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Abstract. Since VIX options started trading in 2006, many researchers have tried to build a model that
jointly and exactly calibrates to the prices of S&P 500 (SPX) options, VIX futures, and VIX options. So far
the best attempts, which used parametric continuous-time jump-diffusion models on the SPX, only produced
an approximate fit. In this article we solve this longstanding puzzle using a completely different approach:
a nonparametric discrete-time model. Given a VIX future maturity T1, we build a joint probability measure
on the SPX at T1, the VIX at T1, and the SPX at T2 = T1 + 30 days which is perfectly calibrated to the
SPX smiles at T1 and T2, and the VIX future and VIX smile at T1. Our model satisfies the martingality
constraint on the SPX as well as the requirement that the VIX at T1 is the implied volatility of the 30-day
log-contract on the SPX. We prove by duality that the existence of such a model means that the SPX and
VIX markets are jointly arbitrage-free.

The joint calibration puzzle is cast as a dispersion-constrained martingale transport problem which is
solved using (an extension of) the Sinkhorn algorithm, in the spirit of De March and Henry-Labordère
(2019). The algorithm identifies joint SPX/VIX arbitrages should they arise. Our numerical experiments
show that the algorithm performs very well in both low and high volatility regimes. Finally we explain how
to handle the fact that the VIX future and SPX option monthly maturities do not perfectly coincide, and
how to extend the two-maturity model to include all available monthly maturities.

1. Introduction

Volatility indices, such as the VIX index [10], do not only serve as market-implied indicators of volatility.
Futures and options on these indices are also widely used as risk-management tools to hedge the volatility
exposure of options portfolios. The existence of a liquid market for these futures and options has led to
the need for models that jointly calibrate to the prices of options on the underlying asset and the prices
of volatility derivatives. Without such models, financial institutions could possibly arbitrage each other,
and even market making desks within the same institution could do so, e.g., the VIX desk could arbitrage
the S&P 500 (SPX) desk; and by using models that fail to correctly incorporate the prices of the liquid
hedging instruments, such as SPX options, VIX futures and VIX options, exotic desks may misprice options,
especially (but not only) those with payoffs that involve both the underlying and its volatility index.

In particular, since VIX options started trading in 2006, many researchers and practitioners have tried to
build a model that jointly and exactly calibrates to the prices of SPX futures, SPX options, VIX futures, and
VIX options. This is known to be a very challenging problem, especially for short maturities. In particular,
the very large negative skew of short-term SPX options, which in continuous models implies a very large
volatility of volatility, seems inconsistent with the comparatively low levels of VIX implied volatilities. For
example the double mean-reverting model of Gatheral [21], though it is very flexible, cannot perfectly fit
both the negative at-the-money (ATM) SPX skew—not large enough in absolute value—and the ATM VIX
implied volatility—too large—for short maturities. One should decrease the volatility of volatility to decrease
the latter, but this would also decrease the former, which is already too small.

Guyon’s experiments [27] using very flexible models such as the skewed two-factor Bergomi model [5], the
skewed rough Bergomi model, independently introduced by Guyon [26, 28] and De Marco [15], and their
stochastic local volatility versions, also suggest that joint calibration could be out of the reach of classical
continuous-time models with continuous SPX paths (“continuous models” for short): for short maturities,
either the SPX smile is well fitted, but then the model ATM VIX implied volatility is too large; or the VIX
smile is well calibrated, but then the model ATM SPX skew is too small (in absolute value). Song and Xiu
[39] argued that “the state-of-the-art stochastic volatility models in the literature cannot capture the S&P 500
and VIX option prices simultaneously.” Jacquier et al [32], who investigated the (unskewed) rough Bergomi
model, also noted: “Interestingly, we observe a 20% difference between the [volatility-of-volatility] parameter
obtained through VIX calibration and the one obtained through SPX. This suggests that the volatility of
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volatility in the SPX market is 20% higher when compared to VIX, revealing potential data inconsistencies
(arbitrage?).” Note that this difference in implied volatilities of volatility does not indicate the existence of
an arbitrage; it simply means that the model under consideration is inconsistent with market data. Even if
it could be proved that no continuous model can jointly calibrate to the SPX and VIX smiles, it would not
reveal any arbitrage; it would simply mean that although it is very large, this class of models is inconsistent
with market data.

In the case of instantaneous VIX, Guyon [25, 28] derived a necessary and sufficient condition for continuous
models to jointly calibrate to the SPX and VIX smiles: that the distribution of the Dupire market local
variance [18] be smaller than the distribution of the (instantaneous) VIX squared in the convex order, at all
times. Guyon [25, 28] also reported that for short maturities the distribution of the (true, i.e., 30-day) VIX
squared in the Dupire market local volatility model is actually larger than the market-implied distribution
of the (true) VIX squared in the convex order. He showed numerically [27, 28] that when the (typically
negative) spot-vol correlation is large enough in absolute value, (a) traditional stochastic volatility models
with large mean-reversion, and (b) rough volatility models with small Hurst exponent, can reproduce this
inversion of convex ordering. The fact that large mean-reversion can generate this inversion of convex ordering
is also supported by [29] where an expansion of the volatility of the VIX squared implied by VIX futures
at order 5 in small volatility-of-volatility is derived in Bergomi models and compared with the expansion
of the SPX ATM skew of [6]. Acciaio and Guyon [1] provide a mathematical proof that the inversion of
convex ordering can be produced by continuous models. However, the inversion of convex ordering is only
a necessary condition for the joint SPX/VIX calibration of continuous models; it is not sufficient. Other
attempts at jointly calibrating with continuous models include Fouque and Saporito [19], but their approach
does not apply to short maturities (below 4 months), for which VIX derivatives are most liquid and the
joint calibration is most difficult; and Goutte et al [22], but the SPX smile used in their calibration tests is
erroneous.1

Since it looks to be very difficult to jointly calibrate the SPX and VIX smiles with continuous models,
many authors have incorporated jumps in the dynamics of the SPX, see, e.g., [37, 11, 36, 2, 34, 35, 3]. Jumps
offer extra degrees of freedom to partly decouple the ATM SPX skew and the ATM VIX implied volatility.
However so far all the attempts at solving the joint SPX/VIX smile calibration problem only produced
imperfect, approximate fits.

In this article we solve this longstanding puzzle using a completely different approach: instead of postulat-
ing a parametric continuous-time (jump-)diffusion model on the SPX, we build a nonparametric discrete-time
model. Discrete time allows us to easily decouple the ATM SPX skew and the ATM VIX implied volatility;
going nonparametric gives us full flexibility for perfect calibration. Given a VIX future maturity T1, we build
a joint probability measure on the SPX at T1, denoted by S1, the VIX at T1, denoted by V , and the SPX
at T2 = T1 + 30 days, denoted by S2, which is perfectly calibrated to the SPX smiles at T1 and T2, and
the VIX future and VIX smile at T1. Our model satisfies the martingality constraint on the SPX as well
as the requirement that the VIX at T1 is the implied volatility of the 30-day log-contract on the SPX. The
discrete-time model is cast as a solution to a dispersion-constrained martingale transport problem which is
solved using (an extension of) the Sinkhorn algorithm, in the spirit of the recent work by De March and
Henry-Labordère [14].

In the first part of the paper, we formulate the superreplication problem for a general payoff f(S1, V, S2).
We include all vanilla options on S1, V , and S2 as (static) hedging instruments, as well as trading (dynamically,
i.e., at T1) in the SPX itself and the forward-starting log-contract. Moreover, we allow the deltas at T1 to
depend on the information available, that is, the SPX and the VIX index at T1. Using similar arguments as in
[4], we show that the price of the cheapest superreplicating portfolio is equal to the largest expectation of the
payoff over the set P(µ1, µV , µ2) of all the distributions of (S1, V, S2) that have the marginals µ1, µV , and µ2

implied by option prices, and that satisfy the martingality constraint on the SPX as well as the consistency
condition that V is the implied volatility at T1 of the 30-day log-contract on the SPX (see Definition 2). Hence
the superreplication problem is dual to a dispersion-constrained martingale optimal transport problem. We
use this duality result to prove that in this setting the SPX and VIX markets are jointly arbitrage-free if

1Only for the shortest maturity is the reported SPX smile correct; for later maturities the reported SPX smiles have much
smaller skews (in absolute value) than the market smiles. The jointly calibrated model is well calibrated to the VIX smiles but
actually fails to produce enough ATM SPX skew to calibrate to market smiles, which is consistent with the other numerical
experiments reported above.
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and only if the set P(µ1, µV , µ2) of risk-neutral measures is not empty. We also characterize the absence of
joint SPX/VIX arbitrages in terms of the existence of a coupling of µ1 and µV such that two distributions
in dimension two are in convex order. A sufficient condition for the existence of a joint SPX/VIX arbitrage
is also given in the appendix, that uses a family of functionally generated superreplicating portfolios similar
to the one introduced in [24].

In the second part of the paper, we build a jointly calibrating model. This is equivalent to building an
element of the set P(µ1, µV , µ2). To build such a model, and thus prove that the market is free of joint
SPX/VIX arbitrage, we choose a reference model µ̄ and look for the model in P(µ1, µV , µ2) that is closest
to µ̄ in the entropic sense, see (5.1). By duality, this model is described in a nonparametric way by its
Radon-Nikodym derivative w.r.t. µ̄; the Radon-Nikodym derivative is of Gibbs type: it is the exponential
of the value of a portfolio made of the same hedging instruments as in the superreplication problem. This
portfolio is the solution to a concave maximization problem, see (5.5). To numerically compute this portfolio,
we use an extension of the Sinkhorn algorithm [38], which was recently revived by Cuturi [12] in the context
of classical (discrete) optimal transport and very recently used by De March and Henry-Labordère [14] to
quickly build arbitrage-free smile interpolations. The algorithm iterates the one-dimensional Newton method
in different directions to converge to the optimum, which is where the gradient of the functional vanishes.

In the third and last part of the paper, we provide useful implementation details and report the results
of our numerical experiments. Instead of working with abstract portfolios, we use combinations of calls and
puts that are listed on the market. In this discrete portfolio context, it is apparent that the joint calibration
condition is equivalent to the portfolio maximizing a certain concave function, see (6.5). Our numerical
experiments show that the algorithm performs very well in both low and high volatility regimes. The smile
calibrations are extremely accurate, while the martingality and consistency conditions are perfectly satisfied.
We describe the calibrating model in terms of the joint distribution of (S1, V ), the corresponding local VIX
function, the distribution of S2 given S1 and V , the distribution of the log-return ln S2

S1
normalized by the VIX,

and the implied volatility of forward-starting options. Finally we explain how to handle the fact that the VIX
future and SPX option monthly maturities do not perfectly coincide, and how to extend the two-maturity
model to include all available monthly maturities.

The remainder of this article is structured as follows. After introducing our discrete-time setting in Section
2, we describe in Section 3 the primal and dual superreplication problems and show that they yield the same
value (absence of a duality gap). We apply this result in Section 4 to characterize the absence of joint
SPX/VIX arbitrage. Section 5 describes our strategy to build an arbitrage-free, consistent model that jointly
calibrates to the market smiles of the SPX and VIX indices. Section 6 provides implementation details, while
we gather our numerical results in Section 7. Finally Section 8 deals with the n-maturity case, and Section 9
concludes. The appendix describes a family of functionally generated portfolios that superreplicate zero and
gives sufficient conditions for the existence of a joint SPX/VIX arbitrage.

2. Setting and notation

For simplicity, we assume zero interest rates, repos, and dividends. We consider a VIX future maturity T1.
We take as given the full market smiles of the SPX index S at the two maturities T1 and T2 := T1 + 30 days,2

as well as the full market smile of the VIX index V at T1. By full market smile we mean the continuum of all
call prices C(K) for strikes K ≥ 0. For i ∈ {1, 2} we denote Si := STi . We call forward-starting log-contract
(FSLC for short) the financial derivative that pays − 2

τ ln S2

S1
at T2, where τ := T2 − T1 = 30 days. We

recall that, by definition of the VIX (substituting the strip of out-the-money options by the log-contract for
simplicity), the price at T1 of the FSLC is V 2. For convenience, we introduce the strictly convex function

L(x) := −2

τ
lnx.

For each maturity Ti, i ∈ {1, 2}, absence of static SPX arbitrage (or butterfly arbitrage) is equivalent to
the existence of a risk-neutral measure µi := ∂2Ci/∂K

2 such that the price of any vanilla option ui written
on Si is the expectation Ei[ui(Si)] := Eµi [ui(Si)] of the payoff under µi, and we shall refer to µi as a smile as
well. (The notation ∂2Ci/∂K

2 refers to the second derivative measure of the convex function Ci.) Similarly,

2Remark 10 explains how to deal with the fact that listed SPX options do not exactly mature at T1.
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by absence of static VIX arbitrage, there exists a risk-neutral measure µV = ∂2CV /∂K
2 such that the price

of any vanilla option uV written on V is the expectation EV [uV (V )] := EµV [uV (V )] of the payoff under µV .
Absence of dynamic SPX arbitrage (or calendar arbitrage) is equivalent to µ1 and µ2 being in convex

order, i.e., E1[f(S1)] ≤ E2[f(S2)] for any convex function f : R>0 → R, even if we allow trading in the FSLC
at T1 (see [24, Theorem 3.4]). By absence of arbitrage, the price of Si at time 0 is the initial value S0 > 0 of
the SPX. Moreover, we denote by FV ≥ 0 the value at time 0 of the VIX future maturing at T1. Therefore,
throughout the article, (S1, V, S2) denotes the identity on R>0 × R≥0 × R>0; µ1, µ2 are two probability
measures on R>0 in convex order, with mean S0; and µV is a probability measure on R≥0 with mean FV . For
the log-contracts and the VIX squared to have finite prices, we assume the following throughout the paper.

Assumption 1. The given marginals µ1, µ2, µV satisfy

Ei[Si] = S0, Ei[| lnSi|] <∞, i ∈ {1, 2}; EV [V ] = FV , EV [V 2] <∞.

3. Duality

3.1. The primal problem. It is well known that the knowledge of µ1 and µ2 gives little information on the
prices of options Eµ[g(S1, S2)], e.g., forward-starting options Eµ[f(S2/S1)]. The many couplings of µ1 and
µ2 usually lead to a wide variety of prices. Computing the range of these prices is precisely the subject of
classical optimal transport. Adding the no-arbitrage constraint that (S1, S2) is a martingale leads to tighter
bounds, as this provides information on the conditional average of S2/S1 given S1. This problem is then
called martingale optimal transport, see [31] and the references therein. In this paper, S being the SPX index,
we add VIX market data information to produce even tighter bounds. Indeed this now provides information
on the conditional dispersion of S2/S1, which is controlled by the VIX V .

We consider a market with two trading dates (T0 = 0 and T1) where the financial instruments are the
SPX (tradable at T0 and T1), the vanilla options on it with maturities T1 and T2 (tradable at T0), the VIX
future maturing at T1 and the vanilla options on it also maturing at T1 (tradable at T0), as well as the FSLC
(tradable at T1). Note that we consider only static positions in vanilla options, but we allow dynamic trading,
that is, trading at T1, in the SPX and the FSLC. We are interested in deriving the optimal upper bound on
the price of a generic payoff f(S1, V, S2), given these instruments. The optimal lower bound is obtained by
simply taking the negative of the payoff.

For any measurable function ∆ : R>0 × R≥0 → R let us introduce the shorthand notation

∆(S)(s1, v, s2) := ∆(s1, v)(s2 − s1), ∆(L)(s1, v, s2) := ∆(s1, v)

(
L

(
s2

s1

)
− v2

)
for s1, s2 > 0 and v ≥ 0. Let U denote the set of all integrable portfolios, i.e., the set of all measurable
functions u1, u2 : R>0 → R, uV : R≥0 → R, ∆S ,∆L : R>0 × R≥0 → R with u1 ∈ L1(µ1), uV ∈ L1(µV ),
u2 ∈ L1(µ2), and ∆S ,∆L bounded. Similarly as in De Marco and Henry-Labordère [16] and Guyon et al [24],
the model-independent no-arbitrage upper bound for the derivative with payoff f(S1, V, S2) is the smallest
price at time 0 of a superreplicating portfolio,

(3.1) Pf := inf
Uf

{
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

}
where Uf is the set of integrable superreplicating portfolios, i.e., that satisfy the superreplication constraint

(3.2) ∀(s1, s2, v) ∈ R2
>0 × R≥0, u1(s1) + uV (v) + u2(s2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2) ≥ f(s1, v, s2).

This linear program is known as the primal problem; P stands for “primal” and v stands for the value of
the VIX at the future date T1. At time T1, delta-hedging in the SPX and in the FSLC is allowed. The
respective deltas, ∆S(s1, v) and ∆L(s1, v), may depend on the values s1 and v of the SPX and the VIX at
T1. Since the price at T1 of the FSLC is v2, the delta strategies are costless, and the price of the portfolio is
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)].

3.2. Duality. In this section, we introduce the dual problem to superreplicating the payoff f(S1, V, S2) and
prove the absence of a duality gap as well as the existence of an extremal model.

Definition 2. Let P(µ1, µV , µ2) be the set of all the probability measures µ on R>0 × R≥0 × R>0 such that

(3.3) S1 ∼ µ1, V ∼ µV , S2 ∼ µ2, Eµ [S2|S1, V ] = S1, Eµ
[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2.
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The dual problem to superreplicating the payoff f(S1, V, S2) is one of maximizing the expected payoff
Eµ[f(S1, V, S2)] over all probability measures µ ∈ P(µ1, µV , µ2):

(3.4) Df := sup
µ∈P(µ1,µV ,µ2)

Eµ[f(S1, V, S2)].

We call (3.4) a dispersion-constrained martingale optimal transport problem. Indeed, since V is known at
T1, Eµ[S2|S1, V ] = S1 is the martingality condition of the SPX index, while Eµ[L(S2/S1)|S1, V ] = V 2 is the
consistency condition, which expresses that the VIX at T1 is the implied volatility of the 30-day log-contract
on the SPX. The first equation imposes a condition on the average of the distribution of S2 given S1 and V ,
while the second equation imposes a condition on its dispersion around the average.

Martingale optimal transport, which was introduced in [4, 30] in discrete time and in [20] in continuous
time, corresponds to the case where the VIX market is ignored. Compared to the classical two-period
martingale optimal transport, our two-period dispersion-constrained martingale optimal transport problem
has one extra variable (V , known at T1) and one extra constraint (the dispersion constraint, which is controlled
by V ), and in both constraints the conditional expectations are taken w.r.t. S1 and V instead of S1 only.
In [4] the authors prove absence of a duality gap for the martingale optimal transport in discrete time after
reducing it to classical transport theory by dualizing the martingale constraint, and then using a minimax
argument. The exact same technique of proof applies in our case. In particular, the set P(µ1, µV , µ2) is
compact in the weak topology, and we have

Theorem 3. Let f : R>0 × R≥0 × R>0 → R be upper semicontinuous and satisfy

(3.5) |f(s1, v, s2)| ≤ C
(
1 + s1 + s2 + |L(s1)|+ |L(s2)|+ v2

)
for some constant C > 0. Then

Pf := inf
Uf

{
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

}
= sup
µ∈P(µ1,µV ,µ2)

Eµ[f(S1, V, S2)] =: Df .

Moreover, Df 6= −∞ if and only if P(µ1, µV , µ2) 6= ∅, and in that case the supremum is attained.

We omit the proof, as it is a straightforward adaptation of the proof of Theorem 1 in [4].

Remark 4. As in [4], the proof actually shows that the portfolios can also be required to be continuous,
without changing the value of Pf . Moreover, the vanilla payoffs u1, uV , and u2 can be chosen to be linear
combinations of finitely many call options, together with one position in the bond, one position in S1, and
one position in the VIX future, without changing the value of Pf .

Compared to unconstrained martingale optimal transport, adding VIX market data may possibly reveal
a joint SPX/VIX arbitrage. As we explain in the next section, this corresponds to the situation where
P(µ1, µV , µ2) = ∅. In the limiting case where P(µ1, µV , µ2) = {µ0} is a singleton, the joint SPX/VIX
market data information completely specifies the joint distribution of (S1, S2), in particular the price of
forward-starting options.

The absence of a duality gap proves useful to characterize the absence of joint SPX/VIX arbitrage, which
we introduce in the next section.

4. Joint SPX/VIX arbitrage

In this section we define what we mean by a joint SPX/VIX arbitrage and we characterize absence of joint
arbitrage in two different ways. Recall that U0 denotes the set of integrable portfolios that superreplicate
zero.

Definition 5. An (S1, S2, V )-arbitrage is an element of U0 such that E1[u1(S1)]+EV [uV (V )]+E2[u2(S2)] < 0.

Since any such element can be scaled, we observe that there is an (S1, S2, V )-arbitrage in the market if
and only if

(4.1) P0 := inf
U0

{
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

}
= −∞.

Electronic copy available at: https://ssrn.com/abstract=3397382



THE JOINT S&P 500/VIX SMILE CALIBRATION PUZZLE SOLVED 6

4.1. Consistent extrapolation of SPX and VIX smiles. Recall Assumption 1. If EV [V 2] 6= E2[L(S2)]−
E1[L(S1)], there is a trivial (S1, S2, V )-arbitrage. For instance, if EV [V 2] < E2[L(S2)]− E1[L(S1)], pick

u1(s1) = L(s1), u2(s2) = −L(s2), uV (v) = v2, ∆S(s1, v) = 0, ∆L(s1, v) = 1.

Therefore, throughout the rest of this article, we assume that

EV [V 2] = E2[L(S2)]− E1[L(S1)].(4.2)

This means that the price E2[L(S2)]− E1[L(S1)] of the VIX squared inferred from SPX futures and options
via the replication formula

(4.3) Ei[L(Si)] = L(S0) +
2

τ

∫ S0

0

Ei[(K − Si)+]

K2
dK +

2

τ

∫ ∞
S0

Ei[(Si −K)+]

K2
dK

coincides with the price EV [V 2] of the VIX squared inferred from VIX futures and options using the replication
formula [5]

(4.4) EV [V 2] = F 2
V + 2

∫ FV

0

EV [(K − V )+]dK + 2

∫ ∞
FV

EV [(V −K)+]dK.

Violations of (4.2) in the market have been reported, suggesting arbitrage opportunities, see, e.g., [7,
Section 7.7.4]. However, both sides of (4.2) do not purely depend on market data. By (4.4) the l.h.s. depends
on an (arbitrage-free) extrapolation of the smile of V beyond the last quoted strikes, while by (4.3) the r.h.s.
depends on (arbitrage-free) extrapolations of the SPX smile at maturities T1 and T2.3 The reported violations
of (4.2) actually rely on some arbitrary smile extrapolations. Guyon [27] has shown that both sides of (4.2)
can even be made arbitrarily large.

The joint SPX/VIX arbitrage opportunities identified in [16, Section 5.1] can also be traced back to a
misalignment of E2[L(S2)] − E1[L(S1)], which De Marco and Henry-Labordère denote σ2

12, and EV [V 2]. In
their numerical tests the authors use a VIX future value FV = 18.05% that is very close to σ12 = 18.15%.
By the replication formula (4.4), since the authors assume that EV [V 2] = σ2

12, this implies that VIX calls
and puts must be cheap—they would need to be worth zero if FV were equal to σ12. This explains why
the upper bound on the VIX implied volatility reported by the authors is so small, below market values. In
fact, it is likely that EV [V 2] computed from (4.4) be larger than (18.15%)2, whatever the extrapolation of
VIX market implied volatilities used in (4.4). Once a larger value of σ12, consistent with EV [V 2], is used,
the arbitrage disappears. Stated otherwise, as reported by the authors, their upper bound on VIX implied
volatility is very sensitive to σ12, a quantity that is not well defined, is highly dependent on the SPX smile
extrapolations, and can actually be made arbitrarily large.

For these reasons it is crucial to extrapolate SPX and VIX smiles in a consistent way, so that (4.2) holds.
Guyon [27] explained how to do just that, by first inter- and extrapolating the VIX smile, then building an
SPX variance swap curve consistent with (4.4), computed for all available VIX options maturities, and finally
devising an extrapolation of the SPX smile consistent with those VIX-inferred variance swap prices.4

4.2. Characterization of absence of joint SPX/VIX arbitrage. The following theorem, which is the
main result of this section, states that absence of (S1, S2, V )-arbitrage is equivalent to the existence of risk-
neutral measures µ ∈ P(µ1, µV , µ2), and that this is also equivalent to the existence of a coupling of µ1 and
µV under which (S1, L(S1) + V 2) and (S2, L(S2)) are in convex order.

Theorem 6. The following assertions are equivalent:
(i) The market is free of (S1, S2, V )-arbitrage,
(ii) P(µ1, µV , µ2) 6= ∅,
(iii) There exists a coupling ν of µ1 and µV such that Lawν(S1, L(S1) +V 2) and Lawµ2

(S2, L(S2)) are in
convex order, i.e., Eν [f(S1, L(S1)+V 2)] ≤ E2[f(S2, L(S2))] for any convex function f : R>0×R→ R.

Proof. (i) ⇐⇒ (ii): By duality (Theorem 3), we have P0 = D0. Now, by definition, the market is free of
(S1, S2, V )-arbitrage if and only if P0 = 0, and from Theorem 3, P(µ1, µV , µ2) 6= ∅ if and only if D0 6= −∞,
in which case D0 = 0.

3Both quantities also depend on smile interpolations between quoted strikes. However, the impact of (arbitrage-free) inter-
polations is much smaller than that of extrapolations.

4Those VIX-inferred variance swap prices usually lie within the bid-ask spread of real OTC variance swap quotes.
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(ii) ⇐⇒ (iii): Let us define M1 = (S1, L(S1) + V 2) and M2 = (S2, L(S2)) as well as

µM2
(dx, dy) = µ2(dx)δL(x)(dy).

Let Π(µ1, µV ) denote the set of transport plans from µ1 to µV , i.e., the set of all couplings of µ1 and µV , or
the set of all joint distributions of (S1, V ) that have the prescribed marginals µ1 and µV . For ν ∈ Π(µ1, µV ),
let us denote by µνM1

the distribution of M1 under ν and byM(ν, µ2) the set of all probability measures µ
on R>0 × R≥0 × R>0 such that

M1 ∼ µνM1
, M2 ∼ µM2 , Eµ [M2|M1] = M1.

Then

P(µ1, µV , µ2) =
⋃

ν∈Π(µ1,µV )

M(ν, µ2).

By Strassen’s theorem [40], eachM(ν, µ2) is nonempty if and only if µνM1
and µM2 are in convex order, which

yields the equivalence of (ii) and (iii). �

In the appendix we derive a sufficient condition for the existence of an (S1, S2, V )-arbitrage based on a
family of functionally generated portfolios that superreplicate zero which is similar to the one introduced in
[24].

In order to check the absence of joint SPX/VIX arbitrage, directly solving the linear problem (4.1) as-
sociated to Assertion (i) of Theorem 6 is numerically doable but not easy as one needs to try all possible
(u1, uV , u2,∆S ,∆V ) and check the superreplication constraints for all s1, s2 > 0 and v ≥ 0. Condition (iii)
looks more handy, but numerically checking it is actually difficult as, in dimension two, the extreme rays of the
convex cone of convex functions are dense in the cone [33], unlike in dimension one where the extreme rays are
the call and put payoffs [8]. Instead, we will verify absence of (S1, S2, V )-arbitrage by building—numerically,
but with high accuracy—an element of P(µ1, µV , µ2), thus checking (ii).

5. Building a model in P(µ1, µV , µ2)

In this section we explain how to numerically build a model µ ∈ P(µ1, µV , µ2). We thus solve a longstanding
puzzle in derivatives modeling: build an arbitrage-free model that jointly calibrates to the prices of SPX
futures, SPX options, VIX futures, and VIX options.

Our strategy, inspired by the recent work of De March and Henry-Labordère [14], is the following. We
assume that P(µ1, µV , µ2) 6= ∅ and try to build an element µ in this set. To this end, we fix a reference
probability measure µ̄ on R>0 × R≥0 × R>0 and look for the measure µ ∈ P(µ1, µV , µ2) that minimizes the
relative entropy H(µ, µ̄) of µ w.r.t. µ̄, also known as the Kullback-Leibler divergence:5

(5.1) Dµ̄ := inf
µ∈P(µ1,µV ,µ2)

H(µ, µ̄), H(µ, µ̄) :=

{
Eµ
[
ln dµ

dµ̄

]
= Eµ̄

[
dµ
dµ̄ ln dµ

dµ̄

]
if µ� µ̄,

+∞ otherwise.

This is a strictly convex problem that can be solved after dualization using Sinkhorn’s fixed point iteration
[38]. Note that Dµ̄ 6= +∞ if and only if there exists µ � µ̄ in P(µ1, µV , µ2), and in that case the infimum
definingDµ̄ is attained.6 Indeed, from the proof of Theorem D.13 in [17], µ 7→ H(µ, µ̄) is lower semicontinuous
in the weak topology. Since P(µ1, µV , µ2) is compact in this topology, the infimum is attained.

LetM1 denote the set of probability measures on R>0×R≥0×R>0. Introducing the Lagrange multipliers
u = (u1, uV , u2,∆S ,∆L) ∈ U associated to the five constraints (3.3), and assuming that the inf and sup

5We recall that µ� µ̄ if and only if for every event A, µ̄(A) = 0 =⇒ µ(A) = 0.
6Note that the choice of the support of µ̄ matters. In particular, P(µ1, µV , µ2)∩{µ ∈M1|µ� µ̄} may be empty even when

P(µ1, µV , µ2) 6= ∅. In practice we choose µ̄ having full support R>0 × R≥0 × R>0.
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operators can be swapped (absence of a duality gap), we have

Dµ̄ = inf
µ∈M1

sup
u∈U

{
H(µ, µ̄) + E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)](5.2)

−Eµ
[
u1(S1) + uV (V ) + u2(S2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2)

]}
= sup

u∈U
inf

µ∈M1

{
H(µ, µ̄) + E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)](5.3)

−Eµ
[
u1(S1) + uV (V ) + u2(S2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2)

]}
.

Now, the inner infimum can be exactly computed. For any random variable X such that Eµ̄[eX ] < +∞, let
us denote by µ̄X the probability distribution defined by dµ̄X

dµ̄ = eX

Eµ̄[eX ]
. We have

inf
µ∈M1

{H(µ, µ̄)− Eµ[X]} = inf
µ∈M1

Eµ
[
ln
dµ

dµ̄
−X

]
= inf
µ∈M1

Eµ
[
ln

dµ

dµ̄X
+ ln

dµ̄X
dµ̄
−X

]
= inf
µ∈M1

Eµ
[
ln

dµ

dµ̄X
− lnEµ̄[eX ]

]
= inf
µ∈M1

H(µ, µ̄X)− lnEµ̄[eX ] = − lnEµ̄[eX ]

and the infimum is attained at µ = µ̄X since for all µ ∈ M1, H(µ, µ̄X) ≥ 0 and H(µ, µ̄X) = 0 if and only if
µ = µ̄X . As a consequence,

Dµ̄ = sup
u∈U

Ψµ̄(u) =: Pµ̄(5.4)

where for u = (u1, uV , u2,∆S ,∆L) ∈ U , we have defined
(5.5)

Ψµ̄(u) := E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]− lnEµ̄
[
eu1(S1)+uV (V )+u2(S2)+∆

(S)
S (S1,V,S2)+∆

(L)
L (S1,V,S2)

]
.

If the supremum defining Pµ̄ is attained at u∗ = (u∗1, u
∗
V , u

∗
2,∆

∗
S ,∆

∗
L), then the infimum defining Dµ̄ is reached

at

(5.6) µ∗(ds1, dv, ds2) = µ̄(ds1, dv, ds2)
eu
∗
1(s1)+u∗V (v)+u∗2(s2)+∆

∗(S)
S (s1,v,s2)+∆

∗(L)
L (s1,v,s2)

Eµ̄
[
eu
∗
1(S1)+u∗V (V )+u∗2(S2)+∆

∗(S)
S (S1,V,S2)+∆

∗(L)
L (S1,V,S2)

] .
Our jointly calibrating model µ∗ is built from µ̄ using a change of measure of Gibbs type: the Radon-Nikodym
derivative is the exponential of the value of a portfolio made of the available hedging instruments, normalized.
Note that the normalization factor can always be taken equal to 1 by adjusting the cash component of the
portfolio.7 As a consequence we will always work with a normalized version of u∗ ∈ U such that

(5.7) Eµ̄
[
eu
∗
1(S1)+u∗V (V )+u∗2(S2)+∆

∗(S)
S (S1,V,S2)+∆

∗(L)
L (S1,V,S2)

]
= 1.

The initial, difficult problem (5.1) of minimizing H(µ, µ̄) over µ in the constrained set P(µ1, µV , µ2)
has been reduced to the simpler problem (5.4) of maximizing the strictly concave function Ψµ̄ over u in
the unconstrained set U . If it exists, the optimum u∗ simply cancels the gradient of Ψµ̄; the equations
∂Ψµ̄

∂u1(s1) =
∂Ψµ̄
∂uV (v) =

∂Ψµ̄
∂u2(s2) =

∂Ψµ̄
∂∆S(s1,v) =

∂Ψµ̄
∂∆L(s1,v) = 0 read8

∀s1 > 0, u1(s1) = Φ1(s1;uV , u2,∆S ,∆L)

∀v ≥ 0, uV (v) = ΦV (v;u1, u2,∆S ,∆L)

∀s2 > 0, u2(s2) = Φ2(s2;u1, uV ,∆S ,∆L)(5.8)
∀s1 > 0, ∀v ≥ 0, 0 = Φ∆S

(s1, v; ∆S(s1, v),∆L(s1, v))

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆L
(s1, v; ∆S(s1, v),∆L(s1, v))

7Note that Ψµ̄ is invariant by translation of u1, uV , and u2: for any constant c ∈ R, Ψµ̄(u1 + c, uV , u2,∆S ,∆L) =

Ψµ̄(u1, uV , u2,∆S ,∆L) (and similarly with uV and u2); c corresponds to a cash position.
8Here for simplicity we assume that the distributions µ1, µV , µ2, µ̄ are either discrete or continuous w.r.t. the Lebesgue

measure. For instance, µ1(s1) denotes µ1({s1}) if µ1 is discrete, or the density at point s1 if µ1 is continuous.
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where, imposing the normalization (5.7),

Φ1(s1;uV ,∆S ,∆L) := lnµ1(s1)− ln

(∫
µ̄(s1, dv, ds2)euV (v)+u2(s2)+∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

)
ΦV (v;u1,∆S ,∆L) := lnµV (v)− ln

(∫
µ̄(ds1, v, ds2)eu1(s1)+u2(s2)+∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

)
Φ2(s2;u1, uV ,∆S ,∆L) := lnµ2(s2)− ln

(∫
µ̄(ds1, dv, s2)eu1(s1)+uV (v)+∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

)
Φ∆S

(s1, v;u2, δS , δL) :=

∫
µ̄(s1, v, ds2)(s2 − s1)e

u2(s2)+δS(s2−s1)+δL
(
L
(
s2
s1

)
−v2

)

Φ∆L
(s1, v;u2, δS , δL) :=

∫
µ̄(s1, v, ds2)

(
L

(
s2

s1

)
− v2

)
e
u2(s2)+δS(s2−s1)+δL

(
L
(
s2
s1

)
−v2

)
.

Remark 7. Note that these are also the equations satisfied by the maximum of

Ψ̄µ̄(u) := E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]− Eµ̄
[
eu1(S1)+uV (V )+u2(S2)+∆

(S)
S (S1,V,S2)+∆

(L)
L (S1,V,S2)

]
where, compared to Ψµ̄(u), the logarithm has been removed. One could directly get that Dµ̄ = supu∈U Ψ̄µ̄(u)
by using the setM+ of nonnegative measures instead ofM1 in (5.2), and by computing the inner infµ∈M+

in (5.3) by differentiating w.r.t. dµdµ̄ . This is for instance the route followed by [13, 14]. In any case, the jointly
calibrating model reads

(5.9) µ∗(ds1, dv, ds2) = µ̄(ds1, dv, ds2)eu
∗
1(s1)+u∗V (v)+u∗2(s2)+∆

∗(S)
S (s1,v,s2)+∆

∗(L)
L (s1,v,s2)

where u∗ = (u∗1, u
∗
V , u

∗
2,∆

∗
S ,∆

∗
L) is solution to (5.8).

Remark 8. Note that we could have simply postulated a model of the form (5.9); then the five conditions
(3.3) translate into the five equations (5.8). The relative entropy argument explains how to naturally derive
this particular form for µ. The fact that the five equations (5.8) correspond to the five constraints (3.3) is not
surprising, as those equations correspond to canceling the gradient of the Lagrangian function with respect
to the Lagrange multipliers u1, uV , u2,∆S ,∆L.

Sinkhorn’s algorithm [38] was first used in the context of computational optimal transport by Cuturi
[12]. It has recently been extended to computational martingale optimal transport by De March [13] and
applied to the problem of quickly building arbitrage-free smiles by De March and Henry-Labordère [14].
(Alternative computational methods for martingale optimal transport problems are investigated in Guo and
Obłój [23].) In our context, Sinkhorn’s algorithm is an exponentially fast fixed point method that iterates
computations of one-dimensional gradients to approximate the optimizer u∗. Starting from an initial guess
u(0) = (u

(0)
1 , u

(0)
V , u

(0)
2 ,∆

(0)
S ,∆

(0)
L ), we recursively define u(n+1) knowing u(n) by

∀s1 > 0, u
(n+1)
1 (s1) = Φ1(s1;u

(n)
V , u

(n)
2 ,∆

(n)
S ,∆

(n)
L )

∀v ≥ 0, u
(n+1)
V (v) = ΦV (v;u

(n+1)
1 , u

(n)
2 ,∆

(n)
S ,∆

(n)
L )

∀s2 > 0, u
(n+1)
2 (s2) = Φ2(s2;u

(n+1)
1 , u

(n+1)
V ,∆

(n)
S ,∆

(n)
L )

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆S
(s1, v;u

(n+1)
2 ,∆

(n+1)
S (s1, v),∆

(n)
L (s1, v))

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆L
(s1, v;u

(n+1)
2 ,∆

(n+1)
S (s1, v),∆

(n+1)
L (s1, v))

until convergence. Note that each of the above five lines corresponds to a Bregman projection [9] in the
space of measures. That is, with obvious notations, µ[µ̄;u

(n+1)
1 , u

(n)
V , u

(n)
2 ,∆

(n)
S ,∆

(n)
L ] exactly satisfies the

first constraint S1 ∼ µ1 (but not the other constraints), µ[µ̄;u
(n+1)
1 , u

(n+1)
V , u

(n)
2 ,∆

(n)
S ,∆

(n)
L ] exactly satisfies

the second constraint V ∼ µV (but not the other constraints), and so on. When the algorithm converges,
the limit µ∗ = µ[µ̄;u∗1, u

∗
V , u

∗
2,∆

∗
S ,∆

∗
L] satisfies all the constraints (3.3) at once.

If Sinkhorn’s algorithm diverges, then Pµ̄ = +∞, so Dµ̄ = +∞, which means P(µ1, µV , µ2)∩{µ ∈M1|µ�
µ̄} = ∅. In practice, when µ̄ has full support, this is a sign that there likely exists a joint SPX/VIX arbitrage,
which can then be identified by numerically solving the linear problem (4.1). We have never experienced this
situation in our numerical tests, which covered both low and high volatility regimes.
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6. Implementation details

A natural choice of a reference measure µ̄ is one that satisfies all the constraints (3.3) except S2 ∼ µ2, i.e.,
pick µ̄ in the set P(µ1, µV ) of all the probability distributions

µ(ds1, dv, ds2) = ν(ds1, dv)T (s1, v, ds2)(6.1)

where ν is a coupling of µ1 and µV and the transition kernel T (s1, v, ds2) satisfies∫
s2 T (s1, v, ds2) = s1,

∫
L(s2)T (s1, v, ds2) = L(s1) + v2(6.2)

for µ1-a.e. s1 > 0 and µV -a.e. v ≥ 0. For instance, we may choose

ν = µ1 ⊗ µV , T (s1, v, ds2) is the distribution of s1 exp

(
v
√
τG− 1

2
v2τ

)
,(6.3)

where G denotes a standard Gaussian random variable, i.e., under µ̄, S1 and V are independent, and given
S1 and V , S2 is lognormal with mean S1 and annualized volatility V .9 Note that if we choose µ̄ as in (6.1)
and (6.3) then Φ1, ΦV , Φ∆S

, and Φ∆L
under (5.8) can be replaced by

Φ1(s1;uV , u2,∆S ,∆L) := − ln

(∫
µV (dv)T (s1, v, ds2)euV (v)+u2(s2)+∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

)
ΦV (v;u1, u2,∆S ,∆L) := − ln

(∫
µ1(ds1)T (s1, v, ds2)eu1(s1)+u2(s2)+∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

)
Φ∆S

(s1, v;u2, δS , δL) :=

∫
T (s1, v, ds2)(s2 − s1)e

u2(s2)+δS(s2−s1)+δL
(
L
(
s2
s1

)
−v2

)

Φ∆L
(s1, v;u2, δS , δL) :=

∫
T (s1, v, ds2)

(
L

(
s2

s1

)
− v2

)
e
u2(s2)+δS(s2−s1)+δL

(
L
(
s2
s1

)
−v2

)
.

Practically, we consider vanilla payoffs u1, uV , and u2 that are linear combinations of finitely many call
options, together with one position in the bond, one position in S1, and one position in the VIX future. That
is, we consider market strikes K := (K1,KV ,K2) and market prices (C1

K , C
V
K , C

2
K) of vanilla options on S1,

V , and S2 respectively, and we build the model

µ∗K(ds1, dv, ds2) = µ̄(ds1, dv, ds2)

e
c∗+∆0∗

S s1+∆0∗
V v+

∑
K∈K1

a1∗
K (s1−K)++

∑
K∈KV

aV ∗K (v−K)++
∑
K∈K2

a2∗
K (s2−K)++∆

∗(S)
S (s1,v,s2)+∆

∗(L)
L (s1,v,s2)

where θ∗ := (c∗,∆0∗
S ,∆

0∗
V , a

1∗, aV ∗, a2∗,∆∗S ,∆
∗
L) maximizes

Ψ̄µ̄,K(θ) := c+ ∆0
SS0 + ∆0

V FV +
∑
K∈K1

a1
KC

1
K +

∑
K∈KV

aVKC
V
K +

∑
K∈K2

a2
KC

2
K

− Eµ̄
[
e
c+∆0

SS1+∆0
V V+

∑
K∈K1

a1
K(S1−K)++

∑
K∈KV

aVK(V−K)++
∑
K∈K2

a2
K(S2−K)++∆

(S)
S (S1,V,S2)+∆

(L)
L (S1,V,S2)

]
over the set Θ of portfolios θ := (c,∆0

S ,∆
0
V , a

1, aV , a2,∆S ,∆L) such that c,∆0
S ,∆

0
V ∈ R, a1 ∈ RK1 , aV ∈ RKV ,

a2 ∈ RK2 , and ∆S ,∆L : R>0 × R≥0 → R are bounded measurable functions of (s1, v). This corresponds to
solving the entropy minimization problem

Dµ̄,K := inf
µ∈P(K)

H(µ, µ̄) = sup
θ∈Θ

Ψ̄µ̄,K(θ) =: Pµ̄,K

where P(K) denotes the set of probability measures µ on R>0 × R≥0 × R>0 such that

Eµ[S1] = S0, Eµ[V ] = FV , ∀K ∈ K1, Eµ [(S1 −K)+] = C1
K , ∀K ∈ KV , Eµ [(V −K)+] = CVK ,

∀K ∈ K2, Eµ [(S2 −K)+] = C2
K , Eµ [S2|S1, V ] = S1, Eµ

[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2.(6.4)

9Note that with this choice of µ̄, the denominator in (5.6) is infinite since, conditionally on (S1, V ), S2 is lognormal. Despite
this lack of integrability, our numerical experiments ran well. Choices of µ̄ guaranteeing integrability include for instance
Gaussian distributions conditioned to be positive for S1 and V , as well as for S2 given (S1, V ).
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One can directly check that the model µ∗K is a consistent arbitrage-free model that jointly calibrates the
prices of SPX futures, SPX options, VIX futures, and VIX options. Indeed, if Ψ̄µ̄,K reaches its maximum at
θ∗, then θ∗ is solution to ∂Ψ̄µ̄,K

∂θi
(θ) = 0, i.e.,

∂Ψ̄µ̄,K

∂c
= 0 : Eµ̄

[
dµ∗K
dµ̄

]
= 1

∂Ψ̄µ̄,K

∂∆0
S

= 0 : Eµ̄
[
S1
dµ∗K
dµ̄

]
= S0

∂Ψ̄µ̄,K

∂∆0
V

= 0 : Eµ̄
[
V
dµ∗K
dµ̄

]
= FV

∂Ψ̄µ̄,K

∂a1
K

= 0 : Eµ̄
[
(S1 −K)+

dµ∗K
dµ̄

]
= C1

K(6.5)

∂Ψ̄µ̄,K

∂aVK
= 0 : Eµ̄

[
(V −K)+

dµ∗K
dµ̄

]
= CVK

∂Ψ̄µ̄,K

∂a2
K

= 0 : Eµ̄
[
(S2 −K)+

dµ∗K
dµ̄

]
= C2

K

∂Ψ̄µ̄,K

∂∆S(s1, v)
= 0 : Eµ̄

[
(S2 − S1)

dµ∗K
dµ̄

∣∣∣∣S1 = s1, V = v

]
= 0, ∀s1 ≥ 0, v > 0

∂Ψ̄µ̄,K

∂∆L(s1, v)
= 0 : Eµ̄

[(
L

(
S2

S1

)
− V 2

)
dµ∗K
dµ̄

∣∣∣∣S1 = s1, V = v

]
= 0, ∀s1 ≥ 0, v > 0.

The first equation states that µ∗K is a probability measure, while the next seven equations state that it satisfies
the seven constraints (6.4), so µ∗K ∈ P(K). This is not surprising: in Lagrangian relaxation, canceling the
gradient of the Lagrangian function with respect to the Lagrange multipliers is equivalent to enforcing the
constraints.

The corresponding Sinkhorn iterations read

c(n+1) = Φc(∆
0,(n)
S ,∆

0,(n)
V , a1,(n), aV,(n), a2,(n),∆

(n)
S ,∆

(n)
L )

S0 = Φ∆0
S
(c(n+1),∆

0,(n+1)
S ,∆

0,(n)
V , a1,(n), aV,(n), a2,(n),∆

(n)
S ,∆

(n)
L )

FV = Φ∆0
V

(c(n+1),∆
0,(n+1)
S ,∆

0,(n+1)
V , a1,(n), aV,(n), a2,(n),∆

(n)
S ,∆

(n)
L )

∀Ki ∈ K1, C1
Ki = Φ1(Ki; c

(n+1),∆
0,(n+1)
S ,∆

0,(n+1)
V , a1,(n,i), aV,(n), a2,(n),∆

(n)
S ,∆

(n)
L )

∀Ki ∈ KV , CVKi = ΦV (Ki; c
(n+1),∆

0,(n+1)
S ,∆

0,(n+1)
V , a1,(n+1), aV,(n,i), a2,(n),∆

(n)
S ,∆

(n)
L )

∀Ki ∈ K2, C2
Ki = Φ2(Ki; c

(n+1),∆
0,(n+1)
S ,∆

0,(n+1)
V , a1,(n+1), aV,(n+1), a2,(n,i),∆

(n)
S ,∆

(n)
L )

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆S
(s1, v; a2,(n+1),∆

(n+1)
S (s1, v),∆

(n)
L (s1, v))

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆L
(s1, v; a2,(n+1),∆

(n+1)
S (s1, v),∆

(n+1)
L (s1, v))

where, for ε ∈ {1, V, 2},

aε,(n,i) :=
(
a
ε,(n+1)
K1

, . . . , a
ε,(n+1)
Ki

, a
ε,(n)
Ki+1

, . . . , a
ε,(n)
K|Kε|

)

Electronic copy available at: https://ssrn.com/abstract=3397382



THE JOINT S&P 500/VIX SMILE CALIBRATION PUZZLE SOLVED 12

with

Φc(∆
0
S ,∆

0
V , a

1, aV , a2,∆S ,∆L) := − ln

∫
µ̄(ds1, dv, ds2) e−cθ

Φ∆0
S
(c,∆0

S ,∆
0
V , a

1, aV , a2,∆S ,∆L) :=

∫
µ̄(ds1, dv, ds2) s1eθ

Φ∆0
V

(c,∆0
S ,∆

0
V , a

1, aV , a2,∆S ,∆L) :=

∫
µ̄(ds1, dv, ds2) veθ

Φ1(K; c,∆0
S ,∆

0
V , a

1, aV , a2,∆S ,∆L) :=

∫
µ̄(ds1, dv, ds2) (s1 −K)+eθ

ΦV (K; c,∆0
S ,∆

0
V , a

1, aV , a2,∆S ,∆L) :=

∫
µ̄(ds1, dv, ds2) (v −K)+eθ

Φ2(K; c,∆0
S ,∆

0
V , a

1, aV , a2,∆S ,∆L) :=

∫
µ̄(ds1, dv, ds2) (s2 −K)+eθ

Φ∆S
(s1, v; a2, δS , δL) :=

∫
µ̄(s1, v, ds2) (s2 − s1)e

∑
K∈K2

a2
K(s2−K)++δS(s2−s1)+δL

(
L
(
s2
s1

)
−v2

)

Φ∆L
(s1, v; a2, δS , δL) :=

∫
µ̄(s1, v, ds2)

(
L

(
s2

s1

)
− v2

)
e
∑
K∈K2

a2
K(s2−K)++δS(s2−s1)+δL

(
L
(
s2
s1

)
−v2

)

where eθ is a shorthand notation for

eθ := e
c+∆0

Ss1+∆0
V v+

∑
K∈K1

a1
K(s1−K)++

∑
K∈KV

aVK(v−K)++
∑
K∈K2

a2
K(s2−K)++∆

(S)
S (s1,v,s2)+∆

(L)
L (s1,v,s2)

and e−cθ is the same expression without the c term.
We use θ(0) = 0 as the starting point of the Sinkhorn algorithm, and we numerically checked that the

result does not depend on the initial guess, which is in line with [14, Theorem 4.5]. The above integrals
are estimated using Gaussian quadrature; we use Gauss-Legendre quadrature when we integrate over s1 and
v, and Gauss-Hermite quadrature when we integrate over s2. While the expression for c(n+1) is explicit,
computing the other parameters requires using a one-dimensional root solver; we use Newton’s algorithm.
As an exception, for each point s1 and v in the quadrature grid, (∆

(n+1)
S (s1, v),∆

(n+1)
L (s1, v)) are actually

jointly computed using the Levenberg-Marquardt algorithm. Numerical convergence is typically reached after
about a hundred iterations (a few minutes using Python code on a standard personal computer—Intel(R)
Core(TM) i7-6700 CPU @ 3.40 GHz processor and 16GB of RAM), which provides a very accurate estimate
of θ∗, hence µ∗K.

If the Sinkhorn algorithm diverges, then Pµ̄,K = +∞, so Dµ̄,K = +∞, which means that P(K) ∩ {µ ∈
M1|µ� µ̄} = ∅. In practice, when µ̄ has full support, this is a sign that there likely exists a joint SPX/VIX
arbitrage based only onK. In such a case, a joint SPX/VIX arbitrage portfolio can be identified by numerically
solving the linear problem (whose value is then −∞)

inf
Θ0

{
c+ ∆0

SS0 + ∆0
V FV +

∑
K∈K1

a1
KC

1
K +

∑
K∈KV

aVKC
V
K +

∑
K∈K2

a2
KC

2
K

}
where Θ0 is the set of portfolios θ = (c,∆0

S ,∆
0
V , a

1, aV , a2,∆S ,∆L) superreplicating zero, i.e., such that

c+∆0
Ss1+∆0

V v+
∑
K∈K1

a1
K(s1−K)++

∑
K∈KV

aVK(v−K)++
∑
K∈K2

a2
K (s2 −K)++∆

(S)
S (s1, v, s2)+∆

(L)
L (s1, v, s2) ≥ 0.

Remark 9. For the sake of clarity we have so far assumed zero rates, repo, and dividends. Of course in
practice, we use the market values F1 and F2 of the SPX futures maturing at T1 and T2. The first and last
two conditions in (6.4) then read

Eµ[S1] = F1, Eµ [S2|S1, V ] = F12S1, Eµ
[
L

(
S2

F12S1

)∣∣∣∣S1, V

]
= V 2,

where F12 := F2/F1, and the CK are understood as undiscounted call prices.

Remark 10. One practical issue is that there are no listed SPX options maturing at T1. Indeed, T1 is the
Wednesday that is exactly 30 days before the third Friday of the following monthm+1, therefore the monthly
SPX options maturity T ′1 of month m is either two days after or five days before T1. The rigorous treatment
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of this annoying fact requires that we introduce a fourth random variable S′1 representing the value of the
SPX index at time T ′1. If T ′1 is two days after T1, we consider the primal portfolios

u1(s′1) + uV (v) + u2(s2) + ∆S(s1, v)(s′1 − s1) + ∆′S(s1, v, s
′
1)(s2 − s′1) + ∆L(s1, v)

(
L

(
s2

s1

)
− v2

)
and the corresponding dual risk-neutral probability measures P ′(µ1, µV , µ2) on R>0 × R≥0 × R2

>0 such that

V ∼ µV , S′1 ∼ µ1, S2 ∼ µ2, Eµ [S′1|S1, V ] = S1, Eµ [S2|S1, V, S
′
1] = S′1, Eµ

[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2,

where (S1, V, S
′
1, S2) denotes the identity on R>0 × R≥0 × R2

>0. If T ′1 is five days before T1, the primal
portfolios are

u1(s′1) + uV (v) + u2(s2) + ∆′S(s′1)(s1 − s′1) + ∆S(s′1, s1, v)(s2 − s1) + ∆L(s′1, s1, v)

(
L

(
s2

s1

)
− v2

)
and the corresponding dual risk-neutral probability measures satisfy

S′1 ∼ µ1, V ∼ µV , S2 ∼ µ2, Eµ [S1|S′1] = S′1, Eµ [S2|S′1, S1, V ] = S1, Eµ
[
L

(
S2

S1

)∣∣∣∣S′1, S1, V

]
= V 2.

This adds one dimension to the Gaussian quadratures and slows the Sinkhorn algorithm. Instead, we assume
that SPX options mature exactly at T1 and we define the SPX smile at T1 by interpolating the total implied
variance in maturity.

7. Numerical experiments

Let us first test our algorithm on SPX and VIX market data as of August 1, 2018. We first build the
model µ∗K when T1 = 21 days, the closest monthly VIX future maturity—usually the maturity for which
joint calibration is most difficult. Figure 9.1 compares the model and market smiles of S1, V , and S2. The
fit is remarkably accurate. Figure 9.1 also shows that the model is arbitrage-free: the martingale condition
Eµ [S2|S1, V ] = F12S1 and the consistency condition Eµ [L(S2/(F12S1))|S1, V ] = V 2 are perfectly satisfied.

Figure 9.2 explores some properties of the model µ∗K. We plot the joint distribution of (S1, V ) under µ∗K,
as well as the local VIX function VIXloc(s1), which we define as

VIX2
loc(S1) := Eµ

∗
K
[
V 2
∣∣S1

]
.

The local VIX has the usual pattern of local volatility, decreasing except for large s1. We also plot the
conditional distribution of S2 given (s1, v) under µ∗K for different values of (s1, v).10 This shows that for s1

close to the money the conditional distribution has negative skewness, i.e., a fat tail to the left, whereas for
large values of s1 it has positive skewness, i.e., a fat tail to the right. For small values of s1, it is close to the
lognormal distribution T (s1, v, ds2) in (6.1) for small v, but diverges from it for large v. We also graph the
distribution of the normalized return

R :=
ln S2

F12S1

V
√
τ

+
1

2
V
√
τ

under µ∗K. This return is exactly Gaussian under µ̄, but has negative skewness under µ∗K. Finally we also plot
the smile of implied volatilities of forward starting call options

(
S2

F12S1
−K

)
+
in the model µ∗K. The forward

starting smile is mostly V-shaped, with a minimum lying slightly out of the money. This is consistent with
how the skewness of S2 given s1 depends on s1. The model could also be used to price payoffs mixing SPX
and VIX values, such as a “VIX Sharped Forward Starting SPX Call” (S2/S1 − K)+/V , a “VIX Sharped
Forward Starting SPX Forward” (S2/S1)/V , the normalized return R, or options on them. Most importantly,
our jointly calibrating model µ∗K looks very “standard”; it shows no extreme or pathological feature. The SPX
and VIX smiles can be jointly calibrated with a model that looks familiar and reasonable.

In Figure 9.3 we report the optimal payoffs u∗1(s1) =
∑
K∈K1

a1∗
K (s1−K)+, u∗V (v) =

∑
K∈KV a

V ∗
K (v−K)+,

and u∗2(s2) =
∑
K∈K2

a2∗
K (s2 −K)+, as well as the optimal deltas ∆∗S(s1, v) and ∆∗L(s1, v). Note that u∗1 and

u∗2 look like (smoothed) call options, and the surfaces ∆∗S and ∆∗L have a similar shape.

10The piecewise continuous shapes of the distributions are the result of working with portfolios made of finitely many call
options.

Electronic copy available at: https://ssrn.com/abstract=3397382



THE JOINT S&P 500/VIX SMILE CALIBRATION PUZZLE SOLVED 14

Figures 9.4, 9.5 and 9.6 are the analogous of Figures 9.1, 9.2 and 9.3 for T1 = 49 days, the second closest
monthly VIX future maturity. Figures 9.7, 9.8 and 9.9 correspond to the calibration results (for T1 = 23
days) as of December 24, 2018, when the VIX reached a high value of 36.07% after a 10-day period where
the SPX index fell 11.3%. These figures show that our algorithm works equally well in a high volatility
environment. Note that the payoffs u∗1, u∗V , u

∗
2 as well as the surfaces ∆∗S and ∆∗L have a similar shape for

the two calibration dates reported here (low and high volatility regimes).

8. Extension to the multi-maturity case

So far we have considered only two maturities T1 and T2 = T1 + 30 days. In this section we explain how
to extend the model to include more market maturities.

To that end, for simplicity, we ignore the SPX/VIX maturity issue raised in Remark 10: we assume that
monthly SPX options and VIX futures maturities Ti perfectly coincide and, for two consecutive months,
are separated by exactly 30 days, Ti+1 − Ti = τ for all i ≥ 1. Assume that for each month i we are able
to build a jointly calibrating model νi following the algorithm described in Section 6; here νi denotes the
joint distribution of (Si, Vi, Si+1) where Si and Vi denote the SPX and VIX values at Ti. Then we can
build a calibrated model on (Si, Vi)i≥1 as follows: (S1, V1, S2) ∼ ν1; recursively we define the distribution
of (Vi+1, Si+2) given (S1, V1, S2, V2, . . . , Si, Vi, Si+1) as the conditional distribution of (Vi+1, Si+2) given Si+1

under νi+1. It is easy to check that the resulting model ν is arbitrage-free, consistent, and calibrated to all
the SPX and VIX monthly market smiles µSi and µVi : for all i ≥ 1,

Si ∼ µSi , Vi ∼ µVi , Eν [Si+1|(Sj , Vj)1≤j≤i] = Si, Eν
[
L

(
Si+1

Si

)∣∣∣∣(Sj , Vj)1≤j≤i

]
= V 2

i .

Unfortunately one cannot rigorously deal with the exact monthly maturities of SPX options and VIX
options by solving a sequence of independent monthly joint calibration problems and then gluing the solutions
together as above, because of the possible overlap of [Ti, T

′
i+1] and [Ti+1, T

′
i+2] (using the notations of Remark

10). For instance, if T2 < T ′2, then the influence of V2 on S′2 cannot be captured by the first-month model,
whose variables do not include V2. The rigorous treatment requires that our methodology be directly applied
to the full vector (Vi, Si, S

′
i)i≥1, which is doable in principle but impractical.

9. Conclusion

In this article we have for the first time built an arbitrage-free model that is perfectly consistent with
market data on SPX futures, SPX options, VIX futures, and VIX options. As a consequence, we have proved
that the market is free of joint SPX/VIX arbitrage. If joint arbitrages were to appear, our algorithm would
detect and identify them.

Our model is nonparametric, providing full flexibility to perfectly calibrate the market smiles, and is
formulated in discrete time, so as to easily decouple the ATM SPX skew and the ATM VIX implied volatility.
It is specified by a joint probability distribution of the SPX at T1, the VIX at T1, and the SPX at T2 = T1

+ 30 days, which is described in a nonparametric way by its Radon-Nikodym derivative w.r.t. a reference
measure. The Radon-Nikodym derivative, which has a Gibbs structure, is itself expressed in terms of a
portfolio made of the available hedging instruments: SPX futures and options, VIX futures and options,
and dynamic trading in the SPX and the forward-starting log-contract. This portfolio, which maximizes
a concave functional, is numerically computed using an extension of the Sinkhorn algorithm. The model
satisfies the martingality constraint on the SPX as well as the consistency condition that the VIX at T1 is
the implied volatility of the 30-day log-contract on the SPX. It can in principle be extended to include all
available market maturities.

Our numerical tests prove the efficiency of the algorithm in various volatility regimes. Our jointly cali-
brating model has familiar features and does not look weird or pathological in any way. Whether there exists
a continuous-time model consistent with our three-dimensional probability measure, and how our model de-
pends on the reference measure, are natural questions which are important for practical risk management
purposes, and that we leave for further research.
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Figure 9.1. Top: Futures and smiles of S1, V , and S2 in the calibrated model µ∗K vs
market futures and market smiles. Bottom: Model price of (S2 − S1)/S1 (left) and of
(L(S2/S1)−V 2)/V 2 (right) given (S1, V ) = (s1, v) as a function of (s1, v) in the quadrature
grid. Calibration as of August 1, 2018; T1 = 21 days
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Figure 9.2. Some properties of the calibrated model model µ∗K. Top: joint distribution
of (S1, V ) and local VIX function VIXloc(s1). Middle: conditional distribution of S2 given
(s1, v) for different vales of (s1, v): s1 ∈ {2571, 2808, 3000}, v ∈ {10.10, 15.30, 23.20, 35.72}%,
and distribution of the normalized return R. Bottom: smile of forward starting call options
(S2/S1 −K)+. Calibration as of August 1, 2018; T1 = 21 days
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Figure 9.3. Description of the calibrated model model µ∗K. Top: optimal functions u∗1, u∗V
and u∗2. Bottom: optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature
grid. Calibration as of August 1, 2018; T1 = 21 days
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Figure 9.4. Top: Futures and smiles of S1, V , and S2 in the calibrated model µ∗K vs
market futures and market smiles. Bottom: Model price of (S2 − S1)/S1 (left) and of
(L(S2/S1)−V 2)/V 2 (right) given (S1, V ) = (s1, v) as a function of (s1, v) in the quadrature
grid. Calibration as of August 1, 2018; T1 = 49 days
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Figure 9.5. Some properties of the calibrated model model µ∗K. Top: joint distribution
of (S1, V ) and local VIX function VIXloc(s1). Middle: conditional distribution of S2 given
(s1, v) for different vales of (s1, v): s1 ∈ {2428, 2801, 3102}, v ∈ {10.14, 17.32, 28.25}%, and
distribution of the normalized return R. Bottom: smile of forward starting call options
(S2/S1 −K)+. Calibration as of August 1, 2018; T1 = 49 days
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Figure 9.6. Description of the calibrated model model µ∗K. Top: optimal functions u∗1, u∗V
and u∗2. Bottom: optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature
grid. Calibration as of August 1, 2018; T1 = 49 days
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Figure 9.7. Top: Futures and smiles of S1, V , and S2 in the calibrated model µ∗K vs
market futures and market smiles. Bottom: Model price of (S2 − S1)/S1 (left) and of
(L(S2/S1)−V 2)/V 2 (right) given (S1, V ) = (s1, v) as a function of (s1, v) in the quadrature
grid. Calibration as of December 24, 2018; T1 = 23 days
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Figure 9.8. Some properties of the calibrated model model µ∗K. Top: joint distribution
of (S1, V ) and local VIX function VIXloc(s1). Middle: conditional distribution of S2 given
(s1, v) for different vales of (s1, v): s1 ∈ {1892, 2398, 2807}, v ∈ {10.20, 20.02, 34.98}%, and
distribution of the normalized return R. Bottom: smile of forward starting call options
(S2/S1 −K)+. Calibration as of December 24, 2018; T1 = 23 days
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Figure 9.9. Description of the calibrated model model µ∗K. Top: optimal functions u∗1, u∗V
and u∗2. Bottom: optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature
grid. Calibration as of December 24, 2018; T1 = 23 days
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10. Appendix: Functionally generated portfolios superreplicating zero

In this appendix, in the spirit of [24, Section 6], we introduce a new family of portfolios that superrepli-
cate zero. Their main merits are their simple functional form and that their superreplication property is
guaranteed by construction for all values of the underlyings—in contrast to numerical solutions to the linear
programming problems. When a portfolio in this family has a negative price, it reveals the existence of an
(S1, S2, V )-arbitrage. However, there might exist an (S1, S2, V )-arbitrage even if all portfolios in the family
have nonnegative prices.

Our portfolios are based on convex payoffs of both the SPX and its logarithm. Let us consider a convex
function ϕ : R>0 × R→ R. For u1 : R>0 → R ∪ {+∞} and v ≥ 0, we denote by

uϕ1 (v) := sup
s1>0

{
−ϕ(s1, L(s1) + v2)− u1(s1)

}
the ϕ-transform of u1, i.e., the smallest function uV : R≥0 → R ∪ {+∞} such that for all s1 > 0 and v ≥ 0,
u1(s1) + uV (v) + ϕ(s1, L(s1) + v2) ≥ 0. Similarly, for uV : R≥0 → R ∪ {+∞} and s1 > 0, we denote by

uϕV (s1) := sup
v≥0

{
−ϕ(s1, L(s1) + v2)− uV (v)

}
the ϕ-transform of uV , i.e., the smallest function u1 : R>0 → R ∪ {+∞} such that for all s1 > 0 and v ≥ 0,
u1(s1) + uV (v) + ϕ(s1, L(s1) + v2) ≥ 0. We denote uϕϕ1 := (uϕ1 )ϕ and uϕϕV := (uϕV )ϕ. The pair (uϕϕ1 , uϕ1 ) is
called a pair of ϕ-conjugate functions. It is easy to check that (uϕϕ1 )ϕ = uϕ1 , (uϕϕV )ϕ = uϕV , u

ϕϕ
1 ≤ u1, and

uϕϕV ≤ uV , see for instance [41, Exercise 2.35]. Moreover, we denote by ∂i,rϕ the right derivative of ϕ with
respect to its i-th argument.

Proposition 11. Let ϕ : R>0 × R→ R be convex. Let

u2,ϕ(s2) = ϕ(s2, L(s2)), ∆S,ϕ(s1, v) = −∂1,rϕ(s1, L(s1) + v2), ∆L,ϕ(s1, v) = −∂2,rϕ(s1, L(s1) + v2).

Then
(i) For any u1 : R>0 → R the following portfolios superreplicate zero:

Π1
ϕ,u1

:= (u1, u
ϕ
1 , u2,ϕ,∆S,ϕ,∆L,ϕ), Π̄1

ϕ,u1
:= (uϕϕ1 , uϕ1 , u2,ϕ,∆S,ϕ,∆L,ϕ).

(ii) For any uV : R≥0 → R the following portfolios superreplicate zero:

ΠV
ϕ,uV := (uϕV , uV , u2,ϕ,∆S,ϕ,∆L,ϕ), Π̄V

ϕ,uV := (uϕV , u
ϕϕ
V , u2,ϕ,∆S,ϕ,∆L,ϕ).

Proof. Since ϕ is convex,

ϕ(s2, L(s2))− ϕ(s1, L(s1) + v2)

≥ ∂1,rϕ(s1, L(s1) + v2)(s2 − s1) + ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

and as a consequence,

u2,ϕ(s2) + ∆S,ϕ(s1, v)(s2 − s1) + ∆L,ϕ(s1, v)

(
L

(
s2

s1

)
− v2

)
= ϕ(s2, L(s2))− ∂1,rϕ(s1, L(s1) + v2)(s2 − s1)− ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

≥ ϕ(s1, L(s1) + v2).

Therefore

u1(s1) + u2,ϕ(s2) + uϕ1 (v) + ∆S,ϕ(s1, v)(s2 − s1) + ∆L,ϕ(s1, v)

(
L

(
s2

s1

)
− v2

)
≥ u1(s1) + uϕ1 (v) + ϕ(s1, L(s1) + v2) ≥ 0

(by the definition of uϕ1 (v)) and

uϕV (s1) + u2,ϕ(s2) + uV (v) + ∆S,ϕ(s1, v)(s2 − s1) + ∆L,ϕ(s1, v)

(
L

(
s2

s1

)
− v2

)
≥ uϕV (s1) + uV (v) + ϕ(s1, L(s1) + v2) ≥ 0

(by the definition of uϕV (s1)). This proves the first parts of (i) and (ii). Applying them with u1 = uϕV and
uV = uϕ1 gives the second parts of (ii) and (i), respectively. �
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Corollary 12. Let ϕ : R>0 × R→ R be a convex function such that ϕ(S2, L(S2)) ∈ L1(µ2).
(i) Let u1 : R>0 → R such that u1 ∈ L1(µ1) and uϕ1 ∈ L1(µV ). If E1[u1(S1)] + EV [uϕ1 (V )] +

E2[ϕ(S2, L(S2))] < 0 then the portfolio Π1
ϕ,u1

is an (S1, S2, V )-arbitrage.
(ii) Let u1 : R>0 → R such that uϕϕ1 ∈ L1(µ1) and uϕ1 ∈ L1(µV ). If E1[uϕϕ1 (S1)] + EV [uϕ1 (V )] +

E2[ϕ(S2, L(S2))] < 0 then the portfolio Π̄1
ϕ,u1

is an (S1, S2, V )-arbitrage.
(iii) Let uV : R≥0 → R such that uϕV ∈ L1(µ1) and uV ∈ L1(µV ). If E1[uϕV (S1)] + EV [uV (V )] +

E2[ϕ(S2, L(S2))] < 0 then the portfolio ΠV
ϕ,uV is an (S1, S2, V )-arbitrage.

(iv) Let uV : R≥0 → R such that uϕV ∈ L1(µ1) and uϕϕV ∈ L1(µV ). If E1[uϕV (S1)] + EV [uϕϕV (V )] +
E2[ϕ(S2, L(S2))] < 0 then the portfolio Π̄V

ϕ,uV is an (S1, S2, V )-arbitrage.

From (4.1), in order to identify an (S1, S2, V )-arbitrage, one should optimize over the set of constrained
functions (u1, u2, uV ,∆S ,∆V ) ∈ U0. Corollary 12 tells us that it might be enough to simply optimize over the
set of unconstrained functions (ϕ, u1) or (ϕ, uV ), where ϕ : R>0 ×R→ R is convex. Since testing all convex
functions in dimension two is impractical [33], one may only test functions ϕ of the form ϕ(x, y) = ψ(ax+ y)
where ψ is a convex function in dimension one and a ∈ R.

In dual form, this means that in order to identify an (S1, S2, V )-arbitrage, instead of solving a dispersion-
constrained martingale optimal transport problem with two dates (T1 and T2) and three underlyings (S1 and
V at date T1, and S2 at date T2), it might be enough to solve a family (indexed by the convex functions ϕ)
of much simpler transport problems, namely, classical unconstrained optimal transport problems with only
one date (T1) and two underlyings (S1 and V ). Indeed, for each convex function ϕ : R>0 × R → R, let us
define

U1
ϕ = {(u1, uV ) ∈ L1(µ1)× L1(µV ) | ∀s1 > 0,∀v ≥ 0, u1(s1) + uV (v) ≥ −ϕ(s1, L(s1) + v2)},

the set of vanilla payoffs on S1 and V whose sum superreplicates the payoff −ϕ(S1, L(S1) + V 2). Then by
the classical Kantorovich duality we have

Proposition 13. Let ϕ : R>0 × R→ R be convex. Then

P 1
ϕ := inf

(u1,uV )∈U1
ϕ

{
E1[u1(S1)] + EV [uV (V )]

}
= sup
ν∈T (µ1,µV )

Eν
[
−ϕ(S1, L(S1) + V 2)

]
=: D1

ϕ.

If D1
ϕ < −E2[ϕ(S2, L(S2)], then there exists an (S1, S2, V )-arbitrage.
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