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Abstract

We consider the delta-hedging strategy for a vanilla option under the discrete hedg-
ing and transaction costs, assuming that an option is delta-hedged using the Black-
Scholes-Merton model with the log-normal volatility implied by the market price of the
option. We analyze the expected profit-and-loss (P&L) of the delta-hedging strategy
assuming the four possible dynamics of asset returns under the statistical measure:
the log-normal diffusion, the jump-diffusion, the stochastic volatility and the stochas-
tic volatility with jumps. For all of the four models, we derive analytic formulas for
the expected P&L, expected transaction costs, and P&L volatility assuming hedging
at fixed times. Using these formulas, we formulate the problem of finding the opti-
mal hedging frequency to maximize the Sharpe ratio of the delta-hedging strategy.
Also, we show that the Sharpe ratio of the delta-hedging strategy can be improved
by incorporating the price and delta bands for the rebalancing of the delta-hedge
and provide analytical approximations for computing the optimal bands in our opti-
mization approach. As illustrations, we show that our method provides a very good
approximation to the actual Sharpe ratio obtained by Monte Carlo simulations under
the time-based re-hedging. In contrary to Monte Carlo simulations, our analytic ap-
proach provide a fast and an accurate way to estimate the risk-reward characteristic
of the delta-hedging strategy for real time computations.

Keywords: delta-hedging errors, profit & loss distribution, discrete trading, trans-
action costs, parameters misspecification, jump-diffusion model, stochastic volatility,
Sharpe ratio
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1 Introduction

As opposed to the risk-neutral valuation in the Black-Scholes-Merton (1973) model
(BSM), in the real world, the delta-hedging strategy is subject to the following
key risks: first, mis-specification of model parameters (El Karoui-Jeanblanc-Shreve
(1998)); second, transaction costs (Leland (1985), Avellaneda-Paras (1994), Toft
(1996)); third, discrete hedging (Derman (1999)). The first factor leads to the residual
P&L variance that cannot be eliminated by increasing the hedging frequency. The
second one implies that the expected P&L will decrease when the hedging frequency
increases. The third one results in the inverse relationship between the P&L vari-
ance and the hedging frequency. These considerations imply a trade-off between the
hedging frequency, the expected P&L and its variance.

The following interesting questions arise from the these considerations:

1. If there exist good approximations for expected P&L, transaction costs, and its
variance assuming discrete hedging assuming different dynamics for the under-
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lying dynamics so that one can get more insight into the trade-off between the
risk and reward?

2. What is the break-even level of the implied volatility at which an option can be
sold so that option seller expects to make money delta-hedging this option with
specified risk tolerance measured by the volatility or expected Sharpe ratio of
the delta-hedging strategy?

3. How can one optimize the Sharpe ratio of the delta-hedging strategy?

To comment on the second question, we note that, in practice, selling options
(being short gamma) is a risky business and the risk-reward profile and timing of
losses is different for sellers and buyers. On average, an option seller expects to make
money as a compensation for occasional and potentially large losses. For example,
Broadie-Chernov-Johannes (2009) use sample period from 1987 (including the 1987
crash) to 2005 to find that the average monthly return (for long position in a put)
is −30% for at-the-money puts and −57% for 6% out-of-the-money puts. However,
losses (especially for equity index options) will inevitably occur at bad times during
market declines and risk-aversion periods. Thus, in addition to expected transaction
costs, the break-even implied volatility should include a premium for the timing of
losses. Our approach helps to quantify the premium using a level of the Sharpe ratio
that the option seller finds appropriate in the long-term.

To remark on the third question, we emphasize that the Sharpe ratio is a favorite
tool for analysis trading strategies. In our setting, on one hand, rebalancing the delta-
hedge as little as possible increases expected profit. On the other hand, infrequent
rebalancing increases P&L volatility. As a result, the Sharpe ratio enables to balancing
the reward of the delta-hedging strategy (hedge less) and risk (hedge more). Con-
ventional utility-based approaches (Hodges-Neuberger (1989), Zakamouline (2006))
provide little insight into profitability of hedging strategies and their risks.

It is well-known that trading in options results in a skewed distribution (compared
with the normal distribution) of the P&L for a delta-hedging strategy so that a single
measure of risk given by P&L volatility may be not adequate. However, our approach
is best suited for the profitability analysis of a single trade. It is the risk-management
of options book that should account for tails of the distribution of its P&L given
aggregated positions in many options. In addition to the Sharpe ratio, we can also
look at some asymmetry measures such as the skew of the P&L. However, by means
of the Monte-Carlo analysis we show that the P&L skew is too sensitive to the price
dynamics and assumed hedging strategy, in contrast to the expected P&L and its
volatility. As a result, employing higher moments can be too noisy and informative
for establishment of the optimal hedging frequency.

A typical approach to answer the above questions is to run Monte-Carlo simula-
tions of the delta-hedging strategy under different assumptions for the underlying dy-
namics and hedging strategy. While realistic, Monte-Carlo analysis is time-consuming
and provides little insight into analytical relationship between model and strategy pa-
rameters and optimizing of the hedging strategy.

Sepp (2012b) shows the connection between the realized P&L of the delta-hedging
P&L and the realized variance of the asset price. As a result, the distribution of
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P&L can be well approximated by chi-squared distribution under diffusion and jump-
diffusion dynamics and this approach can be used for analysis of the tails of the
P&L distribution and risk-management. In this article, we extend this set-up to
provide analytic tools to answer the questions raised above for delta-hedging strategy
of vanilla at-the-money call and put options under diffusions with stochastic volatility
and jumps. For brevity, we assume drift-less dynamics with zero interest and dividend
rates, and time-independent models parameters, as generalization is straightforward.

2 Preliminary analysis

Our analysis rests on the following assumptions.

2.1 Assumptions

1) We assume that, given an underlying with spot price S(t), a vanilla option on S(t)
with value function U(t, S;σi) is valued under the pricing measure Q using the BSM
PDE with implied volatility σi:

Ut +
1

2
σ2
i S

2USS = 0, (2.1)

and appropriate terminal condition. Option delta ∆(t, S;σi) = US(t, S;σi) is also
computed by solving equation (2.1). We assume that volatility σi is implied from a
market quote for U(0, S;σi) and remains fixed up to maturity time T . This assumption
states that the option is priced and delta-hedged at implied volatility. This is a
common approach because, when hedging at a volatility different to the implied, the
P&L is exposed to directional changes in the underling price (we will discuss this
point in Section 2.3 in more details).

2) We assume that the dynamics of underlying price S∗(t) under the objective
measure P are specified according to the SDE:

dS∗(t)/S∗(t) = σ(·)dW (t), S∗(0) = S, (2.2)

that can include jumps and stochastic volatility. We assume that model parameters
of this SDE are estimated for trading and risk-management purposes and that the
expected P&L and its variance are computed under the objective measure P.

3) We assume that transaction costs are proportional. These can be interpreted
as the bid-ask spread, which can be estimated empirically based on the stock liquidity
as follows:

k = 2
Sask − Sbid

Sask + Sbid

,

where Sask (Sbid) is the quoted ask (bid) price. Thus, k/2 is the average percentage loss
per trade amount and, approximately, Sask(t) = (1+k/2)S(t) (Sbid(t) = (1−k/2)S(t)).

4) We assume that the delta-hedging strategy for short position in U is held up
to maturity time T and re-balanced at uniform times {tn}, tn = nδt, n = 1, .., N ,
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δt = T/N , t0 = 0, tN = T with total number of trades N . Time-based hedging
strategy is required for our analytical developments. In addition, we consider the
spot and delta-based hedging strategies and show how to use them in our analysis.

5) We exclude the drift from the objective dynamics (2.2) because its impact on
the P&L of a delta-hedged position is small and has the order of δt2 which is smaller
than that of the realized variance, δt (for example, see Sepp (2012b), equation 44).
In fact, as we discuss in Section 2.3, the impact of the drift for the delta-hedged
position can become apparent if the option delta is computed using the volatility that
is different from the market implied volatility. However, this impact is also of the
second order effect.

2.2 Profit-and-Loss

It is well-known that if the delta-hedge for short position in U is computed using
implied volatility σi then the realized P&L in the absence of transaction costs is
approximately given by:

P (N) =
N∑
n=1

(
σ2
i δt− Σ2

n

)
Γ(tn−1, T, S

∗;σi), (2.3)

where Σ2
n is the variance realized under the objective measure P:

Σ2
n =

(
S∗(tn)− S∗(tn−1)

S∗(tn−1)

)2

and Γ(t, T, S;σi) is the option cash-gamma defined by:

Γ(t, T, S;σi) ≡
1

2
S2(t)USS(t, S;σi)

=
K

2
√

2(T − t)πσ2
i

exp

−1

2

(
ln S

K
− 1

2
(T − t)σ2

i√
(T − t)σ2

i

)2
 .

(2.4)

A continuous-time version of equation (2.3) is obtained by El Karoui-Jeanblanc-
Shreve (1998). Various extensions of it are analyzed in Carr (2005), Davis (2010),
Sepp (2012a) who show that this formula is independent from the assumption about
the dynamics of S∗(t) and serves as an accurate approximation for the realized P&L.

Finally, following Leland (1985) and Toft (1996), we approximate the realized
transaction costs by:

C(N) =
1

2
k

N∑
n=1

S∗(tn) |∆(tn, S
∗)−∆(tn−1, S

∗)|

≈ k

N∑
n=1

S∗(tn)

S∗(tn−1)

∣∣∣∣S∗(tn)− S∗(tn−1)

S∗(tn−1)

∣∣∣∣Γ(tn−1, T, S
∗;σi).

(2.5)

We note that Leland (1985) and Toft (1996) consider transaction costs under the
diffusion model of BSM. While equation (2.5) applies for general dynamics of the
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spot price, the computation of the expected transaction cost is model dependent.
Nevertheless, we obtain accurate approximations for the expected transaction cost
under different dynamics for the asset price.

2.3 Option delta and P&L

We note that in practice, the convenient way to quote option price for strike K and
maturity T is to use BSM implied volatility for this option even though the underlying
dynamics for option pricing and underlying price are, in fact, different under the
objective measure. It is typical to calibrate model parameters of the pricing dynamics
so that the pricing model produces the same BSM implied volatility as observed in the
market. Thus, equation (2.1) can be used irregardless of what dynamics is assumed for
option pricing because, as we show in this section, the difference arising from hedging
at different volatility has higher order effect and can be ignored in our analysis. More
important question is what implied volatility needs to be used for computing option
delta (see also section 4.4 in Sepp (2012b) for related discussion).

If we assume that the option is delta-hedged, with delta ∆(t, S;σh), using BSM
volatility σh, which is different from option implied volatility σi observed in the market,
then we can show that the realized P&L (2.3) will have an extra term denoted by
H(N) related to the difference in option delta-hedges:

H(N) =
N∑
n=1

(∆(tn−1, S
∗;σh)−∆(tn−1, S

∗;σi)) (S∗(tn)− S∗(tn−1)) . (2.6)

Now we see that the realized P&L has exposure to the realized price path in
addition to the realized variance of the price path. To compute the expected P&L
and its volatility, now requires to estimate the drift of the asset price, which is more
difficult to estimate compared to estimation of the volatility of the asset price. To
analyze it further, we take σh = σi + h so that

∆(t, S∗;σh)−∆(t, S∗;σi) ≈ h
∂

∂σi
∆(t, S∗;σi)

=
2h
√
T − t
S

(
ln S

K
− 1

2
(T − t)σ2

i√
(T − t)σ2

i

)
Γ(t, T, S;σi).

(2.7)

and, for brevity, assuming that S = K, (2.6) becomes:

H(N) = −hσi
N∑
n=1

(T − tn)Γ(tn, T, S;σi)

(
S∗(tn)− S∗(tn−1)

S∗(tn−1)

)
(2.8)

so that the realized P&L is exposed to the realized return weighted by option cash-
gamma.

To find the expected value of this term, we assume that the log-normal diffusion
model for the price dynamics under objective measure has drift µ and volatility σr.
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Then, we obtain

H ≡ EP[H(N)] ≈ −hσi
(

1

2
TΓ(T/2, T, S;σi)

) N∑
n=1

EP
[
S∗(tn)− S∗(tn−1)

S∗(tn−1)

]
= −1

2
hσiµT

2Γ(0, T/2, S;σi).

Thus, h > 0, the contribution to the P&L is negative for a positive drift and vice
versa. We note that the expected P&L in the diffusion model is given by (4.3) and is
proportional to (σ2

i − σ2
r)T so that H only contributes in second order in T .

Under the diffusion model with volatility σr, the variance of H is approximated
by:

VP[H(N)] ≈1

4
h2σ2

i σ
2
rT

3Γ2(0, T/2, S;σi). (2.9)

which does not depend on the hedging frequency and needs to be contrasted with
irreducible variance fdf given in (4.4).

To summarize, unless the implied volatility is very small while the drift is very
large, the total impact of H on the expected P&L is insignificant. Also, unless h2 is
very large, irreducible variance of the P&L will be dominated by fdf term. Although,
hedging under different delta may significantly affect day-to-day variations in the P&L
, the impact on the total realized P&L is expected to be insignificant so that, for our
analysis, we can safely assume that the hedging is done using implied BSM volatility.

Finally, the pricing model is important for computation of option values and
hedges, however, the delta-hedging P&L is realized under the objective measure.
As a result, the expected P&L and its variance need to be computed using model
parameters under the objective measure.

2.4 Option vega and P&L

Option vega can serve as an additional source of the P&L volatility. Accounting for
vega risk will increase the P&L volatility so that, typically, it will result in lower
Sharpe ratios. In assumption 4) in Section 2.1, we assume that the option is held
to maturity so that variations in the implied volatility have an impact of smaller
order than variations in the underlying price. A proper modeling of the volatility risk
requires a model for the joint dynamics of the implied volatility and the underlying
price, which we leave for future research.

3 Delta-hedging strategy

We consider the three approaches to delta-hedging to specify the sequence of hedging
times {τn} (see Whalley-Wilmott (1997) and Zakamouline (2006) for analysis of these
hedging strategies):
1) time-based with rebalancing at fixed times with deterministic {τn};
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2) price-based with rebalancing at the first time that the change in the spot price
exceeds specified level αS:

τn = min
τn−1<t≤T

{
t :

∣∣∣∣ S∗(t)

S∗(τn−1)
− 1

∣∣∣∣ ≥ αS

}
; (3.1)

3) delta-based with rebalancing at the first time that the change in the delta exceeds
specified level α∆:

τn = min
τn−1<t≤T

{t : |∆(t, S∗(t))−∆(τn−1, S
∗(τn−1))| ≥ α∆} . (3.2)

Although our analysis assumes deterministic hedging times with the hedging fre-
quency being the key optimization variable, we show how to extend our results to
price- and delta-based hedging in a simple and accurate way. As a result, we can
formulate the problem of optimizing the Sharpe ratio in term of finding the opti-
mal price- and delta-bands to balance risk and reward. In practice, using price- or
delta-bands is more efficient than deterministic hedging as it allows to save on the
transaction cost and reduce P&L volatility if bands are chosen wide enough.

The well-known result for the diffusion model (4.1) with volatility σr states that,
for the price-based strategy, the expected rebalancing interval τ is given by:

τ ≡ EP [τ ] =
α2
S

σ2
r

. (3.3)

Thus, a rough approximation to the number of rebalancing, N , when following the
price-based strategy is given by:

N ≈ T

τ
=
Tσ2

r

α2
S

. (3.4)

Alternatively, given specified frequency N we can imply the corresponding band
αS by:

αS =

√
Tσr√
N

. (3.5)

The delta-based rebalancing is more robust because it accounts for option gamma
as can be seen from the following approximation:

|∆(t, S∗(t))−∆(τn−1, S
∗(τn−1))| ≈ |(S∗(t)− S∗(τn−1))USS(τn−1, S

∗(τn−1))|

=

∣∣∣∣( S∗(t)

S∗(τn−1)
− 1

)∣∣∣∣ |S∗(τn−1)USS(τn−1, S
∗(τn−1))| .

(3.6)

Thus, for at-the-money options with high gamma, the rebalancing is expected to be
more frequent, while, for out-of-the money options with low gamma, the re-hedging
is only applied for big moves in the spot price.

It is difficult to find the exact correspondence between the spot and delta bands αS
and α∆ because the delta-based hedging is dependent on both the realized price path
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and implied volatility. By means of Monte-Carlo analysis, we have found the following
heuristic rule that approximately equates the expected number of rebalancing under
the two strategies:

α∆ = αS |SUSS(0, S)| , USS(0, S) =
2

S2
Γ

(
0, T/2, S;

√
(σ2

r + σ2
i )/2

)
. (3.7)

Our justification is based on using (3.6) along with using the expected gamma
(4.2) in the diffusion model. Similarly to (3.5), given specified frequency N we can
imply the corresponding band α∆:

α∆ =

√
Tσr√
N
|SUSS(0, S)| . (3.8)

The price- and delta-based bands, specified by equations (3.5) and (3.8), respec-
tively, are obtained for the diffusion model. For models with stochastic volatility and
jumps we use the same equations with σ2

r computed as follows (this heuristic is based
on approximation of the Poisson jump process by the Brownian motion with the same
quadratic variance, which can be justified because the bands are not wide):
for jump-diffusion, σ2

r = ϑjd with ϑjd specified by (4.9);
for stochastic volatility, σ2

r = ϑsv with ϑsv specified by (4.13);
for jump-diffusion with stochastic volatility, σ2

r = ϑsvj with ϑsvj specified by (4.18).

3.1 Mean-variance analysis

We analyze the moments of the P&L using the P&L given by formula (2.3). For
this purpose, we need to specify the dynamics (2.2) and analyze the realized variance
Σ2
n in (2.3). Importantly, we want to estimate the expected P&L and its variance,

and expected transaction costs. In general, this problem is highly path-dependent
since as cash gamma Γ(tn−1, T, S

∗;σi) depends on the path of S∗, as does the realized
variance. However, we derive closed-form approximations which allow to compute
these quantities under the diffusion, jump-diffusion, and stochastic volatility with
jumps models. We assume the time-based hedging strategy with price- and delta-
based strategies can be analyzed in this framework using (3.5) and (3.8), respectively.

In particular, we show that the expected P&L under objective measure P:

U ≡ EP [P (N)] = u, (3.9)

is independent of the hedging frequency N .
The expected transaction costs C(N) can be approximated by:

C(N) ≡ EP [C(N)] = c
√
N, (3.10)

where c2 is the expected transaction cost per trade.
Finally, the variance V (N) can be approximated by:

V (N) = VP [P (N)] =
p

N
+ f. (3.11)
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where p is the variance rate inversely proportional to hedging frequency and f is the
irreducible variance. We emphasize that the presence of f in the P&L variance means
that part of the P&L risk, arising from mis-specification of model parameters, jumps
and stochastic volatility (or any combination of these factors), cannot be eliminated
by increasing the delta-hedging frequency. We note that the variance of expected
transaction costs is of order k2 so that its contribution to the P&L variance V (N)
can be ignored.

3.2 Sharpe ratio

The above results enable us to represent the Sharpe ratio S(N) of the delta-hedging
strategy by:

S(N) =
1√
T

u− c
√
N√

p
N

+ f
, (3.12)

where constants u, c, v, f are all positive. The specification of these constants depends
on the underlying dynamics under P and will be considered in the following section.
Factor 1√

T
arises from normalization of the expected P&L and its variance by T . For

illustrations of S(N) we refer to Figures 2 and 3.
Our objective is to maximize the Sharpe ratio S(N). We note that equation

(3.12) has a unique global maximum. The stationary point N∗, so that the derivative

of S(N) at point N∗ is zero, S
′
(N∗) = 0, solves the following equation:

−2cp

N∗
+

up

N∗
√
N
∗ − cf = 0. (3.13)

Making substitution m = 1/
√
N∗, we obtain the cubic equation for m which has

one real and two complex roots. The real-valued root is given by (using formulas from
Section 5.6 in Press et al (1992)):

m = A+
Q

A
+

2c

3u
, A =

(
|R|+

√
D
)1/3

Q =
4

9

( c
u

)2

, R = −
(

1

3

( c
u

)3

+
1

2

cf

up

)
, D = R2 −Q3 > 0,

(3.14)

where, while m is real, we get integer N∗ = 1/m2 by rounding. The obtained value
of N∗ yields the optimal hedging frequency.

4 Analysis

In this section we consider some specifications of the P-dynamics (2.2) and derive
constants to use in estimation of the Sharpe ratio (3.12). For convenience, we assume
unit notional.
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4.1 Diffusion model

Now we assume that the underlying price S∗(t) under the objective measure P is
driven by log-normal diffusion with volatility σr:

dS∗(t)/S∗(t) = σrdW (t), S∗(0) = S, (4.1)

where W (t) is standard Brownian motion.
First we introduce the expected cash gamma under P, Γ(tn, T ;σ2

r), n = 0, .., N−1,
which is given by:

Γ(tn, T ;σ2
r) ≡ EP [Γ(tn, T, S;σi) |S = S∗(tn)] = Γ(0, T, S; ζ(tn)), (4.2)

where ζ(tn) =
√

(tnσ2
r + (T − tn)σ2

i )/T . If volatility parameters under Q and P are
equal, we obtain that Γ(tn, T ;σr) = Γ(0, T, S;σr), so that the expected option gamma
at rebalancing times {tn} equals to its value at time t0 = 0.

In Appendix A, we obtain equation (7.3) for an approximation of the expected
P&L under P:

Udf = (σ2
i − σ2

r)TΓdf , (4.3)

where Γdf is defined by (7.4). The coefficient udf to use in the Sharpe ratio (3.12), is
adjusted by the initial cost to enter the delta-hedge:

udf = (σ2
i − σ2

r)TΓdf −
k

2
S(t0) |∆(t0, S)| .

In Appendix A, we also obtain equation (7.8) for an approximation of the P&L
variance which is represented using equation (3.11) with

pdf = 2qσ4
rT

2Γ2
df , fdf =

(
σ2
i − σ2

r

)2
T 2
(

Γ2
df − (Γdf )

2
)
, (4.4)

with Γ2
df defined by equation (7.6) and q = π

√
3/4.

We use formula (2.5) to approximate the expected realized transaction costs as
follows:

C(N) ≈ kEP

[
N∑
n=1

∣∣∣∣{ S∗(tn)

S∗(tn−1)

S∗(tn)− S∗(tn−1)

S∗(tn−1)

}∣∣∣∣Γ(tn−1, T, S
∗;σi)

]

≈ EP

[
k

N∑
n=1

∣∣∣√σ2
rδtεn

∣∣∣Γ(tn−1, T, S
∗;σi)

]
,

≈ kΓdf
√
σ2
rδt

N∑
n=1

EP [|εn|]

= cdf
√
N, cdf = kT

√
2σ2

r

πT
Γdf ,

(4.5)

where we apply a normally distributed return
√
σ2
rδtεn, where εn is a standard normal

random variable, to approximate the term in curly brackets in the first line.
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The optimal value of hedging frequency N∗, so that the Sharpe ratio is maximized,
is given by equation (3.14). To gain some intuition (for real-time applications we
always solve the solution given by equation (3.14)), we consider a simplified case
when the implied volatility is close to the realized: σi ≈ σr. As a result, f ≈ 0 and
the Sharpe ratio becomes:

Sdf =
1√
T

(σ2
i − σ2

r)TΓdf − kT
√

2σ2
r

πT
Γdf
√
N√

2qσ4
rT

2Γ2
df

N

≈ 1√
T

(σ2
i − σ2

r)− k
√

2σ2
r

πT

√
N√

2qσ4
r

1√
N

.

The Sharpe ratio is maximized by choosing:

N∗ =
( u

2c

)2

=
πT

8

(σr
k

)2
(
σ2
i

σ2
r

− 1

)2

, (4.6)

with the optimal Sharpe ratio given by:

S =
1

8(3)1/4

σr
k

(
σ2
i

σ2
r

− 1

)2

.

It is interesting to conclude that with this choice of N∗, the expected transaction
costs equal to the half of the expected P&L. The optimal frequency is inversely pro-
portional to the square of the transaction costs, so if transaction costs rate k halves,
the optimal frequency increases four fold and the Sharpe ratio doubles. Also, the
Sharpe ratio does not depend on the expected cash-gamma and therefore is barely
dependent on option strike and maturity.

To get more insight, we assume that the implied volatility trades at premium ε so
that σi = (1 + ε)σr and:

N∗ ≈ πT

2

(σr
k

)2

ε2 , S ≈ 3

8

σr
k
ε2. (4.7)

Accordingly, the optimal frequency is proportional to the premium of the implied
to realized volatility: the higher is the premium, the more frequent hedging is possible
and, as a result, the higher Sharpe ratio is attainable. Finally, the Sharpe ratio
is proportional to the ratio of realized volatility to transaction costs. Higher costs
relative to realized volatility, reduce the Sharpe ratio and vice versa.

4.2 Jump-diffusion model

Now we assume that the underlying dynamics are driven by a jump-diffusion process:

dS∗(t)/S∗(t) = σrdW (t) + (eν − 1) dN(t), S∗(0) = S, (4.8)

where N(t) is Poisson process with intensity λ. Given a jump in N(t), the jump in
log-price is constant with magnitude ν (it is easy to incorporate the volatility of the
jump, but for brevity we do not consider it here).
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In appendix A, we show that the expected P&L can be approximated by:

U jd = (σ2
i − ϑjd)TΓjd,

where Γjd is defined by equation (7.10) and ϑjd is the expected realized (quadratic)
variance of lnS∗(t) under (4.8):

ϑjd = σ2
r + λν2. (4.9)

Similarly to (4.5), we approximate the expected transaction costs by

Cjd ≈ cjd
√
N + kλT |ν|Γjd, cjd = kT

√
2σ2

r

πT
Γjd, (4.10)

where the additional term represent the expected number of jumps and related rebal-
ancing costs so that ujd is decreased by this term and initial transaction costs:

ujd = (σ2
i − ϑjd)TΓjd − kλT |ν|Γjd −

k

2
S(t0) |∆(t0, S)| .

Using equation (7.12), the P&L variance can be represented be means of equation
(3.11) with

pjd = qΓ
2

jdT
2
(
2σ4

r + λσ2
rν

2
)

fjd = qΓ
2

jdTλν
4 +

(
(σ2

i − ϑjd)T
)2
(

Γ2
jd − (Γjd)

2
)
.

where Γ2
jd is defined by (7.13).

The Sharpe ratio is given by equation (3.12) with optimal solution specified by
(3.14). To get some insight, we assume that the product cf is small. So by analogy
to (4.6), we obtain:

N∗ =
( u

2c

)2

=
πT

8

(σr
k

)2
(
σ2
i

σ2
r

− 1− λ(ν2 + k|ν|)
σ2
r

)2

, (4.11)

Thus, increasing jump intensity and jump magnitude will decrease the optimal
frequency. As a result, in the presence of jumps, the optimal frequency is expected
to be smaller than in the diffusion model. As in the diffusion model, the optimal
frequency is proportional to the maturity time.

4.3 Stochastic volatility model

Now we assume that the underlying dynamics are driven by Heston (1993) stochastic
volatility model with stochastic variance V (t):

dS∗(t)/S∗(t) =
√
V (t)dW (t), S∗(0) = S,

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dZ(t), V (0) = V,

(4.12)

where W (t) and Z(t) are correlated Brownians with correlation parameter ρ.
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Similarly to the jump-diffusion model, if the option is delta-hedged using the
implied-volatility σi, then the realized P&L is given by equation (2.3) with realized
variance Σ2

n sampled using the dynamics of (4.12). The expected realized (quadratic)
variance of lnS∗(t) under (4.12), ϑsv(T ), is given by:

ϑsv(T ) = θ +
1

κT

(
1− e−κT

)
(V − θ) . (4.13)

We approximate the expected P&L by:

U sv = (σ2
i − ϑsv(T ))TΓsv − Lsv, (4.14)

where Γsv is defined by (7.15) and Lsv is the auto-correlation correction defined by
equation (8.3). Thus:

usv = (σ2
i − ϑsv(T ))TΓsv − Lsv −

k

2
S(t0) |∆(t0, S)| .

We note that Lsv is negative so that the stochastic volatility contributes positively
to the expected P&L of a short volatility position. This can be explained by the fact
that, given a large value of realized variance Σn, because of the positive correlation
between the instantaneous variance and the realized variance, it is expected that the
realized variance, realized up to time time tn, is large and thus the option is likely
to be out of the money with a small cash-gamma. Therefore, even though the n-th
contribution to the P&L is expected to be negative, its magnitude will be mitigated
by a small cash-gamma. In opposite, if realized variance Σn is small, it is more likely
that the option is still at-the-money thus the positive contribution is magnified by a
larger value of the cash-gamma. In a diffusion model, the instantaneous variances is
deterministic so that such effect is not observed.

Expected transaction costs are approximated by:

Csv = csv
√
N, csv = kT

√
2ϑsv(T )

πT
Γsv; (4.15)

while the P&L variance is approximated using (7.18) and given by equation (3.11)
with

psv = 2qV 2T 2Γ2
sv, fsv = f1 + f2

f1 = Γ2
svVsv, f2 =

(
(σ2

i − ϑsv(T ))T
)2
(

Γ2
sv − (Γsv)

2
)
,

(4.16)

where Γ2
sv is defined by (7.19) and Vsv is defined by (7.21). By analogy, the Sharpe

ratio is given by (3.12) using coefficients as defined above.

4.4 Stochastic volatility model with jumps

Now we consider stochastic volatility model (4.12) augmented with jumps in price as
in dynamics of (4.8). This model is analyses by aggregating available results. First,
we approximate the expected P&L by:

U svj = (σ2
i − ϑsvj(T ))TΓsvj − Lsv, (4.17)
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where ϑsvj(T ) is the quadratic variance:

ϑsvj(T ) = ϑsv(T ) + λν2 (4.18)

and Γsvj is computed using (7.15) and applying (7.17) for computing (7.16). Trans-
action costs are approximated by:

Csvj = csvj
√
N + kλT |ν|Γsvj, csvj = kT

√
2ϑsv(T )

πT
Γsvj; (4.19)

and the P&L variance is given by equation (3.11) with

usvj = (σ2
i − ϑsvj(T ))TΓsvj − Lsv − kλT |ν|Γsvj −

k

2
S(t0) |∆(t0, S)|

psvj = qΓ2
svj

(
2V 2T 2 + λσ2

rν
2
)
, fsvj = f1 + f2 + f3,

f1 = Γ2
svjVsv, f2 = qΓ2

svjTλν
4, f3 =

(
(σ2

i − ϑsvj(T ))T
)2
(

Γ2
svj − (Γsvj)

2
)
.

5 Illustrations

In this section, we provide some illustrations using diffusion (4.1) (DF), the jump-
diffusion (4.8) (JD), stochastic volatility (4.12) (SV) and stochastic volatility with
jumps (SVJ)2.

5.1 Specification

Model parameters are given in Table 1 and are specified as follows: Case I) corresponds
to an option on a liquid index or an ETF (such as the S&P 500, QQQQ, etc); Case II)
corresponds to an option on a high-beta stock (such as CAT, APPL, etc). In the first
case, the implied volatility trades at 10% premium to the expected realized volatility,
with the spread of the implied volatility to the realised volatility being 1.5% and
transaction costs being k = 0.001. In the second case, the implied volatility trades
at 20% premium with the spread of 5% and transaction costs k = 0.004. The option
under consideration is call option with S = K = 1, T = 1. The trade notional is
1000/Γ(0, T, S;σi), where Γ is option cash-gamma defined by (2.4). Thus, the notional
equals to 830 for case I and 1521 for case II.

For models with jumps, the volatility of the Brownian motion, σr, is adjusted
by the contribution from jumps, λν2. For models with stochastic volatility, we set
σ2
r = V (0) = θ2. As a result, the expected quadratic variance, σ2

r + λν2, is the same
for all four models.

We analyze delta-hedging based on:
1) time-based hedging with fixed frequency N ;
2) price-based hedging (3.1);
3) delta-based hedging (3.2).

2Matlab files with sample code for these computations are available at
http://www.mathworks.co.uk/matlabcentral/fileexchange/54345
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For the price-based strategy, given N , the corresponding band αS is determined
by (3.5), while for delta-based hedging, the corresponding band α∆ is specified by
(3.7). Frequency (Freq) corresponding to N , N = {15, 30, 60, 120, 240, 480, 960, 1920},
is interpreted respectively as (approximately) 1 per m (one rebalancing per month;
N = 15), 1 per w (once per week; N = 60), 1 per d (once per day; N = 240), and so
forth.

The realized P&L is computed by:

P ({tn}) =
∑
n=0

∆Πn, (5.1)

where ∆Π0 = −(k/2)S(t0) |∆(t0, S)| and

∆Πn = [Πn − ernΠn−1]− S(tn)[∆(tn, S)−∆(tn−1, S)]

− (κ/2)S(tn) |∆(tn, S)−∆(tn−1, S)|

where Π(tn, S) = S(tn)∆(tn, S)−U(tn, S), rn is the accrual rate for interval (tn−1, tn]
(we assume that rn is zero in this analysis), {tn} are rebalancing times. Rebalancing
times are fixed for the time-based strategy tn = n∆T with ∆T = T/N andN being the
total number of rebalancing. For price- and delta-based hedging, rebalancing times are
specified by (3.1) and (3.2), respectively, with the total number of rebalancing being a
random variable. Here, ∆(t, S) is the option delta at time t. At the option maturity,
the value of the option, U(tN , S), is specified by pay-off function u(S(tN), K), while
the option delta, ∆(tN , S), is (minus) one if the (put) call option is in-the-money
and zero otherwise. The terms in the first line of equation (5.1) represent borrowing
and delta-hedge rebalancing costs, respectively; the term in the second line represent
transaction costs.

We note that in our analysis, the price- and delta-based bands are determined
using formulas (3.5) and (3.7) with the specified hedging frequency N and volatility σr.
These formulas are derived so that the expected P&L is approximately equal among
all three strategies. If our reasoning is correct, MC results should be approximately
equal for all three strategies and the analytic approximation. As a result, the optimal
hedging frequency for the time-based strategy can be converted to the optimal hedging
bands for price- and delta-based strategies.

For MC simulations, 2, 000 paths are used. We note that the MC error estimate is
given by the MC P&L volatility divided by

√
2, 000. However, the confidence bounds

for the Sharpe ratio are even larger because the estimated P&L volatility has the
same MC error estimate. For price- and delta-based strategies, we report only MC
results. For the price- and delta-based strategies and use 10, 000 periods per year
(which corresponds to observation frequency of about 10 minutes) to simulate the
spot price and check the rebalancing condition.

5.2 Results

In Table 2, we provide coefficients for the Sharpe ratio and the P&L statistics com-
puted using specified model parameters assuming time-based hedging.

In Figure 1, we plot the expected P&L and its volatility (on left scale) and the
corresponding Sharpe ratio (on right scale) as functions of N for the diffusion model
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with parameters from case II. In Figure 2, we plot the analytical Sharpe ratio for all
four models. We observe that models with stochastic volatility imply smaller Sharpe
ratios that peak at smaller values of N .

In Figure 3, we plot the optimal Sharpe ratio as function of option maturity T for
model with parameters from case II. We observe that the optimal Sharpe ratio peaks
for options with maturities of one and two month and declines as maturity increases
because expected transaction costs increase. For model with stochastic volatility and
jumps, the obtainable optimal Sharpe ratio is smaller than that for the diffusion
model.

In Figure 4, we plot the optimal re-hedging period, 250T/N∗ for model with param-
eters from case II, using annualization factor of 250, as function of option maturity T ,
where N∗ is the optimal hedging frequency for this maturity. The optimal re-hedging
period increases for longer maturities from as low as hedging once per 3 days for
short-term maturities (up to 2 month) to 7-8 days for longer-term maturities (above
2 years). The diffusion model implies shorter re-hedging periods.

In Tables 3 and 5, we report the expected P&L (P&L), transaction costs (Costs),
the P&L volatility (Vol), and corresponding Sharpe ratio (Sharpe) obtained using
analytic results (Analytic) and Monte Carlo (MC) simulations of the diffusion model
for the time-based delta-hedging strategy using parameters from case I and case II,
respectively. In Tables 4 and 6, we report the same quantities for the price- and delta-
based strategies with bands defined using (3.5) and (3.8), respectively. In addition,
in Tables 4 and 6, we report the expected number of rebalancing (Exp N) and its
standard deviation (Std N) obtained from MC simulations. In Tables 7-10, 11-14 and
15-18, we report the same results for jump-diffusion model, stochastic volatility model
and stochastic volatility model with jumps, respectively.

In Figures 5 and 6, we plot the realized P&L and its volatility obtained by analyt-
ical formula and MC simulations for case II. In Figure 7, we plot the corresponding
Sharpe ratio. Finally, in Figure 8, we illustrate the skew of the P&L.

5.3 Discussion

First, we notice that for the time-based strategy, results obtained by our analytical
approximation are very close to the MC estimates. We observe that, for the diffusion
case, the optimal hedging frequency leads to expected transaction costs that are about
half of the expected upside, in line with equation (4.6).

We note that the optimal frequency under jump-diffusion and stochastic volatility
is much smaller than that in the diffusion case, in line with conclusion from equation
(4.11). The expected P&L for the stochastic volatility is higher because of the auto-
correlation as we have discussed in Section 3.3 and Appendix B. Importantly, while
the expected P&L is about the same for the diffusion model and models with jump
and stochastic volatility, the latter models imply much higher P&L volatility and, as
a result, lower Sharpe ratios.

Importantly, we conclude that the optimal hedging frequency implied by our anal-
ysis is very close to MC results and it can be served as a tool to estimate the hedging
frequency or required implied volatility level to reach a specified Sharpe ratio. We note
that, when using the price- and delta-based strategies with bands defined using (3.5)
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and (3.8), respectively, we obtain Sharpe ratios close to those from the time-based
strategy. Thus, our analysis can serve to estimate the expected P&L and its volatil-
ity as well as to imply the optimal hedging frequency for the price- and delta-based
strategies.

In most of cases, both the price and delta-based strategies produce approximately
equal Sharpe ratios and, in turn, are close to the time-based strategy using our pro-
posed formulas (3.12) and (3.8). The optimal band that maximizes the Sharpe ratio
for the delta-based strategy can be obtained using our formulation (3.12) along with
(3.8). We see that indeed the optimal choice of hedging frequency and price- and
delta-bands obtained from our analysis produces the highest Sharpe ratio possible.

An additional insight can be obtained from the analysis of the skew of the realized
P&L. In Figure 6, we plot the realized skew of the delta-hedging P&L corresponding
to the case II. We see that the realized skew is very sensitive to the price dynam-
ics. For the diffusion model, the large spread between implied and realized volatility
leads to large positive skew unless the hedging is too frequent (more than 4 times
a day). Under the jump-diffusion, the realized skew declines significantly especially
for time-based hedging, because of jumps. Under the stochastic volatility, the skew
is negative, because the P&L is short the realized variance, which has a higher skew
under the stochastic volatility (more extreme values of the realized variance are pos-
sible compared to the diffusion model). Under the stochastic volatility with jumps,
the skew is almost flat when the hedging is not frequent enough (less than 4 times a
day) so transaction costs are small. Because the volatility of the Brownian part is less
than that in pure stochastic volatility model (as part of volatility is due to jumps),
the larger spread between implied and realized volatility compensates for jumps and
negative skew from stochastic volatility. We note that a jump leads to a large realized
loss in a short option position only if the option is near at-the-money.

Noticeably, optimal hedging frequency also leads to almost optimal skew (large
if it is positive or small if it is negative). The price-based hedging results in the
highest skew. The delta-based hedging may result in too frequent rebalancing if the
option remains near at-the-money with its delta changing too frequently compared
to the price-based re-hedging. Overall, we see that the realized skew is too sensitive
to the price dynamics and assumed hedging strategy, unlike the expected P&L and
its volatility and, as a result, can be too noisy to be applied in determination of the
optimal hedging frequency.

6 Conclusions

We have described a quantitative approach to improve the performance of the delta-
hedging for volatility trading strategies. The key to our approach is to consider
possible dynamics for price returns under the statistical measure and derive analytical
formulas for the expected P&L of the delta-hedging strategy, transaction costs, and
the P&L volatility. We have proposed an analytic method to maximize the Sharpe
ratio of the hedging strategy and to find an optimal hedging frequency. We have
shown how to apply our results to price- and delta-based hedging strategies.

For illustrations, we have shown that our method provides a very good approx-
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imation to the actual Sharpe ratio obtained by Monte Carlo simulations under the
time-based re-hedging. Also, our approximations to convert the time based rule into
the price and delta bands provide a reliable estimate for the Sharpe ratio. We remind
that, under the strategy with the price and delta bands, the actual number of re-
hedging times is different across different realized price paths. While this analysis can
also be performed using Monte Carlo simulations, our analytic approach provide a
fast and an accurate way to estimate the risk-reward characteristic of a delta-hedging
strategy and our method can be implemented in a system for real time computations.

Our current framework is best suited to analyzing at-the-money options for which
the impact of the skew is limited. A more general analysis that takes into account
the skew and the dynamics of the implied volatility is left for future work.
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7 Appendix A. Mean and Variance of the P&L

We compute the expected value and the variance of the P&L function defined by (2.3).
To start with, let us emphasize the difficulty of computing the first two moments of
the P&L as defined by equation (2.3).
First, Σn and Γ both depend on return (S∗n − S∗n−1).
Second, Σn is auto-correlated.
Third, Γ depends on the path of S∗.

The problem therefore involves computing of expectation of a non-linear function
over N correlated random variables. Analytically, this can be handled only by an
approximation of the function. If option cash gamma were deterministic (as for vari-
ance swaps), our results would be exact. In general, it is impossible to find a norm in
which the convergence takes place as the tools of continuous-time stochastic analysis
are not applicable to handle this problem. We illustrate with Monte Carlo analysis
that our approximations work well for the four considered models are reasonable for
application.

While the P&L is a path-dependent function as option gamma and the realized
variance depend on the same path as the underlying price, the dependence is mild for
vanilla options. In our analysis we assume independence between the two and apply
the following formula for variance of the product of two independent random variables
X and Y :

V[XY ] = (E[X])2V[Y ] + (E[Y ])2V[X] + V[X]V[Y ]

= E[Y 2]V[X] + (E[X])2V[Y ].
(7.1)

For our developments, we define the quadratic moment generating function of a
normal random variable with mean µ and variance ς as follows:

Z(q2, q1;µ, ς) ≡ 1√
2πς

∫ ∞
−∞

exp

{
−q2x

2 − q1x−
(x− µ)2

2ς

}
dx

=
1√

2B + 1
exp

{ 1
2
C2

2B + 1
− A

}
,

(7.2)

where B = q2ς, C = (2µq2 + q1)
√
ς, A = (q2µ

2 + q1µ), q2 > 0.

7.1 Log-normal model

First, we consider the log-normal model with dynamics of (2.2):

Udf ≡ EP [P (N)] ≈
N∑
n=1

EP [(σ2
i δt− Σ2

n

)]
EP [Γ(tn−1, T, S

∗;σi)]

≈

(
N∑
n=1

(σ2
i δt− σ2

rδt)

)
EP [Γ(T/2, T, S∗;σi)]

= (σ2
i − σ2

r)TΓdf ,

(7.3)

where we apply the mid-point rule to approximate the sum and

Γdf = Γ

(
0, T, S;

√
(σ2

r + σ2
i )/2

)
. (7.4)
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To compute the P&L variance, we use (7.1) to obtain:

V df ≡ VP [P (N)] ≈ VP

[(
N∑
n=1

(
σ2
i δt− Σ2

n

))
Γ(T/2, T, S∗;σi)

]

≈ EP [Γ2(T/2, T, S∗;σi)
]
VP

[
N∑
n=1

(
σ2
i δt− Σ2

n

)]

+

(
EP

[
N∑
n=1

(
σ2
i δt− Σ2

n

)])2

VP [Γ(T/2, T, S∗;σi)] .

(7.5)

Using formula (7.2), we get:

Γ2
df ≡ EP [Γ2(T/2, T, S∗;σi)

]
= Γ2(0, T/2, S;σi)EP

[
e−q2X

2(T/2)−q1X(T/2)
]

= Γ2(0, T/2, S;σi)Z

(
q2, q1;−Tσ

2
r

4
,
Tσ2

r

2

)
,

(7.6)

where X(T ) = ln(S∗(T )/S∗(0)) with S∗(t) driven by dynamics (4.1) and

q2 = 1/(Tσ2
i /2) , q1 = 2(ln(S/K)− Tσ2

i /4)/(Tσ2
i /2)

After simplification and omitting the exponent:

Γ2
df ≈

Γ2(0, T/2, S;σi)√
2σ

2
r

σ2
i

+ 1
. (7.7)

The variance of the realized variance in the log-normal model, taking log-returns,
is given by:

VP

[
N∑
n=1

Σ2
n

]
≈ VP

[
N∑
n=1

(
ln

S∗(tn)

S∗(tn−1)

)2
]

=
2σ4

rT
2

N
.

As a result, the P&L variance is given by:

V df = Γ2
π
√

3

4

2σ4
rT

2

N
+
(
σ2
i − σ2

r

)2
T 2
(

Γ2 − (Γdf )
2
)
, (7.8)

where multiplier π
√

3/4 arises from normalizing the exact value of integral:∫ T

0

T 2

√
T 2 − t2

dt = π/2

by the value obtained by the mid-point approximation 2/
√

3. In this way, equation
(7.8) coincides with equation (1) in Derman (1999) if σi = σr.
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7.2 Jump-diffusion model

Similarly to (7.6), under the jump-diffusion model (4.8) we obtain:

U jd ≡ EP [P (N)] ≈ (σ2
i − ϑjd)TΓjd, (7.9)

where ϑjd is defined by (4.9) and

Γjd ≡ EP [Γ(T/2, T, S∗;σi)] = Γ(T/2, T, S∗;σi)Qjd(T/2; q2/2, q1/2), (7.10)

and q2, q1 are defined as in (7.6). Here Qjd(T ; q2, q1) is computed by conditioning on
the number of jumps as follows:

Qjd(T ; q2, q1) ≡ EP
[
e−q2X

2(T )−q1X(T )
]

=
∞∑
m=0

e−λT (λT )m

m!
Z
(
q2, q1;−σ2

rT/2 +mν, σ2
rT
)
.

(7.11)

where X(T ) = ln(S∗(T )/S∗(0)) with S∗(t) driven by (4.8).
Using (7.5) for the P&L variance we get:

V jd ≈ VP

[(
N∑
n=1

(
σ2
i δt− Σ2

n

))
Γ(T/2, T, S∗;σi)

]

≈ Γ2
jdVP

[
N∑
n=1

Σ2
n

]
+
(
(σ2

i − ϑjd)T
)2
(

Γ2
jd − (Γjd)

2
)
,

(7.12)

where

Γ2
jd = Γ2(0, T/2, S;σi)Qjd(T/2; q2, q1) (7.13)

and the variance is computed using equation (57) in Sepp (2012b):

VP

[
N∑
n=1

Σ2
n

]
≈ (2σ4

r + λσ2
rν

2)T 2

N
+ λTν4. (7.14)

7.3 Stochastic volatility model

Similarly to (7.6), under the stochastic volatility dynamics (4.12) we get the approx-
imate expected P&L using equation (4.14) where

Γsv ≡ EP [Γ(T/2, T, S∗;σi)] = Γ(T/2, T, S∗;σi)Qsv(T/2; q2/2, q1/2) (7.15)

and Qsv(T ; q2, q1) is computed as follows:

Qsv(T ; q2, q1) ≡ EP
[
e−q2X

2(T )−q1X(T )
]

=
1
√
πq2

∫ ∞
0

exp

{
(ik − 1/2− q1)2

4q2

+ α(SV)(T, k) + (k2 + 1/4)β(SV)(T, k)V

}
dk,

(7.16)
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where X(T ) = ln(S∗(T )/S∗(0)) with S∗(t) driven by (4.12) and α(SV)(T, k) and
β(SV)(T, k) are defined by equation (7) in Lipton (2001):

α(SV)(T, k) = −κθ
ε2

[
ψ+T + 2 ln

(
ψ− + ψ+e

−ζT

2ζ

)]
, β(SV)(T, k) = − 1− e−ζT

ψ− + ψ+e−ζT

ψ± = ∓(ikρε+ κ̂) + ζ, ζ =
√
k2ε2(1− ρ2) + 2ikερκ̂+ κ̂2 + ε2/4, κ̂ = κ− ρε/2.

Under the stochastic volatility with jumps we use α(SVJ)(T, k) augmented as fol-
lows:

α(SVJ)(T, k) = α(SV)(T, k) + λT
(
e(−ik+1/2)ν − 1

)
. (7.17)

Using (7.5), for the P&L variance we get:

Vsv ≈ VP

[(
N∑
n=1

(
σ2
i δt− Σ2

n

))
Γ(T/2, T, S∗;σi)

]

≈ Γ2
svVP

[
N∑
n=1

Σ2
n

]
+
(
(σ2

i − ϑsv)T
)2
(

Γ2
sv − (Γsv)

2
)
,

(7.18)

where

Γ2
sv = Γ2(0, T/2, S;σi)Qsv(T/2; q2, q1) (7.19)

and (see equation (9) in Sepp (2012b)):

VP

[
N∑
n=1

Σ2
n

]
≈ 2V 2T 2

N
+ Vsv (7.20)

Vsv =
ε2

2κ3

(
(θ − 2V )e−2κT + 4(θκT − V κT + θ)e−κT + (−5θ + 2θκT + 2V )

)
. (7.21)

8 Appendix B. Auto-covariance

As we have discussed in Sections 4.3, under the stochastic volatility dynamics, it is
important to account for the autocorrelation of the variance dynamics. Here we derive
an approximation assuming ρ = 0 and leaving non-zero case for future developments.
For negative correlation, the correction to the expected P&L turns out to be higher
than our estimate but not significantly.

We consider a simplified discrete version of the dynamics of (4.12):

S(tn) = S(tn−1)e
√
Vn−1δtεn , (8.1)
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where Vn = V (tn). Then the P&L function (2.3) becomes:

P (N) ≈
N∑
n=1

(
σ2
i δt− Vnδtε2n

)
Γ(tn−1, T, S0e

∑n−1
m=1

√
Vm−1δtεm ;σi)

=
N∑
n=1

(
σ2
i δt− V nδtε

2
n

)
Γ(tn−1, T, S0e

∑n−1
m=1

√
Vm−1δtεm ;σi)

−
N∑
n=1

(
Vnδtε

2
n − V nδtε

2
n

)
Γ(tn−1, T, S0e

∑n−1
m=1

√
Vm−1δtεm ;σi),

(8.2)

where V n = E[V (tn)]. The expectation of the first part is approximated using equation
(4.14). For the second part, we consider:

L(N) ≡
N∑
n=1

(
Vn − V n

)
δtε2nΓ(tn−1, T, S0e

∑n−1
m=1

√
Vm−1δtεm ;σi)

=
N∑
n=1

(
Vn − V n

)
δtε2nCn−1 exp

−1

2

(∑n−1
m=1

√
Vm−1δtεm√

(T − tn−1)σ2
i

+ yn−1

)2


≈
N∑
n=1

(
Vn − V n

)
δtε2nCn−1 exp

−1

2

(∑n−1
m=1

√
Vm−1δtεm

)2

(T − tn−1)σ2
i

− ỹn−1

∑n−1
m=1

√
Vm−1δtεm

(T − tn−1)σ2
i

− 1

2
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 ,

where Cn−1 = K

2
√

2(T−tn−1)πσ2
i

, yn−1 =
ln

S0
K
− 1

2
(T−tn−1)σ2

i√
(T−tn−1)σ2

i

, ỹn−1 =
− 1

2
(T−tn−1)σ2

i√
(T−tn−1)σ2

i

= −1
2

√
(T − tn−1)σ2

i .

First computing the first-order expectation with respect to εn first and taking

I(tn−1) ≡
n−1∑
m=1

Vm−1δt ≈
∫ tm−1

0

V (s)ds

we obtain:

Lsv ≡ EP[L(N)] ≈
N∑
n=1

EP
[(
Vn − V n

)
δtCn−1e

− 1
2
y2n−1e−Ψn−1I(tn−1)

]
≈

N∑
n=1

δtCn−1e
− 1

2
y2n−1Ĝ(tn−1, V,Ψn−1),

(8.3)

where Ψn−1 = (1/2)/((T−tn−1)σ2
i ) and Ĝ(T, V,Ψ) with V (T ) = E[V (T )] is computed

using equation (40) in Sepp (2011b) as follows:

Ĝ(T, V,Ψ) ≡ E
[(
V (T )− V (T )

)
e−ΨI(T )

]
= − ∂

∂Θ
Ĝ(V I)(Θ,Ψ; 0, T, V ) |Θ=0 − V (T )Ĝ(V I)(Θ,Ψ; 0, T, V ) |Θ=0

= − (AΘ(T,Ψ) +BΘ(T,Ψ)V ) eA(T,Ψ)+B(T,Ψ)V ,

(8.4)
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A(T,Ψ) = −κθ
ε2

[
ψ+T + 2 ln

(
ψ− + ψ+e

−ζT

2ζ

)]
,

B(T,Ψ) = −2Ψ
1− e−ζT

ψ− + ψ+e−ζT
,

AΘ(T,Ψ) = −2κθ
1− e−ζT

ψ− + ψ+e−ζT
+ (1− e−κT )θ,

BΘ(T,Ψ) = − 4ζe−ζT

(ψ− + ψ+e−ζT )2 + e−κT ,

ψ± = ∓κ+ ζ, ζ =
√
κ2 + 2ε2Ψ.
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Model Parameters

Table 1: Model Parameters
Case I Case II

DF JD SV SVJ DF JD SV SVJ
σi 16.50% 16.50% 16.50% 16.50% 30.00% 30.00% 30.00% 30.00%
k 0.001 0.001 0.001 0.001 0.004 0.004 0.004 0.004
σr 15% 14.14% 25% 22.91%
λ 1.00 1.00 1.00 1.00
ν -5% -5% -10% -10%
V 15%2 14.14%2 25%2 22.91%2

θ 15%2 14.14%2 25%2 22.91%2

κ 4.00 4.00 4.00 4.00
ε 0.25 0.25 0.50 0.50
ρ -0.50 -0.50 -0.50 -0.50

Notations: DF is the diffusion model, JD is the jump-diffusion model, SV is the Heston
stochastic volatility model, SVJ is the Heston stochastic volatility model with jumps,
σi is the option implied BSM volatility, k is the proportional transaction costs, σr is the
realized volatility.

Table 2: Sharpe ratio parameters
Case I Case II

DF JD SV SVJ DF JD SV SVJ
u 0.5692% 0.5510% 0.6703% 0.6550% 1.8558% 1.7628% 2.0876% 1.9995%
c 0.0151% 0.0139% 0.0153% 0.0142% 0.0571% 0.0506% 0.0581% 0.0518%
p 0.2461% 0.2006% 0.2524% 0.2085% 0.5998% 0.4423% 0.6214% 0.4634%
f 0.0004% 0.0020% 0.0107% 0.0110% 0.0040% 0.0119% 0.0403% 0.0418%

N∗ 239 138 74 68 129 75 49 43

C(N∗) 0.2334% 0.1633% 0.1316% 0.1171% 0.6485% 0.4382% 0.4067% 0.3397%

u− C(N∗) 0.3358% 0.3877% 0.5387% 0.5379% 1.2073% 1.3246% 1.6809% 1.6598%√
V (N∗) 0.3781% 0.5877% 1.1879% 1.1860% 0.9300% 1.3341% 2.3018% 2.2930%

S(N∗) 0.89 0.66 0.45 0.45 1.30 0.99 0.73 0.72

Notations: u, c, p, f are parameters for the Sharpe ration in equation (3.12), N∗ is the
optimal Sharpe ratio, C(N∗) is the transaction costs at the optimal hedging frequency,

u−C(N∗) is the expected P&L,
√
V (N∗) is the volatility if the P&L, S(N∗) is the Sharpe

ratio at optimal hedging frequency.
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Diffusion model

Table 3: Diffusion model, case I, time-based hedging
Time-based DF Analytic Time- based DF MC Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 239 2.79 3.18 1.94 0.88 2.80 3.07 1.98 0.91
1 per m 15 4.24 10.77 0.49 0.39 4.31 10.47 0.51 0.41
2 per m 30 4.04 7.72 0.69 0.52 4.04 8.14 0.72 0.50
1 per w 60 3.75 5.59 0.97 0.67 3.73 5.78 1.01 0.65
2 per w 120 3.35 4.14 1.37 0.81 3.32 4.19 1.36 0.79
1 per d 240 2.78 3.18 1.94 0.88 2.62 3.02 1.95 0.87
2 per d 480 1.98 2.56 2.74 0.77 1.99 2.19 2.74 0.91
4 per d 960 0.84 2.19 3.88 0.39 0.84 1.51 3.89 0.55
8 per d 1920 -0.76 1.98 5.49 -0.39 -0.75 1.05 5.47 -0.71

Table 4: Diffusion model, case I, price- and delta-based hedging
Range- based DF MC price- based DF MC Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
239 0.0097 0.0245 2.51 2.23 2.23 1.13 2.58 2.31 2.19 1.12 201 11 136 78
15 0.0387 0.0977 4.41 7.59 0.63 0.58 4.34 8.10 0.65 0.54 15 3 11 7
30 0.0274 0.0691 3.73 5.21 0.85 0.72 3.78 6.04 0.87 0.63 29 4 21 13
60 0.0194 0.0488 3.54 4.00 1.18 0.88 3.71 4.38 1.20 0.85 56 6 40 25

120 0.0137 0.0345 3.07 2.97 1.63 1.03 3.46 4.25 1.20 0.82 107 8 40 25
240 0.0097 0.0244 2.49 2.27 2.22 1.10 2.64 2.36 2.24 1.12 202 12 139 78
480 0.0068 0.0173 1.71 1.65 3.03 1.04 1.76 1.74 2.95 1.01 375 16 248 136
960 0.0048 0.0122 0.69 1.18 4.06 0.59 0.79 1.36 3.89 0.58 678 21 443 225

1920 0.0034 0.0086 -0.62 0.88 5.39 -0.70 -0.28 1.49 5.02 -0.19 1184 27 763 366

Table 5: Diffusion model, case II, time-based hedging
Time-based DF Analytic Time- based DF MC Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 129 18.36 14.12 9.86 1.30 18.28 13.98 10.03 1.31
1 per m 15 24.86 31.89 3.36 0.78 25.19 34.76 3.61 0.72
2 per m 30 23.47 23.54 4.76 1.00 24.62 24.97 5.02 0.99
1 per w 60 21.50 17.97 6.73 1.20 22.04 18.78 6.93 1.17
2 per w 120 18.71 14.40 9.51 1.30 18.95 14.10 9.65 1.34
1 per d 240 14.77 12.23 13.45 1.21 14.48 10.51 13.56 1.38
2 per d 480 9.20 10.98 19.02 0.84 9.40 7.55 19.15 1.25
4 per d 960 1.32 10.30 26.90 0.13 1.24 4.82 26.99 0.26
8 per d 1920 -9.82 9.95 38.05 -0.99 -9.81 4.40 38.02 -2.23

Table 6: Diffusion model, case II, price- and delta-based hedging
Range- based DF MC price- based DF MC Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
129 0.0220 0.0448 15.95 10.49 11.57 1.52 16.73 10.12 11.76 1.65 114 9 79 46
15 0.0645 0.1313 24.01 24.77 4.39 0.97 24.13 25.60 4.48 0.94 15 3 12 7
30 0.0456 0.0928 22.09 19.29 5.96 1.14 22.21 20.75 6.06 1.07 29 4 21 13
60 0.0323 0.0656 20.26 14.15 8.29 1.43 19.80 14.23 8.35 1.39 56 6 40 24

120 0.0228 0.0464 17.36 11.49 11.35 1.51 17.00 10.33 11.19 1.65 107 8 73 43
240 0.0161 0.0328 12.97 8.38 15.58 1.55 13.04 7.84 14.82 1.66 202 11 134 76
480 0.0114 0.0232 7.18 5.87 21.19 1.22 7.96 6.36 20.81 1.25 375 16 253 133
960 0.0081 0.0164 0.10 3.84 28.08 0.02 1.41 7.05 27.03 0.20 678 21 445 217

1920 0.0057 0.0116 -8.63 3.91 37.08 -2.21 -5.97 9.23 34.18 -0.65 1184 28 753 349

Notations: N is the hedging frequency, P&L is the expected/realized P&L of the delta-
hedging strategy, Vol is the volatility of the P&L, Costs is the transaction costs, Sharpe is
the Sharpe ratio, Exp N and Std N is the average and the standard deviation, respectively,
of the hedging frequency under the price- and delta-based re-balancing.
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Jump-diffusion model

Table 7: Jump-diffusion model, case I, time-based hedging
Time-based JD, Analytic, Time- based JD, MC, Time- based

Optimal 138 3.22 4.84 1.41 0.66 3.20 4.89 1.41 0.66
1 per m 15 4.13 10.28 0.50 0.40 4.10 11.01 0.50 0.37
2 per m 30 3.94 7.72 0.68 0.51 3.93 8.45 0.68 0.46
1 per w 60 3.68 6.04 0.95 0.61 3.60 6.45 0.94 0.56
2 per w 120 3.31 5.00 1.32 0.66 3.30 5.21 1.31 0.63
1 per d 240 2.78 4.38 1.84 0.63 2.78 4.34 1.83 0.64
2 per d 480 2.04 4.04 2.58 0.51 2.14 3.81 2.59 0.56
4 per d 960 0.99 3.86 3.63 0.26 1.04 3.51 3.57 0.29
8 per d 1920 -0.49 3.77 5.11 -0.13 -0.51 3.27 5.11 -0.16

Table 8: Jump-diffusion model, case I, price- and delta-based hedging
Range- based JD, MC, price- based JD, MC, Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
138 0.0128 0.0456 3.31 4.17 1.57 0.79 3.21 4.26 1.56 0.75 112 8 76 45
15 0.0387 0.1384 4.10 8.02 0.58 0.51 3.98 8.79 0.60 0.45 14 3 10 7
30 0.0274 0.0978 4.03 6.16 0.77 0.65 3.81 6.63 0.77 0.57 27 4 18 12
60 0.0194 0.0692 3.49 5.12 1.07 0.68 3.56 5.54 1.08 0.64 51 6 35 22

120 0.0137 0.0489 3.19 4.32 1.44 0.74 3.21 4.29 1.47 0.75 96 8 66 40
240 0.0097 0.0346 2.70 3.81 1.95 0.71 2.79 3.89 2.03 0.72 181 11 125 74
480 0.0068 0.0245 2.00 3.57 2.73 0.56 2.08 3.45 2.62 0.60 343 15 221 124
960 0.0048 0.0173 1.28 3.25 3.64 0.39 1.33 3.29 3.48 0.40 615 20 397 208

1920 0.0034 0.0122 -0.01 3.08 4.75 0.00 0.19 3.12 4.47 0.06 1092 26 685 344

Table 9: Jump-diffusion model, case II, time-based hedging
Time-based JD, Analytic, Time- based JD, MC, Time- based

Optimal 75 20.15 20.31 7.08 0.99 20.30 21.20 7.13 0.96
1 per m 15 23.83 30.95 3.40 0.77 23.74 35.20 3.43 0.67
2 per m 30 22.60 24.84 4.63 0.91 22.47 27.86 4.56 0.81
1 per w 60 20.86 21.13 6.38 0.99 20.66 22.15 6.29 0.93
2 per w 120 18.39 19.00 8.84 0.97 18.43 19.45 8.81 0.95
1 per d 240 14.90 17.85 12.33 0.83 15.63 16.81 12.24 0.93
2 per d 480 9.96 17.24 17.27 0.58 10.79 14.85 17.31 0.73
4 per d 960 2.99 16.93 24.25 0.18 3.66 13.33 23.95 0.27
8 per d 1920 -6.88 16.77 34.11 -0.41 -5.51 11.88 34.31 -0.46

Table 10: Jump-diffusion model, case II, price- and delta-based hedging
Range- based JD, MC, price- based JD, MC, Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
75 0.0289 0.0587 20.58 19.08 7.96 1.08 19.90 18.54 7.70 1.07 61 6 41 25
15 0.0645 0.1313 22.30 28.58 3.86 0.78 23.27 28.54 3.88 0.82 14 3 10 6
30 0.0456 0.0928 22.41 23.94 5.24 0.94 21.93 23.44 5.09 0.94 25 4 18 11
60 0.0323 0.0656 20.88 20.21 7.07 1.03 20.35 19.64 7.02 1.04 48 5 33 20

120 0.0228 0.0464 18.75 17.68 9.51 1.06 18.51 16.93 9.62 1.09 91 8 63 37
240 0.0161 0.0328 14.75 16.07 13.00 0.92 14.85 14.97 12.70 0.99 173 10 115 66
480 0.0114 0.0232 9.73 14.62 17.49 0.67 11.03 13.91 16.72 0.79 323 14 205 115
960 0.0081 0.0164 4.42 13.19 23.77 0.34 5.51 13.50 22.06 0.41 586 19 370 193

1920 0.0057 0.0116 -3.09 12.88 31.33 -0.24 -1.04 13.17 29.60 -0.08 1034 26 661 319

Notations: N is the hedging frequency, P&L is the expected/realized P&L of the delta-
hedging strategy, Vol is the volatility of the P&L, Costs is the transaction costs, Sharpe is
the Sharpe ratio, Exp N and Std N is the average and the standard deviation, respectively,
of the hedging frequency under the price- and delta-based re-balancing.
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Stochastic volatility model

Table 11: Stochastic volatility model, case I, time-based hedging
Time-based SV, Analytic, Time- based SV, MC, Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 74 4.47 9.84 1.09 0.45 4.50 9.99 1.05 0.45
1 per m 15 5.07 13.76 0.49 0.37 5.46 13.66 0.50 0.40
2 per m 30 4.87 11.46 0.70 0.42 4.94 11.68 0.69 0.42
1 per w 60 4.58 10.12 0.98 0.45 4.58 9.88 0.96 0.46
2 per w 120 4.17 9.37 1.39 0.45 4.44 9.25 1.32 0.48
1 per d 240 3.60 8.98 1.97 0.40 3.77 8.71 1.88 0.43
2 per d 480 2.78 8.78 2.78 0.32 2.78 8.55 2.66 0.33
4 per d 960 1.63 8.67 3.93 0.19 2.10 8.51 3.74 0.25
8 per d 1920 0.00 8.62 5.56 0.00 0.67 8.24 5.30 0.08

Table 12: Stochastic volatility model, case I, price- and delta-based hedging
Range- based SV, MC, price- based SV, MC, Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
74 0.0174 0.0623 4.40 8.99 1.25 0.49 4.33 8.92 1.26 0.49 67 22 46 30
15 0.0387 0.1384 5.21 10.85 0.61 0.48 5.10 11.26 0.62 0.45 15 6 11 7
30 0.0274 0.0978 4.85 9.64 0.84 0.50 4.74 10.22 0.87 0.46 29 10 21 14
60 0.0194 0.0692 4.57 8.82 1.15 0.52 4.45 9.22 1.18 0.48 55 18 39 26

120 0.0137 0.0489 4.38 9.01 1.58 0.49 4.22 8.86 1.63 0.48 104 33 73 47
240 0.0097 0.0346 3.46 8.92 2.21 0.39 3.65 8.90 2.12 0.41 199 61 131 81
480 0.0068 0.0245 2.86 8.62 2.96 0.33 3.05 8.58 2.90 0.35 368 108 243 140
960 0.0048 0.0173 1.58 9.13 4.00 0.17 1.91 8.84 3.71 0.22 672 183 421 231

1920 0.0034 0.0122 0.77 9.08 5.16 0.08 0.88 9.21 4.91 0.10 1144 290 738 380

Table 13: Stochastic volatility model, case II, time-based hedging
Time-based SV, Analytic, Time- based SV, MC, Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 49 25.57 35.02 6.18 0.73 26.72 35.57 5.98 0.75
1 per m 15 28.34 43.49 3.42 0.65 29.07 46.22 3.46 0.63
2 per m 30 26.91 37.58 4.84 0.72 28.56 39.50 4.72 0.72
1 per w 60 24.91 34.25 6.84 0.73 26.78 34.80 6.57 0.77
2 per w 120 22.07 32.45 9.68 0.68 22.95 33.26 9.10 0.69
1 per d 240 18.06 31.51 13.69 0.57 19.50 32.83 13.05 0.59
2 per d 480 12.40 31.03 19.36 0.40 14.10 31.12 18.08 0.45
4 per d 960 4.38 30.79 27.38 0.14 6.91 32.52 25.87 0.21
8 per d 1920 -6.96 30.67 38.72 -0.23 -2.48 32.38 36.14 -0.08

Table 14: Stochastic volatility model, case II, price- and delta-based hedging
Range- based SV, MC, price- based SV, MC, Delta- based price- based Delta- based

N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
49 0.0357 0.0726 24.54 33.66 7.14 0.73 27.85 34.23 7.09 0.81 45 18 30 21
15 0.0645 0.1313 28.25 43.49 3.42 0.65 28.76 37.61 4.38 0.76 15 6 11 7
30 0.0456 0.0928 26.84 37.58 4.84 0.71 28.39 35.23 5.98 0.81 29 11 20 14
60 0.0323 0.0656 24.83 34.25 6.84 0.73 25.09 33.64 7.89 0.75 55 21 38 25

120 0.0228 0.0464 22.00 32.45 9.68 0.68 20.03 33.03 10.77 0.61 104 39 71 46
240 0.0161 0.0328 17.99 31.51 13.69 0.57 18.81 33.06 14.66 0.57 197 70 131 78
480 0.0114 0.0232 12.84 32.98 20.13 0.39 12.47 34.44 19.44 0.36 363 124 236 138
960 0.0081 0.0164 6.82 34.43 26.84 0.20 7.66 33.59 25.03 0.23 645 204 411 220

1920 0.0057 0.0116 -2.00 36.12 34.86 -0.06 1.62 35.73 31.84 0.05 1125 337 697 351

Notations: N is the hedging frequency, P&L is the expected/realized P&L of the delta-
hedging strategy, Vol is the volatility of the P&L, Costs is the transaction costs, Sharpe is
the Sharpe ratio, Exp N and Std N is the average and the standard deviation, respectively,
of the hedging frequency under the price- and delta-based re-balancing.
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Stochastic volatility model with jumps

Table 15: Stochastic volatility model with jumps, case I, time-based hedging
Time-based SVJ, Analytic, Time- based SVJ, MC, Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 68 4.46 9.83 1.03 0.45 5.02 9.71 0.98 0.52
1 per m 15 4.98 13.09 0.51 0.38 5.24 14.10 0.49 0.37
2 per m 30 4.79 11.11 0.70 0.43 5.34 11.54 0.66 0.46
1 per w 60 4.52 9.97 0.97 0.45 4.67 9.89 0.91 0.47
2 per w 120 4.14 9.35 1.34 0.44 4.68 8.99 1.25 0.52
1 per d 240 3.61 9.03 1.88 0.40 4.23 8.90 1.75 0.47
2 per d 480 2.85 8.86 2.64 0.32 3.82 8.67 2.48 0.44
4 per d 960 1.78 8.77 3.71 0.20 2.64 8.43 3.51 0.31
8 per d 1920 0.27 8.73 5.22 0.03 1.20 8.57 4.82 0.14

Table 16: Stochastic volatility model with jumps, case I, price- and delta-based hedg-
ing

Range- based SVJ, MC, price- based SVJ, MC, Delta- based price- based Delta- based
N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
68 0.0182 0.0650 5.10 9.42 1.12 0.54 4.93 9.27 1.05 0.53 59 20 34 22
15 0.0387 0.1384 5.69 11.16 0.58 0.51 5.47 11.88 0.56 0.46 14 5 10 6
30 0.0274 0.0978 5.65 10.18 0.78 0.56 5.51 10.11 0.79 0.54 27 10 19 12
60 0.0194 0.0692 5.28 9.17 1.04 0.58 5.59 9.23 1.02 0.61 50 18 33 22

120 0.0137 0.0489 4.91 9.11 1.39 0.54 5.05 8.95 1.43 0.56 95 31 64 42
240 0.0097 0.0346 4.62 8.97 1.90 0.52 4.56 8.90 1.91 0.51 177 59 117 72
480 0.0068 0.0245 3.86 8.68 2.57 0.44 3.69 8.63 2.59 0.43 333 105 216 125
960 0.0048 0.0173 2.88 8.98 3.44 0.32 3.03 8.65 3.27 0.35 599 178 374 208

1920 0.0034 0.0122 1.35 8.72 4.57 0.15 1.80 8.81 4.28 0.20 1061 280 655 333

Table 17: Stochastic volatility model with jumps, case II, time-based hedging
Time-based SVJ, Analytic, Time- based SVJ, MC, Time- based

Freq N P &L Vol Costs Sharpe P &L Vol Costs Sharpe
Optimal 43 25.25 34.89 5.59 0.72 28.32 38.08 5.27 0.74
1 per m 15 27.37 41.02 3.48 0.67 27.50 47.91 3.26 0.57
2 per m 30 26.10 36.40 4.74 0.72 28.24 38.77 4.35 0.73
1 per w 60 24.31 33.86 6.53 0.72 27.55 34.31 5.94 0.80
2 per w 120 21.79 32.51 9.05 0.67 25.28 33.23 8.23 0.76
1 per d 240 18.22 31.82 12.63 0.57 22.16 32.02 11.52 0.69
2 per d 480 13.16 31.47 17.68 0.42 17.48 31.31 15.95 0.56
4 per d 960 6.02 31.29 24.82 0.19 11.85 31.86 22.19 0.37
8 per d 1920 -4.08 31.20 34.93 -0.13 2.43 32.15 31.63 0.08

Table 18: Stochastic volatility model with jumps, case II, price- and delta-based
hedging

Range- based SVJ, MC, price- based SVJ, MC, Delta- based price- based Delta- based
N Price Delta P &L Vol Costs Sharpe P &L Vol Costs Sharpe Exp N Std N Exp N Std N
43 0.0381 0.0775 28.37 36.12 5.87 0.79 28.15 35.20 5.92 0.80 37 16 25 17
15 0.0645 0.1313 31.42 40.00 3.78 0.79 31.51 39.92 3.77 0.79 13 6 10 6
30 0.0456 0.0928 29.89 36.99 5.11 0.81 28.66 36.49 4.99 0.79 26 11 17 11
60 0.0323 0.0656 28.39 35.11 6.69 0.81 28.37 32.61 6.52 0.87 47 19 31 20

120 0.0228 0.0464 24.75 34.16 9.10 0.72 25.13 32.98 9.09 0.76 91 37 59 38
240 0.0161 0.0328 21.65 32.90 12.20 0.66 21.58 32.87 12.25 0.66 170 67 109 70
480 0.0114 0.0232 18.28 33.82 16.13 0.54 18.87 32.48 15.37 0.58 312 123 190 112
960 0.0081 0.0164 12.33 34.37 22.04 0.36 13.52 32.71 21.31 0.41 563 205 352 197

1920 0.0057 0.0116 7.08 36.65 28.66 0.19 8.03 34.75 26.30 0.23 958 319 589 309

Notations: N is the hedging frequency, P&L is the expected/realized P&L of the delta-hedging strategy, Vol is the volatility of the P&L,
Costs is the transaction costs, Sharpe is the Sharpe ratio, Exp N and Std N is the average and the standard deviation, respectively, of
the hedging frequency under the price- and delta-based re-balancing.
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Theoretical Sharpe ratios

Figure 1: The expected P&L and volatility (left scale) and corresponding Sharpe
ratio (right scale) for the diffusion model using parameters from case II as functions
of hedging frequency N
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Figure 2: The Sharpe ratio for models using parameters from case II (right side) as
functions of hedging frequency N
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Figure 3: Term structure of Optimal Sharpe ratio, S(N∗), for models using parameters
from case II as functions of option maturity T
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Figure 4: Term structure of optimal rehedging periods in days, 250T/N∗, for models
using parameters from case II as functions of option maturity T
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Figure 5: Realized P&L. The realized P&L of the delta-hedging using parame-
ters from case II for the diffusion model (top left), jump-diffusion model (top right),
stochastic volatility model (bottom left), the stochastic volatility model with jumps
(bottom right)
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Figure 6: Realized volatility of P&L. The realized volatility of P&L of the delta-
hedging using parameters from case II for the diffusion model (top left), jump-diffusion
model (top right), stochastic volatility model (bottom left), the stochastic volatility
model with jumps (bottom right)
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Figure 7: Realized Sharpe ratio of P&L. The realized Sharpe ratios of P&L of the
delta-hedging using parameters from case II for the diffusion model (top left), jump-
diffusion model (top right), stochastic volatility model (bottom left), the stochastic
volatility model with jumps (bottom right)
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Figure 8: Realized skew of P&L. The realized skew of the delta-hedging using
parameters from case II for the diffusion model (top left), jump-diffusion model (top
right), stochastic volatility model (bottom left), the stochastic volatility model with
jumps (bottom right)
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