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Abstract

We study the relationship between the market makers’ inventory and liquidity
for S&P 500 options. Option spreads are higher when the aggregate gamma
inventory is negative, i.e., when market makers act as momentum traders to
keep their portfolio delta neutral. Aggregate gamma inventory can explain up
to 1/3 of the daily variation in spreads. We show that market makers have
balanced gamma inventory whenever markets are illiquid, volatile, and finan-
cial intermediaries are constraint. Our results indicate that market makers
actively adjust option expensiveness to balance their inventory in the desired
direction. Standard option valuation models and market microstructure the-
ories contradict our findings.
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I. Introduction

Options are a central cornerstone for financial markets because of their diverse func-

tionality. Market makers usually take the opposite side of a trade and thereby pro-

vide liquidity. By quoting requirements and market-making obligations, they have

to absorb buying and selling pressure and build up inventories, which might deviate

from the market makers’ optimal inventory. The inventory requires hedging, which

is costly and risky due to market imperfections such as discrete trading or jumps in

the underlying (Figlewski, 1989). Deviations from the optimal inventory, associated

risks, and hedging costs should be reflected in an option’s liquidity and the market

makers’ compensation for liquidity provision, i.e., the option’s spread.

We investigate this conjecture in the market for S&P 500 options and ask: What is

the relation between hedging needs and option liquidity? When do market makers

require more compensation for providing liquidity? Which positions are associated

with higher liquidity costs? To answer those questions, we compute the daily inven-

tory of market makers and determine the magnitude of their hedging activities by

the aggregated gamma inventory. Gamma measures changes in an option’s delta and

therefore measures to which extent market makers have to rebalance their inventory.

The aggregate gamma exposure approximates the hedging cost of market makers

(Gârleanu, Pedersen and Poteshman, 2009).

We start by comparing the aggregate gamma inventory (AGI) to liquidity measures

constructed from intraday option trades. The options market’s liquidity decreases

with the aggregate gamma inventory. A negative AGI is associated with wider op-

tion spreads, i.e., higher compensation for the market maker, while a positive AGI

is associated with narrower spreads. This indicates that market makers do not like

negative gamma exposure and require higher compensation to provide liquidity.

Further, we show that market makers manage their AGI proactively in turbulent

times. When markets are volatile, illiquid, and intermediaries are constraint, the

rebalancing activities of option market makers reduce to a minimum, i.e., the ag-

gregate gamma inventory is around zero. As a result, market makers are less willing

to transact an option, translating to increasing option expensiveness (VRP) and

increasing liquidity risk premiums.

We compute volume-weighted effective relative spreads for each option series and
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categorize them into five moneyness buckets. Regressions of the effective spread

buckets on AGI show that the aggregate gamma inventory explains a significant

fraction of the realized spread. All coefficients are negative and economically mean-

ingful. For example, a one-standard-deviation decrease in AGI translates into an

1.5% higher relative spread for out-of-the-money options. Hence, the market mak-

ers’ compensation for providing liquidity increases significantly. Additionally, the

analysis reveals that up to one-third of the variation in relative spreads is explained

by AGI. The effect is especially strong for near the money options, which have large

gamma exposure and thus larger rebalancing costs. Our results are unchanged when

we include the current volatility level (V IX) as a control variable. We also control

for the previous-day relative effective spread but find that our main conclusion is

still valid. Panel regressions confirm the strong negative relationship between AGI

and options market liquidity. Using spreads determined from high-frequency option

quotes and high-frequency implied volatility effective spreads does not change our

conclusion.

What can explain these results? Previous literature documents that an option’s

gamma and the associated rehedging costs are an essential determinant for the bid-

ask spread (Engle and Neri, 2010; Jameson and Wilhelm, 1992) and the interplay

between option demand and option prices (Gârleanu et al., 2009). Moreover, the

theoretical and empirical work of Stoikov and Sağlam (2009), and Wu, Liu, Lee

and Fok (2014) underline the importance of proactive management of an option

inventory when facing unheadgeable risk. In particular, the systematic management

of the gamma exposure of the aggregated inventory seems to be a crucial component

in the risk management framework of option market makers. However, these studies

suggest that the magnitude of gamma is relevant, not the directional exposure of

market makers. A high positive gamma should have the same effect as a high negative

gamma.

The findings of Baltussen, Da, Lammers and Martens (2021), Barbon, Beckmeyer,

Buraschi and Moerke (2022) and Ni, Pearson, Poteshman and White (2021) indi-

cate that the gamma imbalance plays a crucial role in the systematic rebalancing of

hedges. When market makers have negative aggregate gamma inventory, their hedge-

demand goes in the same direction as the underlying moves (momentum traders).

Accordingly, a potential mechanism that rationalizes our findings are illiquidity spi-
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rals from the underlying. For instance, when markets are short (long) gamma on

aggregate and the S&P 500 decreases, the market maker has to sell (buy) the un-

derlying to keep the inventory delta-neutral. Hence, market makers trade in the

same direction as most of the market when aggregate gamma is negative. Therefore,

it may be harder to find a counterparty to execute the trade, or the conditions may

be less favorable because market makers demand liquidity.

We test this hypothesis by comparing AGI to two illiquidity measures. The first is

the Amihud (2002) measure that proxies illiquidity in the stock market. The second

is the funding illiquidity measure from Hu, Pan and Wang (2013). We show that

markets are indeed more illiquid when AGI is negative, as suggested by higher levels

of illiquidity. Nevertheless, controlling for funding and market illiquidity does not

change the strong negative relationship between AGI and option market liquidity.

Therefore, we conclude that liquidity spirals cannot rationalize our results.

However, the analysis reveals that market makers’ aggregate gamma inventory is

extremely balanced (close to 0) whenever market or funding illiquidity is high. This

suggests that market makers manage their inventory such that their hedge-demand

is relatively low in illiquid times. We investigate this finding and show that market

illiquidity, realized volatility, and intermediary health explains balanced AGI levels.

Therefore, whenever markets are illiquid, volatile, and financial intermediaries are

constrained, option market makers balance their inventory exceptionally well. Es-

pecially intermediary constraints seem to explain days with balanced AGI. These

findings are in line with the implications of Chen, Joslin and Ni (2019) and Farago,

Khapko and Ornthanalai (2021), who show that during market turmoil, the liquidity

provision by SPX options market makers deteriorates as they reduce their supply

and even become net buyers.

How do market makers have such a balanced gamma inventory in turbulent times?

First, of course, they strategically adjust their quotes such that market participants

buy more when inventory is negative and sell more when inventory is positive (Ho

and Macris, 1984). Second, our analysis also indicates that market makers adjust

overall option expensiveness to either receive a higher compensation or balance their

gamma inventory in the desired direction, as suggested by extremely positive and

negative levels of the variance risk premium. We reinforce this conjecture and show

that states in which AGI is balanced predict higher reversal returns, a proxy for
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overall liquidity compensation (Nagel, 2012).

The remainder of this work is structured as follows: Section II. reviews literature,

section III. details the data, section IV. explains the construction of our aggregated

gamma inventory measure, section V. presents our main results that negative ag-

gregated gamma inventory is associated with higher spreads, section VI. presents

results for the comovement of balanced gamma inventory and illiquidity, whereas

the last section VII. concludes.

II. Literature

Intermediary asset pricing. Our paper contributes to the rapidly expanding lit-

erature on the role of financial intermediaries for prices across financial markets. The

risk absorption capacity of financial intermediaries is closely related to their compen-

sation for providing liquidity and the formation of asset prices (Adrian, Etula and

Muir, 2014; He, Kelly and Manela, 2017). Our analysis shows that during market

turmoil, index options market makers proactively reduce their absolute aggregated

gamma inventory (AGI) and are less willing to supply liquidity, which leads to

elevated option expensiveness and increased liquidity risk premia.

Market microstructure. In general, market makers across financial markets are

compensated for providing liquidity by adjusting the quoted bid-ask spread (Glosten,

1987; Glosten and Harris, 1988; Huang and Stoll, 1997; Madhavan, Richardson and

Roomans, 1997). However, in derivatives markets, market makers are assumed to

hedge their position in the underlying by establishing an initial hedging position

and continuously rebalancing the hedge throughout time (Cho and Engle, 1999;

Engle and Neri, 2010; Kaul, Nimalendran and Zhang, 2004; Petrella, 2006). Many

studies have examined the determinants of bid–ask spreads in the options market

(Fahlenbrach and Sandas, 2003; George and Longstaff, 1993; Ho and Macris, 1984;

Jameson and Wilhelm, 1992). However, previous empirical studies mainly focus on

single option characteristics and their relation to the formation of the bid-ask spread,

rather than considering the aggregated inventory of the market maker. Engle and

Neri (2010) find that hedge rebalancing costs are an essential component of the bid-

ask spread in the options market. The theoretical work of Stoikov and Sağlam (2009)

underlines the importance of strategic management of the absorbed inventory when
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facing unhedgeable risk by systematically adjusting the related bid-ask spreads.

Accordingly, the empirical work of Wu et al. (2014) confirms that rebalancing costs

are more important than initial hedging costs for determining option bid-ask spreads

in the Taiwanese option market. Our findings confirm the notion above that the

aggregated gamma inventory is proactively management by index option market

makers. However, our main contribution is that we show that the sign of their

gamma imbalances are from first-order importance.

Intermediary constraints in option markets. Moreover, by supplying liquidity,

derivative market makers face unhedgeable parts of risks, for which they are in turn

compensated for. Thereby, as market makers are characterized as net-seller in options

markets (Gârleanu et al., 2009), incomplete markets expose them to large amounts

of market variance risk (Bates, 2003; Cheng, 2019). Johnson, Liang and Liu (2018)

state that SPX options are mainly traded in order to transfer unspanned crash risk.

Gârleanu et al. (2009) and Bollen and Whaley (2004) document that rising demand

for options results a in higher implied volatility. Related work of Fournier and Jacobs

(2020) links the amount of inventory risk and wealth of an index options market

maker to the variance risk premium. Boyer and Vorkink (2014) findings suggest that

high ask prices for lottery-like options are to compensate market makers for bearing

unhedgeable risks. Moreover, Jacobs, Mai and Pederzoli (2021) and Farago et al.

(2021) find that demand and supply shocks in SPX options are positively correlated

in good times and negatively correlated during a crisis. Subsequently, rising demand

for index options during a crisis coincides with market makers’ reduced supply of

liquidity. Similar observations are made by Chen et al. (2019) who link the reduced

liquidity provision of financial intermediaries for tail risk insurance to the tightening

of intermediary financial constraints during a crisis. The reduced liquidity supply

leads to increased option expensiveness and elevated risk premia. Moreover, these

findings are in line with Gârleanu and Pedersen (2007) who theoretically link tight-

ening risk management to a reduced liquidity supply. Our results corroborate the

preceding relationship between risk-bearing capacity, liquidity supply, and option

expensiveness. When markets are illiquid, volatile, and financial intermediaries are

constrained, market makers reduce their gamma exposure and adjust the overall

option expensiveness as indicated by elevated levels of the V IX.

Liquidity premium. Our paper further incorporates the influence of market liquid-
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ity on financial markets (Acharya and Pedersen, 2005; Amihud, 2002; Amihud and

Mendelson, 1986; Brennan and Subrahmanyam, 1996; Chordia, Sarkar and Subrah-

manyam, 2005; Easley, Kiefer, O’Hara and Paperman, 1996; Pástor and Stambaugh,

2003) and the literature that incorporates short-term reversals as proxy for the liq-

uidity premium earned by market makers for equities (Drechsler, Moreira and Savov,

2021; Lehmann, 1990; Lo and MacKinlay, 1990; Nagel, 2012). Nagel (2012) presents

evidence that the returns from liquidity provision can be predicted with the V IX.

Drechsler et al. (2021) further shows that the provision of liquidity and volatility

exposure are tightly linked as they share the same risks. Our results suggest that

increases in the liquidity risk premium coincide with balanced gamma inventory of

option market makers.

Options and underlying. Another body of literature relates the inventory and

related Delta-hedging and rehedging of a representative market maker to the un-

derling’s volatility (Baltussen et al., 2021; Barbon and Buraschi, 2020; Golez and

Jackwerth, 2012; Hu, 2014; Ni, Pearson and Poteshman, 2005). Ni et al. (2021) show

a negative relationship between the market makers’ net gamma and a stock’s real-

ized volatility. However, Chordia, Kurov, Muravyev and Subrahmanyam (2021) find

that SPX options order flow cannot predict index returns. SqueezeMetrics (2020)

illustrate the impact of option greeks on hedge demand. We build on the existing

literature by investigating the effects of the sign of the aggregated gamma inven-

tory of the index option market makers. Our findings suggest that market makers

increase the bid-ask spreads and, in turn, demand a higher liquidity premium when

the AGI is negative as they are forced to trade in the direction of the underlying.

III. Data

Our main focus lies on S&P 500 options, for which we merge several databases.

CBOE Open-Close database: We focus on S&P 500 index (SPX) options which

trade exclusively on the Chicago Board Options Exchange (CBOE). In order to

construct the aggregated inventory of SPX options market makers, we rely on the

C1 CBOE Open-Close database. The data distinguishes between buying (long) and

selling (short) trades and whether the trade was to open a new position or close an

existing one. Volumes are aggregated by origin (customers, professional customers,
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broker dealers, and MMs). Broker-dealers and market makers are denoted as “firms.”

Customers and professional customers are further broken down into trade size buck-

ets (fewer than 100 contracts, 100− 199 contracts, greater than 199 contracts). The

data is available from January 1, 1996 until December 30, 2020. Overall, the data

consist of approx. 6.2 million data points. Generally, we do not restrict our data set

to specific moneyness or maturity buckets as we wish to measure the full market

maker inventory. Therefore, we do not apply any filters to the C1 data. We sum up

options that have different option symbols but are of same type, strike, and expiry.

OptionMetrics: We rely on end-of-day option quotes from OptionMetrics Ivy DB

and define the options contracts price as the bid-ask-midquote. We adjust options

expiry from Saturdays to Fridays and clean the data from duplicated data points.

We estimate the risk-free rate from zero coupon Treasury Yields using the piecewise

cubic hermite interpolating polynomial, obtained from OptionMetrics. The dividend

yield is also obtained from OptionMetrics. If no IV or delta is available, we calculate

Black and Scholes (1973) implied volatilities or, if not possible, interpolate missing

IVs across moneyness using OTM options. The data is available from January 1,

1996 until December 30, 2020.

CBOE intraday Option Trades: To construct effective relative spreads, we rely

on high-frequency trade data for SPX options obtained from the CBOE. The data

includes all trades tracked on an intraday basis. The filters we apply rely on An-

dersen, Archakov, Grund, Hautsch, Li, Nasekin, Nolte, Pham, Taylor and Todorov

(2021). We filter out trades with Trade Condition ID of 40 to 44, and focus on nor-

mal trades according to the “cancelled trade condition ID.” We filter trades where

the bid is higher than the ask and trades for which the bid or ask price is zero. We

filter out trades with non-existing implied volatility, trade price, or trade volume.

Furthermore, we exclude entries for which a transaction price is either lower than

the current bid price minus the current spread, or higher than the current offer price

plus the current spread, and options with quoted bid-ask spread above 50% of the

mid-quote. Lastly, we exclude penny options which have a midprice smaller than

$0.1. The data is available from January 1, 2004 until December 30, 2020.

CRSP: For the construction of reversal-strategies returns as a proxy for liquidity

provision (Nagel, 2012), we rely on stock return data from the CRSP daily return file.

Reversal strategy returns based on daily returns are calculated from daily returns,
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adjusted for stock splits and dividends. We restrict our data to exchange codes 1,

2, and 3 (NYSE, NYSE MKT/AMEX, NASDAQ) and ordinary common shares in

the US. If a price is not available, we use the bid-ask midpoint as the share price.

We kick out penny stocks with a share price smaller than $1 on the last trading day

of the previous calendar month.

We use these four different datasets for the construction of the aggregated market

maker gamma exposure and the calculation of proxies for liquidity provision, such

as effective relative spreads and reversal-strategy returns. These measures are then

used in the empirical analysis that follows. Because intraday option trade data is

only available from 2004 onwards, we restrict our sample period to January 1, 2004

until December 30, 2020. However, we note that the market maker inventory we use

at the beginning of 2004 has been build up over the previous years. That is, we use

the preceding years as a ‘burn-in period’

IV. Aggregated Gamma Inventory

A. Construction

This section describes the construction of the aggregated market maker gamma

exposure for the S&P500.

Market maker inventory: To construct SPX options market maker net inventory

for each day, we merge the CBOE Open-Close database data with the quote data

from OptionMetrics. Based on the merged data we construct a daily measure of net

market maker inventory. For each day t, we keep the option positions from t − 1

with time to maturity larger than zero. When an option chain expires, the option is

assumed to stay in the inventory for the whole day.

We follow Ni et al. (2021) in calculating the market maker inventory. We define net
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open interest as

OIbuy,yj,t = OIbuy,yj,t−1 + V olumeOpen buy,y
j,t − V olumeClose sell,y

j,t

OIsell,yj,t = OIsell,yj,t−1 + V olumeOpen sell,y
j,t − V olumeClose buy,y

j,t

netOIj,t = −1 ·
[
OIbuy,custj,t −OIsell,custj,t +OIbuy,firmj,t −OIsell,firmj,t

]
, (1)

where OIx,yj,t is the open interest of type x (buy or sell) by investor class y (firms

and customers) in option j at the close of trade t. V olumeOpen buy,y
j,t are new long

positions and V olumeOpen sell,y
j,t are new short positions. V olumeClose buy,y

j,t are buys

that close existing short positions and V olumeClose sell,y
j,t are sells that close existing

long positions, i.e., both type of trades close a previously established position. Hence,

they decrease the open interest in the respective option. Because market makers are

the opposite side of the trade, we multiply the residual by −1.

Market maker gamma exposure: For each day, we calculate the aggregate

gamma exposure of the market maker by gamma weighting the inventory positions

for each day and summing over all contracts j, that is,

netΓt = S2
t ·

N∑
j=1

(netOIj,t · Γj (St, K, τ, IV, r, d)) , (2)

where Γj (t, St) is the Black and Scholes (1973) gamma for option j at time t, St

the current level of the S&P500, K the strike price, τ the time-to-maturity, IV the

Black-Scholes implied volatility, r the risk-free rate, and d the dividend yield.

We assume that market makers hedge their inventory at the end of trading day t.

On option expiry days, we assume that market maker rehedge at noon, i.e., assign

the option a time-to-maturity of half a trading day.1 If τ is zero, we match the prior

day’s quotes to get an IV for each option chain.

To account for the time-trend in option markets, we normalize the aggregate gamma

inventory (AGI) by the 30-day moving average of total contracts in the market

1 We think that this assumption is reasonable because the gap risk sometimes amounts to tens
of million dollars. Assuming that market makers do not hedge such risks seems more unrealistic.
Results are unchanged if we do not account for gap risk.
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makers inventory, that is

AGIt =
netΓt

1
M

∑n−1
i=0 Total ContractsM−i

, (3)

where M equals 30. Therefore, AGI is the dollar gamma exposure per unit of con-

tract.

B. Descriptive Statistics

Figure 1 depicts the time series of the market maker gamma exposure in USD for the

whole inventory, for long positions only, and for short positions only. We note that

market makers’ gamma inventory has increases significantly over the last decade.

Before 2011, average net gamma amounted to approx. one billion USD (in absolute

terms) and was almost always negative. From 2011 until 2021, the absolute average

net gamma was approximately five billion USD and more often positive. The lowest

net gamma is observed around the financial crisis, where it dropped to less than

−10 billion USD. The largest net gamma inventory was accumulated in 2018, which

might be due to sharp increase in volatility in February 2018 (“Volmageddon”).

As is evident from long and short net gamma, SPX market makers almost always

have a relatively balanced inventory. Both time series have a very similar trend,

just in the opposite direction. Figure 2 displays the 30-day moving average of the

absolute number of contracts in the market maker’s inventory. The plot shows that

the number has increased from approx. 1 million contracts in 2004 to 5 million

contracts in 2011. Ever since the number has been relatively constant. Therefore,

the larger net gammas in more recent years are not merely attributable to more

contracts being traded at the CBOE. Lastly, we show AGI, the aggregated gamma

inventory per unit of contract, in Figure 3. The figure shows that the absolute dollar

gamma per unit of a contract before the financial crisis is comparable to the level

in more recent years. Interestingly, after the financial crisis (2009-2012), AGI was

very often around zero, indicating that market makers were not willing to build up

gamma inventories in either direction.

Table I presents summary statistics for the aggregated net gamma (long & short)

and our aggregated gamma inventory measure. The table shows that AGI is, on
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average, relatively centered around 0. The standard deviation equals 500 USD per

unit of contract. The skewness equals 0.10 and indicates that the distribution is

close to normal. The daily autocorrelation is relatively high because inventories do

not build up abruptly.

V. Liquidity and Gamma Inventory

A. Option Markets

Effective relative spread: Using intraday trade data, we obtain the effective rela-

tive spread as the direct costs that market makers charge for transacting in options

markets. The spread reflects the costs and risks liquidity providers in option markets

face, such as hedging needs, rebalancing costs, and model risk (Green and Figlewski,

1999). Therefore, it is a conventional measure of liquidity. An increase in the effec-

tive spread signifies a deterioration of liquidity. We follow Christoffersen, Goyenko,

Jacobs and Karoui (2018) and compute the effective relative spread for the kth trade

from intraday trade data as

ESk,j =
2|OP

k,j −OM
k,j|

OM
k,j

, (4)

where OP
k,j is the trade price of the kth trade for option chain j and OM

k,j is the

midpoint of the best bid and ask at the time of the kth trade. We take the volume-

weighted average of all ESk,j to obtain the daily effective relative spread for each

option chain j as

ESj =

∑
k V olkESk,j∑

k V olk
. (5)

Next, we categorize options by their moneyness m = K
S

and divide them into ten

buckets. Deep-out-of-the-money (DOTM) ranges fromm > 1.1 for calls andm < 0.9

for puts, out-of-the-money (OTM) from 1.025 < m ≤ 1.1 for calls and 0.975 ≤ m <

0.9 for puts, at-the-money (ATM) from 0.975 ≤ m ≤ 1.025 for both calls and puts,

in-the-money (ITM) from 0.9 ≤ m < 0.975 for calls and 1.025 < m ≤ 1.1 for puts,

and deep-in-the-money (DITM) for m < 0.9 for calls and m > 1.1 for puts. Within
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each bucket, we take the median effective spread of each option series.

Quoted spread: The effective spread measures the actual costs paid by investors

whenever an option is traded. Quoted prices also express the general willingness of

market makers to trade an option. Quoted prices represent the intersection between

demand and supply and are a crucial determinant of the traded price. Therefore,

we also determine the quoted spread as a measure of liquidity from high-frequency

trade data.2 We calculate the quoted spread QSj for each option chain j as

QSj =
Askj − Bidj

OM
j

, (6)

where OM
j = (Askj +Bidj)/2 is the mid-price, and Bidj and Askj are the respective

bid and offer prices. As above, we categorize options into ten moneyness buckets

and use the median within each bucket.

Implied volatility effective spread: Chaudhury (2015) points out that conven-

tional measures of option liquidity, such as relative spreads and dollar spreads, are

sometimes poorly suited to measure the liquidity of an option. These measures tend

to be biased toward lower-priced options. In particular, relative spreads seem to clas-

sify lower-priced options as relatively illiquid when they are often the most liquid

in terms of speed and ease of trade execution. To make option spreads comparable

across moneyness, we also calculate the implied volatility effective spread (IV ES).

We compute the IV ES for each trade k as

IV ESk,j =
2 · |IV P

k,j − IV M
k,j |

IV M
k,j

, (7)

where IV P
k,j is the Black and Scholes (1973) implied volatility for the trade price of

the kth trade of option chain j. IV M
k,j is the the implied volatility of the mid-price.

As above, we take the volume-weighted average of all IV ESk,j and use the same

moneyness buckets.

OLS Regressions: We start by regressing the relative effective spread ESB
t for each

2 Furthermore, we calculate end-of-day quoted spreads. We use all available option quotes from
OptionMetrics but remove quotes that could mechanically drive our results. We remove options
with a negative bid-ask spread or a bid-ask spread that is larger than 50% of the mid-price. Finally,
we remove options that do not have open interest because they often have stale quotes.

12

Electronic copy available at: https://ssrn.com/abstract=4138512



moneyness bucket B on our measure of aggregated market maker gamma inventory

AGIt, that is,

ESB
t = α + β1AGIt + Controls + et. (8)

Controls include the option-implied volatility index V IXt and the previous-day effec-

tive spread ESB
t−1. We standardize all explanatory variables to ensure comparability.

We use HAC-robust standard errors with a lag of 10.

In Panel A of Table II, we show results regressing the call option’s effective spreads on

AGI. The coefficient for AGI is negative and statistically highly significant through-

out all buckets. A negative gamma inventory is associated with higher spreads, and

a positive gamma is associated with lower spreads. A one standard deviation de-

crease in AGI is associated with a 1.53% higher relative spread for OTM calls and

0.29% for ITM calls. As the absolute spread increases with moneyness, it is natural

to expect a higher impact for OTM options. The explained variation is large, espe-

cially for options that are not DOTM or DITM. The largest R2 is obtained for ATM

calls and amounts to 34%. The explained variation is highest for options with the

highest gamma (ATM calls). This indicates that the gamma inventory is extremely

relevant in explaining call options’ liquidity that exposes the market maker to the

highest gamma risk. Market makers more actively set the spreads for those options

following their aggregate gamma inventory.

Panel B of Table II uses the V IX as an additional explanatory variable. As is evident,

the inclusion of the V IX does not affect the importance of AGI. All coefficients

across all moneyness buckets are virtually unchanged. In terms of R2, the V IX

adds explanatory power only for the ITM and DITM buckets. Panel C controls for

the effective spread of the previous day. Again, we find that AGI is a significant

explanatory variable for liquidity of call options. The economic magnitude decreases

after the inclusion of ESB
t−1 but is still sizable. A one standard deviation decrease in

AGI is associated with approx. 0.4% higher relative spreads for DOTM and OTM

calls, 0.15% for ATM and ITM calls, and 0.05% for DITM calls. The explained

variation increases significantly, and ranges between 22% for DOTM calls and 75%

for ATM calls, with a large fraction attributable to AGI.

Table III shows similar results for effective relative spreads of put options. The mag-
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nitude of the coefficients, significance level, and explained variation are comparable

to the results for call options. For instance, a one standard deviation decrease in

AGI is associated with an 1.5% increase in OTM put spreads. The results are also

robust to the inclusion of the V IX and ESB
t−1. Thus, the aggregate gamma exposure

of market makers affects the liquidity of all option types.

Panel Regressions: We also perform panel regressions to control for the hetero-

geneity of the data. The model we apply uses fixed effects for each bucket B and

reads as

ESB
t = αB + β1AGIBt + β2V IXB

t + β3ESB
t−1 + eBt . (9)

As additional robustness, we repeat the analysis but replace the effective spread

with the quoted spread (QS) from high-frequency trade data and implied-volatility

effecitve spreads. Table IV reports the results.3 Our measure of aggregate gamma

inventory shows a significant negative impact on effective relative spreads for all

specifications. A one standard deviation decrease in AGIt implies a 0.7% increase

in effective relative spreads without considering the previous day’s effective spread

and a 0.2% increase with its inclusion. The level of volatility as measured by the

V IXt is not able to explain the effective spreads and does not add any explanatory

power. The within R2 equals 10% for AGI and increases to 34% when we include the

previous-day spread. Turning to quoted option spreads, we observe similar results.

A decrease in AGI is associated with increased quoted spreads. The coefficient is

comparable in magnitude and significance. The within R2 decreases to 6%.

For the implied volatility effective spreads (IV ES), results are similar in terms of

coefficient magnitude and explained variation. The economic significance of AGI

increases when we use a spread measure that is more appropriate in comparing

a panel of options. The absolute coefficient of 0.038 is half the coefficient of the

previous day implied volatility spread (0.075). The difference is larger when we use

ES or QS. Additionally, the contribution of AGI to the explained variation increases

using IV ES. For all regressions we calculate entity fixed effects for each moneyness

3 We do not include time fixed effects because the effective spreads themselves exhibit a time
trend that would be perfectly correlated with a time fixed effects. Further robustness checks for
IV ES show that our results are robust to using further lags of the spread measure as well as
monthly time fixed effects in addition to entity fixed effects. The results are depicted in Table XI.
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bucket and calculate clustered standard errors for each bucket (entity) and each

month (time).

AGI is also able to predict future spreads in panel regressions with remarkably high

R2, as shown in Table V. The economic and statistical significance is comparable.

Discussion: Our results show that market makers provide more liquidity when the

gamma inventory is positive and less liquidity when the gamma inventory is negative.

Put differently, spreads are tighter when gamma inventory is positive and broader

when gamma inventory is negative. The effect is most pronounced for at-the-money

options that have the highest gamma. Jameson and Wilhelm (1992) and Gârleanu

et al. (2009) show that an option’s gamma is an essential determinant of its bid-

ask spread and expensiveness because of higher variability in the market maker’s

hedge portfolio. However, both studies suggest that the magnitude is essential, not

the direction of gamma. What potential channels could rationalize that a negative

gamma exposure is more important than a positive gamma exposure? A negative

(positive) gamma exposure indicates that the hedging demand of the market maker

will enhance (dampen) the underlying’s move. Therefore, negative (positive) gamma

exposure is generally associated with increasing (decreasing) volatility (see, among

others, the theoretical contribution of Jarrow (1994)). Potentially, the execution of

the market maker’s delta hedge is significantly more accessible when the gamma

exposure is positive. For instance, if the S&P 500 increases over one trading day and

assumes a positive gamma exposure, the market maker has to sell the underlying

to be delta-neutral. Hence, in a market where demand exceeds supply, the market

maker finds a counterparty that buys the market makers S&P 500 position more

effortlessly. On the other hand, if the market maker has a negative gamma inventory

and the stock price decreases, the market maker has to sell to remain delta-neutral.

With aggregate prices falling, aggregate selling in the S&P occurs and it will be

harder for the market maker to find a counterpart, taking liquidity from markets.

Therefore, our findings might result of liquidity spillovers from the underlying.

B. Market and Funding Liquidity

Less liquidity in the options market might be a byproduct of less market liquidity

in the underlying or less funding liquidity (Brunnermeier and Pedersen, 2009). To
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test whether our results can be explained by mere liquidity dry-up that spirals to

the options market, we obtain two liquidity measures. The first is the measure of

Amihud (2002) that proxies for stock market illiquidity. The second is the measure

of Hu et al. (2013) that proxies for funding illiquidity.

We plot the relationship between AGI and market illiquidity in Figure 4. Negative

gamma inventories coincide with higher levels of illiquidity. The mean illiquidity

level conditional on AGI < −100 equals 0.165, while the mean level conditional

on AGI > 100 is 0.087. Hence, markets are generally more illiquid when AGI is

negative. When we regress the illiquidity measure on the absolute conditional AGI,

we find a negative relationship between AGI and illiquidity for AGI > 100 (adj.

R2 of 7.5%) and a positive relationship for AGI < −100 (adj. R2 of 3.6%). Hence,

markets are more liquid when AGI is positive, and liquidity increases with higher

levels of AGI. In contrast, markets are more illiquid when AGI is negative and

illiquidity increases with decreasing AGI.

Figure 5 plots the relationship between AGI and funding liquidity. We also find a

higher level of funding illiquidity for days with negative AGI. The conditional mean

amounts to 2.21 for AGI < −100 and 1.68 for AGI > 100. Regressing funding

illiquidity on absolute conditional AGI shows that the relationship is not reversed.

The coefficient for AGI < −100 equals -0.0012 (-2.99) and for AGI > 100 it equals

-0.0007 (-2.49). The adj. R2s are 13.3% for negative AGI, and 4.6% for positive

AGI.

Table VI repeats our panel regression including both illiquidity proxies. The results

show that including either illiquidity proxy does not change our results. Neither

the coefficient of AGI nor its statistical significance changes, even if we include

both illiquidity proxies. The within-R2 is also unaffected. The same conclusion holds

using the quoted spread as the dependent variable. The economic significance of the

coefficient of AGI doubles when using implied volatility effective spreads, providing

even more robustness to our results. Hence, we conclude that our finding is not

merely a phenomenon of illiquidity spillovers. Options markets are more illiquid

(higher spreads) when aggregate gamma inventory is negative. AGIt is also able to

predict future spreads when using the illiquidity measures as controls, as shown in

Table VII. The economic and statistical significance is comparable.
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VI. Balanced Gamma Inventory

Interestingly, Figure 4 and Figure 5 both reveal that states with extreme illiquidity

almost always coincide with a very balanced gamma inventory of market makers.

Moreover, both figures show that illiquidity peaks when AGI ≈ 0. This suggests that

market makers actively manage their option inventory such that the hedge-portfolio

changes little.

A. Illiquidity, Volatility, and Intermediary Health

We elaborate on this finding and run a probit model. The independent variable is a

dummy that expresses balanced AGI. The dummy equals one when absolute AGIt

is lower than the 20th percentile and zero otherwise. As suggested by Figure 4, we

hypothesize that it is more likely to see a dummy of one if market-wide illiquidity

is high. Additionally, we test whether AGI is balanced when the market is more

volatile. Lastly, we include the intermediary health factor from He et al. (2017)

that proxies for intermediary constraints. Low levels suggest that intermediaries are

constrained. All measures react to turbulent market episodes, and we argue that the

market actively reduces its rebalancing needs in such states by obtaining a gamma-

neutral inventory.

We interpret our dependent variable as a probability. The higher the prediction of the

model, the more likely it is for the dummy to take a value of one, or put differently, to

obtain a low AGIt (below the 20th percentile) state. Table VIII presents the results.

All coefficients show the expected sign and are highly significant for all specifications.

The R2 is especially strong for HKMt in columns (3) and (5).

Note that we can only interpret the sign and the significance level. In order to

interpret the economic significance, we need to calculate the marginal effects and

plug the predicted value into the probability density function. For example, if we

take the full model (7) and assume that RVt and the Amihudt measure are elevated

(80th percentile: = 0.16 for RVt and 0.2 for Amihud), whereas the HKMt measure is

low (20th percentile: 0.05). If the Amihudt illiquidity measure increases by one unit,

the probability to end up in a low AGIt state increases by 0.5726 (= ϕ(0.88+ 1.48 ·
0.20 + 1.42 · 0.16 − 36.8 · 0.05) · 1.48). If RVt increases by one unit, the probability

17

Electronic copy available at: https://ssrn.com/abstract=4138512



that the “low AGIt” is one would increase by 0.5493. The effect is economically

largest for the HKMt measure. If HKMt were reduced by one unit, the probability

of ending in a low AGIt state would increase by 1400.23%.4 All marginal effects are

significant at the 1% level.

In contrast, we can look at world states where liquidity is high, and markets are

calm. We calculate marginal effects for a low RVt and Amihud illiquidity (20th

percentile: 0.0714 for Amihud and 0.0949 for RVt) measure, and a high level of

HKMt (80th percentile: 0.0673 for HKMt). Increasing the Amihud measure by

one unit, increases the probability of being in a low AGIt state by only 0.0325

(= ϕ(0.88 + 1.48 · 0.07 + 1.42 · 0.06 − 36.8 · 0.09) · 1.48). Furthermore, if we would

increase RVt by one unit, the probability of ending up in a low AGIt state would

increase by 0.0311, way smaller than above. Lastly, decreasing HKMt by one unit

would increase the probability by 0.8069, again, way smaller than above. All marginal

effects are highly statistically significant.

B. Option Expensiveness

States of balanced AGIt are well explained by measures of market illiquidity, volatil-

ity, and intermediary constraints. Intermediary constraints seem to be the most cru-

cial determinant in explaining low AGIt, which is in line with Chen et al. (2019).

The authors show that constraints require financial intermediaries to aggressively

hedge their risk exposure during turbulent market episodes such that they no longer

provide liquidity to the options market. Those episodes are also related to option

expensiveness.

Increasing option expensiveness has two effects on the market maker. First, com-

pensation for providing liquidity increases. When market makers take the short side

of the trade, they receive a higher option premium. This, in turn, increases the will-

ingness of other market participants to take the short side of the trade such that

they receive the higher premium. Market makers are more likely to balance their

inventory when other market participants are also willing to provide liquidity.

Therefore, we test whether states with balanced gamma inventory are related to

4 It is of course not realistic to reduce a limited ratio by one unit. Therefore we are left with
such extreme numbers.
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option expensiveness. As in Chen et al. (2019), we use the variance risk premium

(VRP) as a measure of option expensiveness. Figure 6 plots the relationship between

AGI and the VRP. We observe that high levels of the variance risk premium almost

always occur when AGI is relatively balanced. Interestingly, negative levels of the

variance risk premium also coincide with balanced AGI. This indicates that market

makers actively adjust the variance risk premium to control their AGI during tur-

bulent times. As a result, they either receive higher compensation or increase the

willingness of other participants to provide liquidity to the options market.

We, therefore, expect a strong relationship between balanced AGI and the vari-

ance risk premium. Table IX reports results in which we use the balanced AGI

dummy as an explanatory variable. The analysis shows that balanced AGI states

are significantly related to increasing option expensiveness. The dummy is positive

and significant in contemporaneous regressions and predictive regressions. The R2

is approx. 16%. Even after we control for today’s option expensiveness, the dummy

significantly predicts tomorrow’s option expensiveness. Similar results are obtained

when using the aggregate level of implied volatility (V IX) as the dependent variable.

C. Liquidity Risk Premium

Nagel (2012) finds that the V IX is highly correlated with returns from liquidity

provision. The argument is that the V IXt proxies for underlying state variables

driving market makers’ willingness to provide liquidity. For example, an underlying

state variable could be AGIt since the market seems to be very illiquid when AGIt

approaches zero. Market makers do not want to leave their “sweet spot” of a balanced

inventory (AGIt ≈ 0) because low absolute gamma means less hedge rebalancing

activity for market makers. Therefore, liquidity risk premiums should increase when

AGI is balanced.

We test the relationship between AGI and liquidity risk premium. As in Nagel

(2012), we use reversal-strategy returns as a proxy for the liquidity premium.5 The

original sample of Nagel (2012) spans the period January 1998 to December 2010.

To make results comparable, we analyze the full sample (2004-2020), the Nagel

(2012) sample (2004-2010), and the more recent sample (2011-2020). We use the

5 Appendix A details the exact calculation.
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dummy variable that takes the value of one when the variable AGIt is below the

20th percentile and perform predictive regressions from t to t+1. Results are reported

in Table X.

The balanced AGI dummy is positive and highly significant for the full sample. If

AGIt is below the 20th percentile, the costs for supplying liquidity, measured by

reversal-returns, increase by 0.5539 in t+ 1. The effect doubles for the period until

2010 and is insignificant for the subsample starting in 2011. The adjusted R2 is

1.51% and especially high with 11.73% for the 2004-2010 subsample. In Panel B, we

use the V IXt as an explanatory variable to compare our results to the findings of

Nagel (2012). For the full sample, the coefficient is positive with a value of 0.4972

and highly statistically significant. The economic and statistical significance of the

coefficient increases for the subsample from 2004-2010. The R2 is 16.86%. For the

subsample from 2011 onwards, the coefficient is also insignificant. This period is

characterized by calm markets and low liquidity risk premiums. Following Nagel

(2012), the correlation appears to be high during periods of market turbulence but

not necessarily during quiet times, which explains the insignificance of the second

subsample.

Panel C includes both the dummy for low AGIt states and the V IXt. The coefficient

for the dummy is sizeable, and it is statistically significant. In a low AGIt state,

the liquidity supply compensation in t + 1 is 0.2822 higher and increases with a

higher V IXt. The same effect is observable for the subsample, including the financial

crisis. R2 reaches levels of 17.79%, and the coefficients increase statistically and

economically compared to the full sample analysis. For the second subsample, the

effect is not observable.

In Panel D, we also include the interaction between the dummy variable and the

V IXt. In a low AGIt state, the slope of the VIX coefficient increases by 0.1678,

i.e., future liquidity provision cost increase more with increasing V IXt than in

a high AGIt state. Furthermore, the intercept increases from 0.2430 to 0.5086

(0.2430 + 0.2656), meaning that liquidity provision costs are generally higher in

a low AGIt state. For the subsample, including the financial crisis, the R2 increases

to 17.50%, which is very sizeable for predictive regressions. The explanatory power

is entirely driven by our “low AGIt” dummy, supporting our hypothesis that a low

AGIt captures states of high liquidity costs as compensation for market makers’
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deviation from their desired inventory levels.

We find that low AGIt states (below the 20th percentile) coincide with higher future

costs of liquidity provision for the entire sample. A subsample analysis reveals that

the effect is mainly driven by the period, including the financial crisis. The period

from 2011 onwards is accompanied primarily by calm financial markets and low costs

for raising liquidity in financial markets. Figure 3 shows that AGIt was particularly

low during the financial crisis, explaining why the dummy responds more strongly

in the subsample analysis from 2004-2010.

VII. Conclusion

Our paper presents evidence on illiquidity premia for the SPX index option market.

We construct a measure of the aggregated gamma inventory of SPX option market

makers and find large markups in effective realized spreads for states with nega-

tive aggregated gamma inventory. Hence, options markets are more illiquid when

aggregate gamma inventory is negative. Our results are robust to several control

variables, for quoted spreads and implied volatility effective spreads, and in panel

analysis. We rule out illiquidity spirals from the underlying as the economic force

that drives our results.

Additionally, we show that the aggregate gamma inventory of option market mak-

ers is balanced during turbulent times, as indicated by higher illiquidity, volatility,

and financial constraints. We show that such episodes coincide with extremely posi-

tive and negative observations of the variance risk premium, which measures overall

option expensiveness. This suggests that market makers actively adjust the expen-

siveness of option prices to either increase their compensation or to balance gamma

inventory in the desired direction. We solidify this finding by showing that the liq-

uidity risk premium can, in part, be predicted by balanced gamma inventory.

Our findings indicate that option market makers do not desire negative gamma

balances, thereby representing sharp deviations from the market makers’ optimal

inventory. In contrast, options markets are liquid when aggregate gamma inventory

is positive. This contradicts theoretical studies that show that the magnitude of

gamma, not the direction, plays a vital role for option liquidity.
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Appendix

A Calculation of reversal-strategy returns

The weight wR
it and the strategy’s payoff LR

t for the reversal-strategy return for each

stock i is defined as

wR
it =−

(
1

2

N∑
i=1

|Rit−1 −Rmt−1|

)−1

(Rit−1 −Rmt−1)

LR
t =−

(
1

2

N∑
i=1

|Rit−1 −Rmt−1|

)−1 N∑
i=1

(Rit−1 −Rmt−1)Rit, (10)

where Rmt−1 = 1/N
∑N

i Rit−1 is the equal weighted market index return. The cal-

culation follows Lehmann (1990). Dividing by the first term in equation (10) ensures

that the strategy is either $1 short or $1 long. Calculating the returns for five dif-

ferent lags j = 1, . . . , 5 controls for long lived positive autocorrelation from private

information (Llorente, Michaely, Saar and Wang, 2002; Wang, 1994). We average

over the returns for all five lags and obtain the raw return. Subsequently, we beta-

adjust the returns by regressing the raw return on the CRSP value-weighted market

return ft and its interaction with the lagged sign of the market return ft · sign (ft−1)

(equation (11))

LR
t =β0 + β1ft + β2 (ft · sign (ft−1)) + et (11)

βt−1 =β̂1 + β̂2 · sign(ft−1) (12)

hedged returnt =LR
t − βt−1ft. (13)

We calculate time-varying betas according to equation (12) and the beta adjusted

hedged return according to equation (13).
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B Figures

Figure 1. Time-Series of netΓt
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Note. The figure depicts the aggregated, long, and short SPX option market maker gamma
weighted inventory scaled by the squared level of the SPX from Equation (2). The time series
covers the period from 2004 to 2020.
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Figure 2. Time-Series of Absolute Number of Contracts
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Note. The figure depicts the 30-day moving-average of the absolute number of contracts in the
market maker inventory. The time series covers the period from 2004 to 2020.
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Figure 3. Time-Series of Normalized Aggregated Gamma Inventory (AGI)
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Note. The figure depicts the net gamma inventory normalized by the 30-day moving-average of
the absolute number of contract from Equation (3). The time series covers the period from 2004
to 2020.
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Figure 4. AGI and Market Illiquidity
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Note. The figure illustrates the relationship between aggregated Gamma inventory (AGI) and the
illiquidity measure of Amihud (2002). For visual purposes, we remove the top and bottom 1% of
AGI. The time series covers the period from 2004 to 2020.
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Figure 5. AGI and Funding Illiquidity
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Note. The figure illustrates the relationship between aggregated Gamma inventory (AGI) and the
funding illiquidity measure of Hu et al. (2013). For visual purposes, we remove the top and bottom
1% of AGI. The time series covers the period from 2004 to 2020.
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Figure 6. AGI and the Variance Risk Premium

Note. The figure illustrates the relationship between aggregated Gamma inventory (AGI) and the
variance risk premium of Bekaert and Hoerova (2014). For visual purposes, we remove the top and
bottom 1% of AGI. The time series covers the period from 2004 to 2020.
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C Tables

Table I. Summary Statistics

Mean Median Min. Max. Std. Skew. ρ

Net gamma 0.0294 0.0021 -1.1358 1.0571 0.1894 1.0897 0.8896
Net gamma long 1.1462 0.7636 0.0839 4.2356 0.9353 1.0737 0.9892
Net gamma short -1.1169 -0.8527 -4.0788 -0.1001 0.8313 -1.0232 0.9870
AGIt -0.0268 0.0056 -3.3875 2.3681 0.5481 0.1001 0.9192

Note. The table depicts summary statistics of the aggregated net gamma inventory of market
makers. We decompose the net gamma position into long and short positions and report our mea-
sure for aggregated gamma inventory (AGIt) according to equation (3). Net gamma, net gamma
long, and net gamma short is reported in units of 10 billion. AGIt is reported in units of thousands.
ρ denotes the daily autocorrelation. The time series covers the period from 2004 to 2020.
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Table II. Call Effective Spread

DOTM OTM ATM ITM DITM

α 0.0733 0.0541 0.0226 0.0074 0.0030
(50.11) (57.73) (49.76) (37.29) (38.02)

AGIt -0.0068 -0.0153 -0.0080 -0.0029 -0.0010
(-5.53) (-18.83) (-21.84) (-23.69) (-19.45)

adj. R2 0.0230 0.2940 0.3387 0.2187 0.1328

Panel B: Controlling for V IXt

α 0.0678 0.0627 0.0200 0.0034 0.0015
(19.59) (28.58) (13.98) (4.64) (5.72)

AGIt -0.0068 -0.0153 -0.0080 -0.0029 -0.0010
(-5.62) (-20.02) (-21.01) (-21.88) (-17.89)

V IXt 0.0027 -0.0042 0.0013 0.0020 0.0007
(1.63) (-3.97) (1.77) (4.97) (5.26)

adj. R2 0.0264 0.3158 0.3474 0.3226 0.2012

Panel C: Controlling for V IXt and ESOt−1

α 0.0375 0.0180 0.0043 0.0016 0.0010
(14.23) (13.26) (9.84) (5.28) (5.48)

AGIt -0.0039 -0.0044 -0.0017 -0.0013 -0.0007
(-5.40) (-12.06) (-10.54) (-9.84) (-13.16)

V IXt 0.0015 -0.0013 0.0002 0.0009 0.0005
(1.61) (-4.05) (1.32) (3.57) (4.80)

ESt−1 0.0198 0.0202 0.0109 0.0033 0.0009
(16.94) (41.11) (55.84) (12.84) (9.71)

adj. R2 0.2194 0.6679 0.7528 0.5215 0.2784

Note. The table depicts regressions of effective relative spreads of call options for different money-
ness buckets on our measure of aggregated gamma inventory (AGIt) and several control variables.
The time series covers the period from 2004 to 2020. T-statistics are given in parenthesis below
and are calculated using HAC-robust standard errors with lag length 10.
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Table III. Put Effective Spread

Panel A: Baseline regression

DOTM OTM ATM ITM DITM

α 0.0743 0.0378 0.0225 0.0090 0.0043
(46.13) (49.62) (47.56) (41.25) (40.79)

AGIt -0.0095 -0.0149 -0.0088 -0.0032 -0.0010
(-6.70) (-20.80) (-22.63) (-22.64) (-14.32)

adj. R2 0.0623 0.3867 0.3678 0.2240 0.0550

Panel B: Controlling for V IXt

α 0.0858 0.0438 0.0209 0.0060 0.0040
(22.36) (21.84) (14.62) (7.42) (15.61)

AGIt -0.0095 -0.0148 -0.0088 -0.0033 -0.0011
(-6.80) (-22.45) (-22.04) (-20.75) (-14.30)

V IXt -0.0057 -0.0029 0.0008 0.0015 0.0001
(-3.43) (-3.09) (1.08) (3.52) (1.10)

adj. R2 0.0842 0.4015 0.3706 0.2721 0.0557

Panel C: Controlling for V IXt and ESOt−1

α 0.0179 0.0086 0.0039 0.0025 0.0031
(11.95) (5.82) (9.23) (6.50) (10.25)

AGIt -0.0019 -0.0028 -0.0017 -0.0014 -0.0008
(-5.07) (-5.67) (-10.40) (-13.18) (-10.24)

V IXt -0.0013 -0.0006 0.0001 0.0007 0.0001
(-3.60) (-2.96) (0.95) (3.43) (1.29)

ESB
t−1 0.0302 0.0193 0.0117 0.0039 0.0008

(58.23) (25.96) (61.67) (23.49) (3.85)

adj. R2 0.6626 0.7919 0.7871 0.5073 0.0907

Note. The table depicts regressions of effective relative spreads of put options for different money-
ness buckets on our measure of aggregated gamma inventory (AGIt) and several control variables.
The time series covers the period from 2004 to 2020. T-statistics are given in parenthesis below
and are calculated using HAC-robust standard errors with lag length 10.
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Table IV. Panel Regressions with V IXt and ESt−1

ESt QSt IV ESt

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AGIt -0.0073 -0.0073 -0.0017 -0.0098 -0.0098 -0.0025 -0.0073 -0.0073 -0.0038
(-4.31) (-4.32) (-2.52) (-3.40) (-3.41) (-2.92) (-6.71) (-6.72) (-3.48)

V IXt -0.0004 -0.0012 -0.0001 -0.0026 0.0002 -0.0002
(-0.33) (-1.98) (-0.05) (-2.34) (0.19) (-0.46)

ESB
t−1 0.0128

(3.92)

QSB
t−1 0.0260

(4.17)

IV ESB
t−1 0.0075

(8.73)

within R2 0.0976 0.0979 0.3400 0.0614 0.0614 0.4520 0.1120 0.1120 0.2220

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note. The table depicts panel regressions of effective spreads (ES), quoted spreads (QS), and
implied volatility effective spreads (IV ES) for different moneyness buckets (entities i) on our
measure of aggregated gamma inventory (AGIt) and several control variables. All independent
variables are standardized. T-statistics are calculated with standard errors clustered for ten buckets
(five moneyness buckets and separation for puts and calls) and months. All regressions include
entity fixed effects. The time series covers the period from 2004 to 2020.

Table V. Predictive Panel Regressions with V IXt and ESt

ESt+1 QSt+1 IV ESt+1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AGIt -0.0072 -0.0072 -0.0017 -0.0098 -0.0098 -0.0026 -0.0073 -0.0073 -0.0038
(-4.29) (-4.30) (-2.44) (-3.42) (-3.43) (-3.05) (-6.72) (-6.72) (-3.41)

V IXt -0.0004 -0.0012 -0.0001 -0.0026 0.0002 -0.0002
(-0.33) (-1.98) (-0.05) (-2.49) (0.18) (-0.47)

ESB
t 0.0128

(3.93)

QSB
t 0.0259

(4.18)

IV ESB
t 0.0075

(8.67)

within R2 0.0962 0.0966 0.3400 0.0619 0.0619 0.4520 0.1120 0.1120 0.2220

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note. The table depicts predictive panel regressions of effective spreads (ESt+1), quoted spreads
(QSt+1), and implied volatility effective spreads (IV ESt+1) at t+1 for different moneyness buckets
(entities i) on our measure of aggregated gamma inventory (AGIt) and several control variables
at t. All independent variables are standardized. T-statistics are calculated with standard errors
clustered for ten buckets (five moneyness buckets and separation for puts and calls) and months.
All regressions include entity fixed effects. The time series covers the period from 2004 to 2020.
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Table VI. Panel Regressions with Illiquidity Measures

ESt QSt IV ESt

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AGIt -0.0018 -0.0018 -0.0018 -0.0026 -0.0029 -0.0029 -0.0039 -0.0036 -0.0036
(-2.50) (-2.81) (-2.67) (-2.91) (-3.14) (-3.39) (-3.57) (-3.50) (-3.58)

ESB
t−1 0.0128 0.0127 0.0128

(3.84) (3.80) (3.81)

QSB
t−1 0.0258 0.0259 0.0259

(4.07) (4.07) (4.08)

IV ESB
t−1 0.0073 0.0071 0.0071

(8.67) (8.40) (8.46)

Market Illiq. -0.0003 -0.0003 -0.0006 0.0001 0.0007 -0.0000
(-0.94) (-1.30) (-0.99) (0.19) (3.77) (-0.06)

Funding Illiq. -0.0004 0.0000 -0.0017 -0.0018 0.0017 0.0018
(-0.60) (0.03) (-1.62) (-1.89) (3.50) (2.61)

within R2 0.3380 0.3380 0.3380 0.4480 0.4490 0.4490 0.2240 0.2260 0.2260

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note. The table depicts panel regressions of effective spreads (ES), quoted spreads (QS), and
implied volatility effective spreads (IV ES) for different moneyness buckets (entities i) on our
measure of aggregated gamma inventory (AGIt) and several control variables. All independent
variables are standardized. T-statistics are calculated with standard errors clustered for ten buckets
(five moneyness buckets and separation for puts and calls) and months. All regressions include
entity fixed effects. The time series covers the period from 2004 to 2020.

Table VII. Predicitve Panel Regressions with Illiquidity Measures

ESt+1 QSt+1 IV ESt+1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AGIt -0.0017 -0.0017 -0.0016 -0.0026 -0.0028 -0.0027 -0.0039 -0.0036 -0.0035
(-2.43) (-2.71) (-2.54) (-3.04) (-3.09) (-3.19) (-3.51) (-3.45) (-3.53)

ESB
t 0.0128 0.0127 0.0128

(3.85) (3.79) (3.81)

QSB
t 0.0258 0.0258 0.0258

(4.07) (4.07) (4.08)

IV ESB
t 0.0073 0.0070 0.0071

(8.61) (8.32) (8.38)

Market Illiq. -0.0003 -0.0005 -0.0006 -0.0004 0.0007 -0.0003
(-0.96) (-2.25) (-0.96) (-0.69) (3.89) (-0.98)

Funding Illiq. -0.0001 0.0005 -0.0010 -0.0005 0.0021 0.0024
(-0.13) (0.91) (-1.11) (-0.98) (3.50) (2.92)

adj. R2 0.3370 0.3370 0.3380 0.4480 0.4480 0.4480 0.2230 0.2270 0.2270

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note. The table depicts panel regressions of effective spreads (ESt+1), quoted spreads (QSt+1),
and implied volatility effective spreads (IV ESt+1) at t+1 for different moneyness buckets (entities
i) on our measure of aggregated gamma inventory (AGIt) and several control variables at t. All in-
dependent variables are standardized. T-statistics are calculated with standard errors clustered for
ten buckets (five moneyness buckets and separation for puts and calls) and months. All regressions
include entity fixed effects. The time series covers the period from 2004 to 2020.
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Table VIII. Probit model: Balanced Aggregate Gamma Inventory

(1) (2) (3) (4) (5) (6) (7)

α -1.2670 -1.5440 1.7640 -1.6200 1.0800 1.0970 0.8820
(-31.73) (-27.02) (16.28) (-29.89) (10.40) (8.05) (7.37)

Amihud 3.0050 1.0330 2.2020 1.4800
(15.38) (4.08) (7.93) (4.57)

RV 5.4950 4.8880 2.2030 1.4200
(13.52) (10.69) (7.14) (4.00)

HKM -4.5970 -3.8650 -3.9140 -3.6800
(-21.42) (-22.74) (-18.15) (-20.14)

adj. R2 0.0608 0.1250 0.2690 0.1290 0.2840 0.2830 0.2880

Note. The table depicts a probit model of a binary dummy variable which takes the value of one if
absolute AGIt is in its 20th percentile. Independent variables include other measures of illiquidity
such as the Amihud (2002) illiquidity measure, the intermediary capital ratio from He et al. (2017),
and realized volatility (RVt). The coefficient of HKM is divided by 10 for the sake of comparability.
The time series covers the period from 2004 to 2018.

Table IX. Option Expensiveness

V RPt V RPt+1 V RPt+1 V IXt V IXt+1 V IXt+1

α 0.0124 0.0125 0.0021 0.1671 0.1672 0.0043
(11.12) (11.13) (4.46) (30.79) (30.53) (4.52)

dummyt 0.0261 0.0258 0.0038 0.1064 0.1058 0.0021
(4.27) (4.27) (3.38) (4.51) (4.49) (2.39)

V RPt 0.8384
(23.82)

V IXt 0.9749
(159.57)

adj. R2 0.1657 0.1610 0.7473 0.2119 0.2097 0.9586

Note. The table depicts contemporaneous and predictive regressions of V RP and V IX on a
dummy variable which takes the value of one, if the AGIt variable is lower than the 20th percentile
at t. The time series covers the period from 2004 to 2020.
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Table X. Reversal Returns

Panel A: Baseline regression

Full sample 2004-2010 2011-2020

α 0.5527 0.5195 0.5739
(17.80) (16.08) (12.37)

dummyt 0.5539 1.0374 0.0792
(5.73) (8.46) (0.66)

adj. R2 0.0151 0.1173 -0.0002

Panel B: V IXt

α 0.0687 -0.2446 0.5269
(0.79) (-2.08) (4.21)

V IXt 0.4972 0.7697 0.0546
(6.55) (7.46) (0.50)

adj. R2 0.0261 0.1686 -0.0003

Panel C: Controlling for V IXt and dummyt

α 0.1170 -0.1309 0.5281
(1.37) (-1.06) (4.21)

V IXt 0.4090 0.6102 0.0430
(5.21) (5.20) (0.39)

dummyt 0.2822 0.3948 0.0674
(3.11) (3.52) (0.55)

adj. R2 0.0290 0.1779 -0.0005

Panel D: Controlling for V IXt and interaction

α 0.2430 -0.0729 0.5345
(2.61) (-0.60) (4.28)

V IXt 0.2185 0.2354 0.2047
(2.39) (1.68) (1.77)

dummyt 0.2656 0.5596 0.0140
(2.98) (4.66) (0.12)

dummyt · V IXt 0.1678 0.0927 0.0092
(2.23) (1.15) (0.08)

adj. R2 0.0324 0.1750 0.0003

Note. The table depicts predictive regressions of reversal strategy returns at t + 1 (Nagel, 2012)
on a dummy variable which takes the value of one, if the AGIt variable is lower than the 20th

percentile at t. Furthermore, we include several control variables at time t. The time series covers
the period from 2004 to 2020.
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Table XI. Robustness

IV ESt

(1) (2) (3) (4) (5)

AGIt -0.0005 -0.0029 -0.0030 -0.0029 -0.0029
(-2.09) (-3.20) (-3.28) (-3.23) (-3.27)

IV ESB
t−1 0.0049 0.0048 0.0047 0.0047

(8.90) (8.67) (8.49) (8.50)

IV ESB
t−2 0.0044 0.0043 0.0042 0.0043

(9.49) (9.31) (9.40) (9.41)

V IXt -0.0003
(-0.90)

Market Illiq. 0.0004 -0.0000
(3.49) (-0.16)

Funding Illiq. 0.0012 0.0012
(3.16) (2.37)

within R2 0.0002 0.2570 0.2580 0.2590 0.2590

Entity FE Yes Yes Yes Yes Yes

Time FE Yes No No No No

Note. The table depicts panel regressions of implied volatility effective spreads (IV ESt) at t for
different moneyness buckets (entities i) on our measure of aggregated gamma inventory (AGIt)
and several control variables. All independent variables are standardized. T-statistics are calculated
with standard errors clustered for ten buckets (five moneyness buckets and separation for puts and
calls) and months. The time series covers the period from 2004 to 2020.
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