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Abstract

We develop models of stochastic discount factors in international economies that produce stochastic risk

premiums and stochastic skewness in currency options. We estimate the models using time-series returns and

option prices on three currency pairs that form a triangularrelation. Estimation shows that the average risk

premium in Japan is larger than that in the US or the UK, the global risk premium is more persistent and

volatile than the country-specific risk premiums, and investors respond differently to different shocks. We

also identify high-frequency jumps in each economy, but findthat only downside jumps are priced. Finally,

our analysis shows that the risk premiums are economically compatible with movements in stock and bond

market fundamentals.

JEL Classification:G12; G13; F31; C52.

Keywords:Stochastic discount factors; International economy; Stochastic risk premium; Stochastic skewness;

Currency options; Foreign exchange rate dynamics; Time-changed Lévy processes; Unscented Kalman filter.
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1. Introduction

At the core of financial economics is to infer the dynamic structure of stochastic discount factors, which

determines how investors price various sources of risks differently. In particular, since the ratio of the stochas-

tic discount factors in two economies governs the exchange rate between them, the exchange rate market

offers a direct information source for assessing the relative risk-taking behavior of investors in international

economies. Exploiting this link, Brandt and Santa-Clara (2002) gauge the degree of market incompleteness

and estimate the risk premium dynamics using the time seriesof a currency pair and its short-term at-the-

money option implied volatility. Brandt, Cochrane, and Santa-Clara (2006) compare the stock portfolio return

variance to the variance of the exchange rate to analyze the degree of international risk sharing between two

economies. They find that compared to the large return variance on stock portfolios, the currency return vari-

ance is rather small, which could be an indication of a high degree of international risk sharing or an anomaly

by itself.

In this paper, we propose to identify the multi-dimensionalstructure of stochastic discount factors in

international economies using the time-series of currencyreturns and option prices. Specifically, using three

currency pairs that form a triangular relation, i.e., dollar-yen, dollar-pound, and yen-pound, we study the

dynamic behaviors of the stochastic discount factors and stochastic risk premiums in the three economies: the

US, Japan, and the UK.

Compared to the extant literature, we make contributions inseveral dimensions. First, instead of trying to

identify the stochastic discount factors in two economies using one currency pair, we identify the stochastic

discount factors in three economies using three currency pairs that form a triangular relation. Exploiting the

currency triangle facilitates identification of the stochastic discount factors and enables us to draw a sharper

distinction between the risk premium dynamics on global versus country-specific risks. Second, we make

full use of currency options data across all available strikes and maturities underlying all three currency pairs

through an option pricing model that is internally consistent with our stochastic discount factor specification

across the three economies. Third, our stochastic discountfactor specification incorporates a realistic jump

structure that not only allows differential pricing for upside and downside jumps, but also accommodates a

wide variety of jump behaviors, ranging from the compound Poisson jumps used in traditional studies (e.g.,

Merton (1976)) to infinite-activity jumps that can arrive aninfinite number of times within any finite time inter-

val. Fourth, our model accommodates stochastic risk premiums from both the global and the country-specific

risk components in each economy, and generates stochastic skewness in the currency return distribution, both
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of which are salient features of the currency and currency options market.1

Given our stochastic discount factor specification, we derive currency return dynamics and price options

on the three currency pairs analytically. By casting the theoretical model into a state-space form, we estimate

the model parameters and extract the global and country-specific risk premium rates from the time series of

currency returns and option prices. Through model estimation, we empirically study how the risk premiums

of an economy react differently to shocks on different typesof risks.

Our estimation reveals several results about the structureof risk premiums in the three economies. First,

during our sample period, the average risk premium in Japan is significantly higher than the average risk pre-

mium in the US or the UK. Second, risk premiums on the global risk component and the country-specific risk

components show distinct dynamics. The risk premium rate onthe global risk factor is both more persistent

and more volatile than the risk premium rate on the country-specific risk factors. Third, investors respond

to global and country-specific shocks differently. Investors increase their risk premium when the country-

specific risk receives a negative shock. In contrast, the risk premium declines when the global risk component

receives a negative shock.

Estimation also shows that, to capture the currency return dynamics and to generate realistic currency

option pricing behaviors, it is crucial to incorporate a high-frequency jump component in the stochastic dis-

count factor of each economy. The origin of these jumps can betied to the way in which markets respond

to information (Andersen, Bollerslev, Diebold, and Vega (2003), Beber and Brandt (2005), Piazzesi (2005),

and Pasquariello and Vega (2006)). Furthermore, although an economy can receive both negative and pos-

itive shocks, investors only price downside jumps as a potential source of risk. This finding explains why

financial markets react more strongly to negative economic news than to positive news (Andersen, Boller-

slev, Diebold, and Vega (2005)). More broadly, our empirical analysis shows that including high frequency

jumps and allowing stochastic risk premiums in our specification are both instrumental to enhancing model

performance.

The estimated risk premium dynamics on the global and country-specific risk components suggest that the

stochastic discount factors share a large global risk component, and that shocks on the global risk premium rate

have more long-lasting impacts than shocks on country-specific risk premiums. Furthermore, our estimated

1A long list of studies have documented strongly time-varying currency risk premiums, e.g., Fama (1984), Bekaert and Hodrick
(1992), McCurdy and Morgan (1992), Dumas and Solnik (1995),Saá-Requejo (1995), Engel (1996), Bansal (1997), Backus,Foresi,
and Telmer (2001), Brandt and Santa-Clara (2002), Brandt, Cochrane, and Santa-Clara (2006), and Brennan and Xia (2006). Most
recently, Carr and Wu (2006) find that the risk-neutral currency return distribution inferred from currency options shows strongly
time-varying skewness.
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stochastic discount factors generate high values for the international risk sharing index defined in Brandt,

Cochrane, and Santa-Clara (2006), suggesting that the currency options market embeds a high degree of

international integration among the three economies.

Finally, we study how the extracted risk premiums co-move with economic fundamentals in the bond

and stock market in the three economies. The analysis shows that a reduction in the short-term interest rate

and a steepening of the yield curve have the effect of raisingcountry-specific risk premiums (Campbell and

Shiller (1991) and Fama and Bliss (1987)). We also find that country-specific risk premiums increase with

interest-rate cap and stock index option volatilities in the corresponding economy. Overall, the risk premiums

that we extract from currency options markets are economically compatible with the movements in the bond

and stock market fundamentals in the three economies.

Traditional literature often studies the behavior of risk premiums through various types of expectation

hypothesis regressions. Under the null hypothesis of zero or constant risk premium, the slope coefficients

of these regressions should be unity. Hence, the point estimates on the regression slopes reveal whether

the risk premium is constant or time-varying. Recently, researchers have recognized the rich information

content of option markets and started to infer the risk premium behavior from a joint analysis of options and

the underlying assets. The focus of this strand of literature is on stock index and stock index options in a

single economy, mainly the US.2 In this setting, the estimated stochastic discount factorsare typically one-

dimensional projections on the single stock index. The pricing of risks that are orthogonal to the stock index

is largely missed by this projection. Furthermore, it is difficult to use a one-dimensional projection to study

the multi-dimensional nature of the stochastic discount factors in international economies. In contrast, the

currency and its options market provide a more direct information source for assessing the multi-dimensional

dynamic behaviors of stochastic discount factors in international economies. Moreover, when the market

is not completed by domestic securities such as bonds and stocks, currency and currency options can help

complete the market.

The paper is organized as follows. Section 2 articulates theidea of inferring stochastic discount factors in

international economies from options on currencies that form a triangular relation. Section 3 proposes models

of stochastic discount factors that include both a global risk factor and country-specific risk factors and allow

the risk premiums on the two types of risks to follow separatedynamics. We analyze what minimal structures

2Examples include Jackwerth and Rubinstein (1996), Bakshi,Cao, and Chen (2000), Bates (2000), Pan (2002), Engle and Rosen-
berg (2002), Bakshi and Kapadia (2003), Jones (2003, 2006),Eraker (2004), Bliss and Panigirtzoglou (2004), and Broadie, Chernov,
and Johannes (2006). Recently, Driessen and Maenhout (2004) and Mo and Wu (2006) investigate the nature of jump and volatility
risks using stock index options from three countries.
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are necessary to capture the stylized evidence in currency returns and currency options, and derive tractable

solutions for option pricing and for the characteristic function of the currency returns. Section 4 describes the

currency and currency options data set for the triangle of dollar-yen, dollar-pound, and pound-yen exchange

rates, as well as the estimation procedure. Section 5 discusses the estimation results and Section 6 concludes.

2. Inferring stochastic discount factors from options on a currency triangle

We describe a set ofN economies by fixing a filtered probability space{Ω,F ,P ,(F t)0≤t≤T }, with some

fixed horizonT . We assume no arbitrage in each economy. Therefore, for eacheconomy, we can identify

at least one strictly positive process,M h
t (h = 1, . . . ,N), which we call the state-price deflator, such that

the deflated gains process associated with any admissible trading strategy is a martingale (Cochrane (2004),

Duffie (1992), and Harrison and Kreps (1979)). We further assume thatM h
t itself is a semimartingale. The

ratio ofM h
t at two time horizons is referred to as the stochastic discount factor, or the pricing kernel.

We useXh to summarize the uncertainty in economyh and represent the state-price deflator via the fol-

lowing multiplicative decomposition (withM h
0 = 1):

M h
t = exp

(

−
Z t

0
rh
s ds

)

E

(

−
Z t

0
γh

s dXh
s

)

, h = 1,2, . . . ,N, (1)

whererh
t denotes the instantaneous interest rate in economyh, γh

t denotes the market price of risk in economy

h, andE (·) denotes the stochastic exponential martingale operator (Jacod and Shiryaev (1987) and Rogers

and Williams (1987)), which defines the Radon-Nikodým derivative that transforms the statistical measureP

to the economy-h risk-neutral measureQ h:

dQ h

dP

∣

∣

∣

∣

t
≡ E

(

−
Z t

0
γh

s dXh
s

)

. (2)

In equation (1), bothrt andγt can be stochastic. The shocksXh can be multi-dimensional, in which case

γh
t dXh

t denotes an inner product. In a Lucas (1982)-type exchange economy, the stochastic discount factor can

be interpreted as the ratio of the marginal utilities of aggregate wealth over two time horizons, andXh can be

interpreted as return shocks to aggregate wealth in the economy.

No arbitrage dictates that the ratio of the stochastic discount factors between two economies determines

the exchange rate dynamics between them (Dumas (1992), Saá-Requejo (1995), Bakshi and Chen (1997),
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Basak and Gallmeyer (1999), Backus, Foresi, and Telmer (2001), Brandt and Santa-Clara (2002), Brandt,

Cochrane, and Santa-Clara (2006), and Pavlova and Rigobon (2007)). LetSf h
t denote the time-t currency-h

price of currencyf , with h being the home economy, we have,

Sf h
t+τ

Sf h
t

=
M f

t+τ/M
f

t

M h
t+τ/M

h
t

, h, f = 1,2, . . . ,N. (3)

Equation (3) defines the formal link between the stochastic discount factors in any two economies and the ex-

change rate movements between them. In complete markets, the stochastic discount factor for each economy

is unique. Hence, the ratio of two stochastic discount factors uniquely determines the exchange rate dynamics

between the two economies. When markets are incomplete withprimary domestic securities such as bonds

and stocks, there may exist multiple stochastic discount factors that are consistent with the prices of these

securities. In this case, exchange rates and currency options help complete the markets by requiring equation

(3) to hold between any viable stochastic discount factors in the two economies (Rogers (1997) and Brandt

and Santa-Clara (2002)).

The extant literature often uses bond prices or stock indices in a single economy to study the stand-alone

behavior of the stochastic discount factor in that economy.In this paper, we advocate the use of currency and

its options in studying the joint dynamics of stochastic discount factors in international economies, a direction

also explored in Brandt and Santa-Clara (2002) and Brandt, Cochrane, and Santa-Clara (2006). Based on

a generic orthogonal decomposition of the stochastic discount factor, Constantinides (1992), Rogers (1997),

Leippold and Wu (2002), and Brandt and Santa-Clara (2002) show that there are risk dimensions that do

not affect bond and stock pricing in a single economy, but caninfluence the pricing of currency claims in

international economies.

To illustrate this point, consider the following heuristicorthogonal decomposition of the stochastic dis-

count factor in an economyh,

M h
t = N h

x [Xt ]N
h

y [Yt ]N
h

u [Ut ], (4)

whereX, Y, andU denote three sets of mutually independent Markovian state vectors that define the risk

and pricing of the economy, with the martingale assumption:E
P

(

N h
y [Yt ]

)

= E
P

(

N h
u [Ut ]

)

= 1, whereE
P (·)

denotes the expectation operator under measureP .
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In this motivational setting, the time-0 value of a zero-coupon bond with maturityt becomes,

Bh(0, t) = E
P

(

M h
t

)

= E
P

(

N h
x [Xt ]

)

, (5)

which is only a function of the state vectorX. The risk and pricing about the other two dimensions of

the economyY andU do not show up in bond pricing and hence cannot possibly be identified from the term

structure of interest rates. Furthermore, the risk factorsY andU affect stock valuation when they are correlated

with future cash flows to the stock. For example, if we assume that stock cash flow,D[.], is only a function of

Y, the time-0 stock value,Hh
0 , will reveal the dynamics ofX andY, but notU :

Hh
0 = E

P

(

Z ∞

0
M h

t D[Ys]ds

)

= E
P

(

Z ∞

0
N h

x [Xs]ds

)

E
P

(

Z ∞

0
N h

y [Ys]D[Ys]ds

)

. (6)

Therefore, under this setting, we will not be able to fully identify the true stochastic discount factor using

bond and stock prices alone. In contrast, since the exchangerate relates to the ratio of the two stochastic

discount factors in the home and foreign economies,

Sf h
t

Sf h
0

=
N f

x [Xt ]N
f

y [Yt ]N
f

u [Ut ]

N h
x [Xt ]N h

y [Yt ]N h
u [Ut ]

, (7)

the risk factorsX, Y, andU will all influence currency return and currency option dynamics as long as the

two economies are not fully symmetric. Therefore, exploiting the currency dynamics information is crucial

not only for understanding the multi-dimensional structure of risk and pricing in international economies, but

also for revealing risk dimensions not spanned by bonds and stocks.

Based on similar arguments, Brandt and Santa-Clara (2002) propose to use currency returns and options

to gauge the degree of market incompleteness. They call a security market incomplete if the risks in that

economy cannot be fully spanned by domestic securities suchas bonds and stocks. According to this def-

inition, the economy defined by the stochastic discount factor in (4) is incomplete as domestic bonds only

span riskX and domestic stocks only span riskY, with the riskU left unspanned. BothN h
x [Xt ]N

h
y [Yt ] and

N h
x [Xt ]N

h
y [Yt ]N

h
u [Ut ] with arbitrary values ofU are admissible stochastic discount factors that are consistent

with domestic bond and stock prices. However, onlyN h
x [Xt ]N

h
y [Yt ]N

h
u [Ut ] with the appropriateU dynamics

can match the exchange rate dynamics according to (7). Brandt and Santa-Clara use currency market infor-

mation to identify theU risk and use the relative magnitude of the identifiedU risk to measure the degree of

market incompleteness. Along the same direction, we propose to use time-series returns and option prices on

6



a triangle of currency pairs to identify the stochastic discount factors in the three underlying economies.

3. Modeling stochastic risk premiums and stochastic skewness

We propose a class of models for the stochastic discount factors that are flexible enough to generate

stochastic risk premiums and stochastic skewness in currency returns. Our model parameterization provides

the foundation for extracting the evolution of risk premiums from currency option prices and currency returns.

Formally, we have,

M h
t = exp

(

−rht
)

exp

(

−Wg
Πh

t
− 1

2
Πh

t

)

exp

(

−
(

Wh
Λh

t
+Jh

Λh
t

)

−
(

1
2

+kJh [−1]

)

Λh
t

)

, (8)

which decomposes the stochastic discount factor into threeorthogonal components. The first component

captures the contribution from interest rates. Since a large portion of currency return movements is indepen-

dent of interest rate movements (Backus, Foresi, and Telmer(2001) and Brandt and Santa-Clara (2002)) and

stochastic interest rates have little impact on short-termcurrency option prices (Bates (1996)), we assume

deterministic interest rates for simplicity and userh to denote the spot interest rate of the relevant time and

maturity.

The second component incorporates a global diffusion risk factorWg
Πh

t
, whereWg denotes a standard

Brownian motion andΠh
t ≡

R t
0 γh

sdsdefines a stochastic time change that captures the stochastic risk premium

on this global risk factor. The stochastic time-changed Brownian motion notationWg
Πh

t
is equivalent in proba-

bility to the classical representation
R t

0

√

γh
sdWg

s , with γh
s being the instantaneous variance rate (see page 173

of Revuz and Yor (1991)). Consequently,Πh
t captures the integrated variance over time[0, t]. Based on this

connection and equation (1), we labelγh
t as the risk premium rate (per unit time) and use the superscript h

on γt to indicate that different economies can price the same source of risk differently. The term1
2Πh

t is the

convexity adjustment that makes exp
(

−Wg
Πh

t
− 1

2Πh
t

)

an exponential martingale. The mathematical treatment

of time-changed Lévy processes can be found in Carr and Wu (2004).

The third component describes a country-specific jump-diffusion risk factor
(

Wh
Λh

t
+Jh

Λh
t

)

, whereWh de-

notes another standard Brownian motion independent of the global risk componentWg, andJh denotes a pure

jump Lévy component. We apply a separate stochastic time change to this country-specific jump-diffusion

risk factorΛh
t ≡ R t

0 νh
sds to capture the stochastic risk premium on country-specific risks, withνh

t being the

risk premium rate on the country-specific risk factor. Applying the time change to the Brownian motionWh
Λh

t
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implies that the risk premium rateνh
t captures the instantaneous variance rate of the Brownian motion Wh.

Likewise, applying the time change to the jump componentJh
Λh

t
indicates thatνh

t is also proportional to the

jump arrival rate. Again, the term
(1

2 +kJh [−1]
)

Λh
t represents the convexity adjustment for

(

Wh
Λh

t
+Jh

Λh
t

)

so that the third component in (8) is also an exponential martingale. The termkJh[s] denotes the cumulant

exponent of the Lévy jump componentJh, defined as3

kJh[u] ≡ 1
t

ln E
P

(

euJh
t

)

, u∈ D ⊆ C . (9)

Economically, incorporating the jump component is important in capturing large discontinuous move-

ments in economic fundamentals and financial security prices as shown in Almeida, Goodhart, and Payne

(1998), Andersen, Bollerslev, Diebold, and Vega (2003), Andersen, Bollerslev, Diebold, and Vega (2005),

Beber and Brandt (2005), and Pasquariello and Vega (2006). Statistically, it also helps to generate currency re-

turn non-normality and realistic currency option behaviors at short horizons. Furthermore, through stochastic

time changes, we also capture the intensity variation in theinformation flow and generate stochastic volatility

and stochastic risk premium for each risk component. Statistically, stochastic volatility also helps in generat-

ing currency return non-normality at intermediate to long horizons. Our model incorporates both jumps and

stochastic volatility to describe distinct aspects of the international economy.

In principle, we can also allow a jump component in the globalrisk factor, but experimental estimation

shows that the jump in the global risk factor is not significant. Hence, we choose a pure diffusion specification

for the global factor to maintain parsimony.

To appreciate how the key ideas fit together, one can appeal tothe Lucas (1982) economy whereXh in

equation (1) can generically be interpreted as return shocks to aggregate wealth. Accordingly, our model

of stochastic discount factors in (8) can be viewed as decomposing return shocks to the aggregate wealth

into a global component and a country-specific component, each with a separate and stochastic risk pre-

mium. Through model estimation, we study how investors respond to different types of risks in international

economies.

Based on our formulation of the stochastic discount factorsin (8), we can also investigate the degree of

international risk sharing by estimating the relative proportion of variation in the stochastic discount factor

that is driven by the global risk component versus the country-specific risk component. In this regard, we

3A cumulant exponent is normally defined on the positive real line, but it is convenient for option pricing to extend the definition
to the subset of the complex plane (u∈ D ⊆ C ) where the exponent is well-defined.
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can achieve similar objectives as in Brandt, Cochrane, and Santa-Clara (2006), but with different financial

instruments. Brandt, Cochrane, and Santa-Clara analyze the degree of international risk sharing by comparing

the currency return variance to the sum of the stock portfolio return variance in the two economies. In this

paper, we identify the global and country-specific risk components and their risk premium rates using time-

series returns and option prices on a triangle of currency pairs underlying three economies.

3.1. Specification of jumps and risk premium rate dynamics

A parsimonious way to capture asymmetry across economies isto use a vector of scaling coefficients

ξ =
{

ξh
}N

h=1 to model the average difference in risk premium in differenteconomies. Asymmetries arise

when the economies have different risk magnitudes and/or when investors have different risk preferences. For

identification, we normalize the scaling coefficient for theUS economy to unity:ξUS = 1. Then, deviations

of the scaling coefficients from unity for other economies capture their average differences in risk premium

from the US economy.

With the scaling coefficients, we assume that the jump component Jh in each economy is i.i.d. and that

the Lévy density (πh[x]) of each jump component obeys an exponentially dampened power law:

πh [x] =







λe−β+xx−α−1 x > 0

λe−β− |x| |x|−α−1 x < 0
,h = 1,2, . . . ,N, (10)

with α ∈ (−1,2) andλ,β+,β− > 0. We adopt this specification from Carr, Geman, Madan, and Yor (2002)

and Wu (2006) over the classic Merton (1976) compound Poisson jump model for several reasons. First,

settingα < 0 in (10) generates compound Poisson jumps that are similar in behavior to the Merton model.

Furthermore, even within the compound Poisson jump class, our separate parameterization of upside and

downside jumps with different scaling coefficients (β+,β−) allows us to investigate the differential pricing

of upside versus downside risks in an economy, a task that cannot be achieved with the normal jump size

distribution assumption in the Merton model. Finally, allowing the power coefficientα to take on different

values can generate different types of jump behaviors from finite-activity compound Poisson jumps (α < 0)

to infinite-activity jumps with finite variation (0≤ α < 1), and to even higher-frequency jumps with infinite

variation (1≤ α < 2). Instead of restricting the jump specification to one specific type, we choose an en-

compassing specification and let the data decide which jump type is the most appropriate in capturing the

economic behaviors.

9



Under the Lévy density specification in (10) and whenα 6= 0 andα 6= 1, the cumulant exponent is,

kJ [u] = Γ [−α] λ
(

(β+ −u)α − (β+)α +(β− +u)α − (β−)α)

+uC[δ] , (11)

whereΓ [−α] denotes the Gamma function andC[δ] is an immaterial drift term that depends on the exact

form of the truncation function used in computing the cumulant exponent (Jacod and Shiryaev (1987)). We

can henceforth safely ignore this term in our analysis and drop this term in our representations. The Lévy

density has singularities atα = 0 andα = 1, in which cases the cumulant exponent takes on different forms:

kJ [u] = −λ ln(1−u/β+)−λ ln(1+u/β−) when α = 0,

kJ [u] = λ(β+−u) ln(1−u/β+)+ λ(β− +u) ln(1+u/β−) when α = 1.
(12)

For the country-specific risk component, we accommodate theaverage difference in the risk premium

rates across different economies by applying the constant scaling coefficients to an otherwise independent

and identical risk premium rate dynamics:

Λh
t = ξh

Z t

0
Yh

s ds, (13)

whereYh
t can be regarded as the country-specific risk premium rate factor. We model its dynamics using the

square-root process of Cox, Ingersoll, and Ross (1985),

dYh
t = κY

(

θY −Yh
t

)

dt+ ωY

√

Yh
t dWYh

t , h = 1,2, · · · ,N, (14)

whereρY = E(dWYhdWh)/dt captures the correlation between shocks of the country-specific diffusion risk

and its risk premium rate. It is important to note that the dynamics specification in (14) governsN independent

processes, one for each economy.

For the global risk factor, we apply the same set of scaling coefficients to a global risk premium rate factor

to preserve parsimony:

Πh
t = ξh Πt , with Πt =

Z t

0
Zsds, (15)

where the global risk premium rate factorZt is also assumed to follow a square-root process,

dZt = κZ (θZ −Zt)dt+ ωZ
√

Zt dWZ
t , (16)
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with ρZ = E(dWZdWg)/dt. By design, the global risk and the country-specific risk, aswell as the cor-

responding risk premium rates, are orthogonal to each other: E(dWgdWh) = 0,E(dWZdWYh) = 0 for all

h = 1,2, . . . ,N.

We identify the model using currency options on dollar-yen,dollar-pound, and pound-yen exchange rates,

and the time-series returns on the respective currencies. For the three economies, the model has one global

diffusion risk component and three country-specific jump-diffusion risk components. The risk premium rate

on each of the four risk components is stochastic. Thus, our estimation on the three economies identifies

four risk premium rates: one global risk premium rate factorZt and three country-specific risk premium rates

(YUSD
t ,YJPY

t ,YGBP
t ). The model has 14 parameters for the three economies:

Θ ≡ [ξJPY,ξGBP,κZ,θZ,ωZ,ρZ,κY,θY,ωY,ρY,λ,β+,β−,α]. (17)

Within each model, we consider three special cases for the jump specification withα fixed at−1, 0, and 1,

respectively. The three differentα’s generate finite-activity, infinite-activity with finite variation, and infinite-

variation jumps, respectively.

We also estimate models with strict symmetry:ξh = 1 for all h. Reality aside, this special class high-

lights the issue of stochastic discount factor identification using exchange rates. A key implication of strict

symmetry is that the contribution of the global risk factor in the two economies cancels. Thus, from currency

returns and currency options, we can no longer identify the global risk component. Accordingly, we can

only estimate the eight parameters that control the country-specific risk components of the three economies:

Θ ≡ [κY,θY,ωY,ρY,λ,β+,β−,α].

3.2. Stochastic risk premiums, stochastic skewness, and currency return dynamics

To highlight our contributions relative to traditional approaches, we emphasize two themes in this subsec-

tion: (1) What are the sources of stochastic skewness in currency returns? and (2) what minimal structures

are necessary to reconcile the observed patterns from the triangle of currency returns and options?
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Under our model specification, the log currency return over horizon [0, t] is,

lnSf h
t /Sf h

0 =
(

rh− r f
)

t +

(

√

ξh−
√

ξ f

)

Wg
Πt

+
1
2

Πt

(

ξh−ξ f
)

+

(

Wh
Λh

t
+Jh

Λh
t
+

(

1
2

+kJ [−1]

)

Λh
t

)

−
(

W f

Λ f
t
+J f

Λ f
t
+

(

1
2

+kJ [−1]

)

Λ f
t

)

, (18)

where the exchange rate dynamics between the two economies (h and f ) are governed by (i) one diffusion

global risk component (Wg
t ), (ii) two jump-diffusion country-specific risk components (Wh

t + Jh
t ,W f

t + J f
t ),

and (iii) three risk premium rates (Zt ,Yh
t ,Y f

t ) that define the three stochastic time changes (Πt ,Λh
t ,Λ

f
t ).

To see how such a structure is necessary to generate stochastic risk premiums and stochastic skewness in

currency options underlying the three economies, we start with the special case where the risk premium rates

are constant:Zt = θZ andYh
t = Y f

t = θY. The currency risk premium per unit time in countryh becomes:

RPh ≡ E
P

(

Sf h
1 /Sf h

0

)

− (rh− r f ) =

(

ξh−
√

ξhξ f

)

θZ + ξh(1+kJ [1]+kJ [−1])θY, (19)

where the first term captures the contribution from the global risk factor and the second term captures the

contribution from the country-specific risk factor in country h. Under this special case, the risk premiumRPh

is a constant. We introduce stochastic currency risk premium via the stochastic time changesΠt , Λh
t , andΛ f

t ,

or equivalently the stochastic risk premium ratesZt , Yh
t , andY f

t .

In the absence of stochastic risk premiums, the currency return is governed by three Brownian motions

with constant volatilities and two jump components with constant arrival rates. The two jump components can

generate distributional non-normality (skewness and kurtosis) for the currency return. By taking successive

partial derivatives of the cumulant exponent, we can show that the variance (c2) and the third (c3) and fourth

cumulants (c4) for the currency return are,

c2 = λ
(

ξh + ξ f
)

θY Γ[2−α]
(

(β+)α−2 +(β−)α−2
)

+ Vd,

c3 = λ
(

ξh−ξ f
)

θY Γ[3−α]
(

(β+)α−3− (β−)α−3
)

,

c4 = λ
(

ξh + ξ f
)

θY Γ[4−α]
(

(β+)α−4 +(β−)α−4
)

,

(20)

whereVd ≡ (
√

ξh −
√

ξ f )2θZ +
(

ξh + ξ f
)

θY captures the variance contribution from the diffusion compo-

nents. The diffusion components have zero contribution to higher-order cumulants. The currency return

shows nonzero skewness or non-zero third cumulantc3 when (1) the jump component in the log stochastic
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discount factor is asymmetric:β+ 6= β−, and (2) the two economies are asymmetric in the average magnitudes

of risk premiums:ξh 6= ξ f . In fact, these two conditions are necessary for the existence of any non-zero odd-

order cumulants beyond three. In contrast, the fourth cumulant (c4) or the excess kurtosis for the currency

return is strictly positive as long as the jump component is not degenerating (λ 6= 0). Nevertheless, since all

the cumulants in (20) are constant, a model with constant risk premiums cannot capture the evidence from

currency option markets that the currency return skewness is stochastic (Carr and Wu (2006)). Stochastic

skewness in currency return distribution warrants stochastic risk premium.

When the risk premium rates are allowed to be stochastic as incurrency dynamics (18), currency return

skewness can also arise from three additional sources: (1) correlation (ρZ) betweenWg
t andZt , (2) correlation

(ρh
Y) betweenWh

t andYh
t , and (3) correlation (ρ f

Y) betweenW f
t andY f

t . Allowing the three risk premium rates

(Zt ,Yh
t ,Y f

t ) to be stochastic produces both stochastic volatility and stochastic skewness in currency returns.

3.3. Relating risk premium rates to currency option prices

To price currency options, we first derive the generalized Fourier transform of the currency return un-

der the home-currency risk-neutral measureQ h, φQs ≡ E
Q

(

eiu lnSf h
t /Sf h

0

)

. Then, we compute option prices

numerically via fast Fourier inversion (Carr and Madan (1999)).

Under our model specification, we can derive the generalizedFourier transform in analytical form,

φQs = exp
(

iu(rh− r f )t −bg(t)Z0−cg(t)−bh(t)Yh
0 −ch(t)−bf (t)Y f

0 −cf (t)
)

, (21)

where
(

Z0,Yh
0 ,Y f

0

)

are the time-0 realized levels of the three risk premium rates and the coefficients[b(t) ,c(t)]

on each risk premium rate take the same functional forms,

bc(t) =
2ψc(1−e−ηct)

2ηc−(ηc−κN c)
(

1−e−ηht
) ,

cc(t) = κcθc
ω2

c

(

2ln

(

1− ηc−κNc
2ηc

(

1−e−ηct
)

)

+(ηc−κNc )t

)

,
(22)
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with ηc =

√

(

κNc
)2

+2ω2
cψc for c = g,h, f , κg = κZ, κh = κ f = κY, ωg = ωZ, ωh = ω f = ωY, and

κNg = κZ − iu
(

√

ξh−
√

ξ f
)

ωZρZ +
√

ξhωZρZ, ψg = 1
2

(

√

ξh−
√

ξ f
)2

(

iu+u2
)

,

κNh = κY +(1− iu)
√

ξhωYρY, ψh = iu
(

1
2 +kQJ [1]

)

+ 1
2u2−kQJ [iu] ,

κNf = κY + iu
√

ξ f ωYρY, ψ f = iu
(

1
2 +kJ [−1]

)

+ 1
2u2−kJ [−iu] .

(23)

According to (18) and (21), the stochastic evolution in the risk premium rates (Zt ,Yh
t ,Y f

t ) impacts the

currency return dynamics and currency option prices by stochastically altering return volatility and skewness.

It is this analytical link that allows us to identify the evolution of risk premium rates from currency option

prices. In a related study, Brandt and Santa-Clara (2002) use short-term at-the-money currency option volatil-

ity to approximate the instantaneous variance of the currency return, and specify the market price of risk as a

linear function of the instantaneous variance, which becomes an observable quantity under their approxima-

tion. Here, through the linkage built in (21), we exploit theinformation in currency options quotes across all

available maturities and strikes underlying three currency pairs to identify the stochastic discount factors in

the three economies.

Our stochastic discount factor modeling also has direct implications for empirical models of currency

returns and currency options. Compared to the extant literature on currency option pricing, e.g., Bates (1996),

Bollen, Gray, and Whaley (2000), and Dupoyet (2006), our modeling framework distinguishes itself in several

key dimensions. First, whereas all traditional models generate little time-variation in the skewness of the

currency return distribution, our model is consistent withthe stochastic skewness feature, leading to more

realistic currency return distributions. Second, compared to one-factor volatility dynamics in earlier studies,

our model incorporates richer stochastic volatility dynamics. The return volatility on each currency pair is

driven by three stochastic risk premium rates for one globalrisk factor and two country-specific risk factors,

respectively. These stochastic risk premium rates generate both stochastic volatility and stochastic skewness

from multiple sources. Third, the Lévy density in (10) allows not only finite-activity jumps used in earlier

studies (whenα < 0), but also infinite-activity jumps that generate an infinite number of jumps within any

finite interval. Finally, the currency option pricing literature often starts by specifying a dynamic process for

an underlying currency pair (say, dollar-yen), and then analyzes its implications for options on this currency

pair. Its inherent links to other currency pairs (say, dollar-pound, yen-pound) and their options are largely

ignored as options on each currency pair are analyzed on a stand-alone basis. In this paper, we specify the
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stochastic discount factors for the US, Japan, and the UK, and price options on dollar-yen, dollar-pound, and

yen-pound within one consistent framework. Maintaining this internal consistency is important not only for

precluding cross-currency arbitrages, but also for determining how the risk and pricing of different economies

are related to one another.

3.4. Conditional likelihoods of currency returns

For estimation, we also need to develop the log likelihood function for the currency return time series. We

first derive the characteristic function of currency returns under the statistical measureP and then obtain the

density of the currency return via fast Fourier inversion. Based on theP -dynamics for the currency return in

(18), the characteristic function,φPs ≡ E
P

(

eiu ln Sf h
t /Sf h

0

)

, can be derived as,

φPs = exp
(

iu(rh− r f )t −bg(t)Z0−cg(t)−bh(t)Yh
0 −ch(t)−bf (t)Y f

0 −cf (t)
)

, (24)

where the coefficients[bc (t) ,cc (t)] for c = h, f ,g are given by (22) with,

κNg = κZ− iu(
√

ξh−
√

ξ f )ωZρZ, ψg[u] = −1
2 iu

(

ξh−ξ f
)

+ 1
2(

√

ξh−
√

ξ f )2u2,

κNh = κY − iu
√

ξhωYρY, ψh[u] = −iu
(

1
2 +kJ [−1]

)

+ 1
2u2−kJ [iu] ,

κNf = κY + iu
√

ξ f ωYρY, ψ f [u] = iu
(1

2 +kJ [−1]
)

+ 1
2u2−kJ [−iu] .

(25)

By the triangular arbitrage relation, the time-t yen-pound cross exchange rate is completely determined

by the other two primary currency pairs: dollar-yen and dollar-pound. A separate quote on the cross rate is

redundant. However, it is important to realize that the two marginal distributions for dollar-yen and dollar-

pound (whether underP or Q ) are insufficient to determine the distribution of the yen-pound cross rate. For

this reason, the cross-currency option quotes are not redundant, but offer incremental information about the

risk-neutral marginal distribution of the yen-pound crossrate. Applying fast Fourier inversion to the charac-

teristic function in (24) yields the marginal likelihoods of the dollar-yen, dollar-pound, and yen-pound returns.

Including the marginal likelihood of all three currency pair is useful for identifying the stochastic discount

factors in the US, Japan, and the UK, even though the log crossrate ln(SGBPJPY
t ) is a linear combination of

the two log primary rates ln(SJPYUSD
t ) and ln(SGBPUSD

t ).
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4. Data and estimation

4.1. Data description

We obtain over-the-counter quotes on currency options and spot exchange rates for three currency pairs

that form a triangular relation: JPYUSD (the dollar price ofone yen), GBPUSD (the dollar price of one

pound), and GBPJPY (the yen price of one pound), over the sample period of November 7, 2001 to January

28, 2004. The data are sampled weekly. Options quotes are available at seven fixed time-to-maturities: one

week, one, two, three, six, nine, and 12 months. At each maturity, quotes are available at five fixed moneyness.

There are a total of 12,285 option quotes. The five options at each maturity are quoted in the following forms:

• Delta-neutral straddle implied volatility (SIV) : A straddle is a sum of a call option and a put option

with the same strike. The SIV market quote corresponds to a strike that makes the Black-Scholes

delta of the straddle zero:∆c
S+ ∆p

S = 0, where∆c
S = e−r f τN[d1] and∆p

S = −e−r f τN[−d1] are the Black-

Scholes delta of the call and put options in the straddle, respectively.N[·] denotes the cumulative normal

function, andd1 = ln(St/K)+(rh−r f )τ
IV

√
τ + 1

2IV
√

τ, with IV being the implied volatility input,τ being the

option time-to-maturity, andK being the strike price of the straddle. Since the delta-neutral restriction

impliesd1 = 0, the implicit strike is close to the spot price.

• Ten-delta risk-reversal, RR[10], and 25-delta risk-reversal, RR[25]: The RR[10] measures the dif-

ference in Black-Scholes implied volatilities between a ten-delta out-of-the-money call option and a

ten-delta out-of-the-money put option:RR[10] = IV c[10]− IV p[10]. RR[25] is analogously defined on

25-delta call and put options. Option traders use risk-reversal quotes to quantify the asymmetry of the

implied volatility smile, which reflects the skewness of therisk-neutral currency return distribution.

• Ten-delta butterfly spread, BF[10], and 25-delta butterfly spread, BF[25]: Butterfly spreads are

defined as the average difference between out-of-the-moneyimplied volatilities and the delta-neutral

straddle implied volatility:BF[10] = (IV c[10]+ IV p[10])/2−SIV andBF[25] = (IV c[25]+ IV p[25])/2−
SIV. Butterfly spread quotes capture the curvature of the implied volatility smile, which reflects the

kurtosis of the risk-neutral currency return distribution.

Based on the above definitions, we recover the underlying implied volatilities as: (i)IV c[25] = BF[25]+

SIV+RR[25]/2, (ii) IV p[25] = BF[25]+SIV−RR[25]/2, (iii) IV c[10] = BF[10]+SIV+RR[10]/2, and (iv)

IV p[10] = BF[10] + SIV−RR[10]/2. For model estimation, the volatility quotes are converted into out-of-

the-money option prices. In this calculation, the maturity-matched domestic and foreign interest rates are
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constructed using LIBOR and swap rates taken from Bloomberg.

Table 1 reports the mean, the standard deviation, and thet-statistics on the significance of the sample

mean for risk-reversal and butterfly spread series, all in percentages of the corresponding delta-neutral straddle

implied volatility. Thet-statistics are adjusted for serial dependence according to Newey and West (1987),

with the number of lags optimally chosen according to Andrews (1991) based on an AR(1) specification.

Average butterfly spreads are uniformly positive and highlysignificant across all maturities, implying

that out-of-the-money option implied volatilities on average are significantly higher than the at-the-money

implied volatility. The lowestt-statistic is 10.98. Regardless of the currency pair, the butterfly spread quotes

are strongly supportive of excess kurtosis in the risk-neutral currency return distribution.

The sign and magnitudes of risk-reversals are informative about the asymmetry of the conditional return

distribution. For JPYUSD, the sample averages of the risk-reversals are positive, implying that out-of-the-

money calls are on average more expensive than out-of-the-money puts during our sample period. This evi-

dence suggests that, on average, the JPYUSD risk-neutral conditional return distribution is positively skewed.

The average risk-reversals for GBPUSD are also positive, albeit to a lesser degree. In contrast, the average

magnitudes of risk-reversals are negative for GBPJPY, implying the presence of negative risk-neutral return

skewness.

Figure 1 plots the time-series of ten-delta risk-reversalsin the left-panels and ten-delta butterfly spreads

in the right-panels, with maturities fixed at one month (solid lines) and three months (dashed lines). Over

the sample period, there is significant variation in both risk-reversals and butterfly spreads, more so for risk-

reversals. Indeed, the risk-reversals vary so much that thesign switches. The ten-delta risk-reversals on

JPYUSD have varied from−20% to over 50% of the at-the-money implied volatility, the risk-reversals on

GBPUSD have varied from−10 to 20%, and the risk-reversals on GBPJPY have varied from−35 to 15%.

[Fig. 1 about here.]

4.2. Maximum likelihood estimation

We estimate the models using the time-series of both currency returns and currency option prices on

JPYUSD, GBPUSD, and GBPJPY. Since the risk premium rates arenot directly observable, we cast the

models into a state-space form and infer the risk premium rates at each date using a filtering technique. We

estimate the model parameters by maximizing the aggregate likelihoods of options and currency returns.
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In the state-space form, we regard the risk premium rates in the three economies as unobservable states.

For the general asymmetric models, we useVt ≡ [YUSD
t ,YJPY

t ,YGBP
t ,Zt ]

⊤ to denote the(4× 1) state vector.

For the symmetric models, we drop the global risk premium rate Zt from the state vector since it is no longer

identifiable. We specify the state propagation equation using an Euler approximation of the risk premium

rates dynamics:

Vt = A+ ΦVt−1+
√

G t εt , vt ∈ ℜ4+ (26)

whereεt denotes an i.i.d. standard normal innovation vector and

Φ = exp(−κ∆t), κ =< [κY,κY,κY,κZ] >,

A = (I −Φ)θ, θ = [θY,θY,θY,θZ]⊤, G t = 〈[ω2
YYUSD

t−1 ,ω2
YYJPY

t−1 ,ω2
YYGBP

t−1 ,ω2
ZZt−1]∆t〉, (27)

where∆t = 7/365 corresponds to the weekly frequency of the data and〈·〉 denotes a diagonal matrix with the

diagonal elements given by the vector inside the bracket.

We construct the measurement equations on the observed out-of-the-money option prices, assuming ad-

ditive normally-distributed measurement errors:

yt = O [Vt ;Θ]+et , E(ete
⊤
t ) = J , yt ∈ ℜ105+, (28)

whereyt denotes the 105 observed out-of-the-money option prices scaled by Black-Scholes vega at timet

for the three currency pairs (across seven maturities and five moneyness categories), andO [Vt ;Θ] denotes the

corresponding model-implied values as a function of the parameter setΘ and the state vectorVt . We assume

that the scaled pricing errors are i.i.d. normal with zero mean and constant variance. Hence, we can write the

covariance matrix asJ = σr I , with σr being a scalar andI being an identity matrix of the relevant dimension.

When both the state propagation equation and the measurement equations are Gaussian and linear, the

Kalman (1960) filter generates efficient forecasts and updates on the conditional mean and covariance of

the state vector and the measurement series. In our application, the state propagation equation in (26) is

Gaussian and linear, but the measurement equation in (28) isnonlinear. We use the unscented Kalman filter

(Wan and van der Merwe (2001)) to handle the nonlinearity. The unscented Kalman filter approximates the

posterior state density using a set of deterministically chosen sample points (sigma points). These sample

points completely capture the true mean and covariance of the Gaussian state variables, and when propagated

through the nonlinear functions in the measurement equations, capture the posterior mean and covariance of
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the option prices accurately to the second order for any nonlinearity.

Let yt+1 andAt+1 denote the time-t forecasts of time-(t + 1) values of the measurement series and the

covariance of the measurement series, respectively, obtained from the unscented Kalman filter. Assuming

normally distributed forecasting errors, we have the log likelihood for each week’s option observations as,

lt+1[Θ]O = −1
2

log
∣

∣At+1
∣

∣− 1
2

(

(yt+1−yt+1)
⊤ (

At+1
)−1

(yt+1−yt+1)
)

. (29)

Given the risk premium rates extracted from the options data, we apply fast Fourier inversion to the

characteristic function in (24) to obtain the statistical density of weekly returns on each of the three currency

pair as a function of the risk premium rates. We uselt+1[Θ]s to denote the weekly log likelihood of the

currency returns on the three currency pairs.

We choose model parameters to maximize the summation of the weekly log likelihood values on both

options and currency returns,

Θ ≡ argmax
Θ
L [Θ,{yt}T

t=1], with L [Θ,{yt}T
t=1] =

T−1

∑
t=0

(

lt+1[Θ]O + lt+1[Θ]s
)

, (30)

whereT = 117 denotes the number of weeks in our sample. In defining the likelihood in (30), we assume

conditional independence between the options forecastingerrors and the currency returns. We further replace

the joint density of the currency returns with the product ofthe three marginal densities for computational

feasibility. Using the product of marginal densities incurs some theoretical information loss, but provides

significant gains in computational feasibility.

5. Empirical results on risk and pricing in international economies

Building on established themes, we estimate models with both proportional asymmetry and strict sym-

metry. For each specification, we consider four different parameterizations of the jump component in (10).

Specifically, we allow for unrestricted power coefficient,α, and the nested special cases ofα = −1, α = 0,

andα = 1. Settingα = −1 generates a compound-Poisson jump similar in behavior to the jump in Merton

(1976) and Bates (1996). Settingα = 0 and 1 generates more frequent jump arrivals. The estimatedmodel

parameters, their standard errors (in parenthesis), and the maximized log likelihood values are reported in

Table 2 for the four symmetric models and in Table 3 for the four asymmetric models.
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5.1. The US, Japan, and the UK economies are asymmetric over our sample period

The maximized likelihood values from the general asymmetric specifications (Table 3) are much larger

than the corresponding symmetric specifications (Table 2).Likelihood ratio tests for nested models suggest

that the differences are statistically significant beyond any reasonable confidence level. The estimated variance

of the pricing errors (σ2
r ) of the symmetric models is almost twice as large as that of the asymmetric models.

Therefore, by allowing asymmetry between the stochastic discount factors of the US, Japan, and the UK, the

models capture the currency return and currency options behavior much better.

The scaling coefficient on the US economy is normalized to unity: ξUSD= 1. Hence, under the asymmetric

specifications in Table 3, the deviations from unity for the estimates ofξGBP andξJPY measure the degree of

asymmetry between the three economies. The estimates for the scaling coefficient on the UK,ξGBP, are

slightly larger than one, but the estimates for the scaling coefficient on Japan,ξJPY, are much larger at around

1.5. These estimates suggest that the Japanese economy is markedly different from the US economy and the

UK economy. The average risk premium rate in Japan is about 50% higher than that in the US or the UK. This

larger risk premium can be attributed either to higher risk in the economy or higher risk aversion for investors

in Japan.

The observed asymmetry between the three economies represents the average behavior during our three-

year sample period. Therefore, our result does not exclude the possibility of unconditional symmetry over the

very long run, or other forms of asymmetry during other sample periods. Nevertheless, the average asymmetry

during our sample period is crucial in identifying the dynamics of the global risk premium rate.

5.2. Risk premium rates on the global risk factor are more persistent and more volatile

The estimates of the parameters that control the risk premium dynamics are relatively stable across differ-

ent parameterizations onα. Comparing the estimates for the global risk premium dynamics (κZ,θZ,ωZ,ρZ)

to those on the country-specific risk premium dynamics (κY,θY,ωY,ρY) in Table 3, we observe that the global

risk premium rate is both more persistent and more volatile than the country-specific risk premium rates.

The mean-reversion parameter estimates for the global riskpremium rate,κZ, is not distinguishable from

zero, implying near non-stationary behavior. In contrast,the estimates of mean-reversion parameter for the

country-specific risk premium rate,κY, range from 3.053 to 5.204, implying a relatively short half-life of two

to three months. The different persistence estimates suggest that it is much more difficult to predict changes in
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global risk premium rates than to predict changes in country-specific risk premium rates. The difference also

implies that shocks on the global risk premium rate last longer over time and have bigger impacts on currency

options at longer maturities. By contract, the more transient shocks on country-specific risk premium rates

dissipate quickly over time and mainly affect short-term option pricing behaviors.

The volatility coefficient estimatesωZ for the global risk premium rate are around 0.8, about five times

larger than the corresponding volatility coefficientsωY for the country-specific risk premium rates, which are

between 0.137 to 0.183.

Our findings are consistent with Engle, Ito, and Lin (1990), who use the analogies of meteor showers

versus heat waves to describe global versus country-specific shocks, respectively. Using intra-day exchange

rate data, they find that volatility clustering in exchange rates is mainly driven by global shocks. Using weekly

data on currency returns and currency options, we find that the risk premium rates on the global risk factor

are both more persistent and more volatile than the risk premium rates on the country-specific risk factors.

5.3. Risk premium increases when the wealth declinesrelativeto the global economy

The correlation parameterρZ captures how the risk premium rate varies with the global shocks while

the correlation parameterρY measures how the risk premium rate varies with the country-specific shocks.

The estimates forρY are strongly negative between -0.702 and -0.999, dependingon differentα specifica-

tions. A negative correlation implies that the risk premiumincreases when the economy receives a negative

country-specific shock. Such a risk premium increase can come from either or both of the two sources: (1) A

negative shock is associated with higher economy-wide volatility. (2) Investors become more risk averse after

a negative shock and demand higher premium for the same amount of risk.

Intriguingly, we observe that the correlation estimates between the risk premium rate and the global risk

factor ρZ are positive, ranging from 0.52 to 0.65. Therefore, investors respond quite differently to global

shocks than to country-specific shocks. Although investorsdemand a higher risk premium in the presence

of a negative country-specific shock to the economy, they askfor a lower risk premium if the origin of the

negative shock is global.

In the context of the Lucas (1982) exchange economy, the stochastic discount factors have the interpreta-

tion of marginal utilities of aggregate wealth. In this context, we may generically interpretXh in equation (1)

as return shocks to aggregate wealth in the economy. Then, a possible interpretation for the different responses
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is that the risk premium in an economy changes with therelative wealth of the economy. Investors demand

a higher premium only when the wealth of the economy declinesrelative to the global economy. When the

global risk factor receives a negative shock, the local economy’s wealth decreases in absolute terms, but in-

creases relative to the global economy. As a result, the riskpremium declines. In contrast, a negative shock

to the country-specific risk factor decreases the economy wealth in both absolute and relative terms. The risk

premium in this economy increases unambiguously.

When studying how an economy responds to external shocks, itis important to distinguish the different

possible sources of the shocks. An analysis that fails to discriminate between country-specific and global

shocks can yield misleading conclusions. It is worthwhile to mention that the extant literature often studies

the behavior of stochastic discount factors in a single economy using stock index returns and stock index

options in that economy. Since the stochastic discount factors estimated from these data are projections

on the stock index of a single economy, these studies do not typically distinguish between global shocks

versus country-specific shocks. Our joint analysis based onoptions and time-series returns on a triangle of

currency pairs reveals the complex multi-dimensional nature of the stochastic discount factors in international

economies and highlights the inadequacy of one-dimensional projections.

5.4. Jumps arrive frequently, but only downside jumps are priced

Our models for the stochastic discount factor incorporate ajump component, the arrival rate of which

follows an exponentially dampened power law. Under this specification, the power coefficientα controls the

jump type. The model generates finite-activity compound-Poisson jumps as in Merton (1976) whenα < 0,

under which jumps arrive only a finite number of times within any finite interval and hence can be regarded as

rare events. On the other hand, whenα ≥ 0, jumps arrive an infinite number of times within any finite interval

and can therefore be used to capture more frequent discontinuous movements.

When we estimate the asymmetric model withα as a free parameter, the estimate forα is 0.227. Nev-

ertheless, the estimate has large standard error, suggesting potential identification problems. Thus, we also

estimate three special cases withα fixed at−1, 0, and 1, representing three different jump types that encom-

pass both traditional compound Poisson jumps and high-frequency jump specifications. As shown in Table 3

for the asymmetric models, theα = 1 model generates the highest likelihood among the three special cases,

indicating that jumps in the three economies are not rare events, but arrive frequently. Therefore, replacing

the traditional compound Poisson jump with an infinite-activity jump specification generates more promising
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currency option pricing results.

Under our jump specification, the relative asymmetry of jumps is controlled by the two exponential damp-

ening coefficientsβ+ andβ−. A larger dampening coefficientβ+ implies a smaller arrival rate for positive

jumps and vice versa. Table 3 shows that the estimates forβ+ are substantially larger than those forβ−, more

so whenα is larger and hence when more frequent jumps are allowed. Thelarge estimates forβ+ suggest that

the negative of the log stochastic discount factors rarely experience positive jumps. In fact, the standard errors

for β+ estimates are also large, suggesting that we cannot accurately identify the parameter that controls the

positive jumps. Therefore, we can safely assume a one-sidedjump structure for the log stochastic discount

factor by setting the arrival rate of positive jumps to zero:π[x] = 0 for x > 0.

To pursue this angle, Table 4 reports the parameter estimates and maximized log likelihood values under

this one-sided jump assumption. The estimates for most of the parameters are close to those reported in

Table 3 under the two-sided jump parameterization. The likelihood values are also about the same. The main

difference is that with the one-sided jump assumption in Table 4, the standard errors of some parameters

decline, showing better identification with the more parsimonious one-sided specification. Therefore, our

results support the lack of a significant pricing component for positive jumps in the stochastic discount factor.

The origin of jumps in stochastic discount factors can be tied to the way in which markets respond to in-

formation (Andersen, Bollerslev, Diebold, and Vega (2003), Andersen, Bollerslev, Diebold, and Vega (2005),

Balduzzi, Elton, and Green (2001), Beber and Brandt (2005),Beber and Brandt (2006), Fleming and Re-

molona (1999), Hau and Rey (2006), Pasquariello and Vega (2006), and Piazzesi (2005)). Shocks in an econ-

omy can jump both up and down. The fact that we can only detect downside jumps in the stochastic discount

factor suggests that investors are only concerned with downside jumps in the economy while ignoring upside

jumps for pricing. This finding explains why financial markets react more strongly to bad macroeconomic

announcement surprises than to good surprises (Andersen, Bollerslev, Diebold, and Vega (2005)).

The presence of priced frequent downside jumps in the stochastic discount factors also provides justifica-

tion for the prevailing evidence from the stock index optionmarket. Although the statistical return distribution

for stock indexes is relatively symmetric, the risk-neutral distributions computed from option prices are highly

negatively skewed (Jackwerth and Rubinstein (1996), Bates(2000), Foresi and Wu (2005), Jones (2006), Pan

(2002), and Bakshi, Kapadia, and Madan (2003)). Carr and Wu (2003) show that a one-sidedα-stable law,

without exponential dampening, captures the S&P 500 index options price behavior well. When measure

changes are applied using exponential martingales,α-stable laws become exponentially dampened power
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laws. Hence, the dampened power law specification subsumes theα-stable specification.

Regarding the relative contribution of stochastic risk premiums versus jumps, we note that they capture

different aspects of the stochastic discount factor and that both features are crucial for our empirical results.

Economically, the jump component captures the discontinuous movements in both macroeconomic funda-

mentals and financial securities, and the stochastic risk premium specification captures the intensity variation

of the information flow.

5.5. High global risk premium rates lead to high international risk sharing index

One yardstick to assess the plausibility of the estimated risk premiums and stochastic discount factors is

to compute the risk sharing index developed by Brandt, Cochrane, and Santa-Clara (2006):

RSI≡ 1−
Var

(

lnM f
t − lnM h

t

)

Var(lnM f
t )+Var(lnM h

t )
. (31)

According to our stochastic discount factor specification in (8) and replacing the risk premium rates by their

respective long-run means, we can derive the unconditionalrisk sharing index analytically as,

RSI ≡ 1−

(

√

ξh−
√

ξ f
)2

θZ + θY
(

ξh + ξ f
)(

1+ λΓ [2−α]
(

βα−2
+ + βα−2

−
))

(ξh + ξ f )θZ + θY (ξh + ξ f )
(

1+ λΓ [2−α]
(

βα−2
+ + βα−2

−
)) . (32)

Equation (32) shows that the risk sharing index is high when the global risk premium rate is high relative

to the country-specific risk premium rate (θZ > θY), and when the two economies are relatively symmetric

(ξh ≈ ξ f ). When the two economies are asymmetric, the risk sharing index declines irrespective of the relative

proportion of global versus country-specific risk premium.For two highly asymmetric economies, RSI is

close to zero even if the two economies move perfectly together. Therefore, the risk sharing index measures

both co-movement and asymmetry between two economies.

In Table 5, we report the risk sharing index computed based onthe parameter estimates in Table 3 for the

asymmetric models. Our estimates for the risk sharing indexare high, ranging from 0.9625 to 0.9891. The

estimates are stable across different power coefficientsα, indicating that the results are robust with respect to

different jump specifications.

Our high estimates of the risk sharing index are in line with the results in Brandt, Cochrane, and Santa-

Clara (2006). Combining stock portfolio returns of two economies with the currency return, Brandt, Cochrane,
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and Santa-Clara attribute the high risk sharing index to twopossible explanations: (i) The variability of cur-

rency returns is too low, and/or (ii) international risk sharing is high. In this paper, we identify the dynamics of

stochastic discount factors in three economies using time-series returns and options on a triangle of exchange

rates, and decompose each stochastic discount factor into aglobal and a country-specific risk component.

Our estimation attributes the high risk sharing index to a predominant global risk premium component, and

therefore supports their second explanation.

5.6. The risk premium rates co-move with economic fundamentals

A natural question that arises is how the extracted risk premiums are related to observed economic funda-

mentals. First, to address the inherent link between the risk premium rates and the observed currency option

implied volatilities, and to understand the source of identification for our model estimation, we follow Brandt

and Santa-Clara (2002) in using squared short-term at-the-money currency option implied volatility (SIV)

to approximate the instantaneous variance of the currency return. Under this approximation, our stochastic

discount factor model implies the following relation,

(

SIV f h
t

)2
≈

(

√

ξh−
√

ξ f

)2

Zt +
(

1+ λΓ [2−α]
(

βα−2
+ + βα−2

−
))

(

ξhYh
t + ξ fY f

t

)

. (33)

From equation (33), it is clear that the global and country-specific risk premium rates are directly linked to

the variance of the currency return and, under the approximation, to currency option implied volatilities. It is

based on this linkage that we can identify the risk premium rates from the currency options quotes.

To verify this relation, we regress squared one-month at-the-money currency option implied volatilities

on the corresponding risk premium rates, all in weekly changes,

∆(SIVh f
t )2 = b0 +b1∆Zt +b2∆Yh

t +b3∆Y f
t +et ,

where∆ denotes weekly changes and[Yh
t ,Y f

t ,Zt ] are the country-specific and global risk premium rates ex-

tracted from the estimated asymmetric model withα = 1. We estimate the relation using generalized methods

of moment (GMM), where the weighting matrix is computed according to Newey and West (1987) with four

lags. Table 6 reports the GMM coefficient estimates andt-statistics. Consistent with the theory behind (33),

the intercept estimates are not significantly different from zero and the slope coefficient estimates are close

to that inferred from the maximum likelihood parameter estimates in Table 3. Take JPYUSD as an example.
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The parameter estimates ofξJPY = 1.531 andξUSD = 1 in Table 3 (α = 1) imply a slope coefficient onZt

of (
√

ξJPY−
√

ξUSD)2 = 0.056, which is what we recover from the regression in Table 6. The coefficient

estimates for other currency pairs also match closely with the structural parameters in Table 3. Therefore, by

construction, the extracted risk premium rates reflect variations in the currency options market.

With this caveat in mind, we investigate whether and how the risk premium rates that we extract from the

currency options market co-move with bond and stock market fundamentals in the three economies. For this

analysis, we collect, from Bloomberg, four sets of economicfundamentals for each of the three economies:4

• Short-term nominal interest rate:We capture the level of the short-term interest rate using one-week

LIBOR rate in each economy.

• Slope of the interest-rate term structure:For each economy, the slope of the term structure is defined

as the difference between the 10-year swap rate and the one-week LIBOR rate.

• Interest-rate cap volatility:We proxy interest-rate volatility using the at-the-money implied volatility

underlying the one-year interest-rate cap contract in eacheconomy.

• Stock index option volatility:The stock market volatility is taken to be one-month at-the-money option

implied volatility on a major stock index in each economy: the S&P 500 Index (SPX) for the US, the

Nikkei-225 Stock Average (NKY) for Japan, and the FTSE 100 Index (UKX) for the UK.

With the four sets of economic fundamentals, we first regressthe risk premium rate (Yh
t ) in an economyh

on each of the four economic fundamentals (F j,h
t ) in the same economy,

Yh
t = ϑ0 + ϑ j F

j,h
t + et , ∆Yh

t = ϑ0 + ϑ j ∆F j,h
t + et , h = USD, JPY, GBP, j = 1,2,3,4, (34)

where the regression is performed on both levels and weekly differences. The slope coefficient,ϑ j , measures

how the country-specific risk premium rate co-moves with thej-th economic fundamental variable in that

economy. Table 7 reports the GMM estimates andt-statistics of the slope coefficients on each of the four

economic variables in each of the three economies in panels A(on levels) and B (on weekly differences). In

computing the weighting matrix for the GMM estimation, we follow Newey and West (1987) with 12 lags for

the level regressions and four lags for regressions on weekly changes.

4Similar economic variables have been used in, for example, Andersen, Bollerslev, Diebold, and Vega (2003), Ang and Piazzesi
(2003), Campbell and Shiller (1991), Campbell and Ammer (1993), Cochrane (1991), Cochrane and Piazzesi (2006), Collin-Dufresne
and Goldstein (2002), Collin-Dufresne, Goldstein, and Martin (2001), Dumas and Solnik (1995), Fama and Bliss (1987), and Ilmanen
(1995).
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The estimates share several common features among the threeeconomies. First, a rise in the short-term

interest rate is associated with a fall in the country-specific risk premium rate. The coefficient estimates are

negative for all six regressions, and significantly so for both Japan and the UK in both level and weekly change

regressions. On the other hand, the coefficient estimates onthe slope of the interest-rate term structure are

mostly positive, significantly so for the UK. Therefore, theoverall responses of the country risk premium

rates to the level and the slope of the term structure are consistent with economic intuition (Ang and Piazzesi

(2003), Campbell and Shiller (1991), Fama and Bliss (1987) and Ilmanen (1995)). The country risk premium

increases when the short-term interest rate drops and the yield curve steepens.

The country-specific risk premium rate increases with volatilities in both the interest-rate and the stock

markets in that economy. In the level regressions, the coefficient estimates are all positive on interest-rate cap

volatilities and significantly so for the US economy. The coefficient estimate on the US stock market volatility

is also positive and statistically significant. In weekly difference regressions, the coefficient estimates are

positive for both volatility variables and in all three economies, and the estimates are statistically significant

for the stock market volatilities in Japan and the UK. These positive coefficient estimates are economically

sensible: With fixed market price of risk, we expect the country-specific risk premium rate to increase with

the risk level in that economy.

To explain the global risk premium rate, we first compute an average across the three economies on each

set of economic fundamentals to create a “global” fundamental (e.g., Fama and French (1998) and Griffin

(2002)):

F j,global
t ≡ 0.65F j,USD

t +0.25F j,JPY
t +0.10F j,GBP

t , j = 1,2,3,4, (35)

where the weighting corresponds roughly to the relative GNPof each economy. We have also experimented

with alternative weighting schemes and obtained similar results. We regress the global risk premium rate on

each of the four global fundamentals, again on both levels and weekly differences:

Zt = ϑ0 + ϑ j F
j,global

t +et , ∆Zt = ϑ0 + ϑ j ∆F j,global
t +et , j = 1,2,3,4. (36)

The estimation results are reported in the last two columns of Table 7. The coefficient estimates on the global

risk premium rates often take on different signs from the corresponding estimates on the country-specific

risk premium rates, suggesting that investors respond to global and country-specific shocks differently. In

particularly, although the country-specific risk premium rate increases with the financial market volatility in
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the same economy, the global risk premium rate declines withthe average volatility of the three economies.5

For robustness check, we also regress the risk premium rateson the four sets of economic fundamentals in

one multivariate regression. Panels C and D in Table 7 show that the coefficient estimates are largely consistent

with those from the univariate regressions. The adjusted-R2 goodness-of-fit statistics range between 16.03%

and 46.82% when the estimation is performed on levels, and between 1.07% and 7.12% when the estimation is

performed on weekly differences. As expected, it is far moredifficult to explain changes in the risk premium

than the risk premium levels. Overall, the variations of therisk premium rates that we extract from the

currency options market appear consistent with movements in bond and stock markets in the three economies.

6. Conclusions

In this paper, we propose to infer the multi-dimensional dynamic behaviors of the stochastic discount

factors in international economies from the time-series ofreturns and options on three currency pairs that form

a triangular relation. We develop a class of models for stochastic discount factors that are sufficiently flexible

to capture the observed behaviors of currency returns and currency options. Through model estimation, we

investigate whether investors show a differential response to country-specific risks versus global risks, and to

upside jumps versus downside jumps.

Our estimation results show that the average risk premium inJapan is about 50% larger than the average

risk premium in the US or the UK. The asymmetry between the three economies enables us to identify both

the global risk factor and the country-specific risk factorsand their associated risk premium dynamics. We

also find that the risk premium rate on the global risk factor is both more persistent and more volatile than

the risk premium rates on the country-specific risks, suggesting a high degree of international risk sharing

among the three economies. Furthermore, investors react differently to shocks to the global risk factor and the

country-specific risk factors. Investors demand a higher risk premium when the economy receives a negative

shock that is country-specific, but demand a lower premium when the negative shock is global. Hence, the

risk premium in an economy increases only when the wealth of the economy declines relative to the global

economy.

5The different responses of global and country-specific riskpremiums to economic fundamentals have potentially important
implications for currency return predictability (Bekaertand Hodrick (1992), Mark (1995), Evans and Lyons (2002), andEngel and
West (2005)). Specifically, if we regress currency excess returns on economic fundamentals without differentiating the global from
the country-specific component, the slope estimates are likely to be insignificant as the sensitivities of global and country-specific
risk components cancel. A possible direction to improve currency return predictability is to separate the global and country-specific
components in the estimations.
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Our estimation shows that jumps in each economy are not rare events, but arrive very frequently. How-

ever, investors only price downside jumps while ignoring upside jumps. Finally, the risk premiums that we

extract from the currency and its options market are economically compatible with movements in economic

fundamentals in the bond and stock market. Nevertheless, global and country-specific risk premium rates

often respond differently to economic shocks, highlighting the importance of separating global from country-

specific shocks in predicting currency risk premiums.

Overall, currency returns and currency options prove to be important information sources for identifying

the multi-dimensional behaviors of the stochastic discount factors in international economies. Our analysis

also shows that it is important to differentiate between global and country-specific risks and to distinguish

between upside versus downside jumps in understanding investor behaviors and predicting risk premium

variations.
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Table 1
Risk reversals and butterfly spreads

Each maturity has four set of volatility quotes in the form often-delta risk-reversal (denoted RR[10]), 25-
delta risk-reversal (denoted RR[25]), ten-delta butterflyspread (denoted BF[10]), and 25-delta butterfly spread
(denoted BF[25]), all as percentages of the corresponding at-the-money implied volatility (SIV). Each row
represents a single maturity. The first column denotes the option maturity, with ‘w’ denoting weeks and ‘m’
denoting months. Reported are the mean, the standard deviation, and thet-statistics on the significance of
the sample mean for each risk-reversal and butterfly spread series. Thet-statistics adjust serial dependence
according to Newey and West (1987), with the number of lags optimally chosen according to Andrews (1991)
based on an AR(1) specification. Data are weekly from November 7, 2001 to January 28, 2004.

Mat. RR[10] RR[25] BF[10] BF[25]

JPYUSD
1w 11.63 13.81 3.34 6.45 7.59 3.35 13.65 3.84 11.77 3.40 0.74 15.50
1m 12.53 13.64 3.20 6.94 7.56 3.20 13.90 3.40 12.75 3.57 0.62 18.42
2m 13.91 14.89 2.85 7.55 8.08 2.83 14.49 2.93 14.81 3.70 0.53 21.80
3m 14.47 15.78 2.59 7.86 8.61 2.58 14.91 2.56 17.18 3.79 0.47 25.42
6m 15.30 17.98 2.21 8.23 9.74 2.20 15.43 2.20 19.71 4.02 0.38 31.52
9m 15.79 19.41 2.08 8.45 10.36 2.08 16.23 2.04 21.75 4.13 0.4029.23

12m 16.19 20.47 2.00 8.63 10.94 2.00 16.55 2.03 21.78 4.18 0.43 27.25

GBPUSD
1w 5.86 8.07 2.93 3.26 4.42 2.98 9.74 2.65 11.11 2.82 0.59 15.90
1m 5.73 7.08 2.79 3.21 3.93 2.86 9.79 2.39 10.98 2.83 0.55 14.79
2m 5.51 6.32 2.81 3.19 3.60 2.94 9.55 2.12 11.56 2.76 0.48 15.91
3m 5.30 5.81 2.79 3.01 3.25 2.90 9.64 1.68 15.46 2.71 0.42 17.74
6m 4.87 5.40 2.25 2.75 2.97 2.32 9.53 1.15 25.83 2.47 0.46 13.75
9m 4.80 5.27 2.16 2.72 2.91 2.19 9.49 0.99 29.88 2.46 0.42 13.89

12m 4.68 5.30 2.01 2.67 2.89 2.09 9.37 0.91 32.86 2.42 0.41 15.14

GBPJPY
1w -5.85 12.08 -1.73 -3.18 6.58 -1.72 11.09 2.56 17.06 2.95 0.80 14.38
1m -6.42 12.32 -1.70 -3.51 6.69 -1.71 11.51 2.16 20.36 3.17 0.48 26.87
2m -6.32 12.48 -1.62 -3.41 6.68 -1.62 12.02 2.12 19.55 3.31 0.45 28.28
3m -6.02 12.57 -1.52 -3.28 6.74 -1.54 12.44 2.13 18.19 3.44 0.43 28.59
6m -5.76 12.62 -1.43 -3.12 6.80 -1.43 13.07 2.00 18.26 3.54 0.49 21.35
9m -5.72 12.75 -1.40 -3.08 6.86 -1.39 13.47 2.16 16.51 3.65 0.60 16.67

12m -5.70 13.01 -1.35 -3.06 6.98 -1.35 13.64 2.11 16.83 3.69 0.63 15.74
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Table 2
Risk and pricing in strictly symmetric economies

Entries report the maximum likelihood estimates of the structural parameters and their standard errors (in
parentheses) for the models admitting stochastic currencyrisk premium and stochastic skewness under strict
symmetry. Four separate models are estimated that respectively allow the power coefficient,α, in the damp-
ened power law specification for the jump component to take values ofα = −1, α = 0, α = 1, andα unre-
stricted. Estimation is based on weekly currency return andcurrency options data from November 7, 2001 to
January 28, 2004 (117 weekly observations for each series).The last row reports the maximized log likelihood
value.σ2

r represents the variance of the measurement error.

Θ α = −1 α = 0 α = 1 Freeα

Country-specific risk premium rate dynamics:

κY 2.149 ( 0.108 ) 1.912 ( 0.096 ) 1.531 ( 0.053 ) 1.210 ( 0.081 )
θY 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.004 ( 0.000 ) 0.001 ( 0.014 )
ωY 0.149 ( 0.010 ) 0.150 ( 0.009 ) 0.148 ( 0.008 ) 0.081 ( 0.486 )
ρY -0.252 ( 0.054 ) -0.321 ( 0.048 ) -0.412 ( 0.046 ) -0.898 ( 5.433)

Country-specific jump risk structure:

λ 17.684 ( 1.589 ) 5.255 ( 0.500 ) 1.184 ( 0.392 ) 0.747 ( 9.170 )
β− 4.623 ( 0.117 ) 4.146 ( 0.078 ) 3.835 ( 1.032 ) 4.420 ( 4.146 )
β+ 43.513 ( 6.9e2 ) 58.234 ( 4.4e2 ) 97.645 ( 3.7e2 ) 3.1e4 ( 4.5e6 )
α -1 — 0 — 1 — 1.810 ( 0.403 )

Performance metrics:

σ2
r 0.336 ( 0.004 ) 0.334 ( 0.004 ) 0.329 ( 0.004 ) 0.324 ( 0.005 )
L /T 1.62 1.58 1.67 1.93
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Table 3
Risk and pricing in proportionally asymmetric economies

Entries report the maximum likelihood estimates of the structural parameters and their standard errors (in
parentheses) for the models admitting stochastic currencyrisk premium and stochastic skewness under pro-
portional asymmetry. Four separate models are estimated that respectively allow the power coefficient,α,
in the dampened power law specification for the jump component to take values ofα = −1, α = 0, α = 1,
andα unrestricted. Estimation is based on weekly currency return and currency options data from November
7, 2001 to January 28, 2004. The last row reports the maximized average daily log likelihood value.σ2

r
represents the variance of the measurement error.

Θ α = −1 α = 0 α = 1 Freeα

Average risk premiums:

ξJPY 1.507 ( 0.027 ) 1.508 ( 0.028 ) 1.531 ( 0.035 ) 1.531 ( 0.034 )
ξGBP 1.017 ( 0.005 ) 1.016 ( 0.006 ) 1.007 ( 0.006 ) 1.007 ( 0.005 )

Global risk premium rate dynamics:

κZ 0.000 ( 0.006 ) 0.000 ( 0.006 ) 0.000 ( 0.006 ) 0.000 ( 0.005 )
θZ 0.230 ( 0.069 ) 0.231 ( 0.065 ) 0.356 ( 0.220 ) 0.357 ( 0.223 )
ωZ 0.807 ( 0.069 ) 0.797 ( 0.069 ) 0.815 ( 0.053 ) 0.813 ( 0.050 )
ρZ 0.650 ( 0.059 ) 0.626 ( 0.059 ) 0.521 ( 0.034 ) 0.524 ( 0.035 )

Country-specific risk premium rate dynamics:

κY 5.204 ( 0.190 ) 4.921 ( 0.210 ) 3.061 ( 0.059 ) 3.053 ( 0.061 )
θY 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.006 ) 0.003 ( 0.001 )
ωY 0.183 ( 0.006 ) 0.174 ( 0.006 ) 0.137 ( 0.163 ) 0.138 ( 0.016 )
ρY -0.702 ( 0.046 ) -0.713 ( 0.048 ) -0.996 ( 1.185 ) -0.999 ( 0.115)

Country-specific jump risk structure:

λ 18.698 ( 9.146 ) 5.659 ( 1.428 ) 20.489 ( 54.032 ) 815.387 ( 7.8e3 )
β− 5.132 ( 0.936 ) 4.523 ( 0.686 ) 36.767 ( 9.842 ) 63.069 ( 59.324 )
β+ 1.2e2 ( 4.3e4 ) 1.4e2 ( 7.8e3 ) 2.5e3 ( 6.9e5 ) 4.7e4 ( 6.9e4 )
α -1 — 0 — 1 — 0.227 ( 2.205 )

Performance metrics:

σ2
r 0.174 ( 0.002 ) 0.175 ( 0.002 ) 0.167 ( 0.003 ) 0.167 ( 0.002 )
L /T 32.97 32.84 33.96 34.10
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Table 4
Risk and pricing in one-sided jump economies

Entries report the maximum likelihood estimates of the structural parameters and their standard errors (in
parentheses) for the models admitting stochastic currencyrisk premium and stochastic skewness under pro-
portional asymmetry and assuming only negative jumps. Fourseparate models are estimated that respectively
allow the power coefficient,α, in the dampened power law specification for the jump component to take val-
ues ofα =−1, α = 0, α = 1, andα unrestricted. Estimation is based on weekly currency return and currency
options data from November 7, 2001 to January 28, 2004. The last row reports the maximized average daily
log likelihood value.σ2

r represents the variance of the measurement error.

Θ α = −1 α = 0 α = 1 Freeα

Average risk premiums:

ξJPY 1.507 ( 0.026 ) 1.509 ( 0.027 ) 1.531 ( 0.034 ) 1.530 ( 0.034 )
ξGBP 1.017 ( 0.005 ) 1.016 ( 0.006 ) 1.007 ( 0.005 ) 1.008 ( 0.005 )

Global risk premium rate dynamics:

κZ 0.000 ( 0.005 ) 0.000 ( 0.005 ) 0.000 ( 0.006 ) 0.000 ( 0.006 )
θZ 0.230 ( 0.066 ) 0.231 ( 0.060 ) 0.357 ( 0.196 ) 0.348 ( 0.289 )
ωZ 0.807 ( 0.069 ) 0.797 ( 0.068 ) 0.814 ( 0.051 ) 0.805 ( 0.051 )
ρZ 0.650 ( 0.058 ) 0.626 ( 0.058 ) 0.521 ( 0.034 ) 0.529 ( 0.035 )

Country-specific risk premium rate dynamics:

κY 5.203 ( 0.185 ) 4.924 ( 0.200 ) 3.053 ( 0.046 ) 3.034 ( 0.065 )
θY 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.000 ) 0.003 ( 0.001 )
ωY 0.183 ( 0.006 ) 0.174 ( 0.006 ) 0.137 ( 0.011 ) 0.138 ( 0.018 )
ρY -0.702 ( 0.042 ) -0.713 ( 0.045 ) -0.996 ( 0.094 ) -0.999 ( 0.129)

Country-specific jump risk structure:

λ 18.698 ( 9.137 ) 5.658 ( 1.408 ) 21.199 ( 10.585 ) 8.8e2 ( 9.4e3 )
β− 5.132 ( 0.935 ) 4.526 ( 0.690 ) 37.329 ( 9.718 ) 66.157 ( 70.052 )
α -1 — 0 — 1 — 0.240 ( 2.428 )

Performance metrics:

σ2
r 0.174 ( 0.002 ) 0.175 ( 0.002 ) 0.167 ( 0.003 ) 0.167 ( 0.002 )
L /T 32.97 32.84 33.96 34.10

39



Table 5
Unconditional risk sharing index estimates

Entries report the risk sharing index computed according tothe following representation:

RSI = 1−

(

√

ξh−
√

ξ f
)2

θZ + θY
(

ξh + ξ f
)(

1+ λΓ [2−α]
(

βα−2
+ + βα−2

−
))

(ξh+ ξ f )θZ + θY (ξh + ξ f )
(

1+ λΓ [−α]
(

βα−2
+ + βα−2

−
)) ,

where the structural parameters estimates are from Table 3 for the four asymmetric models with different
jump power coefficientsα.

Country pairs US-Japan US-UK Japan-UK

α = −1 0.9625 0.9827 0.9641
α = 0 0.9628 0.9832 0.9643
α = 1 0.9670 0.9890 0.9677
α = 0.227 0.9671 0.9891 0.9678
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Table 6
Linking risk premium rates to currency option implied volatilities

Entries report the parameter estimates andt-statistics (in brackets) of the following relation,

∆(SIVh f
t )2 = b0 +b1∆Zt +b2∆Yh

t +b3 ∆Y f
t +et ,

where∆ denotes weekly changes, SIVh f
t denotes the one-month delta-neutral straddle implied volatility on

a currency pair, and(Zt ,Yh
t ,Y f

t ) denote the global, home, and foreign risk premium rates, respectively. All
risk premiums are extracted from the estimated asymmetric model withα = 1. The relation is estimated with
generalized methods of moments, where the weighting matrixis calculated according to Newey and West
(1987) with four lags.

Currency b0 b1 b2 b3 R2

JPYUSD 0.000 [ 0.30 ] 0.056 [ 26.17 ] 1.593 [ 8.97 ] 2.146 [ 16.26] 95.43%
GBPUSD 0.000 [ 0.47 ] 0.000 [ 0.00 ] 1.396 [ 20.39 ] 1.347 [ 21.53] 93.74%
GBPJPY 0.000 [ 0.56 ] 0.054 [ 25.25 ] 1.815 [ 23.05 ] 1.574 [ 13.25 ] 95.27%
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Table 7
Risk premiums and economic fundamentals

Entries report the coefficient estimates andt-statistics (in brackets) of the following regressions:

Panel A: Vh
t = ϑ0 + ϑ j F

j ,h
t + et ,

Panel B: ∆Vh
t = ϑ0 + ϑ j ∆F j ,h

t + et ,

Panel C: Vh
t = ϑ0 + ∑4

j=1ϑ j F
j ,h

t + et ,

Panel D: ∆Vh
t = ϑ0 + ∑4

j=1ϑ j ∆F j ,h
t + et ,

whereVh
t ≡ [YUSD

t ,YJPY
t ,YGBP

t ,Zt ] denotes the country-specific risk premium rate for each economy and the global
risk premium rate, all extracted from the asymmetric model with α = 1, andF j ,h

t ≡ [F j ,USD
t ,Y j ,JPY

t ,F j ,GBP
t ,F j ,global

t ]

denotes thej-th economic fundamental variable in each economyh, with global fundamentalF j ,global
t created as a

weighted average:F j ,global
t = 0.65F j ,USD

t +0.25F j ,JPY
t +0.10F j ,GBP

t . We estimate each equation using GMM, where the
weighting matrix is calculated according to Newey and West (1987) with four lags for regressions on weekly differences
and 12 lags for level regressions.

Panel A: Univariate regression in levels

F j ,h US Japan UK Global
Short-term interest rate -0.006 [ -0.13 ] -3.710 [ -3.38 ] -0.121 [ -2.76 ] 10.681 [ 2.64 ]
Slope of the term structure -0.051 [ -1.89 ] -0.052 [ -0.92 ] 0.067 [ 1.53 ] 4.444 [ 1.92 ]
Interest-rate cap volatility 0.004 [ 3.93 ] 0.001 [ 1.54 ] 0.002 [ 0.29 ] -0.195 [ -2.38 ]
Stock index option volatility 0.004 [ 2.25 ] -0.001 [ -0.10 ] -0.001 [ -0.63 ] 0.005 [ 0.04 ]

Panel B: Univariate regression in weekly differences

F j ,h US Japan UK Global
Short-term interest rate -0.006 [ -0.14 ] -0.281 [ -2.20 ] -0.025 [ -2.20 ] -0.917 [ -0.34 ]
Slope of the term structure 0.010 [ 0.60 ] 0.002 [ 0.06 ] 0.025 [2.48 ] 1.001 [ 0.77 ]
Interest-rate cap volatility 0.000 [ 0.79 ] 0.001 [ 1.14 ] 0.004 [ 1.44 ] -0.015 [ -0.83 ]
Stock index option volatility 0.003 [ 1.71 ] 0.006 [ 3.03 ] 0.002 [ 2.38 ] -0.015 [ -0.48 ]

Panel C: Multivariate regression in levels

US Japan UK Global
Intercept 0.000 [ 0.05 ] 0.003 [ 1.64 ] 0.005 [ 3.51 ] -0.124 [ -1.93 ]
Short-term interest rate -0.003 [ -0.08 ] -3.077 [ -1.80 ] -0.107 [ -1.86 ] 10.003 [ 2.84 ]
Slope of the term structure 0.002 [ 0.10 ] -0.027 [ -0.52 ] 0.016 [ 0.29 ] 2.216 [ 1.89 ]
Interest-rate cap volatility 0.004 [ 2.47 ] 0.001 [ 0.89 ] 0.008 [ 1.27 ] -0.044 [ -1.03 ]
Stock index option volatility 0.002 [ 1.24 ] 0.003 [ 0.74 ] -0.001 [ -0.60 ] -0.102 [ -0.80 ]
Adjusted-R2 30.72% 16.03% 16.20% 46.82%

Panel D: Multivariate regression in weekly differences

US Japan UK Global
Intercept 0.000 [ 0.09 ] 0.000 [ 0.74 ] 0.000 [ 0.48 ] -0.001 [ -0.83 ]
Short-term interest rate 0.018 [ 0.37 ] -0.407 [ -2.86 ] -0.009 [ -0.15 ] -0.196 [ -0.09 ]
Slope of the term structure 0.026 [ 1.60 ] 0.037 [ 1.14 ] 0.016 [0.29 ] 0.984 [ 0.81 ]
Interest-rate cap volatility 0.000 [ 0.16 ] 0.001 [ 1.27 ] 0.001 [ 0.27 ] -0.009 [ -0.33 ]
Stock index option volatility 0.003 [ 1.69 ] 0.007 [ 3.51 ] 0.002 [ 1.95 ] 0.011 [ 0.37 ]
Adjusted-R2 4.20% 5.57% 7.12% 1.07%
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Fig. 1. Time variation in risk reversals and butterfly spreads. Left panels plot the time-series of ten-delta
risk-reversals and the right panels plot the time-series often-delta butterfly spreads, both as percentages of the
corresponding at-the-money implied volatility. The two lines correspond to distinct option maturities of one
month (solid line) and three months (dashed line). Data are weekly from November 7, 2001 to January 28,
2004.
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