
Cutting edge: Volatility modelling

Sticky varswaps

Jingyi Huang and Olaf Torné extend the definition of the skew-stickiness ratio (SSR) to handle covariance between the spot and the

theoretical fair strike of a variance swap, and derive analytical approximations of this quantity in the local volatility and Heston models,

analogous to known formulas for the classical at-the-money forward SSR

T he skew-stickiness ratio (SSR), introduced by Bergomi (2015), is
the industry standard metric for describing the joint dynamics of
spot and implied volatility in a diffusion model. It is defined as:

SSRatmf D
1

ST

EŒd O�FT T d ln S�

EŒd ln S2�
(1)

where O�FT T is the at-the-money forward volatility (ATMF vol) and ST

is the volatility surface skew, ie, it is the regression coefficient of d O�FT T

onto d ln S normalised by the skew.This metric is analysed in great depth in
Bergomi (2015), and analytical approximations are provided within a variety
of stochastic volatility models (see also El Aoud & Abergel 2014; Vargas et al
2015).

Systematic discrepancies between the realised and model-implied level of
spot/implied volatility covariance appear as P&L in an option book (Bergomi
2017). Thus, an important application of the SSR is in the calibration of
stochastic volatility models. A concrete implementation of this process in a
production setting is described in Cohen (2019) for local stochastic volatility
(LSV). Since LSV is guaranteed to calibrate to the vanilla surface, it affords
flexibility in the specification of the parameters in the stochastic variance pro-
cess. It is then possible to select parameters to match a target SSR level, typ-
ically selected to strike a balance between the statistically estimated realised
level and a bid/ask level relevant to the risk profile of the book.

A limitation of SSRatmf is that in practice the realised dynamics of the
volatility surface may not be adequately captured by ATMF vol alone. Fig-
ure 1 shows the realised term structure of the SSR of the Nikkei 225 (.N225),
estimated over the second half of 2019, for ATMF vol, 60% strike vol and
a variance swap (varswap) theoretical fair strike. ATMF vol exhibits an SSR
close to sticky-strike behaviour, ie, corresponding to SSR D 1. On the other
hand, the 60% strike and varswap realised SSR term structures are both sig-
nificantly beneath the sticky-strike level at longer tenors. This is a systematic
discrepancy that results from structured product hedging activity in this mar-
ket (see Ahallal & Torné (2018) and the references therein). Another limita-
tion is that (1) is not well defined for vanishing skew. It is not uncommon
for some volatility surfaces to have positive short-term skew, due to bullish
sentiment, and to transition into a typical negative skew at longer tenors.
Thus, some intermediate tenors will have either zero or very small skew, and
undefined or numerically unstable SSRatmf.

It is straightforward to extend (1) to arbitrary strikes, resulting in a grid
of SSR metrics by strike and maturity. Alternatively, we could define SSR
for higher-order parameters of the volatility surface. While these are valid
approaches, it is appealing to have a compact and easily interpretable metric,
ideally using only a single number per maturity, from a practical trading per-
spective as well as for use in model calibration, since production stochastic
volatility models typically have only a few degrees of freedom. The variance
swap fair strike has a unique status in that it encodes a wide range of volatility

strikes into a single model-independent price. As such, it is a tool of choice
for equity derivatives traders looking for a rough but compact assessment of
the volatility surface. Therefore, it is natural to measure the joint dynamics
of the spot and the theoretical fair strike of a variance swap as a means of
extending SSRatmf to a wider strike range.1

The classical SSR definition carries over nicely to varswap fair strikes.
Denote by S the current spot level and by O�2

T
.S/ the corresponding var-

swap fair strike at maturity T , and note that the latter only depends on the
spot via the implied volatility. Also, denote by O�

2;SS
T

.S/ the varswap strike
under the additional assumption of a sticky-strike vol regime (see the next
section). Then varswap SSR is defined as:

SSRvsw D
1

�T

EŒd O�2
T

d ln S�

EŒd ln S2�
(2)

where normalisation is by the so-called varswap skew delta:

�T D
d O�

2;SS
T

d ln S

Similarly to (1), this defines SSRvsw as the regression coefficient of d O�2
T

onto d ln S , appropriately normalised. Notice there is also a symmetry in
the normalisation factors ST and �T because under the sticky-strike vol
regime, denoted O�SS

FT T
, ST D d O�SS

FT T
=d ln S holds.

In the next section, (2) is derived directly from first principles and SSRvsw
is interpreted as a weighting coefficient between sticky-strike and sticky-delta
dynamics for d O�2

T
. In particular, SSRvsw D 1 under the assumption of a

sticky strike, and SSRvsw D 0 under a sticky delta. Thus, both SSRatmf
and SSRvsw are dimensionless quantities with a concrete interpretation in
terms of market dynamics, and they can be compared directly with each other
as well as across different underlyings.

The first aim of this work is to extend to the setting of varswaps some of the
analytical results known for SSRatmf. We consider two canonical stochastic
volatility models – the local volatility model and the Heston model – and
derive closed-form approximations of SSRvsw therein. We also describe an
efficient and accurate numerical procedure to calculate (2) in an LSV model.

The closed-form expressions for SSRvsw are the following. First, in the
local volatility model, assuming the skew and term structure are sufficiently

1 In this context, the varswap fair strike is simply defined by the standard option
strip replication formula. Indeed, we are only interested in capturing the co-
movement of spot and implied volatility within a diffusion model, and there-
fore higher-order corrections normally encapsulated in the varswap basis are not
relevant.
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Cutting edge: Volatility modelling

1 Term structure of realised SSR for ATMF vol, 60% strike vol and variance

swap theoretical fair strike
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The underlying is .N225, realised SSRs estimated over the second half of 2019

close to a flat Black-Scholes model in the sense defined below, its holds that:

SSRvsw

D

�
D1

T
C

1

T

Z T

0
D1

t dt

�
�

O�2
FT T

T

2

�
D2

T C
1

T

Z T

0

t

T
D2

t dt

�
D1

T
�

O�2
FT T

T

2
D2

T

(3)

where D1
T

and D2
T

are the skew and curvature of the implied variance,
respectively. This formula is quite similar to the skew-averaging formula for
SSRatmf, except that it involves a contribution from curvature as well as
skew (see Bergomi 2015, (2.87)). Next, in the Heston model it holds that:

SSRvsw D
1 � e��T

�T

��

D1
T

�
1
2 O�2

FT T
T D2

T

(4)

up to second order in the volatility of variance �, where � denotes the mean-
reversion rate and � is the spot-variance correlation. D1

T
and D2

T
are known

in closed form (Bergomi & Guyon 2012, appendix A) and are given by (21).
The short tenor behaviour in (3) and (4) is such that:

lim
T !0

SSRvsw D lim
T !0

SSRatmf D 2

This is as expected since ATMF vol and varswap fair strike coincide in this
limit. For tenors T > 0, SSRatmf and SSRvsw no longer coincide, the
latter being driven by the dynamics of both ATMF vol and out-of-the-money
(OTM) strikes.

Volatility regime weighting

This section derives (2) from first principles and offers further insights into
its interpretation. Denote by S the current spot level and by O�2

T
.S/ the cor-

responding varswap fair strike of maturity T . The aim is to describe the co-
movement of the spot and the volatility implied by certain diffusion models.
For this purpose, the varswap fair strike is merely a natural encoding of the
volatility surface and it is sufficient to define it by the standard formula:

O�2
T .S/ D 2

� Z S

0

1

K2
P.K/ dK C

Z 1

S

1

K2
C.K/ dK

�
(5)

where:

P.K/ D KN.�d2/ � SN.�d1/; C.K/ D SN.d1/ � KN.d2/

and:

d1.K/ D
ln.S=K/ C O�2

KT
T=2

O�KT

p
T

; d2.K/ D d1.K/ � O�KT

p
T

where for simplicity the risk-neutral drift is set to zero. Formula (5) is proved
in Coulombe et al (2009, (1)).

Next consider a spot move from S to S 0, and a simultaneous shift of the
implied volatility surface from O�KT .S/ to O�KT .S 0/. Under the sticky-strike
regime:

O�KT .S 0/ � O�SS
KT .S 0/ D O�KT .S/ (6)

while under the sticky-delta regime:

O�KT .S 0/ � O�SD
KT .S 0/ D O� K

S0 S;T
.S/ (7)

Inserting either (6) or (7) into (5) produces the corresponding sticky-strike
and sticky-delta dynamics for the varswap fair strike, denoted by O�

2;SS
T

.S 0/

and O�
2;SD
T

.S 0/ respectively. Also, note that O�
2;SD
T

.S 0/ D O�2
T

.S/, which
can be seen by making the substitution dK D S dk in (5) and applying
the identity (7).

In general, the simultaneous spot and implied volatility move may fall
outside of the two canonical regimes, and in this case we can express the
updated varswap fair strike as:

O�2
T .S 0/ D � O�

2;SS
T

.S 0/ C .1 � �/ O�
2;SD
T

.S 0/ (8)

where this equality determines the weighting parameter �. This expression
is a common way for traders to parameterise a general dynamic in terms of
sticky strike and sticky delta. If � > 1 (� < 1), the dynamic is said to
over-realise (under-realise) the skew.

Rearranging terms, (8) can be viewed as the regression of:

� O�2
T D O�2

T .S 0/ � O�2
T .S/

onto:
� O�

2;SS
T

D O�
2;SS
T

.S 0/ � O�2
T .S/

with regression coefficient �. That is, � O�2
T

D �� O�
2;SS
T

. The infinitesimal
version of the regression coefficient is:

� D
EŒd O�2

T
d O�

2;SS
T

�

EŒ.d O�
2;SS
T

/2�

Using the fact that O�
2;SS
T

is a deterministic function of S , we can project
onto d ln S , in analogy with (1), to obtain definition (2).
Lastly, Coulombe et al (2009) supply the following explicit formula for

the skew delta:

d O�
2;SS
T

d ln S
D

2
p

T

Z 1

0
N 0.zK/

@ O�KT

@K
dK

where:

N 0.zK/ D O�KT

p
T �x ; zK D

xK C O�2
KT

T=2

O�KT

p
T

�x D
1q

2� O�2
KT

T
exp

�
�

.xK C O�2
KT

T=2/2

2 O�2
KT

T

�
; xK D ln

K

FT
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Cutting edge: Volatility modelling

In the following sections, the implied variance is given in the following form:

O�2
KT D O�2

FT T C D1
T xK C

1
2D2

T x2
K

Therefore:
@ O�KT

@K
D

1

2 O�KT K
.D1

T C D2
T xK/

Then:
d O�

2;SS
T

d ln S
D

Z 1

�1

.D1
T C D2

T xK/�K dxK

Keeping only the zeroth-order O�2
KT

D O�2
FT T

in �x then yields:

d O�
2;SS
T

d ln S
D D1

T �

O�2
FT T

T

2
D2

T (9)

Local volatility model

The local volatility model is given by:

dx.t/ D �
1
2 �.t; x.t//2 dt C �.t; x.t// dW.t/

where x.t/ D ln S.t/, and the drift has been set to zero for simplicity. Recall
that the skew-averaging formula asserts that:

SSRatmf D 1 C
1

T

Z T

0

St

ST
dt (10)

at first order in a perturbation of the local vol around a constant �0, where St

is the skew of the implied volatility at maturity t (see Bergomi 2015, (2.87)).
First, we follow the method of the proof of (10) described in Bergomi (2015)
and adapt this argument to SSRvsw to obtain (3). Second, we describe a
method for obtaining higher-order approximations.

As O�2
T
is a deterministic function of the spot, (2) simplifies to:

SSRvsw D
1

�T

d O�2
T

d ln S

Assume the local volatility has the form:

�.t; x/ D N�.t/ C ˛.t/.x � x�/ C
1
2 ˇ.t/.x � x�/2 (11)

and assume that it is close enough to a constant �0, ie:

�.t; x/ D �0 C ı�.t; x/ (12)

with ı� small. Here, x� D ln S�, with S� the reference spot value at which
the local vol is calibrated. By definition:

O�2
T D E�.t;x/

�
1

T

Z T

0
�.t; x.t//2 dt

�
Two simplifications can be made at first order in ı� . First:

�.t; x.t//2
D �2

0 C 2�0ı�.t; xt /

and second:

O�2
T D E�.t;x/

�
1

T

Z T

0
�2

0 C 2�0ı�.t; xt / dt

�
D �2

0 C E�0

�
1

T

Z T

0
2�0ı�.t; xt / dt

�

Then, by straightforward computation:

d O�2
T

dx0
D

d
dx0

�
�2

0 C E�0

�
1

T

Z T

0
2�0ı�.t; xt / dt

��
D 2�0

d
dx0

�
�

�0

2
C

1

T

Z T

0
N�.t/ C ˛.t/

�
x0 � x�

�
�2

0 t

2

�
dt

C
1

2

1

T

Z T

0
ˇ.t/

��
x0 � x�

�
�2

0 t

2

�2

C �2
0 t

�
dt

�
Therefore:

d O�2
T

dx0

ˇ̌̌̌
x0Dx�

D
2�0

T

Z T

0
˛.t/ dt �

�3
0

T

Z T

0
tˇ.t/ dt (13)

Choosing to expand (13) around the ATMF level �0 D O�FT T yields:

d O�2
T

dx0

ˇ̌̌̌
x0Dx�

D
2 O�FT T

T

Z T

0
˛.t/ dt �

O�3
FT T

T

Z T

0
tˇ.t/ dt (14)

It remains to express this in terms of implied variance. In Bergomi (2015),
an expression for O�KT is derived in terms of the local volatility parameters
N� , ˛ and ˇ, valid at first order in ı� . Adjustments in the derivation yield the
following formula for implied variance:

O�2
KT D O�2

FT T C D1
T ln

�
K

FT

�
C

D2
T

2
ln

�
K

FT

�2

(15)

where:

D1
T D

d O�2
KT

d ln K

ˇ̌̌̌
KDFT

D
2 O�FT T

T

Z T

0
˛.t/

t

T
dt

D2
T D

d2 O�2
KT

d ln K2

ˇ̌̌̌
KDFT

D
2 O�FT T

T

Z T

0
ˇ.t/

�
t

T

�2

dt

9>>>>=>>>>; (16)

Combining (14) and (16) gives:

d O�2
T

dx0
D

�
D1

T C
1

T

Z T

0
D1

t dt

�
�

O�2
FT T

T

2

�
D2

T C
1

T

Z T

0

t

T
D2

t dt

�
(17)

Next, given the implied variance (15), the skew delta is given by (9). Com-
bining (17) and (9) gives the desired result: equation (3).

Figure 2 shows the term structure of SSRvsw calculated by a direct numer-
ical evaluation, as well as using (3), for the Hang Seng China Enterprises
Index (.HSCEI) on January 14, 2021. The change in monotonicity results
from a change in the sign of the skew at longer tenors. The accuracy of (3)
may vary depending on the underlying volatility surface. It is recommended
to apply it for qualitative analysis, but to use an efficient numerically exact
calculation for production, such as outlined in the ‘Heston-LSV’ section
later.

Formula (3) is a useful rule of thumb, and it is sufficient for the purposes
stated in the introduction. Nevertheless, there exists a more general method
of proof for obtaining (14) that is not restricted to first order in ı� . To this
end, define the Black-Scholes term structure as:

�BS
x0

.t/ D �.t; x0/ (18)

The results of Benhamou et al (2010) express the price of a European option
in the local vol model as an expansion around its Black-Scholes price under
(18), and up to arbitrary order in the local vol coefficients. These results can
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Cutting edge: Volatility modelling

2 Term structure of SSRvsw in LV for .HSCEI on January 14, 2021
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be applied directly to the log contract to obtain a closed-form approximation
of O�2

T
in local vol. To illustrate, we apply the lowest order expansion from

that paper (see Theorem 2.1 therein), but note that the argument below is
also applicable to higher-order expansions. Using the notation of that paper,
set h.x.T // D .�2=T /.x.T / � x0/ and:

Greekh
i .x.T // D

8<:�2=T if i D 1

0 if i > 2

With this we obtain:

O�2
T D E�.t;K/

�
1

T

Z T

0
�.t; x.t//2 dt

�
D E�.t;K/Œh.x.T //�

Now a direct application of theorem 2.1 states that:

O�2
T D

1

T

Z T

0
�.t; x0/2 dt

�
1

T

Z T

0
�.t; x0/2

Z T

t
�.s; x0/

d�

dx
.s; x0/ ds dt

Inserting into this the expression of local vol (11) and simplifying then yields:

d O�2
T

dx0

ˇ̌̌̌
x0Dx�

D
2

T

Z T

0
N�.s/˛.s/ ds �

1

T

Z T

0

Z T

t
N�.t/2

N�.s/ˇ.s/ ds dt

�
1

T

Z T

0

Z T

t
.2 N�.t/ N�.s/˛.t/˛.s/ C N�.t/2˛.s/2/ ds dt

This can be recognised as generalising (13) to an expansion around a term
structure instead of the constant �0.

Heston model

The Heston model is given by:

dx.t/ D �
1
2 v.t/ dt C

p
v.t/ dW 1.t/

dv.t/ D ��.v.t/ � Nv/ dt C �
p

v.t/ dW 2.t/

hdW 1.t/; dW 2.t/i D � dt

9>>=>>; (19)

where x.t/ D ln S.t/, and the drift has been set to zero for simplicity. The
variance swap fair strike is:

O�2
T D E

�
1

T

Z T

0
v.s/ ds

�
D Nv C .v0 � Nv/

1 � e��T

�T

The regression coefficient term in (2) then reads:

EŒd O�2
T

d ln S�

EŒd ln S2�
D

@ O�2
T

@v0

EŒdv d ln S�

EŒd ln S2�

D
1 � e��T

�T
��

It remains to calculate the skew delta using (9). The main ingredients for this
formula are the derivatives:

D1
T D

d O�2
KT

d ln K

ˇ̌̌̌
KDFT

and D2
T D

d2 O�2
KT

d ln K2

ˇ̌̌̌
KDFT

The expression of the implied variance at second order in � is given in
appendix A of Bergomi & Guyon (2012). Moreover, as D2

T
is already purely

second order in �, we retain only the order-zero contribution of O�2
FT T

, which
is just O�2

T
. The skew delta is then:

�T D D1
T �

O�2
T

T

2
D2

T

and finally:

SSRvsw D
1 � e��T

�T

��

D1
T

�
1
2 . O�2

T
T /D2

T

(20)

where the implied variance skew and curvature can be expressed as follows:

D1
T T D

1

O�2
T

T
C x�

�
1

2. O�2
T

T /2
.C x� /2

C
1

O�2
T

T
C �

1
2D2

T T D
1

4. O�2
T

T /2
C ��

�
5

4. O�2
T

T /3
.C x� /2

C
1

. O�2
T

T /2
C �

9>>>=>>>; (21)

with:

�.s/ D O�2
s s

C x�
D

��

�

Z T

0
�.s/.1 � e��.T �s// ds

C ��
D

�2

�2

Z T

0
�.s/.1 � e��.T �s//2 ds

C �
D

�2�2

�

Z T

0
�.s/

Z T

s
e��.u�s/.1 � e��.T �u// du ds

From (20) we may compute the short- and long-term limits of SSRvsw:

lim
T !0

SSRvsw D 2; lim
T !1

SSRvsw D ��

�
�� �

1

4

�2

�
C

3

4

�2�2

�

��1

(22)
Figure 3 shows an example where the term structure of SSRvsw is calculated
by numerical evaluation from first principles, as well as using (20).

Lastly, an important result is that 1 < SSRatmf.T / 6 2 for all T

(Bergomi 2015, (9.9)). This is a key difference with SSRvsw, as from (22)
it can be seen that we may have SSRvsw.T / < 1 for some T . For example,
this will be the case if �2 < 1

3 .

Heston-LSV

The analytical formulas presented in the sections above are most useful for
conducting a qualitative analysis of SSRvsw, such as to explain the direction
of its response to changes inmarket data or model parameters. However, to be
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Cutting edge: Volatility modelling

3 Term structure of varswap SSR in the Heston model, with parameters
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The exact value obtained by purely numerical means is shown alongside the

closed-form approximation

assured of production quality precision in a variety of market conditions, it is
advisable to complement closed-form approximations with an exact numer-
ical procedure for evaluating (2). We describe one such procedure in the case
of Heston-LSV, defined by:

dx.t/ D �
1
2 v.t/�.t; x.t//2 dt C

p
v.t/�.t; x.t// dW 1.t/

dv.t/ D ��.v.t/ � Nv/ dt C �
p

v.t/ dW 2.t/

hdW 1.t/; dW 2.t/i D � dt

As the varswap fair strike is a deterministic function of the initial spot and
variance, S and v, O�2

T
D O�2

T
.S; v/. Therefore, (2) takes the form:

SSRvsw D
1

�T

� d O�2
T

d ln S
C

d O�2
T

dv

�.0; S/��
p

v

�
(23)

As previously, �T is known in closed form. Next, the varswap fair strike is:

O�2
T D E

�
�2 ln

�
S.T /

F.T /

��
whereF.T / is the forward.This can be priced by a backward partial differen-
tial equation (PDE) using the finite-difference method. The solution grid at
t D 0 contains O�2

T
.S; v/ for all values of S and v, and therefore the deriva-

tives appearing in (23) can be calculated immediately by finite difference.
Notice this only requires a single pass of the PDE solver.
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A. Examples of LSV calibration on September 1, 2021

Name SSRatm SSRvsw � � � (atm) � (vsw)

BA.N 0.99 0.67 4.0 �0.85 2.29 3.99

UBER.N 1.61 1.08 4.0 �0.60 0.90 3.04

CCL.N 2.42 1.57 4.0 �0.60 0.53 1.81

SSRatm and SSRvsw denote realised values at the 2Y tenor, estimated with one year of data. � and �

are held arbitrarily fixed, while � is calibrated to match the corresponding SSR

Table A illustrates differences in parameter values that may arise from using
(1) or (2) for calibration. Three single-stock LSV parameters were calibrated
using market data on September 1, 2021. Boeing (BA.N), Uber (UBER.N)
and Carnival (CCL.N) illustrate cases where the historical SSRvsw, for
the 2Y tenor, estimated using the previous year of data, respectively under-
realises, realises and over-realises skew. In each row, the mean-reversion �

and correlation � are fixed, and the vol-of-var � is calibrated to match either
SSRatmf or SSRvsw to its historical value, which is also reported in the
table. This example is somewhat contrived in that a production calibration
would also involve other targets and constraints and imperfectly fit all three
parameters. However, it illustrates a typical way in which differences in the
two realised SSRs ultimately influence the model calibration.

Conclusion

We introduced the varswap skew-stickiness ratio, SSRvsw, defined so that it
naturally complements the textbook SSRatmf. This is a convenient metric
to describe the spot and implied volatility dynamics at OTM strikes using a
single number. Moreover SSRvsw shares several interesting properties with
the classical SSRatmf. Most notably, the short-tenor behaviour of the two
metrics coincide, and several of the closed-form approximations known for
SSRatmf have analogous expressions for SSRvsw. Nevertheless, the two
metrics have several key differences: most notably, SSRvsw may under-
realise skew in the Heston model, and it is driven by curvature as well as
skew at first order in the local vol model. Lastly, we described an efficient and
accurate numerical procedure for calculating the exact value of SSRvsw. �
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