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1 Summary

1.1 Local Volatility Surface

In our local volatility surface project, there are mainly two ways to build local volatility

surface.

• Transform from implied volatility surface to local volatility surface based on Dupires

work. In practice, there are three kind of methods to construct a smooth implied

volatility surface.

– Model calibration: such as Heston model, Lognormal-mixture model

– Parametric method: such as SVI method

– Nonparametric method: such as maximize relative entropy

• Set the problem of finding volatility as PDEs inverse problem and find a well-posed

algorithm for recovering the implied local volatility

The local volatility surface is important in pricing exotic options. In this documen-

tation, we focus on the first way: first build a good implied volatility surface based on

lognormal-mixture model, and then transfer it to local volatility surface using Dupire’s

formula. Finally we re-price out-of-sample European options in China market with the

calibrated volatility surface using PDE method, in order to test the performance of the

surface. The summary graph is shown below.

1



2 Lognormal-Mixture Model

Brigo and Mercurio (2002) assume the marginal density of stock price is the mixture of

lognormal densities and derive closed form formulas for option prices.

The dynamics of stick price S consists of N diffusion processes with dynamics given

by

dSit = (r − q)Sitdt+ σi(t)S
i
tdWt, i = 1, . . . , N (2.1)

with initial value Si0. Furthermore, assuming Si0 = ξiS0, where S0 is the spot price and ξi

is the shifted factor aimed to achieve more flexibility.

For each t, the density function of Sit is denoted by pit(S). In the lognormal mixture

model, the risk-neutral density of the spot price at a fixed maturity is modeled as a

weighted sum of lognormal densities with different means and variances. Specifically, the

risk-neutral probability density function of the stock price at any future time T > 0 is

assumed to be in the following form

pt(s) =
N∑
i=1

ωip
i
t(s)

where ωi is strictly positive constant and
∑N

i=1 ωi = 1. The density of pit is given as

pit(s) =
1

sΣi(t)
√

2π
exp

{
− 1

2Σ2
i (t)

[
ln
s

Si0
− (r − q)t+

1

2
Σ2
i (t)

]2
}

Σi(t) :=

√∫ t

0

σ2
i (u)du (2.2)
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with mean ξiS0e
(r−q)t and variance Σ2

i .

Thus, the expectation value of stock price at time t is∫ +∞

0

spt(s)ds =
N∑
i=1

ωi

∫ +∞

0

spit(s)ds =
N∑
i=1

ωiξiS0e
(r−q)t = S0e

(r−q)t (2.3)

with constrain
∑N

i=1 ωiξi = 1 due to that the formula need to reprice the forward price.

Applying the Fokker-Plank equation

∂

∂t
pt(s) = − ∂

∂s
((r − q)spt(s)) +

1

2

∂2

∂s2
(σ2(t, s)s2pt(s))

with Pt given by (2.2), to back out the diffusion coefficient σ, the following SDE for stock

price can be derived as

dSt = (r − q)Stdt+

√∑N
i=1 ωiσ

2
i (t)p

i
t(St)∑N

i=1 ωip
i
t(St)

StdWt. (2.4)

Then the option price can be derived in closed form as

O = e−rtEQ[(ST −K)+]

= e−rt
∫ +∞

0

(s−K)+

N∑
i=1

wip
i
T (s)ds

=
N∑
i=1

wie
−rT

+∞∑
0

(s−K)+piT (s)ds

=
N∑
i=1

wiOi (2.5)

where Oi can be calculated with Black-Shores formula.

The following proposition has been proven by Brigo and Mercurio (2002).

Proposition 2.1 Let us assume that each σi is also continuous and that there exists an

ε > 0 such that σi(t) = σ0 > 0, for each t in [0, ε] and i = 1, . . . , N. Then, if we set

ν(t, St) =

√√√√√√√
∑N

i=1wiσ
2
i (t)

1
Σi(t)

{
− 1

2Σ2
i (t)

[
ln St

S0
− (r − q)t+ 1

2
Σ2
i (t)
]2
}

∑N
i=1wi

1
Σi(t)

{
− 1

2Σ2
i (t)

[
ln St

S0
− (r − q)t+ 1

2
Σ2
i (t)
]2
} (2.6)

for (t, St) > (0, 0) and ν(t, S0) = σ0, the SDE

dSt = (r − q)Stdt+ ν(t, St)StdWt (2.7)
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has a unique strong solution whose marginal density is given by the mixture of lognormals

pt(s) =
N∑
i=1

wi
1

sΣi(t)
√

2π
exp

{
− 1

2Σ2
i (t)

[
ln
s

Si0
− (r − q)t+

1

2
Σ2
i (t)

]2
}

(2.8)

(2.9)

Proposition 2.2 Condiser a European option with maturity T , strike K and written on

the asset. The call option value at the initial time t = 0 is then given by the following

convex combination of Black-Shores prices

O =
N∑
i=1

wi

[
ξiS0Φ

(
ln ξiS0

K
+ (r − q + 1

2
η2
i )T

ηi
√
T

)
−KΦ

(
ln ξiS0

K
+ (r − q − 1

2
η2
i )T

ηi
√
T

)]
(2.10)

where

ηi :=
Σi(T )√

T
=

√∫ T
0
σ2
i (t)dt

T
(2.11)

3 Implied Volatility Surface

In this section, we follow the steps in Bloomberg’s documentation of implied volatility

surface reported by Analytics (2017).

3.1 Calibration Data

In Chinese market, there is only one option traded in Shanghai Security Exchange, which

is 50 ETF option. The option details are shown in table 1.

Table 1: Description of 50 ETF option.

Type Maturity Option Number

European
This month 8
Next month 6
This quarter 8
Next quarter 6

1. Continuous risk-free rate: we take repo rate from our database as risk-free rate,

and transfer it to continuous rate with formula ln(1+r). In order to compare results

with Bloomberg, we use Bloomberg simple risk-free rate as input. Bloomberg only

provides rates on different maturities and we do linear interpolation between these

points.
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2. Continuous dividend yield: we use put-call-parity to implied continuous divi-

dend yield with at-the-money option (or take the average of two options’ implied

dividend yields whose strikes lie on two sides of the forward price). In order to com-

pare with Bloomberg, we get the implied dividend yield from forward price with

formula: q = r − ln(F ). Bloomberg forecasts stock forward prices on option matu-

rity dates and we linearly interpolate the implied dividend yields between the two

consecutive maturities.

3. Option data: we use mid price to calibrate model parameters. Our IT team

catches 50 ETF options’ last bid and ask prices from Wind every day and we average

the bid and ask price to get daily middle prices. We only use out-of-money

options in calibration.

• Bloomberg uses good end-of-day surface of previous business day as reference

volatility surface, which sourced from broker/dealer quotes of the OTC mar-

ket. For example, a small perturbation of bid/ask prices could lead to a large

variation in the wings (small strikes and large strikes) if the valid option prices

cover only a narrow range around the forward. Bloomberg augments the market

quotes with wing samples from the reference surface to minimize the instability

and mark the correct smile level.

• We use the same filtered market option data but we do not know the sample

data from reference volatility surface they use.

In summary, we can keep the risk-free rate and dividend yield consistent with Bloomberg

in some way. However, we cannot get the exact option data used in Bloomberg calibra-

tion.
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3.2 Calibration Method

When calibration the lognormal-mixture model, Bloomberg calibrates smile curves at

each maturity independently and then do interpolation between these maturities. Also,

Bloomberg modify this model by augmenting the state space with a ”default” state where

the sticj price drops to zero. Brigo and Mercurio (2002) mentioned that the model may be

problematic to reproducing highly steep curves for very short maturities. Thus Bloomerbg

added default probability in order to facilitate calibration to steep, short-term equity put

skews.

3.2.1 Modified Model Brief

In the lognormal mixture model, the risk-neutral density of the spot price at a fixed

maturity is modeled as a weighted sum of lognormal densities with different mean and

variance as shown in formula(2.2).For convenience, we use the formula expression as

pdf(T, S) =
N∑
i=1

ωi(T ) · lognormalpdf(S; ξi(T )F (T ),Σi(T )) (3.12)

where

• N is the number of lognormals,

• F (T ) is the forward price,

• 0 6 ωi(T ) 6 1 is the time-dependent weight of the i-th lognormal

• ξi(T ) > 0 is the time-dependent shift of the i-th lognormal

• Σi(T ) is the time-dependent standard deviation of the i-th lognormal

with constrains

N∑
i

ωi(T )ξi(T ) = 1

Q(T ) +
N∑
i=1

ωi(T ) = 1

where Q(T ) is the default probability that stock price drops to zero.
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Once the model is modified by adding default probability, the price formulas of call

option and put option are given as

C(T,K) =
N∑
i=1

ωi(T ) ·BS(ξi(T )S0, K, r, q, T,
Σi(T )√

T
)

P (T,K) =
N∑
i=1

ωi(T ) ·BS(ξi(T )S0, K, r, q, T,
Σi(T )√

T
) +Q(T )Ke−rT (3.13)

3.2.2 Calibration Steps

The optimization problem is minimizing the ’distance’ between model prices and market

option prices at a given maturity. And the calibration is performed one maturity at a

time.

Objective function: we take the number of lognormals N in density mixture as 4,

then at maturity T the vector of optimization parameters x = (w1, w2, w3, ξ1, ξ2, ξ3,Σ1,Σ2,Σ3,Σ4, Q)

has 11 dimensionality.

Assume at maturity T , there are L out-of-the-money options, then the objective func-

tion is

obj =

√√√√ 1

L

L∑
j=1

(
Pmodel(T,Kj; x)− Pmkt(T,Kj)

Pmkt(T,Kj)

)2

, (3.14)

where x is the parameter vector, Pmodel(T,Kj; x) denotes the model price with parameters

x and Pmkt(T,Kj) is the mid market price of European option price.

Optimization method: we use local search algorithm to get the optimal parameters.

Specifically, we use Python package scipy.optimize.fmin slsqp, which uses Sequential Least

SQuares Programming to minimize a function of several variables with any combination

of bounds, equality and inequality constraints.

However, the local search algorithm usually provide different answers according to

initial guess of parameter values. So we use sobol sequential algorithm to sample 100 sets

of initial guesses and take the optimal one.

Assume that there are m maturities in the market, and the calibration is performed

independently. It is possible that there appears calendar arbitrage. In order to mitigate

the possibility of calendar arbitrage arising from completely independent calibrations

across different market maturities T1, . . . , Tm, we follow Bloomberg documentation and

constrain the term structure of the parameters as

0 < Σi(T1) < · · · < Σi(Tm)

0 6 Q(T1) 6 · · · 6 Q(Tm).
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Thus we calibrate the first maturity at first, and take the calibrated parameters

(Σ1(T1),Σ2(T1),Σ3(T1),Σ4(T1), Q(T1)) as the lower bound when calibrate the second ma-

turity parameters. Finally, we can get m sets of optimal parameters for corresponding m

maturities.

3.2.3 Strike Interpolation and Extrapolation

After we calibrated the optimal parameter values on maturity T , the option price can be

achieved according to formula (3.13) for any strike K. Then the implied volatility can be

calculated easily using bisection algorithm from Black-Shores formula and we can get the

whole smile curve.

Damp hazard rate: Bloomberg states ’whereas a positive hazard rate can help match

steep put skews at short-term maturities, it may force a very steep skew for short-term

extrapolation , so some damping of this hazard rate is needed for extremely low strikes’.

Assuming a Poisson default process, we can imply the default intensity or hazard rate

λ(t) consistent with the survival probability P (t) = 1−Q(t) as

P (t) = 1−Q(t) =
∑
i

wi(t) = e−λ(t)t

Thus, define kmin to be the minimum of all market strikes and 90% moneyness, for k <

kmin, the hazard rate is damped as

xm = log(k2
min/2Ti)

x = log(k2/2Ti)

λnew = λe
x2m−x2

2Ti . (3.15)

For k > kmin, no hazard rate damping is applied. If λ is damped, the weights ωi(t)

is calculated by keeping the ratio ωi+1(t)/ωi(t) the same. The put the parameters into

formula (3.13) to get option price and corresponding implied volatility.

Below is the comparison of two implied-vol surfaces. The first one’s hazard rate doesn’t

change, and the second one’s hazard rate is damped according to formula (3.15):
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Extrapolation on extreme strikes with Roger Lee’s formula: the lognormal

mixture model yields legitimate risk-neutral density, hence the implied volatility smile is

arbitrage-free in strike. However, when strike is quite small or large, Bloomberg did not

use the implied volatility generated by the model, instead, an extrapolation method based

on work of Lee (2004) has been used.

The reason stated by Bloomberg as ’when the strike is extremely small or large, the

option price is quite close to zero and the numerical error in the implied volatility calcu-

lation using bisection algorithm is big. To resolve this numerical difficulty, we extrapolate

the implied volatility linearly with respect to the logarithm of forward moneyness log(k/F )

according to Roger Lee’s formula.’

The extrapolation range given by Bloomberg is (0, kmin] ∪ [kmax,+∞), where

kmin = Fe−4Vest
√
T− 1

2
V 2
estT ,

kmax = Fe5Vest
√
T+ 1

2
V 2
estT ,

where Vest is the 3 times at-the-money implied volatility, and the extrapolation formula

is

σimp = a · log(k/F ) + b. (3.16)

However this extrapolation formula cannot guarantee the second derivative is continuous,

thus the local volatility surface may appear spikes and sink-holes shown as following.

Extrapolation on extreme strikes with BDK’s formula: Another arbitrage-free

extrapolation method was proposed by Benaim et al. (2008), which is continuous, twice

differentiable and option prices converge to 0 as K → 0,∞. This method extrapolates on

option price.

when strike is small, the put option price is extrapolated as

P (K) = Kµexp(a+ bK + cK2), (3.17)
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and when strike is large, the call option price is extrapolated as

C(K) = K−µexp(a+ b/K + c/K2) (3.18)

where µ > 0 is chosen by user. Below is the option price surface:

Different µ may lead to different shape of extrapolated implied volatility curve, shown

as below.

The extrapolation point is 1.95 and 3.0. Noted that the two implied volatility extrapola-

tion methods on extreme strikes cannot guarantee a nice local-vol surface.
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3.2.4 Maturity Interpolation and Extrapolation

Bloomberg’s Parameters interpolation and extrapolation: Following Bloomberg

documentation, define

α(t) =
Ti+1 − t
Ti+1 − Ti

ηi(t) = log(
ξi+1(t)

ξi(t)
.

Together with
∑

iwi(t)ξi(t) = 1, the ηi(t) uniquely determine the ξi(t).

For Tj < t < Tj+1, parameter’s interpolation are:

• The weights

wi(t) =

(
wi(Tj+1)∑N
i=1wi(Tj+1)

√
t−
√
Tj√

Tj+1 −
√
Tj

+
wi(Tj)∑N
i=1wi(Tj)

√
Tj+1 −

√
t√

Tj+1 −
√
Tj

)

• The variances

Σ2
i (t) = (1− α(t))Σ2

i (Tj+1) + α(t)Σ2
i (Tj)

α(t) =
Tj+1 − t
Tj+1 − Tj

• The shift

log2

(
ξi+1(t)

ξi(t)

)
= (1− α(t))log2

(
ξi+1(Tj+1)

ξi(Tj+1)

)
+ α(t)log2

(
ξi+1(Tj)

ξi(Tj)

)
Piecewise cubic Hermite polynomial interpolation: The implied volatility sur-

face generated by lognormal-mixture model can guarantee arbitrage-free in strike, but

cannot guarantee no arbitrage in maturity due to the interpolation method. Thus we get

the implied volatilities on market maturities from the model, and then do piecewise cubic

Hermite polynomial interpolation on the total variances for each fixed strike level for each

fixed strike level. Suppose Ti < T < Ti+1 where Ti and Ti+1 are two maturities, let

σ̂(T,K) =

√
a0 + a1T + a2T 2 + a3T 3

T
(3.19)

where ai’s are the Hermite interpolation parameters for the interval [Ti, Ti+1] at strike

level K.
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Then the partial derivatives in the formula are approximated as

∂σimp
∂T

=
σ̂(T+, K)− σ̂(T−, K)

24t
∂σimp
∂K

=
σ̂(T,K+)− σ̂(T,K−)

24k
∂2σimp
∂K2

=
σ̂(T,K+) + σ̂(T,K−)− 2σ̂(T,K)

(4k)2

Below is the comparison of two interpolation methods on maturity:

Short-term extrapolation: we do flat extrapolation, which assumes the implied

volatility remains constant before the first maturity. The flat extrapolation can guarantee

there is no calendar arbitrage in short term, ∂(σ2T )
∂T

> 0.

3.3 Calibration Surface

4 Local Volatility Surface

4.1 Dupire’s Formula

Bruno (1994) gives the formula of local volatility in terms of option price and price

derivatives. Gatheral (2011) furthermore gives the local volatility formula in terms of

implied volatility and its derivatives as

σ2(T,K) =
σ2
imp + 2σimpT (

∂σimp

∂T
+ (r − q)K ∂σimp

∂K
)

1 + 2d1K
√
T
∂σimp

∂K
+K2T

(
d1d2(

∂σimp

∂K
)2 + σimp

∂2σimp

∂K2

) (4.20)
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where

d1 =
−ln(K/S) + 1

2
σ2

σ
√
T

d2 = d1 − σ
√
T

r :=
1

T

∫ T

0

r(t)dt

q :=
1

T

∫ T

0

q(t)dt

4.2 Address Spikes and Sink-holes

In practice, the right-hand-side of Dupire’s formula (4.20) is not necessarily positive due

to various reasons such as bad market data, not very smooth implied volatility surface,

numerical issues, etc. So we floor the local volatility values to 1%.

4.3 Local-vol Surface On 2017-Mar-13

Surface generated by model with hazard rate damping:

Using BDK’s extrapolation:
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Using Roger Lee’s extrapolation:

Bloomberg’s Implied-vol and Local-vol Surfaces:
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5 PDE Pricing

5.1 PDE

After getting the local volatility surface, we use local-vol PDE to get the reprice all the

European options on the market.

Assuming underlying stocks follow the geometric Brownian motion under risk-neutral

measure
dS

S
= (rt − qt)dt+ σ(t, S)dWt

option prices V (t, S) satisfy the standard Black-Shores local-vol PDE:

∂V

∂t
+

1

2
σ2(t, S)S2∂

2V

∂S2
+ (rt − qt)S

∂V

∂S
− rtV = 0 (5.21)

where

• rt: instantaneous risk-free rate at time t

• qt: continuous dividend yield at time t

Parameters: currently we assume rt and qt are constant of the value at maturity.

We will continue to modify the constant parameters into time-dependent ones in the next

step.

PDE grid: we set

Smin = min{Fe−5σ
√
T , 0.8× S0}

Smax = max{S0, K} × e(r−q− 1
2
σ)T+4σ

√
T
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Boundary conditions: use a mixture of Dirichlet and second-order boundary con-

dition:
∂2V

∂S2
(S = Smin) = 0, V (Smax) = 0. (5.22)

Then at Smin, PDE formula (5.21) can be simplify as

∂V

∂t
+ (rt − qt)S

∂V

∂S
− rtV = 0

Discretization: use Crank-Nicolson scheme with Rannarcher smoothing. At last

time step, use fully-implicit scheme with 1/4 time step, and use Crank-Nicolson scheme

at previous time steps.

5.2 Pricing Results

We use local-vol PDE with calibrated local-vol surface to price all market European

options. Since we only use out-of-the-money options to calibrated surface, thus if the

pricing results are good, the calibrated surface is good too to some extend. We also

compare our pricing results with Bloomberg results with the same inputs in Table 2.

Here are some analysis based on the pricing results:

• The absolute average relative error of our model is 37.054%, while the average

relative error of Bloomberg is 6.704%.

• The relative error of the first maturity is the largest one, which implies that the

short-term extrapolation before the first maturity may not be good.

• The relative error of ITM options is smaller than OTM options.

• Almost all the model price is larger than the market mid price, which means the

local volatility values we calibrated may be a bit larger than the actual ones. Also,

there may appear spikes in the local-vol surface and misprice the European options.

6 Calibrate Whole Implied volatility Surface with

One Set of Parameters

6.1 Problems of Bloomberg’s Method

Bloomberg calibrated implied volatility surface with lognormal-mixture model, however

there are some problematic things:
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Table 2: Pricing relative error and compare with Bloomberg: the error is in
percent format. The upper row are our model pricing relative errors, the lower row are
the Bloomberg pricing relative error

strike K

maturity call put

T
Our model relative error
Bloomberg relative error

strike 2.2 2.25 2.3 2.35

maturity call put call put call put call put

Mar-22
0.98 402.11 2.42 641.70 3.49 142.94 36.88 63.64
-0.04 10.20 -0.12 52.20 -1.43 2.27 -3.37 7.85

Apr-26
3.13 84.95 2.65 26.91 2.84 5.99
-0.40 -8.55 -2.19 1.26 -3.67 -0.85

Jun-28
-0.76 3.68 -3.29 -7.14 -1.20 1.57 2.52 5.79
-1.01 -0.35 -1.02 7.08 -1.70 0.38 -0.86 2.28

Sep-27
-5.20 -11.77 -3.63 -4.11 -2.44 -0.50
-1.34 0.64 -0.99 0.49 -1.40 0.55

strike 2.4 2.45 2.5 2.55

maturity call put call put call put call put

Mar-22
66.65 9.51 60.29 0.73 166.02 1.06 -59.12 0.13
-22.70 2.79 -31.36 -0.24 -65.49 0.20 -89.03 0.08

Apr-26
23.01 5.02 8.42 0.57 121.15 2.11
-4.40 -1.11 -11.13 -0.49 -13.47 -0.06

Jun-28
9.36 5.40 -2.26 0.32 17.36 2.15 21.06 1.53
-1.95 -0.04 -2.45 0.29 0.04 0.18 -8.54 -0.28

Sep-27
5.15 3.86 1.87 0.84 4.08 1.76
-2.12 -0.54 -0.77 -0.14 0.17 0.84

• Bloomberg calibrated implied volatility curves for each maturities and then do in-

terpolation between these maturities, which cannot guarantee that no calendar ar-

bitrage exists.

• Bloomberg modified the original model by adding default probability Q(T ) of un-

derlying stock price, in order to fit the steep put skew in short term. However,

the default probability Q(T ) may lead to over-steep skew out of the market strikes

range. Thus the default probability is decreased with a subjective formula.

• On the very small or large strikes, Bloomberg did strike extrapolation with a sub-

jective formula.

Thus we would like to calibrate the whole implied volatility surface with only one set

of parameters.
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6.2 Calibration Steps

Following work of Brigo and Mercurio (2002), assume the integrated volatility of each

lognormal ηi(T ) = Σi(T )√
T

is time-dependent and has term structure of Nelson-Siegel format:

ηi(T ) = η(T ; ai, bi, ci, τi) = ai + bi

[
1− exp

(
−T
τi

)]
τi
T

+ ciexp

(
−T
τi

)
, (6.23)

where ai, bi, ci, τi are the coefficient that needs to be calibrated.

Calibrated parameters: we still take the number of lognormals N in the den-

sity function as 4, then the vector of optimization parameters for the whole surface is

x = (w1, w2, w3, ξ1, ξ2, ξ3, a1, . . . , a4, b1, . . . , b4, c1, . . . , c4, τ1, . . . , τ4, ), which has 22 dimen-

sionality.

Objective function:Assume there are total M maturities in the market, and each

maturity has L out-of-the-money options, then the objective function is

obj =

√√√√ 1

ML

M∑
i=1

L∑
j=1

(
Pmodel(Ti, Kj; x)− Pmkt(Ti, Kj)

Pmkt(Ti, Kj)

)2

, (6.24)

where x is the parameter vector, Pmodel(T,Kj; x) denotes the model price with parameters

x and Pmkt(T,Kj) is the mid market price of European option price.

Optimization method: we still use Python package scipy.optimize.fmin slsqp to get

optimal calibrated parameters.

6.3 Calibrated Implied-vol Surface

The calibrated implied volatility surface is shown as below. Noted that the calibration

method is hard to fit the short-term smile well.
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The calibration method is hard to fit the short-term smile well.
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6.4 Implied-vol Surface

Through Dupire’s formula, the local volatility surface is shown as

6.5 Pricing Results

The pricing result is shown is Table 3.

• The absolute average relative error with our model local-vol surface is 11.186%, and

the average relative error with Bloomberg’s local-vol surface is 6.704%.

• The large errors cluster in short-term maturity and OTM options. This may due to

– the calibrated implied-vol surface cannot fit the market data exactly, especially

in short term maturity;

– the extrapolation before the first maturity is set as simple flat extrapolation;

– when transform to local-vol surface with Dupire’s formula, there is some volatile

in short-term time.

6.6 Next Step

• We will change the constant parameters r and q in PDE into time-dependent rt and

qt, as in formula (5.21);
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Table 3: Pricing relative errors and compare with Bloomberg: the error is in
percent format. The upper row are our model pricing relative errors, the lower row are
the Bloomberg pricing relative error

strike K

maturity call put

T
Our model relative error
Bloomberg relative error

strike 2.2 2.25 2.3 2.35

maturity call put call put call put call put

Mar-22
-0.21 -53.34 -0.50 -31.51 0.72 63.51 23.80 45.54
-0.04 10.20 -0.12 52.20 -1.43 2.27 -3.37 7.85

Apr-26
0.15 6.08 0.21 13.95 -1.70 1.21
-0.40 -8.55 -2.19 1.26 -3.67 -0.85

Jun-28
0.03 16.58 -1.77 2.38 -4.98 -7.29 -9.43 -6.61
-1.01 -0.35 -1.02 7.08 -1.70 0.38 -0.86 2.28

Sep-27
4.10 18.59 2.85 7.42 -0.16 1.96
-1.34 0.64 -0.99 0.49 -1.40 0.55

strike 2.4 2.45 2.5 2.55

maturity call put call put call put call put

Mar-22
-4.23 4.16 -83.04 -0.81 -36.15 0.30 -73.45 0.10
-22.70 2.79 -31.36 -0.24 -65.49 0.20 -89.03 0.08

Apr-26
5.87 1.18 -9.98 0.43 17.50 -0.43
-4.40 -1.11 -11.13 -0.49 -13.47 -0.06

Jun-28
-13.28 -5.51 -18.91 -3.63 -6.00 -0.52 1.06 0.30
-1.95 -0.04 -2.45 0.29 0.04 0.18 -8.54 -0.28

Sep-27
-1.43 -0.02 -0.48 0.02 8.24 2.80
-2.12 -0.54 -0.77 -0.14 0.17 0.84

• Figure out a good short-term extrapolation method;
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