 

between instruments’ holdings Ω and the ith-column of matrix subset definition D
*
, 

*

iD . X is the matrix of instruments’ series. Let be P
*
 the matrix of N

* 
subsets’ series.  

 

If we simply aggregate all subsets, we obtain NIPSq * , where *

*'1
Nn IDI

n
q  . 

Denoting *N
Iw  , a (N

*
x1) identity vector, then wPSq * .
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We have now defined the spread in terms of instruments,  XS , and subsets of 

legs, wPSq * . Expanding P
*
, 
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 . This expression shows how to 

backpropagate changes in subsets’ holdings into instruments’ holdings. 

 

iw  is the change to subset i’s holdings that returns the desired 
jj PwS  , . 

iiii wwww  1* , since each subset is set to a weight of 1. In order to 

backpropagate iw  into instruments’ holdings Ω,   *** 1 iiii DwwD  . In 

other words, we simply need to scale by  iw1  the holding on any instrument 

involved in subset i.
23
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 The reason is, since this is a Taylor expansion, we know the approximation error grows with iw . 

22
 Alternatively, wPS *  for a *

1
N

I
q

w  . Either definition will lead to identical results, since 

iiii PwSqPwS   ,,   for any q>0. 

23
 Should all holdings be scaled,  iw 1*

, obviously nothing would change. 
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A.3.5.- STEP SIZE 

At every iteration, we want to reduce the exposure to the subset that produces the 

  11 *

, -,...,N, jMaxMSC
jj PwS   . Let’s say that 

jj PwSMSCj  , . Any i subset 

containing no constrained instruments can be used to reduce MSC. i can be 

determined by rotation or searching for the unconstrained subset i with highest 

sensitivity to j. 

 

Ideally, all k-subset correlations will converge to an average. This is guaranteed for 

k=1, but not for k>1
24

. We’ll define 
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1
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1

1 N

i

PwS iiN
C   as the target for the next 

iteration, and 
jjjj PwSPwS C   ,,  .

25
  

 

A.3.6.- DEALING WITH CONSTRAINED INSTRUMENTS 

Any subset containing a constrained instrument shall not be iterated. Its exposure to 

the spread can be reduced by means of modifying another subset with no constrained 

instrument, using the cross-derivatives. 

  

                                                 
24

 Because 11*  NNn . 

25
 In practice,    2

,,, 1
jjjjjj PwSPwSPwS C     delivers a smoother convergence. 
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