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Abstract

Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on

the construction of mean-reverting spreads enjoying a certain degree of predictability.

Gaussian linear state-space processes have recently been proposed as a model for such

spreads under the assumption that the observed process is a noisy realization of some

hidden states. Real-time estimation of the unobserved spread process can reveal tempo-

rary market inefficiencies which can then be exploited to generate excess returns. Building

on previous work, we embrace the state-space framework for modeling spread processes

and extend this methodology along three different directions. First, we introduce time-

dependency in the model parameters, which allows for quick adaptation to changes in the

data generating process. Second, we provide an on-line estimation algorithm that can be

constantly run in real-time. Being computationally fast, the algorithm is particularly suit-

able for building aggressive trading strategies based on high-frequency data and may be

used as a monitoring device for mean-reversion. Finally, our framework naturally provides

informative uncertainty measures of all the estimated parameters. Experimental results

based on Monte Carlo simulations and historical equity data are discussed, including a

co-integration relationship involving two exchange-traded funds.
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1 Introduction

A time series is known to exhibit mean reversion when, over a certain period of time, is

“reverting” to a constant mean. In recent years, the notion of mean reversion has received

a considerable amount of attention in the financial literature. For instance, there has been

increasing interest in studying the long-run properties of stock prices, with particular atten-

tion being paid to investigate whether stock prices can be characterized as random walks or

mean reverting processes. If a price time series evolves as a random walk, then any shock is

permanent and there is no tendency for the price level to return to a constant mean over time;

moreover, in the long run, the volatility of the process is expected to grow without bound,

and the time series cannot be predicted based on historical observations. On the other hand,

if a time series of stock prices follows a mean reverting process, investors may be able to fore-

cast future returns by using past information. Since the seminal work of Fama and French

[1988] and Poterba and Summers [1988], who first documented mean-reversion in stock mar-

ket returns during a long time horizon, several studies have been carried out to detect mean

reversion in several markets (e.g. Chaudhuri and Wu [2003]) and many asset classes (e.g.

Deaton and Laroque [1992], Jorion and Sweeney [1996]).

Since future observations of a mean-reverting time series can potentially be forecasted

using historical data, a number of studies have also examined the implications of mean re-

version on portfolio allocation and asset management; see Barberis [2000] and Carcano et al.

[2005] for recent works. Active asset allocation strategies based on mean-reverting portfo-

lios, which generally fall under the umbrella of statistical arbitrage, have been utilized by

investment banks and hedge funds, with varying degree of success, for several years. Possibly

the simplest of such strategies consists of a portfolio of only two assets, as in pairs trading.

This trading approach consists in going long a certain asset while shorting another asset in

such a way that the resulting portfolio has no net exposure to broad market moves. In this

sense, the strategy is often described as market neutral. Entire monographs have been writ-

ten to illustrate how pairs trading works, how it can be implemented in real settings, and

how its performance has evolved in recent years (see, for instance, Vidyamurthy [2004] and

Pole [2007]). The underlying assumption of pairs trading is that two financial instruments

with similar characteristics must be priced more or less the same. Accordingly, the first step

consists in finding two financial instruments whose prices, in the long term, are expected to
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be tied together by some common stochastic trend. What this implies is that, although the

two time series of prices may not necessarily move in the same direction at all times, their

spread (for instance, the simple price difference) will fluctuate around an equilibrium level.

Since the spread quantifies the degree of mispricing of one asset relative to the other one,

these strategies are also refereed to as relative-value. If a common stochastic trend indeed

exists between the two chosen assets, any temporary deviation from the assumed mean or

equilibrium level is likely to correct itself over time. The predictability of this portfolio can

then be exploited to generate excess returns: a trader, or an algorithmic trading system,

would open a position every time a substantially large deviation from the equilibrium level

is detected and would close the position when the spread has reverted back to the its mean.

This simple concept can be extended in several ways, for instance by replacing one of the

two assets with an artificial one (e.g. a linear combination of asset prices), with the pur-

pose of exploiting the same notions of relative-value pricing and mean-reversion, although

in different ways; some relevant work along these lines has been documented, among others,

by Montana et al. [2009] and Montana and Parrella [2009], who describe statistical arbitrage

strategies involving futures contracts and exchange-traded funds (ETFs), respectively. One

aspect that has not been fully investigated in the studies above is how to explicitly model the

resulting observed spread. A stochastic model describing how the spread evolves over time is

highly desirable because it allows the analyst to precisely characterize and monitor some of

its salient properties, such as mean-reversion. Moreover, improved trading rules may be built

around specific properties of the adopted spread process.

Recently, Elliott et al. [2005] suggested that Gaussian linear state-space processes may

be suitable for modeling mean-reverting spreads arising in pairs trading, and described how

such models can yield statistical arbitrage strategies. Their main observation is that the

observed process should be seen as a noisy realization of an underlying hidden process de-

scribing the true spread, which may capture the true market conditions; thus, a comparison

of the estimated unobserved spread process with the observed one may lead to the discov-

ery of temporary market inefficiencies. Based on the additional assumption that the model

parameters do not vary over short periods of time, Elliott et al. [2005] suggested to use the

EM algorithm, an iterative procedure for maximum likelihood estimation, for tracking the

hidden process and estimating the other unknown model parameters. To make the exposition
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self-contained, we briefly review their model in Section 2, and state under what conditions

the stochastic process is mean-reverting.

In this paper we build upon the model by Elliott et al. [2005] and extend their method-

ology in a number of ways. First, in Section 3, we introduce time-dependency in the model

parameters. The main advantage of this formulation is a gain in flexibility, as the model is

able to adapt quickly to changes in the data generating process; Section 3.1 further motivates

our formulation and discusses its potential advantages. In Section 3.2 we derive new condi-

tions that need to be satisfied for a model with time-varying parameters to be mean-reverting.

In Section 3.3 we describe a Bayesian framework for parameter estimation which then leads

to a recursive parameter estimation procedure suitable for real-time applications. The final

algorithm is detailed in Section 4; an analysis and discussion on the convergence properties

of the algorithm as well as practical suggestions on how to specify the initial values and prior

distributions are provided. Unlike the EM algorithm, our estimation procedure also produces

uncertainty measures without any additional computational costs. With a view on statistical

arbitrage, in Section 4.5 we add a note discussing how pairs trading may be implemented us-

ing the spread models proposed in this work and enumerate other important issues involved

in realistic implementations, together with some pointers to the relevant literature. However,

an empirical evalutation of trading strategies is beyond the scope of this work. For further

discussions on statistical arbitrage approaches based on mean-reverting spreads and many

illustrative numerical examples the reader is referred to Pole [2007].

In Section 5, based on a battery of Monte Carlo simulations, we demonstrate that posterior

means estimated on-line by our Bayesian algorithm recovers the true model parameters and

can be particularly advantageous when the analysts wishes to track sudden changes in the

mean-level of the spread and its mean-reverting behavior. For instance, real-time monitoring

may be used to derive stop-loss rules in algorithmic trading. Two examples involving real

historical data are given in Section 5.2, where the cointegrating relationship between a pair

of stocks and a pairs of ETFs are discussed. Final remarks are found in Section 6 and the

proofs of arguments in Sections 3.2 and 4.3 can be found in the appendix.
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2 Time-invariant state-space models for mean-reverting spreads

Throughout the paper we will assume that the trader has identified two candidate financial

instruments whose prices are observed at discrete time points t = 1, 2, . . . and are denoted by

p
(j)
t , with j = 1, 2. At any given time t, let yt denote the price spread, defined as

yt = α+ p
(i)
t − βp

(j)
t

for some parameters α and β which are usually estimated by ordinary least squares (OLS)

methods using historical data. It seems common practice to select the order of i and j such

that yt yields the largest β and the resulting spread captures as much information as possible

about the (linear) co-movement of the two assets. In Section 5.2 we briefly mention how

a penalized OLS model may be used for recursive estimation of a time-varying β. More

generally, the observed spread yt may also be obtained in different ways or may represent

the return process of an initial price spread. One of the two component processes {p(j)
t } may

even be artificially built using a linear combination of a basket of assets. For our purposes,

the only requirement is that the process {yt} is assumed to be mean-reverting.

Furthermore, following Elliott et al. [2005], we assume that the observed spread yt is a

noisy realization of a true but unobserved spread or state xt. The state process {xt} is defined

such that

xt − xt−1 = a− bxt−1 + εt (1)

where 0 < b < 2, a is an unrestricted real number and x1 is the initial state. The restriction

0 < b < 2 is imposed, because otherwise {xt} is non-stationary and thus mean reversion

has probability zero to occur. The innovation series {εt} is taken to be an i.i.d. Gaussian

process with zero mean and variance C2, and εt+1 is assumed to be uncorrelated of xt, for

t = 1, 2, . . .. Conditions for the state process to be mean-reverting are established using

standard arguments, as follows. First, rewrite (1) as

xt = a+ (1 − b)xt−1 + εt

Expanding on this, we obtain

xt = (1 − b)t−1x1 + a

t−2
∑

i=0

(1 − b)i +

t−2
∑

i=0

(1 − b)iεt−i
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Then, taking expectations and variances,

E(xt) = (1 − b)t−1
{

E(x1) −
a

b

}

+
a

b

and

Var(xt) = (1 − b)2(t−1)

{

Var(x1) −
1

1 − (1 − b)2

}

+
C2

1 − (1 − b)2

It is observed that, when |1 − b| < 1, and regardless of a, limt→∞(1 − b)t−1 = 0 and

therefore limt→∞E(xt) = a/b. Therefore, in the long run, the state process fluctuates around

its mean level a/b. Otherwise, when |1 − b| ≥ 1, (1 − b)t−1 is unbounded and hence E(xt)

is unbounded too. Analogously, when |1 − b| < 1 and regardless of a, the variance Var(xt)

converges to C2/{1 − (1 − b)2}. Conversely, if |1 − b| ≥ 1, the variance of xt is unbounded

with geometric speed. It is concluded that the hidden process {xt} is mean reverting when

1− b lies inside the unit circle. Adopting the notation of Elliott et al. [2005], we define A = a

and B = 1 − b, so that the process xt can be rewritten as

xt = A+Bxt−1 + ǫt (2)

Without loss of generality, we postulate that {yt} is a noisy version of {xt} generated as

yt = xt + ωt (3)

where {ωt} is Gaussian white noise with variance D2 and ωt is uncorrelated of xt, for t =

1, 2, . . .. From (3), it also follows that {yt} is a mean-reverting process.

Note that, together with an initial distribution of the state x1, equations (2) and (3) define

a Gaussian linear state-space model with parameters A,B,C,D. State-space models were

originally developed by control engineers [Kalman, 1960] and are useful tools for expressing

dynamic systems involving unobserved state variables. The reader is also referred to Harvey

[1989] and West and Harrison [1997] for book-length expositions.

3 Time-varying dynamic models and on-line estimation

3.1 Preliminaries

The linear Gaussian state-space model described by equations (2) and (3) contains the un-

known parameters A,B,C and D which need to be estimated using historical data. When the
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parameters are known, the Kalman filter provides a recursive procedure for estimating the

state process xt [Kalman, 1960]. Full derivations of the Kalman filter and lucid explanations

in a Bayesian framework can be found in Meinhold and Singpurwalla [1983]. In practice, max-

imum likelihood estimation (MLE) of the unknown parameters is required in order to fully

specify the model. MLE for state-space models can be routinely carried out in a missing-data

framework using the EM algorithm, as first proposed in the 1980s by Shumway and Stoffer

[1982] and Ghosh [1989]; a detailed derivation can also be found in Ghahramani and Hinton

[1996]. In the context of pairs trading, Elliott et al. [2005] reports some simulation and

calibration studies demonstrating that the EM algorithm provides a consistent and robust

estimation procedure for the model (2)-(3), and suggest that the finite-dimensional recursive

filter described in Elliott and Krishnamurthy [1999] may also be used for estimation (although

no results were provided).

Elliott et al. [2005] suggest to base model estimation on data points belonging to a look-

back window of size N . A full iterative calibration procedure is then run till convergence

every time a new data point is observed and the window has been shifted one-step ahead.

This approach implicitly requires the analyst to select a value of N (the effective sample size)

ensuring that, within each time window, the model parameters do not vary. The selection of

N may be difficult without a proper model selection procedure in place to test the assumption

that the model is locally appropriate. For instance, although a small value of N may guar-

antee adequacy of the model, it could also lead to notable biases in the parameter estimates.

When N is too large, a number of factors such as special market events, persisting pricing

inefficiencies or structural price changes may invalidate the modeling assumptions. Clearly,

the question of how much history to use to calibrate a model and the corresponding trading

strategy is a critical one.

From a practical point of view, repeating the EM algorithm several times over different

window sizes in search for an optimal window size may be computationally expensive. Even

performing a single calibration run may not be fast enough to accommodate very aggres-

sive trading strategies in high-frequency domains, due to the well-known slow convergence

properties of the EM algorithm. More notably, a vanilla application of this algorithm does

not automatically provide any measure of parameter uncertainty. Although various methods

and modifications have been proposed in the statistical literature in this direction (see, for
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instance, McLachlan and Krishnan [1997]), the resulting methods usually introduce further

computational complexity.

In order to cope with these limitations, in this section we present and discuss our three

main contributions. Firstly, we introduce more flexibility and release some of the modeling

assumptions by allowing the model parameters to vary over time; in this way, both smooth

and sudden changes in the data generating process (such as those created by structural price

changes and unusual persistence of market inefficiencies) will be more easily accommodated.

Secondly, we propose a practical on-line estimation procedure that, being non-iterative, can

be run efficiently over time, even at high sampling frequencies, and does not inflict the burden

of frequent re-calibration and window size selection. Ideally, a model should be able to adapt

to changes in the data generating mechanism with minimal user intervention, and should

be amenable to on-line monitoring so that the key parameters characterizing the underlying

mean-reverting property can always be under continuous scrutiny. These features enable the

trader (or trading system) to take fast dynamic decisions. Thirdly, as a result of the Bayesian

framework proposed here for recursive estimation, measures of uncertainty extracted from

the full posterior distribution can be routinely computed at no extra cost. These measures

can be very informative in quantifying and assessing estimation errors, and can potentially be

exploited to derive more robust trading strategies; see Section 5 for some practical examples.

3.2 The proposed model

In this section we initially propose a variation of the classic state-space model used by

Elliott et al. [2005] in which the parameters are not assumed to be constant over time. This

modification will then force us to reconsider under which conditions the spread process is

mean-reverting.

First, let us rearrange the model (2) and (3) in an autoregressive (AR) form. From (3),

note that xt = yt − ωt. Then, from substitution in (2) for t ≥ 2, we obtain

yt = A+Byt−1 + ǫt (4)

where ǫt = ωt −Bωt−1 + εt is distributed as a N(0, σ2), for σ2 = D2 +B2D2 +C2. The above

model is an AR model of order 1 with parameters A, B and σ2.

We achieve time-dependence in the parameters of (4) by replacing A and B with At

and Bt, respectively, and postulating that both parameters evolve over time, according to
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some weakly stationary process. Here we consider the case of At and Bt changing over time

via AR models, but more general time series may be considered. These choices lead to the

specification of a time-varying AR model of order 1, or TVAR(1). Accordingly, the observed

spread is described by the following law,

yt = At +Btyt−1 + ǫt (5)

At = φ1At−1 + ν1t, Bt = φ2Bt−1 + ν2t

where φ1 and φ2 are the AR coefficients, usually being assumed to lie inside the unit circle

so that At and Bt may be weakly stationary processes.

Setting θt = (At, Bt)
′ and Ft = (1, yt−1)

′, the model can be expressed in state space form,

yt = F ′
tθt + ǫt (6)

θt = Φθt−1 + νt (7)

with Φ = diag(φ1, φ2) and error structure governed by the observation error ǫt ∼ N(0, σ2) and

the evolution error vector νt = (ν1t, ν2t)
′ ∼ N2(0, σ

2Vt), where N2(·, ·) denotes the bivariate

Gaussian distribution. It is assumed that the innovation series {ǫt} and {νt} are individually

and mutually uncorrelated and they are also uncorrelated of the initial state vector θ1, i.e.

E(ǫtǫs) = 0;E(νtν
′
s) = 0;E(ǫtνu) = 0;E(ǫtθ1) = 0;E(νtθ

′
1) = 0, for any t 6= s, where E(.)

denotes expectation and θ′1 denotes the row vector of θ1.

With the inclusion of a time component in the parameters A and B, we now need to revise

the conditions under which the mean reversion property holds true. The next result gives

sufficient conditions for the spread {yt} to be mean-reverting.

Theorem 1. If {yt} is generated from model (6)-(7), then, conditionally on a realized se-

quence B1, . . . , Bt, {yt} is mean reverting if one of the two conditions apply:

(a) φ1 = φ2 = 1, Vt = 0 and |B1| < 1;

(b) φ1 and φ2 lie inside the unit circle, Vt is bounded and |Bt| < 1, for all t ≥ t0 and for

some integer t0 > 0.

Some comments are in order. First we note that if At = A and Bt = B (this is achieved

by setting φ1 = φ2 = 1, and by forcing the covariance matrix of νt to be zero for all t), the

condition |B1| = |B| < 1 of Theorem 1 reduces to the known condition of mean reversion
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for the static AR model, as in the previous section. In the dynamic case, when At and/or

Bt change over time, the condition |Bt| < 1 enables us to check mean reversion in an on-line

fashion. Following the approach of Elliott et al. [2005] for the AR model, we use model (6)

in order to obtain estimates B̂t of Bt and then we check |B̂t| < 1 in order to declare whether

{yt} is mean reverting or not; in the following sections we detail the computations involved

in the estimation of Bt. Structural changes in the level of yt are accounted through estimates

of At, but these do not affect the mean reversion of {yt} as At controls only the level of yt.

For the case of At = A, this is explained in some detail in Elliott et al. [2005] and for more

information on structural changes for cointegrated systems the reader is referred to Johansen

[1988] and Lütkepohl [2006, Chapter 6]. The following result is a useful corollary of Theorem

1.

Corollary 1. If {yt} is generated from model (6)-(7) with φ1 = 1, |φ2| < 1, V1t = V12,t = 0,

then {yt} is mean reverting if |Bt| < 1, for all t ≥ t0, for some t0 > 0, where Vt = (Vij,t).

The proof of this corollary follows by combining the proofs of (a) and (b) of Theorem 1

(see the appendix). Corollary 1 gives an important case, in which At = A, for all t as in

Elliott et al. [2005], but Bt changes according to a weakly stationary AR model. This can be

used when it is expected that At will be approximately constant and benefit may be gained

by reducing the tuning of the four parameters φ1, φ2, δ1, δ2 to tuning of two parameters φ2, δ2.

For a further discussion on this topic see Sections 4.4 and 5.

In this paper we propose (5) as a flexible time-varying model for the observed spread.

However, more general time-varying autoregressive models may be used. Consider that yt is

generated from a time-varying AR model of order d, i.e.

yt = At +

d
∑

i=1

Bityt−i + ǫt, t ≥ d+ 1 (8)

and the time-varying AR parameters At and Bit follow first order AR models, as

At = φ1At−1 + ν1t, Bit = φi+1Bi,t−1 + νi+1,t

where d is the order or lag of the autoregression, the innovations ǫt and νit are individually and

mutually uncorrelated and they are uncorrelated with the initial states Ad and Bid. Certain

Gaussian distributions may be assumed on ǫt and νit and on the states At and Bit. It is readily
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seen that this model can be casted in state space form (6) with Ft = (1, yt−1, . . . , yt−d)
′, θt =

(At, B1t, . . . , Bdt)
′ and Φ = diag(φ1, . . . , φd+1) (the diagonal matrix with diagonal elements

φ1, . . . , φd+1). It is clear that model (5) is a special case of model (8) with d = 1. When

the general model is adopted, the conditions of mean reversion of {yt} of Theorem 1 need to

be revised, as follows. For φi (i = 1, . . . , d + 1) being inside the unit circle, for t > t0, all

(time-dependent) solutions of the autoregressive polynomial ψ(x) = 1 − ∑d
i=1Bitx

i must lie

outside the unit circle. This effectively means that after some t0, {yt} is locally stationary

[Dahlhaus, 1997]. For the remainder of this paper, we consider the situation of d = 1, i.e.

model (5), as this is a simple and parsimonious model.

3.3 A Bayesian framework

We adopt a Bayesian formulation that, within the realm of conjugate analysis, allows us

to derive fast recursive estimation procedures and naturally compute measures of uncer-

tainty. The analysis we propose in this section has roots in the work of West et al. [1999],

Prado and Huerta [2002], and Triantafyllopoulos [2007a]. Initially, we assume that, given the

observational variance σ2, the initial state θ1 follows a bivariate Gaussian distribution with

mean vector m1 and covariance matrix σ2P1. Also, we place an inverted gamma density prior

with parameters n1/2 and d1/2 on σ2. In summary, the prior structure is specified as follows

θ1|σ2 ∼ N2(m1, σ
2P1) and σ2 ∼ IG(n1/2, d1/2), (9)

where m1, P1, n1, d1 are assumed known; we comment on their specification in Section 4.4.

Note that, unconditionally of σ2, the initial state θ1 follows a Student t distribution.

With these priors in place, the posterior distribution of θt|σ2 and the predictive distribu-

tion of yt|σ2 are routinely obtained by the Kalman filter. We elaborate more on this as follows.

First, assume that at time t− 1 the posteriors are given by θt−1|σ2, yt−1 ∼ N2(mt−1, σ
2Pt−1)

and σ2|yt−1 ∼ IG(nt−1/2, dt−1/2), for some mt−1, Pt−1, nt−1 and dt−1. Here the notation

yt means that all data points observed up to time t are included. Then, writing the likeli-

hood function (or evidence) for an observation yt as p(yt|θt, σ
2), an application of the Bayes

theorem gives

p(θt|σ2, yt) =
p(yt|θt, σ

2)p(θt|σ2, yt−1)

p(yt|σ2, yt−1)
,
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It follows that the posterior density of θt|σ2 is Gaussian, and specifically

θt|σ2, yt ∼ N2(mt, σ
2Pt).

The recurrence equations for updating mt and Pt are provided in Section 4. The probability

density p(yt|σ2, yt−1) refers to the one-step ahead forecast density, which is obtained from

the prior p(θt|σ2, yt−1) as yt|σ2, yt−1 ∼ N(ft, σ
2Qt). Again, see Section 4 below for recursive

equations needed to update ft and Qt.

The posterior distribution of σ2 is also obtained by an application of the Bayes theorem,

p(σ2|yt) =
p(yt|σ2, yt−1)p(σ2|yt−1)

p(yt|yt−1)
.

which gives an inverted gamma density σ2|yt ∼ IG(nt/2, dt/2), depending on parameters

nt and dt. Here yt|yt−1 follows a t distribution with nt−1 degrees of freedom yt|yt−1 ∼
t(nt−1, ft, QtSt−1), with St−1 = dt−1/nt−1.

From the density p(θt|σ2, yt), the posterior distribution of θt, unconditionally of σ2, is

easily obtained by integrating σ2 out; it It then follows that θt|yt ∼ t2(nt,mt, PtSt). From

this the (1 − γ)% marginal confidence interval of Bt is

m2t ± tγ/2

√

P22,tSt

where mt = (m1t,m2t)
′, Pt = (Pij,t)ij=1,2 and tγ denotes the 100γ% quantile of the standard

t distribution with nt degrees of freedom. The (1 − γ)% confidence interval for xt+1 is

ft+1 ± tγ/2

√

F ′
t+1Rt+1Ft+1St

and the (1 − γ)% confidence interval for yt+1 is

ft+1 ± tγ/2

√

Qt+1St

where the recurrence relationships of Rt+1 and Qt+1 are given below.

Some references on related time series models are in order. From a frequentist perspective,

time varying AR models have been discussed in Dahlhaus [1997], Francq and Zakoan [2001],

Francq and Gautier [2004] and Anderson and Meerschaert [2005]. Among other works, recur-

sive estimation of time varying autoregressive processes in a nonparametric setting is discussed

in Moulines et al. [2005] and, for non Gaussian processes, in Djurić et al. [2002], using parti-

cle filters. Standard Bayesian AR models have been developed since the early 70’s, see e.g.
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Zellner [1972], Monahan [1983], Kadiyala and Karlsson [1997] and Ni and Sun [2003]. Free

software for model estimation is widely available1.

4 On-line estimation

4.1 An adaptive and recursive algorithm using discount factors

In this section we provide the updating equations needed to compute the posterior densities

of θt|yt and of σ2|yt at each time step. Starting at time t = 1 with a quadruple of initial

values (m1, P1, n1, d1), the calibration algorithm then proceeds as follows:

Rt = ΦPt−1Φ + Vt, Qt = F ′
tRtFt + 1, et = yt − F ′

tΦmt−1

Kt = RtFt/Qt, mt = Φmt−1 +Ktet, Pt = Rt −KtK
′
tQt (10)

rt = yt − F ′
tmt, nt = nt−1 + 1, dt = dt−1 + rtet, St =

dt

nt

For any t = 2, . . . , T , the above algorithm estimates the target posterior quantities of interest;

for instance, we can extract posterior and predictive mean and variances, as well as relevant

quantiles and credible bounds of θt and σ2. From θt = (At, Bt)
′ and the posterior distribution

of θt|yt, we can extract the posterior distribution of Bt|yt. The condition for mean-reversion

established in Theorem 1 can be monitored recursively by extracting the posterior mean of

Bt|yt, say B̂t, and assessing whether |B̂t| is strictly less than one. Credible bounds can also

be associated to the posterior mean in order to better assess the possibility that the process

is still mean-reverting – see the examples in Section 5.

The full specification of algorithm (10) requires the selection of a covariance matrix Vt,

which is responsible for the stochastic evolution of the signal θt and hence the stochastic

change of At and Bt. Following West and Harrison [1997, Chapter 6] we advocate a practical

and convenient analytical solution which allows us to learn this variance component directly

from the data in a sequential way by means of two discount factors, δ1 and δ2; this is referred

to as component discounting. The idea is that by assuming P1 and Vt to be diagonal matrices

we can use the two discount factors to discount the precision of the updating of the mean and

1Time-varying AR models are implemented in the computing language R (website:

http://cran.r-project.org/) via the contributed package timsac. S-plus, Fortran and Matlab

routines for the implementation of these models can be downloaded from the website of Mike West

(http://www.stat.duke.edu/research/software/west/tvar.html)
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the variance of θt as we move from time t− 1 to t. In other words we use δ1 and δ2 to specify

the covariance matrix Vt as

Vt =





δ−1
1 (1 − δ1)φ

2
1p11,t−1 0

0 δ−1
2 (1 − δ2)φ

2
2p22,t−1





where Pt = (pij)i,j=1,2. This implies that Rt = diag(φ2
1p11,t−1/δ1, φ

2
2p22,t−1/δ2) and thus, as

we move from t− 1 to t, the prior variance of At is increased by a factor of 1/δ1 and of Bt by

a factor of 1/δ2. Of course if δ1 = δ2 = 1, then Vt = 0 and in this case θt carries no stochastic

evolution. If we allow δ1 = 1 and δ2 < 1, then only Bt has stochastic evolution over time.

4.2 Model comparison and model assessment

The performance of the estimation procedure of Sections 3.3 and 4 can be formally evaluated

using model diagnostic and model comparison tools; see, for instance, Li [2004] for a general

exposition of time series diagnostics and Harrison and West [1991] for diagnostics in state

space models. In this section we briefly discuss three diagnostic tools, namely the mean

of the squared standardized forecast errors (MSSE), the likelihood function, and sequential

Bayes factors.

From the Student t distribution of yt|yt−1, i.e. yt|yt−1 ∼ t(nt−1, ft, QtSt−1), we can define

the standardized one-step forecast errors (or standardized residuals) as ut = Q−1
t S−1

t−1(yt−ft),

so that ut|yt−1 ∼ t(nt−1, 0, 1) (the standard t distribution with nt−1 degrees of freedom). We

can therefore construct diagnostics and outlier detection tools based on the above t distribu-

tion of ut. Writing vt = (1− 2n−1
t−1)ut we have E(v2

t |yt−1) = 1 and so the MSSE is defined as

(T − 1)−1
∑T

t=2 v
2
t , which if the model fit is good, should be close to 1.

From the Student t distribution of yt|yt−1 the log-likelihood function of φ1, φ2, δ1, δ2 based

on data yT = {y2, . . . , yT } is

ℓ(φ1, φ2, δ1, δ2; y
T ) =

T
∑

t=2

p(yt|yt−1)

=

T
∑

t=2

log
Γ(nt/2)√

πnt−1Γ(nt−1/2)
− 1

2

T
∑

t=2

nt log

{

1 +
(yt − ft)

2

nt−1QtSt−1

}

where Γ(.) denotes the gamma function. Model camparison can be carried out by using either

one of the following criteria: likelihood function, Akaike’s information criterion (AIC) and

Bayesian information criterion (BIC) . In particular, we can choose optimal values of some or
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all of the hyperparameters φ1, φ2, δ1, δ2 by maximizing ℓ(.). A discussion on the specification

of the hyperparameters of the model can be found in Section 4.4.

For the application of the above diagnostic criteria, all data yT is needed to be available,

or historical data can be used. However, sometimes it is useful to construct sequential diag-

nostics so that the model can be assessed and updated over time in an adaptive way. Such

diagnostics tools include sequential likelihood ratios and sequential Bayes factors. Here we

briefly discuss the latter, the foundations of which are discussed in detail in West and Harrison

[1997, Chapter 11]. Suppose that, given a sample yT = {y1, . . . , yT } we have two candidate

models of the form of (6) that is they have the same structural form, but they may differ in

the values of φ1, φ2, δ1 and δ2. Suppose that we denote the two models by M1 and M2 and

for i = 1, 2 we write φi1, φi2, δi1 and δi2 to indicate the dependence of model Mi in these

parameters. Then the Bayes factor of M1 versus M2 is given by the ratio of their respective

one-step forecast densities, i.e.

Ht =
p(yt|yt−1,M1)

p(yt|yt−1,M2)
=

(

nt−1Q2tS2,t−1 + e22t

nt−1Q1tS1,t−1 + e21t

)nt/2 (

Q1tS1,t−1

Q2tS2,t−1

)nt/2

where we have used that yt|yt−1,Mi ∼ t(nt−1, fit, QitSi,t−1), with the quantities fit, eit, Qit,

Si,t−1 being appropriately indexed by i = 1, 2. Given data yT one can either judge the

performance of the two models sequentially (by comparing Ht to 1, for 2 ≤ t ≤ T ) and

thus arriving to a sequential monitoring of the two models, or use the entire data set yT to

compare the models globally, e.g. one can extract the mean or other features of the empirical

distribution of {Ht}.

4.3 Convergence analysis

Algorithm (10) is quite similar to the celebrated Kalman filter; conditional on σ2, the algo-

rithm exactly reduces to the Kalman filter, but the full algorithm allows for the estimation

of σ2 that results in the Student t posterior distribution for θt. On the performance of the

Kalman filter, Elliott et al. [2005] state that the posterior covariance matrix of the param-

eters converges to stable values and this has important implications on the stability of the

state process {xt}. Indeed, it is well known that if the parameters of a state space model are

constant, then the posterior covariance matrix of the states converges to a stable value; see,

for instance, Harvey [1989, p. 119] as well as Chan et al. [1984], Triantafyllopoulos [2007b].
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However, the performance of the posterior covariance matrix Pt when the components of the

model are made time-dependent has not been investigated; in our system this is conveyed via

the time-varying vector Ft = (1, yt−1)
′. This aspect is important as instability or divergence

of Pt could result in instability of the estimation of At and Bt and hence of xt. The next

result states that, in our system, Pt converges to stable values and we provide an explicit

formula for the computation of the limit of Pt.

Theorem 2. Suppose that {yt} is generated from model (6). If {yt} is mean reverting and if,

for j = 1, 2, it is δj < φ2
j , then as t→ ∞ the limit P of the covariance matrix Pt = Var(θt|yt)

exists and it is given by P = diag(p11, p22), where

pii =







∞
∑

j=0

(

δi
φ2

i

)j

ai,t−j







−1

with a1,t = 1 and a2,t = y2
t−1.

Some comments are in order. First we note that if φ1 = φ2 = 1 and Vt = 0 (we have

already seen that this setting reduces the model to the time-invariant AR model considered

in Elliott et al. [2005]), then the condition δj < φ2
j is satisfied for all values of δj , since

0 < δj < 1.

From the mean reversion assumption of {yt}, if we write yt ≈ µ, where µ denotes the

equilibrium mean of the spread, then we can write the limit covariance matrix P as

P =





φ−2
1 (φ2

1 − δ1) 0

0 µφ−2
2 (φ2

2 − δ2)





In the important special case of φ1 = δ1 = 1, for which At = A is time-invariant, we can

easily see that

P =







p11,1 0

0

{

∑∞
j=0

(

δ2
φ2

2

)j
y2

t−j

}−1







where p11,1 is the prior variance Var(A).

The convergence rate of the limit of Theorem 2 is geometric, since after some appropriately

large tL, we can write yt ≈ µ, for all t > tL and the limit of P depends on a geometric series.

The above convergence results for Pt are given conditional on the variance σ2. Given data

up to time t, σ2 has a posterior inverted gamma distribution σ2|yt ∼ IG(nt/2, dt/2); hence,
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as the time index gets larger, the variance of σ2, which is given by

Var(σ2|yt) =
d2

t

(nt − 2)2(nt − 4)2
=

(n1 + t− 1)2S2
t

(n1 + t− 3)2(n1 + t− 5)
(t > 5 − n1)

converges to 0. Therefore, as t → ∞, σ2 concentrates about its mode St = dt/nt asymptoti-

cally degenerating.

4.4 Hyperparameter specification

The estimation algorithm (10) relies upon the specification of prior distributions and corre-

sponding starting values (m1, P1, n1, d1) and values of the model components (φ1, φ2, δ1, δ2),

which are selected by the user. In this brief section, considering weakly informative priors,

we provide some guidance on how to choose these values. Of course, depending on the spe-

cific application, other specifications may be preferred; for instance, the analyst may want to

include stronger prior beliefs regarding the spread being traded, see e.g. Kadane et al. [1996].

Nevertheless, it is important to note that, given a reasonable amount of data, the sensitiv-

ity of the calibration procedure on these initial specifications becomes negligible, especially

over streaming data, because the initial information is deflated over time. This phenomenon

is discussed in some detail in Ameen and Harrison [1984] and in Triantafyllopoulos [2007a].

Detailed studies on prior specification for the estimation of AR models can be found in

Kadiyala and Karlsson [1997], Ni and Sun [2003] and in references therein.

The parameter m1 is the prior mean of the hidden state, given the observational variance,

i.e. the mean of θ1|σ2. A common choice is to set m1 equal to our prior expectation of

(A1, B1)
′, which may be obtained from the availability of historical data. In all examples of

Section 5 we have usedm1 = (0, 0)′. This setting together with the vague prior P1 that follows,

communicates a prior assumption of mean reversion, but with a large uncertainty placed a

priori on (A1, B1)
′. The convergence results reported in Theorem 2 above, guarantee that the

choice of m1 and P1 are not crucial for accurate estimation and forecasting. The covariance

matrix P1 is chosen to be proportional to the 2 × 2 identity matrix, i.e. P1 = p1I2. Here a

large value of p1 reflects a weakly informative or defuse prior specification, since in this case

the precision P−1
1 gets close to zero. Finally, values for n1 and d1 need to be provided. It

can be noted that, having placed an inverted gamma prior on σ2, the expected value of the

observational variance is given by E(σ2) = d1/(n1−2), for n1 > 2. Based on this observation,
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a sensible choice is to set n1 = 3 and use the prior expectation of σ2 as a starting value d1.

Historical data may be used to specify d1, but in the examples of Section 5 we have simply

used d1 = 1.

Proceeding now with the specification of φ1, φ2, δ1, δ2 we can optimize these parameters

by maximizing the log-likelihood function, given in Section 4.2, under the condition that

δi < φ2
i so that Theorem 2 applies. Alternatively, according to Corollary 1 we can set

φ1 = δ1 = 1 and optimize only φ2 and δ2. In Section 5.1, where we present simulation studies,

we use the latter, while in Section 5.2, where we analyze real data, we use the former (full

optimization of four parameters). We note that the likelihood function or Bayes factors can

be used to compare and optimize models using single discount factors δ1 = δ2, known as

single discounting [West and Harrison, 1997], and models using two different discount factors

(component or multiple discounting).

4.5 Pairs trading

Under the assumption that the observed spread process involving two tradable assets is mean-

reverting, and that the model of Eqs. (2)-(3) describes well its evolution at discrete observa-

tional times t = t1, . . . , tN , with N sufficiently small, a simple pairs trading strategy imme-

diately follows [Elliott et al., 2005]. Let us assume that x̂t denotes our best estimate of the

hidden state, which is obtained by calibrating the model on data collected in the above data

window.

At each time t, if the observed spread yt is strictly greater than the true state x̂t, then

a sensible decision would be to take a long position in this portfolio, with the intention

of closing this position at a later time, when the spread has reverted back to its mean.

Conversely, if yt < x̂t, the trader may decide to take a short position in the portfolio; this bet

is expected to be a profitable one as soon as the spread process corrects itself again. Realistic

implementations of this popular strategy may ask for additional layers of sophistication which

in turn require the trader to face a few practical questions; some examples are:

• How can transaction costs be included in this simple model? In other words, when

is a trade expected to be profitable, so that an ‘entry’ signal can be generated? For

instance, a long position could be initiated when yt − x̂t > zt, where zt is a threshold

that guarantees a profitable trade, after costs. The question then becomes, how should
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zt be calibrated? For instance, Vidyamurthy [2004] suggests a re-sampling procedure

and provides some general guidance. There may exist several other alternative ways

in which one could define entry points, perhaps based on empirical modeling of the

extreme values of the yt − xt process. Theoretical results on zero-crossing rates for

autoregressive processes, as in Cheng et al. [1995], may also be explored. For aggressive

strategies that execute a trade at each single time tick, Montana et al. [2008] fore-

casts the one-step ahead expected spread using dynamic regression methods, whereas

Montana and Parrella [2008] embrace the principle of “learning with experts” to deal

with the uncertaincty involved in future movements on the spread.

• Analogously to the previous issue, how should an ‘exit’ signal be generated? And shall

a trade be closed at an exit point, or simply reversed so that a long position becomes

short, and viceversa?

• What stop-loss mechanism can be implemented to make sure that the assumptions on

which the strategy relies are still satisfied? Surely, if the spread process is no longer

believed to be mean-reverting, a stop-loss signal should be quickly generated. As will

appear clearer later (see, for instance, the examples of Section 5), our estimation proce-

dure can be used to monitor mean-reversion sequentially and flag deviations from the

acceptable behaviour of the spread process as soon as they occur. Related co-integration

arguments may also be used, as in Lin et al. [2006].

• How can suitable pairs of assets be chosen in the first place, especially when the universe

of assets to search from is extremely large? Since arbitrage profits between two assets

depend critically on the presence of a long-term equilibrium between them (see, for

instance, Alexander et al. [2002]), data mining methods built around co-integration

techniques may be explored, as in d’Aspremont [2008]. See also Vidyamurthy [2004]

and Pole [2007] for alternative methods including simple correlation analysis, turning

point analysis and latent factor models.

As a final note, we mention a technique that may be deployed in a dynamic modeling

setting, such as ours, to obtain the spread yt = p
(1)
t − βtp

(2)
t in a recursive fashion. As noted

before, the regression coefficient is usually estimated on historical data, but on-line proce-

dures such as recursive least squares may also be used. The assumption of a time-invariant
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regression coefficient β could also be released so as to allow β to change slightly over time;

such a modification would capture a time-varying co-integration relationship between the two

asset prices, where this extension deemed necessary. Assuming T historical observations, a

regression model with a time-varying regression coefficient βt minimizes a cost function

C(β;µ) =

T
∑

t=1

{

p
(1)
t − βtp

(2)
t

}2
+ µ

T−1
∑

t=1

(βt+1 − βt)
2 (11)

where µ ≥ 0 is a scalar determining how much penalization to place on temporal changes

in the regression coefficient. When µ is very large, changes in the coefficient are penalized

more heavily and, in the limit µ = ∞, the usual OLS estimate is recovered. A solution

to the optimization problem above was originally proposed by Kalaba and Tesfatsion [1988].

Following their approach, called flexible least squares (FLS), a recursive estimator for each βt

can easily be derived as

β̂t =
[

St−1 + {p(2)
t }2

]−1 {

st−1 + p
(1)
t p

(2)
t

}

(12)

where we have defined the quantities

St = µ
[

St−1 + µIp + {p(2)
t }2

]−1 {

St−1 + {p(2)
t }2

}

(13)

st = µ
[

St−1 + µIp + {p(2)
t }2

]−1 {

st−1 + p
(1)
t p

(2)
t

}

The recursions are initially started with some arbitrarily chosen values S1 and s1. Montana et al.

[2009] show a clear algebraic connection between FLS and the Kalman filter and use this es-

timation method to develop a dynamic statistical arbitrage strategy.

5 Illustrations

5.1 Simulated data

In this section we initially report on a Monte Carlo simulation study demonstrating that the

fast recursive algorithm (10) described in Section 3.3 accurately estimates the parameters of

the proposed model. We have simulated a large number of time series under model (6) using

a range of values for A,B and σ2. The true parameters are kept constant in these initial simu-

lations for simplicity, so they can be easily compared with the estimated posterior means. We

have found that convergence to the true parameters A, B and σ2 is quickly achieved and the
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estimated values of these parameters are not sensitive to the initial parameters µ1, P1, n1, d1

(results not shown).

We have also explored situations in which the parameters are time-varying. First, we have

considered the case of a sudden change in the level of the spread; the time series fluctuates

around an equilibrium level till t = 1500, and after that time it jumps to a much higher

equilibrium. Clearly for 1 ≤ t ≤ 1499 the process is mean reverting, then at t = 1500 it looses

mean reversion, but it retains it in the sub-period 1500 ≤ t ≤ 3000; of course the process

is not mean reverted for the entire period 1 ≤ t ≤ 3000. Figure 1 shows how the posterior

mean of |Bt| is tracked using two different values of the discount factor δ2. Our focus is on

monitoring Bt because, as established in Theorem 1, this parameter is the ultimate object of

interest. As shown in Figure 1, the algorithm with δ2 = 1 (which corresponds to a model with

time-invariant parameters) does not manage to capture the loss of mean-reversion observed at

time t = 1500; in fact the algorithm gives the misleading result of mean reversion throughout

the time range. On the contrary, when using a smaller discount factor (which corresponds to a

model with time-varying parameters), the algorithm tracks the jump almost in real-time and

communicates the result that after t = 1500 the process has locally regained mean reversion.

Furthermore, we have considered a more hypothetical scenario that may be of practical

interest: Figure 2 corresponds to a scenario where Bt is piece-wise constant and undergoes a

large sudden jump at time t = 1500. Again, the algorithm is able to track well mean reversion

locally, although the true parameter Bt may not be estimated very accurately.

FIGURES 1-2 AROUND HERE

5.2 Equity data

In this section we apply our methods to spreads obtained from historical equity data. Each

spread is computed using the flexible least squares (FLS) method with a very large µ parame-

ter; this is almost equivalent to ordinary least squares (OLS) regression but allows for recursive

estimation. As a simple validation exercise, we also compare the findings obtained from our
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model to formal cointegration tests which assume the availability of all data points. The very

first procedure for the estimation of cointegrating regressions, based on OLS, was proposed

by Engle and Granger [1987]. Since then several other procedures have been developed in-

cluding the maximum likelihood method of Johansen [1988, 1991] and the fully modified OLS

of Phillips and Hansen [1990]. Hargreaves [1994] lists eleven categories of procedures, and

several more have been added in more recent years. For our analysis we have considere only

three popular tests: Engle-Granger’s ADF test [Engle and Granger, 1987], Phillips-Perron’s

PP test [Perron, 1988] and Phillips-Ouliaris’s PO test [Phillips and Ouliaris, 1990].

The first data sets we present consists of daily share prices of two companies: Exxon

Mobil (XOM) and Southwest Airlines (LUV). We have used all the available data for this

pair of stocks, which spans a period from March 23, 1980 to August 6, 2008. Figure 3 reports

the estimated posterior mean of Bt and its confidence band for the period March 23, 1980

to November 30, 2004. Clearly, from March 23, 1980 till November 8, 2004 the posterior

mean of |Bt| stays below one, which according to Theorem 1 indicates mean-reversion of the

spread time series. Figure 4 shows the observed spread time series as well as the estimated

hidden state process and its posterior confidence band for this subperiod of the data. For the

estimation of (At, Bt)
′ we have used φ1 = 0.1, φ2 = 99839, δ1 = 0.992 and δ2 = 0.995 that

maximize the log-likelihood function (11).

When using all historical data (1980-2008), all three standard cointegration tests cannot

reject the null hypothesis of unit roots (p-values: 0.246, 0.219 and 0.15). This is in agreement

with the patterns captured by Figure 3, which reveals that after November 8, 2004, mean

reversion is lost. However, when the analysis is restricted to the period November 8, 2004,

both the PP and PO tests reject the null hypothesis of unit roots at a 5% significance level

(p-values: 0.013 and 0.024, respectively). The ADF test, however, disagrees and does not

reject the null hypothesis of unit roots (p-value 0.139). Thus, in this example, only two out

of three tests agree with the evidence provided by our on-line monitoring device.

Our second example illustrates a co-integration relationship existing between two ETFs

operating in the commodity market. ETFs are relatively new financial instruments that have

exploded in popularity over the last few years. They are securities that combine elements of

both index funds and stocks: like index funds, they are pools of securities that track specific

market indexes at a very low cost; like stocks, they are traded on major stock exchanges and
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can be bought and sold anytime during normal trading hours. We have collected historical

time series for the SPDR Gold Shares (GLD) and Market Vectors Gold Miners (GDX) ETFs.

GLD is an ETF that tries to reflect the performance of the price of gold bullion, whereas

GDX tries to replicate as closely as possible, before fees and expenses, the price and yield

performance of the AMEX Gold Miners index. This is achieved by investing in all of the

securities which comprise the index (in proportions given by their weighting in the index).

This analysis is based upon all the historical data available for the pair, which covers a shorted

period compared to the previous example, from May 23, 2006 until August 06, 2008. Figure

5 shows the observed spread process jointly with the estimated hidden process and confidence

bands, while Figure 6 indicates that a co-integrating relationship between the two ETFs does

exist in the period from July 19, 2006 till 17 December, 2007. For this data set we have used

φ1 = 0.999, φ2 = 99, δ1 = 0.95 and δ2 = 0.98 that maximize the log-likelihood function (11).

When all the historical data is used, the ADF and the PP tests indicate the presence of co-

integration at a 5% significance level (p-values: 0.01 and 0.01, respectively) and only the PO

test suggest lack of co-integration, a result that also agrees with the pattern reported in Figure

6. Considering the period July 19, 2006 till 17 December, 2007, for which our results suggest

mean reversion, we find that all three tests also suggest co-integration (p-values: 0.0201, 0.013

and 0.012). Further formal comparisons and more detailed studies will be needed in order

to characterize some of the discrepancies; however, based on this empirical evidence, our

suggested time-varying model seems to generally agree with most formal cointegration tests.

FIGURES 3-6 AROUND HERE

6 Conclusions

In this paper we have proposed a Bayesian time-varying autoregressive model, expressed in

time-space form, and an efficient recursive algorithm based on forgetting or discount factors.

The procedure can be used for real-time estimation and tracking of the underlying spread
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process and may be seen as a more efficient alternative to standard iterative MLE procedures

such as the EM algorithm. Conditions for mean-reversion as well as the convergence properties

of the on-line estimation algorithm have been studied analytically and discussed. The model

seems particularly useful for monitoring mean-reversion using financial data streams and as

a building block for statistical arbitrage strategies such as pairs trading. Related algorithmic

trading strategies that exploit co-integration of financial instruments, for instance index ar-

bitrage [Sutcliffe and Board, 2006] and enhanced index tracking [Alexander et al., 2002], may

also benefit from the methods proposed here. Moreover, although the focus of this work

has been on applications in computational finance, we believe that the methods described

here are of broader interest and may appeal to other users, within the management science

community, who need to model and monitor mean-reverting time series arising in different

application domains

There are several aspects of the suggested methodology that we would like to explore

further in future work. First, purely from an empirical point of view, we would like to better

understand how the methodology relates to more formal statistical procedures for testing

the hypothesis of mean reversion based on finite sample sizes. As already mentioned, since

mean-reversion is closely linked to second order stationarity, many efforts have been directed

to constructing unit root tests. These standard econometric procedures may lack the power

to reject the null hypothesis of a random walk, and we feel that our method may at least

complement them well. Besides, some of the recently suggested procedures, such as the

bootstrap methods described by Li and Xiao [2003], are too computationally expensive to be

of any use in the real settings and applications that we have described. Another important

aspect that we plan to investigate is the question of how to learn the discounting factors needed

to specify the Vt matrix in a more adaptive fashion, so that they become self-tuning, rather

than being kept constant at all times. A number of techniques have been successfully used for

training adaptive artificial neural networks and other time-varying stochastic processes using

forgetting factors [Saad, 1999, Niedźwiecki, 2000] and there may be scope for improvement

along this direction.
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Appendix

Proof of Theorem 1. With φ1 = φ2 = 1 and Vt = 0, the state space model (6) reduces to the

AR model yt = A+Byt−1 + ǫt, where At = A and Bt = B and it is trivial to verify that {yt}
is mean reverting if |B1| < 1, see also Section 2. This completes (a).

Proceeding now to (b), from the AR model for At we note that E(At) = 0. From (6)

write yt recursively as

yt = At +Btyt−1 + ǫt = At +BtAt−1 +BtBt−1yt−2 +Btǫt−1 + ǫt = · · ·

= y1

t
∏

i=2

Bi +
t−3
∑

j=0

j
∏

i=0

Bt−iAt−j−1 +At +
t−3
∑

j=0

j
∏

i=0

Bt−iǫt−j−1 + ǫt

We write At = (A1, . . . , At) and Bt = (B1, . . . , Bt), for t = 1, . . . , T . Since {ǫt} is white noise,

we have

E(yt|Bt) = y1

t
∏

i=2

Bi (A-1)

This is a convergent series if |Bt| < 1, for all t > t0, for some positive integer t0. To see

this first write x
(1)
t =

∏t
i=2Bi, which is a decreasing series as |x(1)

t+1/x
(1)
t | = |Bt+1| < 1. Also

{x(1)
t } is bounded as |x(1)

t | =
∏t

i=2 |Bi| < 1 and so {x(1)
t } is convergent.

For the variance of yt we have

Var(yt|Bt) = Var(At) +

t−3
∑

j=0

j
∏

i=0

B2
t−iVar(At−j−1) +

t−3
∑

j=0

j
∏

i=0

B2
t−iVar(ǫt−j−1)

+Var(ǫt) +

t−3
∑

j=0

j
∏

i=0

Bt−iCov(At, At−j−1)

≤ σ2 +
σ2V11

1 − φ2
1

+

(

σ2V11

1 − φ2
1

+ σ2

) t−3
∑

j=0

j
∏

i=0

B2
t−i +

σ2V11

1 − φ2
1

t−3
∑

j=0

φj+1
1

j
∏

i=0

Bt−i

where it is used that

Var(At) ≤
σ2V11

1 − φ2
1

and Cov(At, At−j−1) ≤
σ2V11

1 − φ2
1
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for V11,t ≤ V11, since from the hypothesis Vt is bounded, and so there exists some V11 > 0 so

that V11,t ≤ V11.

Now we show that the series x
(2)
t =

∑t−3
j=0

∏j
i=0B

2
t−i and x

(3)
t =

∑t−3
j=0 φ

j+1
1

∏j
i=0Bt−i are

both convergent. For the former series we note that given |Bt| < 1, we can find some B so

that |Bt| < |B| < 1, from which it follows that

|x(2)
t | ≤

t−3
∑

j=0

j
∏

i=0

|Bt−i| ≤
t−3
∑

j=0

j
∏

i=0

|B| =

t−3
∑

j=0

|B|j+1

which is proportional to a geometric series that converges for |B| < 1 and since x
(2)
t is a

positive series, it follows that {x(2)
t } is convergent.

For the series x
(3)
t , we follow an analogous argument, i.e. for B satisfying |Bt| < |B| < 1

we obtain

|x(3)
t | ≤

t−3
∑

j=0

|φ1B|j+1

which shows that x
(3)
t is convergent as

∑t−3
j=0 |φ1B|j+1 is a geometric series with |φ1B| < 1

and x
(3)
t is a positive series.

With these convergence results in place, the convergence of Var(yt|Bt) is obvious. Given,

Bt, we have shown that the mean and the variance of {yt} are convergent and so {yt} is mean

reverting.

Proof of Theorem 2. From the diagonal structure of Pt = diag(p11,t, p22,t) and the updating

of Pt as in the calibration algorithm (10) we have

pii,t =
φ2

i pii,t−1

δi
−

aitφ
4
i p

2
ii,t−1δ

−2
i

aitφ
2
i pii,t−1δ

−1
i + 1

=
φ2

i pii,t−1

δi

(

1 − aitφ
2pii,t−1

δi + aitφ2
i pii,t−1

)

=
φ2

i pii,t−1

δi + aitφ2
i pii,t−1

We can clearly see that pii,t > 0, for all t and so we have

1

pii,t
=

δi
φ2

i pii,t−1
+ ait =

δt−1
i

φ2t−2
i pii,1

+
t−2
∑

j=0

(

δi
φ2

i

)j

ai,t−j (A-2)

Now since δj
iφ

−2j
i ai,t−j is a positive sequence and since from the mean reversion of {yt} and

the definition of ait, the above sequence is bounded above by the geometric sequence δj
i φ

−2j
i M ,

where M is an upper bound of {yt}, it follows immediately that
∑∞

j=0 δ
j
i φ

−2jai,t−j <∞ and

this proves that pii,t converges to
∑∞

j=0 δ
j
i φ

−2jai,t−j . The proof is completed by inverting

(A-2), noting that pii,t > 0 and
∑∞

j=0 δ
j
iφ

−2jai,t−j > 0.
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Posterior Estimation of |Bt|
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Figure 1: Estimation of |Bt| for the simulated spread with a jump at t = 1500. We have

chosen a prior P1 = 1000I2. A value of δ1 = δ2 = δ = 1, which corresponds to the adoption

of a time-invariant model, fails to capture mean-reversion following immediately after the

change of equilibrium ar time t = 1501. However, forgetting factors δ1 = 1 and δ2 = δ = 0.98

tracks the abrupt change in mean level and and following quick restoration of mean-reversion.
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Posterior Estimation of |Bt|
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Figure 2: Estimation of abruptly varying Bt; shown is the posterior mean of |Bt|. The real

parameters are A = 0.2, Bt = 0.25 and σ2 = 1, for 1 ≤ t ≤ 1500; A = 0.2, Bt = 1 and σ2 = 1,

for 1501 ≤ t ≤ 3000. We have chosen a prior P1 = 1000I2 and δ1 = 1. Two selected values of

δ2 = δ are used, δ = 1 and δ = 0.98.
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Figure 3: Posterior estimation of |Bt|. We have used φ1 = 0.1, φ2 = 99839, δ1 = 0.992,

δ2 = 0.995 and a prior P1 = 1000I2.
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Figure 4: Observed spread and state spread using a recursive regression routine for on-line

spread availability.
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Figure 5: Observed spread and state spread using a recursive regression routine for on-line

spread availability.
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Figure 6: Posterior estimation of |Bt|. We have used φ1 = 0.999, φ2 = 99, δ1 = 0.95, δ2 = 0.98

and a prior P1 = 1000I2.
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