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ABSTRACT 

 

Calibrating a trading rule using a historical simulation (also called backtest) contributes 

to backtest overfitting, which in turn leads to underperformance. In this paper we propose 

a procedure for determining the optimal trading rule (OTR) without running alternative 

model configurations through a backtest engine. We present empirical evidence of the 

existence of such optimal solutions for the case of prices following a discrete Ornstein-

Uhlenbeck process, and show how they can be computed numerically. Although we do 

not derive a closed-form solution for the calculation of OTRs, we conjecture its existence 

on the basis of the empirical evidence presented. 
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1.- INTRODUCTION 

Investment strategies can be defined as logical arguments that postulate the existence of a 

market inefficiency. Some strategies use econometric arguments to forecast financial 

variables such as GDP or inflation; other strategies use fundamental and accounting 

information to price securities; or search for arbitrage-like opportunities in the pricing of 

derivatives products, etc. For instance, suppose that banking corporations tend to sell off-

the-run bonds two days before U.S. Treasury auctions, in order to reserve balance sheet 

for the new “paper”. One could monetize on that knowledge by selling off-the-run bonds 

three days before auctions. But how? Each investment strategy requires an 

implementation tactic, often referred to as trading rules. 

 

There are dozens of hedge fund styles, each running dozens of unique investment 

strategies. While strategies can be very heterogeneous in nature, tactics are relatively 

homogeneous. Trading rules provide the algorithm that must be followed to enter and exit 

a position. For example, a position will be entered when the strategy’s signal reaches a 

certain value. Conditions for exiting a position are often defined through thresholds for 

profit-taking and stop-losses. These entry and exit rules rely on parameters that are 

usually calibrated via historical simulations. This practice leads to the problem of 

backtest overfitting, because these parameters target specific observations in-sample, to 

the point that the investment strategy is so attached to the past that becomes unfit for the 

future. 

 

An important clarification is that we are interested in the exit corridor conditions that 

maximize performance. In other words, the position already exists and the question is 

how to exit it optimally. This is the dilemma often faced by execution traders, and it 

should not be mistaken with the determination of entry and exit thresholds for some 

underlying instrument. For a study of that alternative question, see Bertram [2009]. 

 

Bailey et al. [2013, 2014] discuss the problem of backtest overfitting, and provide 

methods to determine to what extent a simulated performance may be inflated due the 

overfitting. While assessing the probability of backtest overfitting is a useful tool to 

discard superfluous investment strategies, it would be better to avoid the risk of 

overfitting, at least in the context of calibrating a trading rule. In theory this could be 

accomplished by estimating the optimal parameters for the trading rule directly from the 

data, rather than engaging in historical simulations. This is the approach we take in this 

paper. Using the entire historical sample, we will characterize the stochastic process that 

generates the observed stream of returns, and derive the optimal values for the trading 

rule’s parameters without requiring a historical simulation. 

 

The rest of the study is organized as follows: Section 2 defines a trading rule, sets its 

characterization and introduces the problem of overfitting in the context of a trading 

rule’s calibration. Section 3 describes our framework for calibrating a trading rule. 

Section 4 illustrates how to determine optimal trading rules (OTRs) numerically. Section 

5 summarizes our conclusions. The appendices present an implementation in Python of 

our experiments. 

 

Electronic copy available at: https://ssrn.com/abstract=2658641



4 

 

2.- THE PROBLEM 

Suppose an investment strategy S that invests in        opportunities or bets. At each 

opportunity i, S takes a position of    units of security X, where    (    ). The 

transaction that entered such opportunity was priced at a value       , where      is the 

average price per unit at which the    securities were transacted. As other market 

participants transact security X, we can mark-to-market (MtM) the value of that 

opportunity i after t observed transactions as       . This represents the value of 

opportunity i if it were liquidated at the price observed in the market after t transactions. 

Accordingly, we can compute the MtM profit/loss of opportunity i after t transactions as 

       (         ). 
  

A standard trading rule provides the logic for exiting opportunity i at     . This occurs 

when one of two conditions is verified: 

         , where      is the profit-taking threshold for opportunity i. 

         , where      is the stop-loss threshold for opportunity i. 

 

Because      , only one of the two exit conditions can trigger the exit from 

opportunity i. Assuming that opportunity i can be exited at   , its final profit/loss is      . 

At the onset of each opportunity, the goal is to realize an expected profit   [     ]  

  (  [     ]      ), where   [     ] is the forecasted price and      is the entry level of 

opportunity i. 

 

DEFINITION 1 (Trading Rule): A trading rule for strategy S is defined by the set of 

parameters   {(     )}        . 

 

One way to calibrate the trading rule is to: 

1. Define a set of alternative values of R,   { }. 
2. Simulate historically (also called backtest) the performance of S under alternative 

values of    . 

3. Select the optimal   . 
 

More formally: 

 

          
   

    

    
 [     | ]

 [     | ]
 

(1) 
 

 

where  [ ] and  [ ] are respectively the expected value and standard deviation of      , 

conditional on trading rule R, over       . In other words, Eq. (1) is maximizing the 

Sharpe ratio of S on I opportunities over the space of alternative trading rules R (see 

Bailey and López de Prado [2012] for a definition and analysis of the Sharpe ratio). 

Because we count with    variables to maximize     over a sample of size I, it is easy to 

Electronic copy available at: https://ssrn.com/abstract=2658641



5 

 

overfit R. A trivial overfit occurs when each pair (     ) targets the specific opportunity 

i. Bailey et al. [2013] provide a rigorous definition of backtest overfitting, which can be 

applied to our study of trading rules as follows. 

 

DEFINITION 2 (Overfit Trading Rule):    is overfit if 

 [
 [     | 

 ]

 [     
|  ]
]     [ [

 [     | ]

 [     
| ]
]], where         . 

 

Intuitively, an optimal in-sample (IS) trading rule    is overfit when it is expected to 

underperform the median of alternative trading rules     out-of-sample (OOS). Bailey 

et al. [2014] argue that it is hard not to overfit a backtest, particularly when there are free 

variables able to target specific observations IS, or the number of elements in   is large. 

A trading rule introduces such free variables, because    can be determined 

independently from S. The outcome is that the backtest profits from random noise IS, 

making    unfit for OOS opportunities. Those same authors show that overfitting leads to 

negative performance OOS when       exhibits serial dependence. While those authors 

provide a useful method to evaluate to what extent a backtest has been overfit, it would 

be convenient to avoid this problem in the first place.
1
 To that aim we dedicate the 

following section. 

 

 

3.- OUR FRAMEWORK 

Until now we have not characterized the stochastic process from which observations      
are drawn. We are interested in providing an OTR for those scenarios where overfitting 

would be most damaging, such as when      exhibits serial correlation. In particular, 

suppose a discrete Ornstein-Uhlenbeck (O-U) process on prices 

 

      (   )  [     ]                (2) 
 

 

such that the random shocks are IID distributed       (   ). The seed value for this 

process is     , the level targeted by opportunity i is   [     ], and   determines the speed 

at which      converges towards   [     ]. Because        (         ), Eq. (2) implies 

that the performance of opportunity i is characterized by the process 

 

  

  
     (   )  [     ]                     

(3) 
 

 

From the proof to Proposition 4 in Bailey and López de Prado [2013], it can be shown 

that the distribution of the process specified in Eq. (2) has a closed-form in 

 

                                                 
1
 The strategy may still be the result of backtest overfitting, but at least the trading rule would not have 

contributed to that problem. 
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      (  ((   )  [     ]∑  
   

   

     )    
   ∑   

   

   

) 
(4) 

 

 

and a necessary and sufficient condition for its stationarity is that   (    ). Given a 

set of input parameters {   } and initial conditions {       [     ]} associated with 

opportunity i, is there an OTR   
  (     )? Similarly, should strategy S predict a profit 

target   , can we compute the optimal stop-loss    given the input values {   }? If the 

answer to these questions is affirmative, no backtest would be needed in order to 

determine   
 , thus avoiding the problem of overfitting the trading rule. In the next 

section we will show how to answer these questions experimentally. 

 

 

4.- NUMERICAL DETERMINATION OF OTRs 

In the previous section we used an O-U specification to characterize the stochastic 

process generating the returns of strategy S. In this section we will present a procedure to 

derive numerically the OTR for any specification in general, and the O-U specification in 

particular. 

 

STEP 1: We estimate the input parameters {   }, by linearizing Eq. (2) as: 

 

        [     ]   (         [     ])     (5) 
 

 

We can then form vectors X and Y by sequencing opportunities: 

 

 

  

[
 
 
 
 
 
 
 
       [     ]

       [     ] 
         [     ] 
       [     ] 
         [     ] ]

 
 
 
 
 
 
 

;   

[
 
 
 
 
 
 
    
    
 
    
 
    
 
    ]

 
 
 
 
 
 

;   

[
 
 
 
 
 
 
 
  [     ]

  [     ] 
  [     ] 
  [     ] 
  [     ]]

 
 
 
 
 
 
 

 
(6) 

 

 

Applying OLS on Eq. (5), we can estimate the original O-U parameters as, 

 

  ̂  
   [   ]

   [   ]
 

 ̂       ̂  

 ̂  √   ( ̂   ̂ ) 

(7) 
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STEP 2: We construct a mesh of stop-loss and profit-taking pairs, (     ). For example, 

a Cartesian product of    {   
 

 
           } and    {  

 

 
         } give us 

21x21 nodes, each constituting an alternative trading rule   . 
 

STEP 3: We generate a large number of paths (e.g., 100,000) for      applying our 

estimates { ̂  ̂}. As seed values, we use the observed initial conditions {       [     ]} 

associated with an opportunity i. Because a position cannot be held for an unlimited 

period of time, we can impose a maximum holding period (e.g., 100 observations) at 

which point the position is exited even though             . 

 

STEP 4: We apply the 100,000 paths generated in Step 3 on each node of the 21x21 mesh 

(     ) generated in Step 2. For each node, we apply the stop-loss and profit-taking 

logic, giving us 100,000 values of      . Likewise, for each node we compute the Sharpe 

ratio associated with that trading rule as described in Eq. (1) (see Bailey and López de 

Prado [2012] for a study of the confidence bands of the Sharpe ratio estimator). This 

result can be used in two different ways (Steps 5a, Step 5b and 5c): 

 

STEP 5a: We determine the pair (     ) within the mesh of trading rules that is optimal, 

given the input parameters { ̂  ̂} and the observed initial conditions {       [     ]}. 

 

STEP 5b: If strategy S provides a profit target    for a particular opportunity i, we can 

use that information in conjunction with the results in Step 4 to determine the optimal 

stop-loss,   .  

 

STEP 5c: If the trader has a maximum stop-loss    imposed by the fund’s management, 

we can use that information in conjunction with the results in Step 4 to determine the 

optimal profit taking    within the range of stop-losses [    ]. 

 

Bailey et al. [2013a] proof that the half-life of the process in Eq. (2) is    
  [ ]

  [ ]
, which 

implies the additional constraint   (   ). From that result, we can determine the value 

of   associated with a certain half-life   as    
  

 ⁄ . 

 

Appendix 1 implements this procedure. Table 1 lists the combinations analyzed in this 

study. OTR   
  (     ) is computed per unit held (    ), since other values of    

would simply re-scale performance. Although different values for these input parameters 

would render different numerical results, the combinations applied allow us to analyze 

the most general cases. 

 

[TABLE 1 HERE] 
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In the following figures, we have plotted the non-annualized Sharpe ratios that result 

from various combinations of profit-taking and stop-loss. We have omitted the negative 

sign in the y-axis (stop-losses) for simplicity. Sharpe ratios are represented with different 

scales of colors (green indicating better performance and red worse performance), in a 

format known as a “heat-map”. 

 

4.1.- CASES WITH ZERO LONG-RUN EQUILIBRIUM 

These cases are consistent with the business of market makers, who provide liquidity 

under the assumption that prices follow a martingale. The smaller  , the smaller is the 

autoregressive coefficient (   
  

 ⁄ ). A small autoregressive coefficient in conjunction 

with a zero expected profit has the effect that most of the pairs (     ) deliver a zero 

performance. 

 

Figure 1 shows the heat-map for the parameter combination {     }  {     }. The half-

life is so small that performance is maximized in a narrow range of combinations of small 

profit-taking with large stop-losses. In other words, the optimal trading rule is to hold an 

inventory long enough until a small profit arises, even at the expense of experiencing 5 or 

7-fold losses. Sharpe ratios are high, reaching levels of around 3.2. This is in fact what 

many market-makers do in practice, and is consistent with the “asymmetric payoff 

dilemma” described in Easley et al. [2011]. The worst possible trading rule in this setting 

would be to combine a short stop-loss with large profit-taking threshold, a situation that 

market-makers avoid in practice. Performance is closest to neutral in the diagonal of the 

mesh, where profit-taking and stop-losses are symmetric. 

 

[FIGURE 1 HERE] 

 

Figure 2 shows that, if we increase   from 5 to 10, the areas of highest and lowest 

performance spread over the mesh of pairs (     ), while the Sharpe ratios decrease. 

This is because, as the half-life increases, so that the magnitude of the autoregressive 

coefficient (recall that    
  

 ⁄ ), thus approaching the process to a random walk. 

 

[FIGURE 2 HERE] 

 

In Figure 3,     , which again spreads the areas of highest and lowest performance 

while reducing the Sharpe ratio. Figures 4 (    ) and 5 (     ) continue that 

progression. Eventually, as    , there are no recognizable areas where performance 

can be maximized. 

 

[FIGURE 3 HERE] 

 

[FIGURE 4 HERE] 

 

[FIGURE 5 HERE] 
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Calibrating a trading rule on a random walk through historical simulations would lead to 

backtest overfitting, because a random combination of profit-taking and stop-loss that 

happened to maximize Sharpe ratio would be selected. Our procedure prevents overfitting 

by recognizing that performance exhibits no consistent pattern, indicating that there is no 

optimal trading rule. 

 

4.2.- CASES WITH POSITIVE LONG-RUN EQUILIBRIUM 

These cases are consistent with the business of a position-taker, such as a hedge fund or 

asset manager. Figure 6 shows the results for the parameter combination {     }  
{     }. Because positions tend to make money, the optimal profit-taking is higher than in 

the previous cases, centered around 6, with stop-losses that range between 4 and 10. The 

region of the optimal trading rule takes a characteristic rectangular shape, as a result of 

combining a wide stop-loss range with a narrower profit-taking range. Performance is 

highest across all experiments, with Sharpe ratios of around 12. 

 

 

[FIGURE 6 HERE] 

 

In Figure 7, we have increased the half-life from     to     . Now the optimal 

performance is achieved at a profit-taking centered around 5, with stop-losses that range 

between 7 and 10. The range of optimal profit-taking is wider, while the range of optimal 

stop-losses narrows, shaping the former rectangular area closer to a square. Again, a 

larger half-life brings the process closer to a random walk, and therefore performance is 

now relatively lower than before, with Sharpe ratios of around 9. 

 

[FIGURE 7 HERE] 

 

In Figure 8, we have made     . The optimal profit-taking is now centered around 3, 

while the optimal stop-losses range between 9 and 10. The previous square area of 

optimal performance has given way to a semi-circle of small profit-taking with large 

stop-loss thresholds. Again we see a deterioration of performance, with Sharpe ratios of 

2.7. 

 

[FIGURE 8 HERE] 

 

In Figure 9, half-life raises to     . As a result, the region of optimal performance 

spreads, while Sharpe ratios continue to fall to 0.8. This is the same effect we observed in 

the case of zero long-run equilibrium (Section 4.1), with the difference that because now 

    there is no symmetric area of worst performance. 

 

[FIGURE 9 HERE] 

 

In Figure 10, we appreciate that       leads to the natural conclusion of the trend 

described above. The process is now so close to a random walk that the Maximum Sharpe 

ratio now is a mere 0.32. 
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[FIGURE 10 HERE] 

 

We can observe a similar pattern in Figures 11 to 15, where      and   is 

progressively increased from 5 to 10, 25, 50 and 100. 

 

4.3.- CASES WITH NEGATIVE LONG-RUN EQUILIBRIUM 

A rational market participant would not initiate a position under the assumption that a 

loss is the expected outcome. However, if a trader recognizes that losses are the expected 

outcome of a pre-existing position, she still needs a strategy to trade it away while 

minimizing such losses. 

 

We have obtained Figure 16 as a result of applying parameters {     }  {      }. If we 

compare Figure 16 with Figure 6, it appears as if one is a rotated complementary of the 

other. Figure 6 resembles a rotated photographic negative of Figure 16. The reason is, 

that the profit in Figure 6 is translated into a loss in Figure 16, and the loss in Figure 6 is 

translated into a profit in Figure 16. One case is an image of the other, just as a gambler’s 

loss is the house’s gain. 

 

As expected, Sharpe ratios are negative, with a worst performance region centered around 

the stop-loss of 6, and profit-taking threshold that range between 4 and 10. Now the 

rectangular shape does not correspond to region of best performance, but to a region of 

worst performance, with Sharpe ratios of around -12. 

 

[FIGURE 16 HERE] 

 

In Figure 17,     , and now the proximity to a random walk plays in our favor. The 

region of worst performance spreads out, and the rectangular area becomes a square. 

Performance becomes less negative, with Sharpe ratios of about -9.  

 

[FIGURE 17 HERE] 

 

This familiar progression can be appreciated in Figures 18-20, as   is raised to 25, 50 and 

100. Again, as the process approaches a random walk, performance levels and optimizing 

becomes a backtest-overfitting exercise. 

 

[FIGURE 18 HERE] 

 

[FIGURE 19 HERE] 

 

[FIGURE 20 HERE] 

 

Figures 21 to 25 repeat the same process for       and   that is progressively 

increased from 5 to 10, 25, 50 and 100. The same pattern arises, i.e. a rotated 

complementary to the case of positive long-run equilibrium. 
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5.- CONCLUSIONS 

In this paper we have shown how to determine experimentally the optimal trading 

strategy associated with prices following a discrete Ornstein-Uhlenbeck process. Because 

the derivation of such trading strategy is not the result of a historical simulation, our 

procedure avoids the risks associated with backtest overfitting. 

 

Depending on factors such as the frequency at which trading takes place, the holding 

period, etc., the time it takes to run our numerical procedure may be too lengthy. For that 

reason alone, it would be beneficial to count with a closed-form solution that computes 

the Sharpe ratio of every combination (     ), which we could then optimize 

analytically to determine the optimal   
 . In addition, although we can make sense of the 

experimental results presented in this paper, a closed-form representation of the solution 

would give us greater insight into what makes a particular solution   
  optimal. 

 

While in this paper we do not derive the closed-form solution to the optimal trading 

strategies problem, our experimental results seem to support the following OTR 

conjecture: 

 

“Given a financial instrument’s price characterized by a discrete O-U 

process, there is a unique optimal trading rule in terms of a combination 

of profit-taking and stop-loss that maximizes the rule’s Sharpe ratio.” 

 

We believe that solving this conjecture would have substantial economic value in a 

trading world where a few milliseconds separate winners from losers. 
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APPENDICES 

 

 

A.1.- PYTHON IMPLEMENTATION OF OUR EXPERIMENTS 

Snippet 1 provides an implementation in Python of the experiments conducted in this 

paper. 

 
#!/usr/bin/env python 

# Profit-taking and stop-loss simulations 

# On 20131003 by MLdP <lopezdeprado@lbl.gov>  

import numpy as np 

from random import gauss 

from itertools import product 

#----------------------------------------------------------------------------------------  

def main(): 

    rPT=rSLm=np.linspace(0,10,21) 

    count=0 

    for prod_ in product([10,5,0,-5,-10],[5,10,25,50,100]): 

        count+=1 

        coeffs={'forecast':prod_[0],'hl':prod_[1],'sigma':1} 

        output=batch(coeffs,nIter=1e5,maxHP=100,rPT=rPT,rSLm=rSLm) 

    return output 

#----------------------------------------------------------------------------------------  

def batch(coeffs,nIter=1e5,maxHP=100,rPT=np.linspace(0,10,21), \ 

    rSLm=np.linspace(0,10,21),seed=0): 

    phi,output1=2**(-1./coeffs['hl']),[] 

    for comb_ in product(rPT,rSLm): 

        output2=[] 

        for iter_ in range(int(nIter)): 

            p,hp,count=seed,0,0 

            while True: 

                p=(1-phi)*coeffs['forecast']+phi*p+coeffs['sigma']*gauss(0,1) 

                cP=p-seed;hp+=1 

                if cP>comb_[0] or cP<-comb_[1] or hp>maxHP: 

                    output2.append(cP) 

                    break 

        mean,std=np.mean(output2),np.std(output2) 

        print comb_[0],comb_[1],mean,std,mean/std 

        output1.append((comb_[0],comb_[1],mean,std,mean/std)) 

    return output1 

Snippet 1 – Python code for the determination of OTRs 

 

The subroutine batch(*arg) estimates the Sharpe ratios for each node of the mesh 

(     ) given some input parameters { ̂  ̂} and initial conditions {       [     ]}. 

batch(*arg) is called by main(), which passes alternative values of  ̂ and   [     ]. A 

path is discontinued after 100 steps, thus values of  ̂ are explored such that   
{              }. As forecasted prices, we have tried   [     ]  {             }. We 

have fixed       , since it is the distance (         [     ]) that drives the 

convergence, not particular absolute price levels. Also without loss of generality, in all 

simulations we have used  ̂   . 
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TABLES 
 

 

 

 
Table 1 – Input parameter combinations used in the simulations 

 

 

  

ID TableName Forecast HL Sigma maxHP

1 Table_1 0 5 1 100

2 Table_2 0 10 1 100

3 Table_3 0 25 1 100

4 Table_4 0 50 1 100

5 Table_5 0 100 1 100

6 Table_6 5 5 1 100

7 Table_7 5 10 1 100

8 Table_8 5 25 1 100

9 Table_9 5 50 1 100

10 Table_10 5 100 1 100

11 Table_11 10 5 1 100

12 Table_12 10 10 1 100

13 Table_13 10 25 1 100

14 Table_14 10 50 1 100

15 Table_15 10 100 1 100

16 Table_16 -5 5 1 100

17 Table_17 -5 10 1 100

18 Table_18 -5 25 1 100

19 Table_19 -5 50 1 100

20 Table_20 -5 100 1 100

21 Table_21 -10 5 1 100

22 Table_22 -10 10 1 100

23 Table_23 -10 25 1 100

24 Table_24 -10 50 1 100

25 Table_25 -10 100 1 100
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FIGURES 

 

 

 
Figure 1 – Heat-map for {     }  {     } 
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Figure 2 – Heat-map for {     }  {      } 
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Figure 3 – Heat-map for {     }  {      } 
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Figure 4 – Heat-map for {     }  {      } 
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Figure 5 – Heat-map for {     }  {       } 
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Figure 6 – Heat-map for {     }  {     } 
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Figure 7 – Heat-map for {     }  {      } 
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Figure 8 – Heat-map for {     }  {      } 
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Figure 9 – Heat-map for {     }  {      } 
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Figure 10 – Heat-map for {     }  {       } 
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Figure 11 – Heat-map for {     }  {      } 
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Figure 12 – Heat-map for {     }  {       } 
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Figure 13 – Heat-map for {     }  {       } 
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Figure 14 – Heat-map for {     }  {       } 
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Figure 15 – Heat-map for {     }  {        } 
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Figure 16 – Heat-map for {     }  {      } 
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Figure 17 – Heat-map for {     }  {       } 
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Figure 18 – Heat-map for {     }  {       } 
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Figure 19 – Heat-map for {     }  {       } 
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Figure 20 – Heat-map for {     }  {        } 
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Figure 21 – Heat-map for {     }  {       } 
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Figure 22 – Heat-map for {     }  {        } 
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Figure 23 – Heat-map for {     }  {        } 
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