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Abstract
In this paper we introduce a new methodology for pair trading. This

new method is based on the calculation of the Hurst exponent of a pair.
Our approach is inspired by the classical concepts of co-integration and
mean reversion but joined under a unique strategy. We will show how
Hurst approach presents better results than classical Distance Method
and Correlation strategies in different scenarios. Results obtained prove
that this new methodology is consistent and suitable by reducing the
drawdown of trading over the classical ones getting as a result a better
performance.

1 Introduction.

Following [1], pairs trading is a quantitative trading strategy which is aimed at
exploiting price movements of assets which are related to each other. The main
theme underlying pairs trading is the presence of an equilibrium relationship,
which can be interpreted in many different ways. Today, traders are able to
buy an overpriced security and thanks to the market tools simultaneously sell
a similar underpriced security. The point is to track a pair of securities whose
prices move together but if prices diverge, they buy the down stock and simul-
taneously sell the up stock. Traders profit if prices converge but lose money if
prices diverge further.
Some researchers placed the origin of pair trading in the mid-1980s, when Nun-
zio Tartaglia, quantitative analyst at Investment Bank Morgan Stanley joined a
group of mathematicians, physicists and computer scientists to develop quanti-
tative arbitrage strategies using the most sophisticated technology available at
∗J.E. Trinidad-Segovia is supported by grant DER2016-76053-R (MINECO/FEDER, UE)
†M.A.Sanchez-Granero is supported by grant MTM2015-64373-P (MINECO/FEDER, UE)
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the time. One of their techniques was arbitrage, looking for securities that had
the tendency to move together.
By the other hand Wilmontt [2] claims that Gerald Bamberger, a computer
scientist and successful trader on Wall Street throughout his career, laid the
foundation for pairs trading at Morgan Stanley earlier than Nunzio in 1982, but
left in 1985. Finally, other authors claim that pairs trading existed before. For
example, Alfred Winslow Jones, who created the first hedge fund ever in 1949,
already applied the concept of pairs trading by going long on certain stocks and
short on others [3, 4].
What make pair trading interesting for some researchers is that it is a proof
against the Efficient Market Hypothesis (EMH) because under an efficient mar-
ket pair trading strategies must not work in any case. Several authors such us
[5, 6, 7, 8, 9] find that pair trading do not report any consistent profit during
a significant period of time if transaction cost and commissions are considered,
mainly because of market efficiency, but what it is clear is that in the last
decades pair trading has reported important amount of money to financial in-
dustry around the world.
In this paper we present a new strategy for pair tradig selection based on the
Hurst exponent of stock market returns. In section 2 we present the main es-
trategies used in pair selection. Section 3 introduces main aspects of Hurst
exponent as well as the fundaments of its use in pair trading. Paper concludes
with a comparative analysis of the results obtained using our methodology and
the classical distance method and correlation.

2 Choosing a pair

The undelying idea of pair trading is quite simple, but the issue is clearly how to
find an optimal pair. Literature has introduced several methodologies of which
the more inportant are two: co-movement and the distance method.

2.1 Co-movement

Defined by [10] as the movement of assets that is shared by all assets at time t.
Co-movement is based on correlation and cointegration.
Pearson correlation coefficient is a frequently used statistic to get an idea of how
assets move mainly. The higher the correlation coefficient, the more the assets
move in sync. In [11], the author analysed the relative performance of different
correlation measures w.r.t. pairs trading by back testing three different types
of measures over as many pairs as possible. Their most important conclusion is
that different statistical correlation measures do show important differences in
terms of risk and return.
The other issue about correlation-based pairs trading that should be pointed
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out is the data frequency on which to use correlation measures. In fact, correla-
tion is intrinsically a short-run measure because it is based on returns, which is
a short memory process [12]. This last fact implies that the higher the trading
frequency, the more likely a correlation-based pairs trading strategy will work
and thus the more potential for profits.
Introduced by Engle and Granger [13], cointegration shows a different type of
co-movement dynamic, since it refers not to co-movements in returns, but to
co-movements in asset prices, exchange rates and yields. The most important
point to understand here is that a cointegrated pair of stocks could very well be
a faultless candidate pair for pairs trading. Engle and Granger [13] say that two
series are cointegrated if a linear combination of the both is stationary and even
though the combination is at times in disequilibrium. Cointegration has been
shown in commodities or foreign currencies that are traded in multiple markets,
and for stocks that are cross-listed, in future and spot rates.

2.2 The distance method

Introduced in [14], it is a straightforward methodology based on minimising the
sum of squared differences between the normalised price series. There are thus
two steps involved in calculating the historical relationship they use to match
an assess candidate pairs. To start with, the prices are first normalised.
After normalising the prices, the so-called distance measure, is calculated as the
sum of squared differences of the aforementioned normalised price series.
Thus, the pair selection method consists of calculating the distance for all pos-
sible pairs in the sample, the best pairs being those ranked from smallest to
highest value of d (distance).
The advantages of this methodology are relatively clear: it is economic model
free, and as such not subject to model mis-specifications and mis-estimations.
It is easy to implement, robust to data snooping and results in statistically sig-
nificant risk-adjusted excess returns. The main disadvantage is that the choice
of Euclidean squared distance for identifying pairs is analytically suboptimal.
Recently [9, 15] replicated the distance methodology extending the sample pe-
riod. They found a declining profitability in pairs trading, mainly due to an
increasing share of nonconverging pairs. They also included trading costs prov-
ing that the original methodology becomes largely unprofitable. Do and Faff
then used refined selection criteria to improve pairs identification. First restric-
tion consisted in allowing for matching securities within the 48 Fama-French
industries. Second, authors favoured pairs with a high number of zero-crossings
in the formation period. This indicator is used as a proxy for mean-reversion
strength to takes mean-reversion into account. The top portfolios resulted to
be profitable enough, even after consideration of transaction costs.
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3 Hurst exponent approach for pair selection

One of the well-known stylised facts of finance is that financial time series ex-
hibit mean reversion patterns in different degrees and at different times. Recall
that a cointegrated pair of securities is defined as having a long term stable
or stationary relationship and that this does not necessarily imply mean re-
version per se but that deviations from equilibrium can occur and be restored
throughout time which, of course, implies some kind of mean reversion proper-
ties. However, to ask for a cointegrated pair of two independent securities is a
very strong condition that is rarely fulfilled, specially if a long period of time
is considered, since there can be events that affect one of the securities but not
the other. Therefore, we look for a more flexible tool to find a pair with a high
degree of co-movement.
Example of mean reversion techniques applied in pair trading can be found in
[16], where a mean reverting Gaussian Markov chain model was used to anal-
yse pairs trading, and in [17], that used a stochastic residual spread model for
detecting mean reversion.
A final point to mention about mean reversion is that it stands in opposite
direction of correlation. However the two procedures can clearly be reconciled
by looking for pairs of securities which have an absolute value of the correlation
coefficient of 0.80 or higher.
In this paper, Hurst exponent will be used as a measure of mean reversion: the
lower the Hurst exponent, the greater degree of mean reversion than one can
expect.

3.1 Hurst exponent in financial literature.

In the last decades, application of the long memory processes in social sciences
has been extended from macroeconomics to finance. In this particular case as a
valid alternative to test, in a relative simple way, Efficient Market Hypothesis,
probably the most popular topic in finance (see [18, 19, 20, 21, 22, 23, 24, 25, 26]).
The study of the long memory processes is realized through the Hurst exponent.
This analysis was introduced by English hydrologist H.E. Hurst in 1951 [27] to
deal with the problem of reservoir control near Nile River Dam. The most pop-
ular methodology to estimate Hurst exponent is the R/S analysis [28] and the
DFA [29].
Considering that several authors [30, 31, 32, 33] has proved that accuracy of
R/S analysis and DFA is not adequate when the length of the time series is
too short, part of Hurst exponent literature has been focused in providing new
accurate algorithms for a more efficient Hurst exponent estimation in financial
time series. Alternative techniques are the Hudaks Semiparametric Method
(GPH) [34], the Quasi Maximum Likelihood analysis (QML) [35], the General-
ized Hurst Exponent (GHE) [36], the Periodogram Method [37], wavelets [38],
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the Centered Moving Average (CMA) [39], the multifractal detrended Fluctua-
tion analysis (MF-DFA) [40], non-linear tools such as the Lyapunov exponent
[41, 42], geometric method-based procedures (GM) [43] and fractal dimension
algorithms (FD)[44].
It is important to consider that some classical methods are valid to study long-
memory only for fractional Brownian motions and others are also valid for Levy
stable motions [45], while only some of them work for the more general self-
similar processes. To conclude, [46] showed the importance of the underlying
distributions in Hurst exponent estimation and the interpretation of the results.
For our purpose, there are a few recent contributions [47, 48] were the connection
between market efficiency and long memory is related. Recently, scaling pat-
terns have been increasingly explored for financial markets, [49, 50, 51, 52, 53]
constitute a sample of quite interesting contributions. These contributions show
that market agents may be essentially distinguished by the frequency at which
they operate in markets linking the so-called Fractal Market Hypothesis (FMH)
and the EMH.
Firstly, FMH emphasizes the impact of information and expectations on the
investor behavior [24, 54]. In classical finance theory, information is treated as
a generic item, so EMH implies that all types of information impact investors
(also generic) in a similar way. In addition to that, FMH states that information
is valued according to each investor’s horizon. Traders focus only on short terms
and investors are mainly interested in long term investments. This relationship
between both theories could be proved by the fact that Capital Asset Pricing
Model (CAPM) seems to work fine with stable markets, except during panics
or crisis when correlations increase [55].
FMH is based on liquidity, which throws smooth pricing market processes, mak-
ing it more stable. Therefore, the existence of investors having different horizons
leads to a stable market evolution, though market may become unstable when
one horizon becomes dominant since liquidity ceases. In this way, FMH predicts
that critical events are connected to dominating investment horizons.
This link between market memory and market equilibrium suggests that Hurst
exponent could be a good indicator to detect stocks divergence and make pair
trading strategies profitable.

3.2 GHE methodology for Hurst exponent calculation

Introduced in [36], GHE is one of the most popular methods for Hurst exponent
calculation. It is a generalization of the classical approach provided by [27] and
it is related with the scaling behavior of some statistical properties of a time
series. It is considered a powerful tool to detect multifractality by means of
the scaling of qth-order moments of the distribution of the increments. Such a
scaling property is determined by an exponentHGHE which is usually connected
with the long-term statistical dependence of the time series.
In particular, it has been verified that these statistical properties of time series
scale with both the period of observation (T ) and the resolution of the time
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window. To do this, the following statistic Kq(τ) is considered

Kq(τ) = < |X(t+ τ)−X(t)|q >
< |X(t)|q >

where τ can vary between 1 and τmax, τmax is usually chosen as a quarter of
the length of the series, and < · > denotes the sample average over the time
window. Hence, the GHE is defined from the scaling behavior of the statistic
Kq(τ) given by the power-law:

Kq(τ) ∝ τ qH(q)· (1)

The GHE is calculated as an average of a list of values from the expression
contained in (1) for different values of τ [56, 57, 58]. However, the scaling of a
time series can also be characterized through the next alternative statistic [48]:

Kq(τ) =
T−τ∑
t=1

|X(t+ τ)−X(t)|q

T − τ + 1 (2)

for time series X(t) of length T , which also scales as provided in (1). Note that
all the information about scaling properties of a time series is contained in the
scaling exponent H(q) which makes the analysis based on GHE quite simple.
In particular, note that for q = 2, Kq(τ) is proportional to the autocorrelation
function of the increments, C(t, τ) =< X(t+ τ)X(t) >, and it is related to the
power spectrum, which is important from the point of view of long-range depen-
dence detection. Thus, it is possible to estimate the Hurst exponent H(2) from
(1) for q = 2, which is similar to estimate the parameter HR/S of R/S Analysis,
and HDFA of DFA, respectively. In addition, for q = 1, H(1) determines the
scaling properties of the absolute deviations of the time series which is close to
the original Hurst exponent.
In this paper, we are not interested in the multifractal aspect of GHE, so we
will use GHE with q = 1. Note that GHE is easy to calculate and it is accurate
with financial time series (see [44]). In particular, GHE can be used with short
series, while other popular methods to calculate the Hurst exponent fail to work
fine with short series ([44], [58]) and GHE with q = 1 works with a wider range
of self similar processes than GHE with q = 2 ([58]).

3.3 Using Hurst exponent in pair trading

The interpretation of H is simple. When H is less than 0.5, the process is anti
persistent, when H is greater than 0.5, it is persistent and when H is equal
to 0.5 it is diffusive. As we pointed out in previous sections, in pair trading,
researchers look for correlated (or cointegrated) stocks, since then the pair will
have reversion to the mean properties, so it seems natural to look for pairs with
low Hurst exponent in order to apply reversion to the mean strategies.

6



In this paper, given stocks A and B, the series of the pair AB will be log-
price(A) − b∗log-price(B), where log-price is the logarithm of the price of the
stock and b is a constant used to normalize the log-prices of A and B. There
are some alternatives to choose b, for example, if the stocks are cointegrated,
we can estimate b from the cointegration model. However, in this paper we will
use a simpler method to calculate b, since we will calculate it as b = std(log-
rent(A))/std(log-rent(B)), where log-rent is the logarithmic return of the stock
and std is the standard deviation. The reason of this choice is because when
we buy the pair, we will short sell b shares of B for each share of A that we
buy. Therefore, by definition of b, we will have that our position in stock A
has the same volatility that our position in stock B, so we are normalizing both
stocks. Furthermore, this estimation of b is faster to calculate than other, more
complex, estimations.

If we want to invest an amount T in pair AB, if x is our inversion in stock A,
then our inversion in stock B will be bx and hence x + bx = T , so x = T

1+b is
the total amount we invest in A and bx the amount we invest in B. Therefore,
when we buy the pair, we buy T

1+b of stock A and short sell bx = bT
1+b of stock

B. When we sell the pair, we short sell T
1+b of stock A and buy bx = bT

1+b of
stock B.

The selection of the pairs is as follow: for each possible pair, we calculate the
Hurst exponent of the series of the pair (as described previously) and we choose
the pairs with the lowest Hurst exponent.

Once we have selected a pair, the estrategy of the inversion in the pair is as
follow: if the series of the pair is greater than the mean of the series in the
previous 3 months plus one time the standard deviation of the diference between
the series and its mean, then we sell the pair as described previously. The
position is closed when the series is less than the mean (that is, the stock have
reverted to the mean) or greater than the mean plus 2 times the standard
deviation (since we will understand that in this case the co-movement of the
stocks has been broken, at least temporarily).

So, if s is the series of the pair (as described previously), m is the rolling mean
of s with a window of three months and σ the standard deviation of m−s, with
a window of three months, then:

• when s > m + σ: sell the pair. Close the position when s < m or s >
m+ 2σ.

• when s < m − σ: buy the pair. Close the position when s > m or
s < m− 2σ.

In order to test this approach, we first proceed to the selection of the pairs.
The selection of the pairs is made each six months. To select the pairs, we
calculate the Hurst exponent of each possible pair and choose the best N pairs
(the pairs with the lowest Hurst exponent), where N is a parameter that we can
change. We will use these N pairs for the following six months until we make
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the selection again. The Hurst exponent is calculated with a window of 1 year
of daily data for each pair.

Once we have selected the pairs, we assign 1/N of the total budget to each pair
and wait for the corresponding signals to buy or sell each of the pairs. So, maybe
we are invested at 100% of the budget on a given date or we are not invested
in any of the pairs on another date. In the six month period it is possible to
be invested in a given pair for more than one time (for example, buy the pair,
close the position, sell the pair, close the position, etc.).

4 Experimental results

For testing the results of our strategy we have used data corresponding to stocks
of the Dow Jones Index during the period January 1, 2000 through December
31, 2015. Note that the selected period contains bull and bear markets, so it is
quite representative. Strategies corresponding to the two basic models have been
simulated to be compared with the Hurst exponent one. We have considered 7
scenarios, dependending on the amount of pairs included in the portfolio.

As we can see in Table 1, Hurst approach performance is better than others
strategies in all cases except when less than 10 pairs are considered. It is in-
teresting to see how, when the number of pairs is increased, Hurst approach
increases its advantage over the others because it is able to reduce the num-
ber of losing operations while increasing the winning ones. By the other hand,
profit average in winning operations is slightly higher and profit average in losing
operations is lower.

Optimun performance seems to be obtained for 20 pais with an average return
of 0.06714% and a standard deviation of 0.15754 per operation.
Figures 1 and 2 show the consistence of Hurst approach, as it get a better
performance and the equity curve is more robust than the other two approaches.

As Figures 1 and 2 reflect, our model achieves a superior yield over the clas-
sical models and the Dow Jones benchmark. It can be observed that, during
the considered period, at all times the performance obtained by our model is
superior to the classical models and the index. Faced with the financial turmoil
that may affect markets, our model is favored. As we can see from 2008 until
the end of 2009 the benchmark falls significantly, while the performance of our
model increases the profit to reach the maximum levels of the period studied.
During the last year of study, we can see that the performance of the index is
approaching or at some point can surpass the performance of the model. Any-
way, it is obvious that the risk of the proposed strategy is much less than the
index risk, so, even with similar profits on the considered period, the drawdowns
of the index are much greater than the drawdowns of the model.
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Method N Oper %WO %LO %PAOW %PAOL %Profit
Distance 2 1287 43.90 55.60 1.426 -0.932 73.00

Correlation 2 1269 42.20 57.40 0.913 -0.699 -8.00
Hurst 2 1216 42.60 56.80 1.382 -0.946 34.50

Distance 5 3194 43.60 56.00 1.436 -1.000 48.50
Correlation 5 3175 43.00 56.50 1.107 -0.799 20.20

Hurst 5 3053 43.60 55.90 1.380 -0.963 43.90
Distance 10 6397 42.80 56.70 1.385 -0.986 28.20

Correlation 10 6414 42.00 57.30 1.126 -0.833 2.50
Hurst 10 6211 44.20 55.30 1.334 -0.971 39.00

Distance 15 9625 43.30 56.10 1.368 -0.997 28.60
Correlation 15 9449 42.40 56.90 1.196 -0.853 19.90

Hurst 15 9490 44.00 55.50 1.335 -0.963 40.20
Distance 20 12901 43.20 56.30 1.347 -0.985 24.90

Correlation 20 12534 42.2 57.20 1.203 -0.859 16.20
Hurst 20 12628 44.10 55.40 1.357 -0.959 49.40

Distance 25 16058 42.90 56.60 1.356 -0.984 23.40
Correlation 25 15661 42.40 57.00 1.205 -0.865 17.00

Hurst 25 15750 44.00 55.60 1.363 -0.957 49.40
Distance 30 19305 43.00 56.50 1.345 -0.981 23.30

Correlation 30 18998 42.4 57.10 1.202 -0.873 13.00
Hurst 30 18982 43.7 55.80 1.363 -0.957 46.70

Table 1: Comparative results of Hurst approach; (where N is the number of
pairs; WO is percentage of Winning Operations; LO is percentage of Losing
Operations; PAOW is the Profit Average of Winning Operations; and PAOL is
the Profit Average of Losing Operations)

5 Conclusion

In this paper we propose a new approach to pair trading by using the Hurst
exponent as a new method for the selection of a pair. This new approach is
based on the idea of mean reversion and correlation because by looking for
pairs with low Hurst exponent we look for pairs which move in sync. To obtain
the Hurst exponent of a pair we propose the GHE approach, which is a well-
known methodology consistent for small samples.
With the introduction of Hurst exponent as a pair selection method, we can see
how we get better results than with the classical methods. Our model performs
better when the portfolio has ten or more pairs and the number of operations
increases. It is the only methodology which is able to maintain the portfolio
return when the number of pairs is increased and that shows consistent results
when different numbers of pairs are used.

We can conclude by noting that the model that we introduce in this paper
is quite market neutral, as expected of a pair trading strategy. It performs
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Figure 1: Log of the equity line of the 3 methods and the Dow Jones index, for
a portfolio with 10 pairs.

even better during market crashes, as it seems to be able to capture markets
inefficiencies on such periods. On the other hand, Hurst exponent approach
seems to have a low correlation with the distance or the correlation methods,
so it can be used as an alternative, or as a complement, to other pairs trading
strategies.
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