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Riding on a Smile

Emanuel Derman and Iraj Kani
Goldman Sachs

Constructing binomial tree models that are consistent with
the volatility smile effect

he Black-Scholes theory has two impor-

tant but independent features. The pri-

mary feature is that it is preference-free
— the values of contingent claims do not depend
on investors’ risk preferences: Thérefore, an
option can be valued as though the underlying
stock’s expected return is riskless. This risk-neu-~
tral valuation is allowed because the option can
be hedged with stock to create an instanta-
neously riskless portfolio,

A secondary feature of the theory is its
assumption that stock prices evolve lognormally
with constant local volatility ¢ at any time and
market level. This stock price evolution over an
infinitesimal time dt is described by the stochas-
tic differential equation

95 _ Ldtsodz (n
s

where S is the stock price, K its expected return
and dZ a Wiener process with a mean of zero
and a variance equal 1o dt,

The Black-Scholes formula for a call with
strike K and time to expiration t, when the risk-
less rate is 1, follows from applying the general
method: of risk-neutral valuation to a stock
whose evolution is specifically assumed to fol-
low equation (1),

In the Cox-Ross-Rubinstein binomial imple-

1. Risk-neutral stock tree with
constant volatility

Stock price

Time
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mentation of the process in equation (1), the
stock evolves along a risk-neutral binomial tree
with constant logarithmic stock price spacing,
corresponding to constant volatility, as illustrat-
ed in Figure 1.

The binomial tree corresponding to the risk-
neutral stock evolution is the same for all
options on that stock, irrespective of their strike
level or time o expiration. The stock tree can-
not “know” about which option we are valuing
on it.

Market options prices are not exactly consis-
tent with theoretical prices derived from the
Black-Scholes formula. Nevertheless, the success
of the framework has led traders to quote a call
option’s market price in terms of whatever con-
stant -focal vol;itility oimp makes the Black-
Scholes formula value equal to the market price.
We call oimp the Black Scholes equivalent or
implied volatility, to distinguish it from the theo-
retically constant ‘focal volatility ¢ assumed by
the theory, In essence, 6imp is 4 means of quot-
ing prices.

The smile

How consistent are market option prices with
the Black-Scholes formula? Figure 2(a) shows
the decrease of oimp- with: the strike level of
options on the S&P 500 index with a fixed expi-
ration of 44 days, as observed on May 5, 1993,
This asymmetry is commonly called the volatili-
ty “skew”. Figure 2(b) shows the increase of
cimp with the time to expiration of at-the-
money options. This variation is generally called
the volatility “term structure.” In this article we
will refer to them collectively as the volatility
“smile.”

In Figure 2(a) the data for strikes above
(below) spot come from call (put) prices. In
Figure 2(b) the average of at-the-money call and
put implied volatilities is used. You can see that
oimp falls as the strike level increases, Out-of-



278
IMPLIED

SMILES:
RIDING ON A

SMILE

2. Implied volatilities of S&P500 options
May 5, 1993
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the-money puts trade at higher implied volatili-
ties than out-of-the-money calls.

Though the exact shape and magnitude vary
from day to day, the asymmetry persists and
belies the Black-Scholes theory, which assumes
constant local (and therefore, constant implied)
volatility for all options. This persistence sug-
gests a discrepancy between theory and the
market. It may be convenient to continue quot-
ing options prices in terms of Black-Scholes
equivalent volatilities, but it is probably incor-
rect to calculate options prices using the Black-
Scholes formula.

There have been various attempts to extend-

the Black-Scholes theory to account for the
volatility smile. One approach incorporates a
stochastic volatility factor;' another allows for
discontinuous jumps in the stock price.?

These extensions cause several practical diffi-
culties. First, since there are no securities with
which to hedge the volatility or the jump risk
directly, options valuation is in general no
longer preference-free, Second, in these multi-
factor models, options values depend on several
additional parameters whose values must be
estimated. This often makes confident option
pricing difficult.

The implied tree

We want to develop an arbitrage-free model that
fits the smile, is preference-free, avoids addition-
al factors and can be used to value options from
easily observable data. The most natural and
minimal way to extend the Black-Scholes model
is to replace equation (1) above by

s w(t)dt + o (S,1)dz 2)
S

where u(t) is the risk-neutral drift depending

3. The implied tree

Stock price

Time

only on time and o(S,t) is the local volatility
function that is dependent on both stock price
and time.

Other models of this type often involve a
special parametric form for o(S,1). In contrast,
our approach is to deduce o(S,t) numerically
from the smile. We can completely determine
the unknown function o(S,t) by requiring that
options prices calculated from this model fit the
smile.

In the binomial framework in which we
work, the regular binomial tree of Figure 1 will
be replaced by a distorted or implied tree (Fig.
3). Options prices for all strikes and expirations,
obtained by interpolation from known options
prices, will determine the position and the
probability of reaching each node in the mlphcd
tree.

Constructing the tree
We use induction to build an implied tree with
uniformly spaced levels, At apart. Assume you

have already constructed the first n levels that

match the implied volatilities of all options with
all strikes out to that time period. Figure 4
shows the nth level of the tree at time t , with n
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implied tree nodes and their already known
stock prices s,.
We call the continuously compounded for-

4. Constructing the (n+1)th level of the implied tree

node

ward riskless interest rate at the nb level r. In Sns1 Notation ) ,
. . . 1= known forward riskless interest
general this rate is time-dependent and can vary om s rate at this leve!

sj = known stock price at node (n,i)
at tevel n; node i; also the strike
Sn for options expiring at fevel n+1
Fi = known forward price at level
n+1 of the known price S
at level n
S$; = unknown stock price at node
(n+1, i)
A; = known Arrow-Debreu price at
Py Siv1 node (n,i}
A Py = unknown risk-neutral transtion
S Strike probability from node (n,i) to
node (n+1,i+1)

from level to level; for notational simplicity we
avoid attaching an explicit level index to this
and other variables used. We want to determine
the nodes of the (n+1)h level at time t..
There are n+ 1 nodes to fix, with n+1 corre-
sponding unknown stock prices S,. Figure 4
shows the ith node at level n, denoted by (n,i)
in bold. It has a known stock price si and ()

(n, n-1)  sp,

Sp-1

evolves into an “up” node with price S, and a
“down” node with price S, at level n+ 1, where
the forward price corresponding to s, is
F.=e%s. We call P, the probability of making a
transition into the up nede: We call k; the
Arrow-Debreu price at node (n,i); it is comput-
ed by forward induction as the sum over all
paths, from the root of the tree to node (n,i), of
the product of the risklessly-discounted transi-
tion probabilities at each node in each path
leading to node (n,i). All A, at level n are known
because earlier tree nodes and their transition
probabilities have already been implied out to
level n. , s

There are 2n+1 parameters that define the
transition from the n#b to the (n+ 1)th level of
the tree, namely the n+ 1 stock prices. §, and
the n transition probabilities p.. We show how
to determine them using the smile.

We imply the nodes at the (n+ 1)#h level by
using. the tree to calculate. the theoretical values
of 2n known quantities — the values. of n for-
wards and -n.options, all expiring.at time t_, ~
and requiring that these theoretical values
match the interpolated. market values. This pro-
vides 2n equations for these 2n+ 1 parameters,
We use the one remaining degree of freedom to
make the centre of our tree coincide with the
centre of the standard Cox-Ross-Rubinstein tree
that has constant local volatility, I the number
of nodes. at a given level is. odd, choose the
central node’s: stock price to be equal to spot
today; if the number is even, make the average
of the natural logarithms of the two central
nodes’ stock prices equal to the logarithm of
today’s spot price. We now derive the 2n equa-
tions for the theoretical values of the forwards
and the options,

The implied
Consequently, the expected value, one period
later, of the stock at any node (n,i) must be its
known forward price. This leads to the equation

tree  is risk-neutral.

OVER THE RAINBOW/RISK PUBLICATIONS

S

S3
{n,2) S2
Sz

n,1) s1

B3

level n

time ty

F=pS, +(1- P)S, (3)
F. is known. There are n of these for-
ward equations, one for each i.

The second set of equations expresses the
values of the n independent options,* one for
each strike si equal to the known stock prices at
the nth level, that expire at the (n+ 1) level.
The strike level s, splits the up and down
nodes; Sm and Sr, at the next level, as shown in
Figure 4. This ensures that only the up (down)
node and all nodes above (below) it contribute
to a call (put) struck at S.. These n equations for
options, derived below, together with: equation
(3) and our choice in centring the tree, will
determine both the transition probabilities pi
that lead to the (n+1)th level and the stock
prices §, at the nodes at that level.

Let Cls,t ) and P(s,t,_ ), respectively, be
the known interpolated market values for a call
and put struck today at S, and expiring at t.
We know the values of each of these calls and
puts from interpolating the smile curve at time
t..;- The theoretical binomial value of a call
struck at K and expiring at t ., is given by the
sum over all nodes | at the (n+ 1)th level of the
discounted probability of reaching each node
(n+1,j) multiplied by the call payoff there, or

where
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(4)

max(S - K,O)

j+1
When the strike K equals s,, the contribution
from the transition to the first in-the-money up
node can be separated from the other
contributions, which, using equation (3), can be
rewritten in terms of the known Arrow-Debreu
prices, the known stock prices s, and the
known forwards F=e™s, so that

n
erAtC(Si'tnq) =Ap(S,; -s)+ Zx;(ﬁ - Si) (5)
je=irl
The first term depends upon the unknown pi
and the up node with unknown price S,,;- The
second term is a sum over already known quan-
tities.

Since we know both F. and C(si,tm) from
the smile, we can simultaneously solve equa-
tions (3) and (5) for S, | and the transition prob-
ability p, in terms of S

s - Si[eth(si,tml) - 2} ~Asi(F-s) 6)
T [t 3] A )
p =S (7)
SJ’-»l - Sa

where T denotes the summation term in equa-
tion 5.

We can use these equations to find iteratively
the S, and p, for all nodes above the centre of
the tree if we know S, at one initial node. If the
number of nodes at the (n+ 1) level is odd
(that is, n is even), we can identify the initial S,
for i=n/2 + 1, with the central node whose stock
price we choose to be today’s spot value, as in
the Cox-Ross-Rubinstein tree. Then we can cal-
culate the stock price S,,; at the node above
from equation (6), and then use equation (7) to
find the p. We can now repeat this process,
moving up one node at a time, until we reach
the highest node at this level. In this way we
imply the upper half of each level,

If the number of nodes at the (n+ 1) level
is even (that is, n is odd), we start instead by
identifying the initial S and S| for i=(n + 12,
with the nodes just below and above the centre

+17

of the level. The logarithmic Cox-Ross-
Rubinstein centring condition we chose is
equivalent to choosing these two central stock
prices to satisfy § =8%/S | where S=s, is

foselay s

spust price corresponding to the Cox-

Ross—RUbinstein-style central node at the previ-
ous level. Substituting this relation into equation
(6) gives the formula for the upper of the two
central nodes at level n+1, with n odd:

eo(s,t

"+l

J+1s-2|

ToAR-eCst ) ®

for i = (n+1)/2

Once we have this initial node’s stock price,
we can continue to fix higher nodes as shown
above.

In a similar way we can fix all the nodes
below the central node at this level by using
known put prices. The analogous formula that
determines a lower node’s stock price from a
known upper one is

Sz+1[emp(5w to) - 2} +As(F - Si)

a [emtp(s"tnﬂ) - Z] +M(F-S,)

(9)

where here X denotes the sum

-1

T(s,-F)

=
over all nodes below the one with price s, at
which the put is struck. If you know the value
of the stock price at the central node, you can
use equations (9) and (7) to find, node-by-
node, the values of the stock prices and
transition probabilities at all the lower nodes.

By repeating this process at each level, we
can use the smile to find the transition probabil-
ities and node values for the entire tree. If we
do this for small enough time-steps between
successive levels of the tree, using interpolated
call and put values from the smile curve, we
obtain a good discrete approximation to the
implied risk-neutral stock evolution process.
The transition probabilities p; at any node in

the implied tree must lie between zero and one.
If p>1, the stock price S,,, at the up-node at
the next level will fall below the forward price
F. in Figure 4. Similarly, if P, <0, the stock price
S, at the down-node at the next level will fall
above the forward price F.. Either of these con-
ditions allows riskless arbitrage. Therefore, as
we move through the tree node-by-node, we
demand that each newly determined node’s
stock price must lie between the neighbouring
forwards from the previous level, that is
F<S, <F,.

If the stock price at a node violates the

i+1

above inequality, we override the option price

RISK PUBLICATIONS/OVER THE RAINBOW



that produced it. Instead we choose a stock
price that keeps the logarithmic spacing
between this node and its adjacent node the
same as that between corresponding nodes at
the previous level. This procedure removes
arbitrage violations (in this one-factor model)
from input option prices, while keeping the
implied local volatility function smooth.

How it works

We now illustrate the construction of a
complete tree from the smile. To keep life sim-
ple, we build the tree for levels spaced one year
apart. It can be done for more closely spaced
levels on a computer.

We assume that the current value of the
index is 100, its dividend yield is zero, and that
the annually compounded riskless interest rate
is 3% a year for all maturities. We assume that
the annual implied volatility of an at-the-money
European call is 10% for all expirations, and that
implied volatility increases (decreases) linearly
by 0.5 percentage points with every 10-point
drop (rise) in the strike. This defines the smile.

Figure 5 shows the standard (not implied)
Cox-Ross-Rubinstein binomial stock tree for a
local volatility of 10% everywhere. This tree
produces no smile and is the discrete binomial
analogue of the continuous-time Black-Scholes
equation. We use it to convert implied volatili-
tics into quoted options prices. Its up and down
moves are generated by factors exp(xo/100).
The transition probability at every node is 0.625.

Figure 6 displays the implied stock tree, the
tree of transition probabilities and the tree of
Arrow-Debreu prices that fits the smile. We
illustrate how a few representative node para-
meters are fixed in our model.

First, the assumed 3% interest rate means that
the forward price one year later for any node is
1.03 times that node’s stock price.

Today’s stock price at the first node on the
implied tree is 100, and the corresponding ini-
tial Arrow-Debreu price A,=1.000. Now let’s
find the node A stock price in level 2 of Figure
6. Using equation (8) for even levels, we set
S,,,=S,, S=100, et and A,=1.000. Then

100[103 x C(100,1) + 1000 x 100 - z]
1000x103-103xC(1001) + =

where C(100,1) is the value today of a one-
year call with strike 100. £ must be set to zero
because there are no higher nodes than the one
with strike above 100 at level 0. According to
the smile, we must value the call C(100,1) at an

GVER THE RAINBOW/RISK PUBLICATI‘D_NS
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5. Binomial stock tree with constant 10% stock volatility

Time 0 1 2 3 4 5
(years} I l l ; I I
164.87
149.18
134.99 134.99
122.14 122.14
110.52 110.52 110:52
100.00 100.00 100.00
90.48 90.48 90.48
81.87 81.87
74.08 74.08
67.03
60.65
6. Implied tree, probability tree and Arrow-Debreu tree
Time 0 1 2 3 4
(years) [ ——— [ - o ——— [ o
1 I ] ' i
implied stock tree: H 147.52
nodes show s; 139.78
¢ 130.09 130.15
A 120.27 120.51
110.52 110.60 E 110.61
100.00 100.00 100.00
90.48 90.42 90.41
8 79.30 79.43
D
71.39 71.27
59.02°
54.48
Transition probability tree:
nodes show p; 0.796
0.700
0.682 0.692
0.682 0.678
0.625 0.624 0623
0.671 0.666
0.541 0551
0717
T 0376
Arrow-Debreu price tree: . 0.140
nodes show &; o.18r
0.266" 0.257
0.402 " 1 0.329
0.607 " o3 0.255
1000 " 04257 0.259
U364 7 0:216 0.151
0116 0.106
0.052 0.051
0.015
0.009
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implied volatility of 10%. In the simplified bino-
mial world we use here, C(100,1)=6.38 when
valued on the tree of Figure 5. Inserting these
into the above equation vyields
S,=110.52. The price SB corresponding to the
lower node B in Figure 6 is given by our cho-
sen centring condition Sy= S?/S,=90.48. From
equation (7), the transition probability at the
node in year 0 is

(103-9048)
g e
(11052 -9048)

values

=0625

Using forward induction, the Arrow-Debreu
price at node A is given by A = (Ayp)/
1.03=(]‘OOX().625)/1.03=O.()O7, as shown on
the bottom tree in Figure 6. In this way the
smile has implied the second level of the tree.

Now let’s look at the nodes in year two. We
choose the central node to liec at 100. The next
highest node, C, is determined by the one-year
forward value Fa=113.84 of the stock price
S,=110.52 at node A and by the two-year call
C(S,,2) struck at S,.
nodes with higher stock values than that of

BC(‘Z{USC IhCI‘C are no

node A in year one, the S term is again 0 and
equation (8) gives

. 100[1.03 x C(S,,2)]- 0607x S, x (F, - 100)
103xC(S,,2) - 0607x (F, - 100)

The value of C(S,,2) at the implied volatility
of 9.47% corresponding to a strike of 110.52 is
3.92 in our binomial world. Substituting these
values into the above equation yields Sc=120.27.
Equation (7) for the transition probability gives

(11384 - 100)
Pp =
(12027- 100)

= 0682

We can similarly find the new Arrow-Debreu
price A, We can also show that the stock price
at node D must be 79.30 to make the put price
P(S;,2) have an implied volatility of 10.47%
consistent with the smile,

The implied local one-year volatility at node
A in the tree is

Oy = Jpa(l- Py ) log(12027/ 100) = 860%

Similarly, 6,=10.90%. You can see that fitting
the smile causes local volatility one year out to
be greater at lower stock prices.

To leave nothing in doubt, we show how to
find the value of one more stock price, that at
node G in year five of Figure 6. Let's suppose
we have already implied the tree out to year
four, and also found the value of S; at node F

7. The implied distributions

020 1 a) Implied

probability
distribution

0.15

0.10 4

0.05 -

920 9 b) Lognormal

probability

0.15 distribution

0.10

0.05 -

0.06 1 ¢) Implied minus lognormal
probability

distribution

10 50 100 150 200
Index levet

d) implied local
volatility

to be 110.61, as shown in Figure 6. The stock

price S; at node G is given by equation (8) as

. Se[103x C(S, 5) - E]-AexSex (F-11061)
[1035xc(s, 5)- £]-Acx (F-11061)

where S,=120.51, F,=120.51x1.03=124.13 and

Ag=0.329,

The smile’s interpolated implied volatility at a
strike of 120.51 is 8.86%, corresponding to a cal
value C(120.51,5)=6.24. The value of the S
term in the above equation is given by the con-

tribution to this call from the node H above E in
year four. From equation (5) and Figure 6 it is

L= XH(FH - SE)
=0181x(103%x13978 - 12051)
=4.247

Substituting these values gives 5,=130.15.

RISK PUBLICATIONS/OVER THE RAINBOW




283
IMPLIED

SMILES:
RIDING ON A

SMILE

OVER THE RAINBOW/RISK PUBLICATIONS



284
IMPLIED

SMILES:
RIDING ON A

SMILE

Some distributions

Once you have an implied tree that fits the
smile, you can look at distributions of future
stock prices in the risk-neutral world. If you
take the model seriously, these are the distribu-
tions the market is attributing to the stock
through its quoted options prices.

The implied distributions in Figure 7 result
from fitting an implied five-year tree with 500
levels to the following smile: for all expirations,
at-the-money (strike=100) implied volatility is
10%, and increases by one percentage point for
every 10% drop in the strike. We assume a con-
tinuously compounded interest rate of 3% a
year, and no stock dividends.

Figure 7(a) shows the implied risk-neutral
stock price distribution at five years, as
computed from the implied tree. The mean
stock price is 116.18; the standard deviation is
21.80%.

Figure 7(b) shows a lognormal distribution
with the same mean and standard deviation.
You can see that the implied tree has a distribu-
tion that is shifted towards low stock prices.
Figure 7(c) shows the difference between the
two distributions.

Figure 7(d) shows the local volatility o(S,t)
in the implied tree at all times and stock price
levels. To explain the smile you need local
volatility to decrease sharply with increasing
stock price and vary slightly in time.

In this example we have found the implied
tree and its distributions resulting from a smile

1 See, for instance, J. Hull and A. White, 1987, “The Pricing
of Options on Assets with Stochastic Volatilities ", Journal of
Finance 42, pp. 281-300.

2 See R. Merton, 1976, “Options Pricing when Underlying
Stock Returns are Discontinuous ”, Journal of Financial
Economics 3, pp. 125-44.

3 There are only n independent options because puts and
calls with the same strike are related through put-call parity,

whose shape is independent of expiration time.
We can do the same for more complex smiles,
where volatility changes with time to expiration.

Conclusion

We have shown that you can use the volatility
smile of liquid index options, as obscrved at
any instant in the market, to construct an entire
implied tree.” This tree will correctly value all
standard calls and puts that define the smile. In
the continuous time limit, the risk-neutral sto-
chastic evolution of the stock price in our
model has been completely determined by mar-
ket prices for European-style standard options.

You can use this tree to value other deriva-
tives whose prices are not readily available from
the market — standard but illiquid European-
style options, American-style options and exotic
options — secure in the knowledge that the
model is valuing all your hedging instruments
consistently with the market. We believe the
model may be especially useful for valuing bar-
rier options, where the probability of striking
the barrier is sensitive to the shape of the smile.
You can also use the implied tree to create stat-
ic hedge portfolios for exotic options,” and to
generate Monte Carlo distributions for valuing
path-dependent options.

Finally, it would be interesting to see to what
extent the implied tree’s local volatility function
o(S,t) forecasts index volatility at future times
and market levels.
© Goldman Sachs

which holds in our model because the implied tree is con-
strained to value all forwards correctly.

4 We have become aware of recent works with similar aims
by both Mark Rubinstein and Bruno Dupire (Risk January
1994, pp. 6, 18-20). Dupire’s article is reprinted as Chapter
41 of the present volume.

5 Derman, Risk Exotic Options Conference, London,
December 1993,
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