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Abstract

We consider a family of fractional Brownian fields {BH}H∈(0,1) on Rd, where
H denotes their Hurst parameter. We first define a rich class of normalizing
kernels ψ such that the covariance of

XH(x) = Γ(H)
1
2

(
BH(x)−

∫
Rd
BH(u)ψ(u, x)du

)
,

converges to the covariance of a log-correlated Gaussian field when H ↓ 0.
We then use Berestycki’s “good points” approach [11] in order to derive the

limiting measure of the so-called multiplicative chaos of the fractional Brownian
field

MH
γ (dx) = eγX

H(x)− γ
2

2
E[XH(x)2]dx,

as H ↓ 0 for all γ ∈ (0, γ∗(d)], where γ∗(d) >
√

7
4d. As a corollary we establish

the L2 convergence of MH
γ over the sets of “good points”, where the field XH

has a typical behaviour. As a by-product of the convergence result, we prove
that for log-normal rough volatility models with small Hurst parameter, the
volatility process is supported on the sets of “good points” with probability close
to 1. Moreover, on these sets the volatility converges in L2 to the volatility of
multifractal random walks.

1991 Mathematics Subject Classification: Primary, 60G15; 60G57; 60G60; Secondary,
60G18.
Keywords and phrases: fractional Brownian fields, log-correlated Gaussian fields,
rough volatility, Gaussian multiplicative chaos, multifractal random walk.
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1 Introduction

We consider a class of Gaussian fields which is known as fractional Gaussian fields
(FGF). We study the phase transition between two sub-classes of random fields
therein, which are called fractional Brownian fields (FBF) and log-correlated Gaussian
fields (LGF).

The d-dimensional factional Gaussian field h on Rd, with index s ∈ R (often
referred to as FGFs(Rd)) is formally defined as

h = (−∆)−s/2W,

where W is a white noise on Rd and (−∆)−s/2 is the fractional Laplacian in Rd. For
a rigorous definition we refer to the survey paper [37].

The class of FGFs has attracted considerable attention in recent years as it includes
some well known Gaussian processes and Gaussian fields which arise from the areas
of stochastic analysis, mathematical physics and financial modeling. When d = 1 and
s = 1, h is a Brownian motion. The case where s = 0 coincides with white noise and
the case where s = 1 is the Gaussian free field (GFF), both on Rd.
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It is often convenient to refer to the Hurst parameter

H := s− d

2
,

that describes the scaling relations of FGFs. For h ∼ FGFs(Rd) we have

h(α·) d
= αHh(·), for all α > 0.

In the case where h is a random tempered distribution this relation is described by
using test functions (see Section 1 of [37]).

The fractional Brownian field (FBF) with a Hurst parameter H ∈ (0, 1), is a
zero-mean Gaussian field (BH(x))x∈Rd with a covariance kernel given by

E[BH(x)BH(y)] =
1

2

(
‖x‖2H + ‖y‖2H − ‖x− y‖2H

)
, x, y ∈ Rd, (1.1)

where ‖ ·‖ denotes the Euclidean norm. This random field was introduced by Yaglom
[52] as a model for turbulence in fluid mechanics. The validity of the covariance
kernel and properties of these fields such as series expansions and functional central
limit theorems were extensively studied in [27, 45, 49, 39, 15, 29, 36] among others.
The case where d = 1 is the well known fractional Brownian motion (FBM) (see
[41]) which is a very popular modeling object in many fields such as hydrology [43],
telecommunications and network traffic [35, 42] and finance [16]. It is shown in
Section 6 of [37] that the FBF coincides with the FGFs(Rd) for H = s − d

2
∈ (0, 1)

after choosing a suitable representation of the latter by a continuous field.
Another class of random fields which is in the focus of this work is the log-correlated

Gaussian fields (LGF). We denote by S the Schwartz space of smooth functions on
Rd with rapid decay and by S ′ the topological dual space of tempered distributions.
Further denote by S0 ⊂ S the space of mean-zero test functions. The log-correlated
Gaussian field X is a centred Gaussian field in the space of tempered distributions
modulo constants S ′/S0 with the following covariance structure

E[〈X,φ1〉〈X,φ2〉] =

∫
Rd

∫
Rd

log
1

‖x− y‖
φ1(x)φ2(x)dxdy, φ1, φ2 ∈ S0.

When fixing the constants of the filed, e.g. by "pinning the field down" at a spe-
cific test function, the covariance kernel changes by an additional bounded function.
Further variants of this definition such as choosing a different metric space as the
underlying domain are also studied extensively in the literature (see e.g. Section 2 of
[46]).

In d = 1 the LGF was proposed as a financial model for the log-volatility [3, 18].
In d = 2 the LGF coincides with the GFF up to a multiplicative constant factor.
Other physical applications are also available for LGFs on higher dimensions (see
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Section 1.1 [19]). Moreover it was shown in Section 3 of [37] that the d-dimensional
LGF is a multiple of FGFd/2(Rd), that is, it is formally an H = 0 fractional Gaussian
field.

Since both the FBF and the LGF are embedded in the class of fractional Gaussian
fields, taking the limit as H → 0 on a sequence of FBFs formally gives a phase
transition within the FGF class. We refer to Figure 1.2 in [37] for an illuminating
phase transitions diagram between various subclasses of FGFs. However, plugging in
directly H = 0 in the covariance function (1.1) does not lead to any relevant process.

Several authors have already defined some fractional Brownian motions with
H = 0, see in particular [26]. This is usually done through a regularization pro-
cedure. In [44] a different approach was taken for the d = 1 case (i.e. for the limit as
H → 0 of FBM). The process BH was normalized in order to get a non-degenerate
limit. The normalized sequence of processes (XH

. )H∈(0,1) was defined as follows:

XH
t =

BH
t − 1

t

∫ t
0
BH
u du√

H
, t ∈ R, (1.2)

where XH
0 = 0. Subtracting the integral in the numerator and dividing by

√
H

enables us to get a non-trivial limit for our sequence as H tends to 0. The approach
in [44] was quite simple and natural from the financial viewpoint, as the normalized
processes remains adapted. The main result in [44] states that the sequence {XH

t }t∈R
converges weakly as H tends to zero, towards a centered Gaussian field X satisfying
for any φ1, φ2 ∈ S

E[〈X,φ1〉〈X,φ2〉] =

∫
R

∫
R
K(t, s)φ1(t)φ2(s) dt ds,

where for −∞ < s, t <∞, s 6= t and s, t 6= 0

K(t, s) = log
1

|t− s|
+ g(t, s),

and g is a bounded function for s, t away from zero.
One of the main objectives of this work is to extend the results in [44] to Rd. We

construct a sequence of normalized FBFs in Rd that converges to a LGF. We also
generalise the result in [44] in the sense that we characterise the class of normalizing
processes which lead to a meaningful limit as H → 0. We show that the normalized
process in (1.2) is just one member of the class of normalizing processes which inherits
the self-similarity from the FBF.We will also give example for a class of normalizations
which preserve the stationarity of increments.

The construction of the Gaussian multiplicative chaos (GMC) associated to a LGF
X, is a random measure that is formally given by

Mγ(dx) = eγX(x)− γ
2

2
E(X(x)2)dx,
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for γ > 0. This measure was first introduced by Kahane [31] and later generalized
in [46, 47, 48] and the references therein. The GMC has an extensive use in finance,
as we discuss later, and also in turbulence [14, 25], disordered systems [24, 38] and
Liouville quantum gravity [46, 47].

Since X is a tempered distribution, one usually uses a smooth local mollifying
function θε which converges to Dirac’s delta measure as ε → 0. Then define Xε =
X ? θε(x), where ? denotes the convolution operation. For a given domain D ⊂ Rd,
define for any Borel measurable A ⊂ D the approximation

M ε
γ(A) =

∫
A

eγX
ε(x)− γ

2

2
E(Xε(x)2)dx. (1.3)

It is well known that for γ <
√

2d this measure converges weakly to a non-degenerate
limiting measure, which is called the GMC associated to X. We refer to a review
paper by Rhodes and Vargas [46] for additional details.

The convergence in probability of

MH
γ ([0, t]) =

∫
[0,t]

eγX
H(s)− γ

2

2
E(XH(s)2)ds, t ∈ R+, (1.4)

when H ↓ 0 towards a Gaussian Multiplicative Chaos (GMC) was proved in Corollary
2.2 of [44]. However the proof in [44] is indirect, as it uses a dominance argument
between the covariance of XH and the covariance of a “standard” kernel, for which the
convergence properties are known. The conclusion is also based on a general result
from the theory of randomized shifts by Shamov [51].

In Theorem 2.4 of this paper we derive a stronger convergence statement, which
also applies in Rd. Using Berestycki’s elementary and self contained approach [11], we
show that for small values of H, MH

γ (·) vanishes on the complement of the so called
"good points" of the measure, with a high probability. On the good points set we
prove the L2 convergence of MH

γ (·) as H tends to 0 (see Corollary 3.6, Proposition
6.1, and the explanation at the beginning of Section 6). The proof of convergence
is direct and transparent, and it improves our understanding of the transition from
stochastic exponential of a fractional Brownian fields to GMC.

These improved results shed new light on the properties of the support of rough-
volatility models with small a Hurst parameter and also show that volatility process
on the set of good points convergence in L2 to the volatility of multifractal random
walks. We discuss these applications in more detail in Section 1.1.

Moreover, the convergence result in Theorem 2.4 does not explicitly depend on
the construction of the fractional Brownian fields, but only on their cross-covariance
structure, which is defined in (2.1). This is in contrast to the convergence result of
Shamov in Theorem 25 of [51], which explicitly imposes conditions on the construction
of the fields approximating the LGF. The class of fractional Brownian fields for which
Theorem 2.4 is applicable, includes all normalizations of fractional Brownian fields as
discussed in Section 2.2, however other examples are conceivable.
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1.1 Financial Motivation

Modeling the volatility of assets returns using factional Brownian motion trace back
to the pioneering work of Comte [16]. Recently, a new approach has been introduced
in [28] for the use of FBM with small Hurst parameter in volatility modelling . Care-
ful analysis of volatility process of thousands of assets suggests that the log-volatility
process actually behaves like a FBM with Hurst parameter between 0.02 to 0.2 (
see [10] and [23]). Hence various approaches using FBM with small Hurst param-
eter have been introduced for volatility modeling. These models are referred to as
rough volatility models, see [6, 7, 8, 9, 20, 21, 22, 30] for more details and practical
applications.

Another class of popular models for assets returns is the multifractal random walks
(see e.g [40, 2, 4, 4, 5, 13], among others). In these models the log-price is defined as
Yt = BM([0,t]), where B is a Brownian motion and

M(t) = lim
l→0

σ2

∫ t

0

ewl(u)du, a.s.,

with σ2 > 0 and wl a Gaussian process such that for some λ2 > 0 and T > 0

Cov[wl(t), wl(t
′)] = λ2log(T/|t− t′|), for l < |t− t′| ≤ T.

We refer to [4] for additional details. Hence we see that as l → 0, M formally
corresponds to a measure of the form exp(Xt)dt, where X is a LGF. This again could
be made rigorous by using the notion of Gaussian multiplicative chaos which was
described earlier.

One of the main goals, and in fact the initial motivation of writing this paper
is to describe the phase transitions of the volatility process between rough volatility
models, which are indexed by a Hurst parameter H > 0, and the multifractal random
walk model which corresponds to H = 0. In particular we would like to classify
the class of processes that can be used to normalize BH as in (1.2), as the current
normalization is quite specific and keeps XH

t as a self-similar process. Having a large
class of suitable normalizing processes could help us to choose XH which fits time
series observations better (see Section 2.2 for additional details).

We also derive the convergence of the volatilityMH
γ ([0, t]) in (1.4) whenH tends to

0. Theorem 2.4 in the one-dimensional case improves the convergence in probability
result of [44]. We provide a stronger and more refined statement by showing that
for small values of H, MH

γ ([0, t]) vanishes outside sets of "good points", with a high
probability. On the sets of "good points", where XH experience a typical behaviour,
we prove the L2 convergence of MH

γ as H tends to 0 (see Corollary 3.6 and Remark
3.7 afterwords, Proposition 6.1 and explanation at the beginning of Section 6). These
refined results point out that the volatility process in log-normal rough volatility
models with small (but not necessarily zero) Hurst parameter, are supported on the
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sets of good points with probability close to 1. Moreover, it follows that on the good
points sets, the rough-volatility process converges in L2 to the volatility of multifractal
random walks.

2 Main results

In this section we present our main results on the convergence of the stochastic ex-
ponential of FBFs when H tends to zero, and on the normalization of the FBFs. We
first present our convergence results.

2.1 Convergence of the Multiplicative Chaos of FBFs

Let D be a bounded domain in Rd and fix H0 ∈ (0, 1/2). We call X = (XH)0<H<H0

a family of normalized fractional Brownian fields if it has the following covariance
structure

E(XH(x)Xh(y)) = CH,h

(
1− ‖x− y‖H+h

H + h
+ gH,h(x, y)

)
, (2.1)

for x, y ∈ D and H, h ∈ (0, H0), where CH,h > 0 is a constant and gH,h : D×D → R is
a bounded function. For the rest of this paper we will make the following assumption.

Assumption 2.1. We assume that covariance function in (2.1) satisfies the following:

1.

lim
H→0

(
sup

0<h,H<H

|Ch,H − 1|
)

= 0. (2.2)

2. The functions gH,h converge to a bounded function g as follows

lim
(H,h)→0

sup
x,y∈D

∣∣gH,h(x, y)− g(x, y)
∣∣ = 0, (2.3)

where the limit (H, h)→ 0 is understood as a limit in R2.

Remark 2.2. From Assumption 2.1 we get the pointwise convergence of the covari-
ance kernel

lim
H→0

E(XH(x)XH(y)) = log
1

‖x− y‖
+ g(x, y), for all x, y ∈ D, x 6= y. (2.4)

where g is given in (2.3).
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Remark 2.3. In Section 2.2 we will show that a family of FBFs constructed on the
same Wiener space with suitable normalization, has the cross-covariance structure
(2.1) and satisfies Assumption 2.1. In particular this shows that the normalized pro-
cess from [44], which is given in (1.2), is included in the class of normalized FBFs
which satisfy Assumption 2.1.

For γ > 0 and every H ∈ (0, H0) we define the random measure MH
γ on D as

follows

MH
γ (dx) = eγX

H(x)− γ
2

2
E(XH(x)2)dx. (2.5)

We call MH
γ as the multiplicative chaos associated to the normalized FBF XH .

Now we are ready to present one of our main result which deals with the conver-
gence in probability of MH

γ as H → 0.

Theorem 2.4. The sequence of measures {MH
γ }H∈(0,H0) converges in probability as

H → 0 to a Borel measure Mγ in the topology of weak convergence of measures on

D, for all γ ≤ γ∗(d), with γ∗(d) >
√

7
4
d.

Remark 2.5. Theorem 2.4 generalizes Corollary 2.2 of [44] to any dimension. We
recall that the later dealt with convergence in probability of MH

γ on R. A central
ingredient in the the proof relates to the concept of “good points”, which are points in
the domain D where the field XH has a typical behaviour (see (3.1) for the precise
definition). The proof of Theorem 2.4 derives a stronger statement of convergence
than Corollary 2.2 of [44], as we show that for small H, MH

γ (·) vanishes on the
complement of the set of good points with high probability (see Corollary 3.6 and
Remark 3.7). On the set of good points we prove the L2 convergence of MH

γ (see
Proposition 6.1 and the discussion at the beginning of Section 6).

Remark 2.6. The proof of Theorem 2.4 is based on Berestycki’s approach for the
construction of Gaussian multiplicative chaos [11]. As we mentioned before, this was
done by first mollifying the log-correlated Gaussian field Xε in (1.3), which corre-
sponds to XH in our case. However Xε as being a mollified version of LGF has some
nice properties which are fundamental for the proof. For instance, if ε = e−t and
X̃t := Xε(x), then we have

Cov(X̃t, X̃s) = s ∧ t+O(1),

see equation (3.2) and Lemma 3.5 therein. This means that on the scale of ε = e−t,
Xε behaves approximately like a Brownian motion. This property clearly does not
apply for {XH}H∈(0,H) which experience the long range dependence of the fractional
Brownian field.

In order to overcome this gap, we had to improve Berestycki’s argument to our
purpose in several parts of the paper. For example, in the proof of Proposition 3.5
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we bound the two point probabilities (see (4.10) and Lemma 4.1), where in [11] one
point probability was sufficient (see (3.8)– (3.11) therein). This bound was crucial
both for the proof of uniform integrabilty (see Proposition 3.1) and for the proof of
convergence (see Lemmas 6.2 and 6.4). The improvements helped to enlarge the con-
vergence interval in Theorem 2.4, however we did not get the full convergence interval
as in Theorem 1.1 of [11] which was γ <

√
2d. The question whether MH

γ converge
when H → 0, for γ∗(d) ≤ γ <

√
2d remains as an interesting open question.

Remark 2.7 (Application to rough-volatility models). Corollary 3.6 which is one
of the ingredients in the proof of Theorem 2.4, gives novel results on the properties
the support of rough-volatility models with small Hurst parameter. Indeed we show
that for H small enough the volatility process MH

γ ([0, t]) in (1.4) is supported on good
points GH,H

α (x) in (3.1), with a probability that is asymptotically close to 1. Moreover,
from Proposition 6.1 it follows that on the good points set the rough-volatility process
converges in L2 to the volatility of multifractal random walks (see also Remark 3.7).

2.2 Normalization of fractional Brownian fields

In this section we will define a general class of normalizations in the sense of (1.2),
that apply to fractional Brownian fields. The normalized field will be a centered
Gaussian field with covariance as in (2.1) that satisfies Assumption 2.1.

We first explain how we construct the family of FBFs {BH}H∈(0,H0) for some
0 < H0 < 1, on the same probability space. Then we present our main results
regarding the normalization. The values of the constants bh,H , hh,H , oh,H , mH , kdH ,
Cd
H,h that appear in this section are given in Appendix A.
We start by construction in the FBM case, i.e. when d = 1. Let (Ω,F , (Ft)t∈R,P)

be a filtered probability space on which a two-sided standard Brownian motion W =
(Wt)t∈R is defined. A well known result by Mandelbrot and van Ness [41] states that
the following stochastic integral

B̃H(t) = mH

∫
R

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
dWs, t ∈ R, (2.6)

defines a fractional Brownian motion B̃H = (B̃H(t))t∈R with a Hurst parameter H ∈
(0, 1). Moreover, it is evident from this construction, yet rarely considered in the
literature, that (2.6) induces a cross-correlation for fractional Brownian motions of
different Hurst parameters. In particular it follows from Theorem 2 in [17] that

E(B̃H(t)B̃h(s)) = bh,H ·
(
|s|h+H + |t|h+H − |t− s|h+H

)
− oh,H · fh,H(s, t), (2.7)

for all t, s ∈ R and H, h ∈ (0, 1) with H + h 6= 1 where

fh,H(s, t) = sgn(s) |s|h+H + sgn(t) |t|h+H − sgn(t− s) |t− s|h+H . (2.8)
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The Mandelbrot-van Ness representation is particularly interesting for financial ap-
plications, since (B̃H(t))t≥0 is adapted to the filtration (Ft)t≥0 and therefore allows
to construct an adapted fractional Brownian motion with correlation to the under-
lying Brownian motion W . The construction (2.6) is sometimes referred to as non-
anticipating.

Note that there is no evident extension of (2.6) to the construction of fractional
Brownian fields on Rd. However, we can give up the adaptedness and replace the
kernel in (2.6) by a reflected version, defining a fractional Brownian motion BH for
H ∈ (0, 1) \ {1

2
} by

BH(t) = k1
H

∫
R

(
|t− s|H−

1
2 − |s|H−

1
2

)
dWs, t ∈ R. (2.9)

This representation is sometimes referred to as well-balanced (see [49, Chapter 7.2.1]).
In Proposition 11 of [17] it was shown that

E[BH(t)Bh(s)] = c1
H,h

(
|s|h+H + |t|h+H − |t− s|h+H

)
, t, s ∈ R. (2.10)

The construction (2.9) has a natural extension to fractional Brownian fields. Let
W be a white noise measure in Rd, defined on a probability space (Ω,F ,P). It was
proved in [36] that we can construct a fractional Brownian field BH by

BH(x) = kdH

∫
Rd

(
‖x− y‖H−

d
2 − ‖y‖H−

d
2

)
W (dy), x ∈ Rd, (2.11)

whereH ∈ (0, 1). Since we could not find a reference for the computation of covariance
of (2.11), we derive this result in the following lemma.

Lemma 2.8 (Covariance of fractional Brownian fields). The covariance structure of
{BH}H∈(0,1) in (2.11) given by

E[BH(x)Bh(y)] = cdH,h
(
‖x‖H+h + ‖y‖H+h + ‖x− y‖H+h ), (2.12)

for all x, y ∈ Rd, H, h ∈ (0, 1/2).

The proof of Lemma 2.8 is postponed to Section 7.
Next we define the class of normalizing functions for the FBFs which were de-

scribed above.
Let ψ be a positive integration kernel on Rd, that is ψ : Rd × Rd → R+ is a

measurable function. For a domain D ⊂ Rd and 0 < H0 <
1
2
we define the following

class of normalizing kernels.

Definition 2.9 (Normalizing kernels). We say that the kernel ψ is in the class of
normalizing kernels NH0(D), if it satisfies the following conditions:

10



(i) For any y ∈ D, y 7→ ψ(x, y) is continuous almost everywhere and∫
Rd
ψ(x, y)dx = 1. (2.13)

(ii) The following bounds hold:

sup
y∈D

∫
Rd
‖x‖2H0 ψ(x, y)dx <∞, (2.14)

sup
y∈D

∫
Rd

(
log− ‖x− y‖

)2
ψ(x, y)dx <∞, (2.15)

sup
y,w∈D

∫
Rd

∫
Rd

(
log− ‖x− v‖

)2
ψ(x, y)ψ(v, w)dxdv <∞, (2.16)

where log−(x) = min(log x, 0).

Now we are ready to state our main result regarding FBFs normalization.

Theorem 2.10. Let {BH}H∈(0,H0) be a family of fractional Brownian fields as in
(2.6), (2.9) or (2.11). For any ψ ∈ NH0(D),

XH(x) := Γ(H)
1
2

(
BH(x)−

∫
Rd
BH(u)ψ(u, x)du

)
, x ∈ D, H ∈ (0, H0), (2.17)

is a family of centred Gaussian fields with covariance structure (2.1), which agrees
with Assumption 2.1.

Remark 2.11. From Remark 2.2 and Theorem 2.10 it follows that the covariance of
XH converges pointwise to the covariance of the LGF as H → 0. We recall the Lévy-
continuity theorem for the weak convergence of probability measures on the space of
tempered distributions (see Theorem 2.3 in [12]). According to this, in order to prove
weak convergence of XH towards a LGF as H tends to 0, we need to show that for
any φ1, φ2 ∈ S

lim
H→0

E[(XH , φ1)(XH , φ2)] =

∫
Rd

∫
Rd
K(x, y)φ1(x)φ2(y) dx dy,

where
K(x, y) = log

1

‖x− y‖
+ g(x, y).

This was done for the one dimensional case and for a specific normalizing kernel
ψ in Theorem 2.1 of [44]. Since the focus of this work is the convergence of the
multiplicative chaos associated to XH we do not pursue this direction here.
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Next we give a few examples of normalizing kernels in NH0(D). We are mainly
interested in normalizations that preserve one of the two characterizing properties
of fractional Brownian fields: stationarity (and isotropy) of increments and self-
similarity.

Stationarity of increments: we choose the normalizing kernel ψ to be a con-
volution kernel. Let θ : Rd → R+ be a measurable bounded function such that

ψ(x, y) = θ(y − x), with
∫
Rd
θ(x)dx = 1.

In this case the conditions in Definition 2.9 translate to conditions on θ.
It is straight forward to check that the conditions of Definition 2.9 are satisfied

for any positive θ ∈ S with the domain D being any bounded subset of Rd. Another
interesting example is given by θ(x) = |A|−1 1A(x) for any bounded set A ⊂ Rd where
D is again a bounded domain. Here |A| is the Lebesgue measure of the set A. It is a
simple exercise to show that in these examples XH in (2.17) inherits the stationarity
of the increments from BH . Further, if θ is invariant under rotations, it is also straight
forward to show that XH has isotropic increments.

A specific example that preservers stationarity of increments in d = 1 is the
following moving average normalization

BH(t)− 1

δ

∫ t

t−δ
BH(u)du

for any fixed δ > 0. Here the normalized process is adapted to the filtration generated
by the fractional Brownian motion. Note that this type of normalization does not
preserve the self-similarity of BH , as we discuss next.

Self-similarity: using the self similarity property of the FBF, we get for any
ψ ∈ NH0(D) and A ⊂ D, λ > 0 with λA ⊂ D that(
BH(λx)−

∫
Rd
BH(u)ψ(u, λx)du

)
x∈A

d
= λH

(
BH(x)− λ

∫
Rd
BH(u)ψ(λu, λx)du

)
x∈A

.

By imposing ψ(λx, λy) = λ−1ψ(x, y), we see that the normalizationsXH in (2.17) pre-
serve the self-similarity. In particular, kernels of the form ψ(x, y) = ‖y‖−1 θ(x ‖y‖−1)
satisfy this property, where the conditions on ψ translate to conditions on θ : Rd → R+.
Note that the previous examples: θ ∈ S and θ = |A|−11A, with A ⊂ Rd being
bounded, apply also in this case, if the domain D is any bounded subset of Rd that
excludes a neighbourhood of zero.

A special case of the preceding example is the normalization proposed in [44]
which is given in (1.2). In this case D := [δ, T ] for some 0 < δ < T and

ψ(t, u) =
1

t
1[0,t](u), (2.18)
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Figure 1: Two realisations of the normalized fractional Brownian motion (1.2) for
Hurst parameters H = 0.1 (upper panel) and H = 0.01 (lower panel). In each panel
the first realisation is of fractional Brownian motion, the second is the subtracted
integral term and the third is the normalized fractional Brownian motion.

Hence this normalization preserves self-similarity and also keeps XH adapted to the
filtration generated by the fractional Brownian motion. See Figure 1 for realisations
of the normalized Gaussian process with ψ as in (2.18).

Another example for such kernels is given by θ(x) = |B1(0)|−1 1B1(0)(x) where
B1(0) is the unit ball around 0 and D is any bounded domain in Rd that excludes a
neighbourhood of zero.

Finally, let us give an intuitive argument that explains why a normalization of
FBFs is needed in order to establish convergence when H tends to 0. As we discusses
in Section 1, FBFs and LGFs are subsets of the class of fractional Gaussian fields
{FGFs(Rd), s ∈ R}. For H = s − d/2 ∈ [0, 1), the distributions of these fields give
full measure to (a representation of) the quotient space S ′0 = S ′/S0, where S0 ⊂ S

13



is the sub-space functions that integrate to zero. In other words, these fields are
defined as random tempered distributions modulo a constant. The convergence of
the fields as H ↓ 0 is a phase transition in the FGF-class. For H ∈ (0, 1) the
samples of FGFs(Rd) are tempered distributions h ∈ S ′0 which admit representations
as continuous functions. Fixing the undefined constants of these distributions by
requiring an evaluation zero at the origin, i.e. requiring 〈h, δ0〉 = 0, where δ0 is the
Dirac distribution, gives up to re-scaling by a constant, the FBF with Hurst parameter
H. However, for H = 0 the samples of h ∈ S ′0 of the log-correlated field FGF0(Rd)
are not representable by continuous functions and testing h against δ0 is not possible.
Therefore, requiring the FGF to be zero at the origin leads to a condition that is
ill-defined in the H ↓ 0 limit. In order to obtain a meaningful limit, one has to loosen
the latter condition in such a way that it can also be imposed on the LGF. This is
precisely what the class for normalizations in Theorem 2.10 does in a general form.

Without going further into detail, a modification of the conditions on class nor-
malizing kernels, to unbounded domains is possible. We have seen however, that in
order to obtain self-similarity, the domain of the normalized field has to exclude a
neighbourhood of zero, which is clearly breaking the scale invariance of the domain
and therefore the global self-similarity. Intuitively this is explained by noting that the
global self-similarity property in the H ↓ 0 limit corresponds to the scale-invariance of
the field, which is indeed a characteristic property of the log-correlated field, however
it only makes sense when understanding the field modulo constants.

Organisation of the paper: The rest of this paper is dedicated to the proofs of
the main results in Theorems 2.4 and 2.10. In Section 3 we prove uniform integrability
for the family of measures {MH

γ }H∈(0,H0) from Theorem 2.4. In Sections 4 and 5 we
prove Proposition 3.5 and Lemma 4.1, respectively, which are essential ingredients for
the proof of uniform integrability. In section 6 we use uniform integrability in order
to prove the convergence of {MH

γ }H∈(0,H0) as H ↓ 0. Section 7 is dedicated to the
proof of Lemma 2.8. Finally in Section 8 we prove Theorem 2.10.

3 Uniform Integrability

In this section we show that the family of measures {MH
γ }H∈(0,H0) from (2.5) are

uniformly integrable. The result is given in the following proposition.
Let A be the class measurable subsets of D.

Proposition 3.1. For any A ∈ A,
{
MH

γ (A)
}
H∈(0,H0)

is uniformly integrable on

(Ω,F , P ), for all γ ≤ γ∗(d), with γ∗(d) >
√

7
4
d.

The main idea in the proof of Proposition 3.1, is to restrict the limiting measure to so
called good points, that is points x ∈ A in which the field does not deviate too much

14



from its mean. To be more precise, let H ∈ (0, H0). We define the event of x being
a good point of order α > 0 by

GH,H
α (x) =

{
Xh(x) ≤ α

h+H
, for all h ∈ SH,H

}
, (3.1)

where H ∈ (0, H/2) and we define the following grid of h’s by

SH,H =

{
h : h = H +

1

n
, n ∈ N,

1

H −H
< n ≤ 1

H

}
. (3.2)

Before we prove Proposition 3.1, we introduce a sequence of auxiliary lemmas.
The following two lemmas will motivate the restriction of the random field XH to the
good points.

Lemma 3.2. For any α > 0 and H ∈ (0, H0), there exists pHα > 0 such that

P
(
GH,H
α (x)

)
≥ 1− pHα , for all x ∈ D, 0 < H ≤ 1

2
H.

Moreover, pHα → 0 as H → 0.

Proof. We will bound the probability of the event GH,H
α (x) from below by bounding

the probability of the complementary event GH,H
α (x)c from above as follows

P
(
GH,H
α (x)c

)
= P

(
∃h ∈ SH,H , s.t. Xh(x) >

α

h+H

)
≤

∑
h∈SH,H

P

(
Xh(x) >

α

h+H

)
.

(3.3)

From (2.1)–(2.3) we get

0 < E(Xh(x)2) ≤ (1 + c1)
( 1

2h
+ c2

)
, for every x ∈ D, h ∈ (0, H0), (3.4)

for some constants c1, c2 > 0.
We will use the following tail estimate for a random variable Z, which is a centred

Gaussian with variance σ2,

P (Z > x) ≤ e−
x2

2σ2 , for all x > 0. (3.5)

Let h = H + 1/n as in (3.2). Use (3.4) and (3.5) to get

P

(
Xh(x) >

α

h+H

)
≤ exp

(
−

α2
(
2H + 1

n

)−2

2E
(
XH+1/n(x)2

))

≤ exp

(
− α2

2(c1 + 1)

(
2H + 1

n

)−2(
H + 1

n

)−1
+ c2

)
.

(3.6)
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Note that (
2H + 1/n

)−2(
H + 1/n

)−1
+ c2

=
1

(2H + 1/n)2

H + 1/n

1 + c2(H + 1/n)

=
1

2(2H + 1/n)2

2H + 2/n

1 + c2(H + 1/n)

≥ 1

2(2H + 1/n)

1

1 + c2(H + 1/n)

≥ 1

4(H + 1/n)

1

1 + c2

,

where we used (3.2) and the fact that H + 1/n ≤ H ≤ H0 < 1 in the last line.
For any x > 0 define [x] to be the largest integer less than or equal to x. Denote

m =
[

1
H

]
. Since m ≤ 1

H
we get

H +
1

n
≤ 1

m
+

1

n
,

and it follows that (
2H + 1/n

)−2(
H + 1/n

)−1
+ c2

≥ 1

4( 1
m

+ 1
n
)

1

1 + c2

. (3.7)

From (3.6) and (3.7) we get that

P

(
Xh(x) >

α

h+H

)
≤ exp

(
− α2

8(c2 + 1)(c1 + 1)

1
1
m

+ 1
n

)
. (3.8)

Define β = α2

8(c1+1)(c2+1)
> 0. Then from (3.3) and (3.8) we get that

P
(
GH,H
α (x)c

)
≤

m∑
n=[1/H]−1

exp

(
− β

1
m

+ 1
n

)

= exp

(
−β

2
m

)
+

m−1∑
n=[1/H]−1

exp

(
− β

1
m

+ 1
n

)

≤ exp

(
−β

2
m

)
+

m−1∑
n=[1/H]−1

exp

(
− β

1
m−1

+ 1
n

)
.

By iterating the preceding inequality we get

P
(
GH,H
α (x)c

)
≤

m∑
n=[1/H]−1

exp

(
−β

2
n

)

<

∞∑
n=[1/H]−1

exp

(
−β

2
n

)
=: pHα .
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It is clear then that pHα → 0 as H → 0.

Next, introduce additional definitions that will be used throughout this section.
For a centred Gaussian random variable ξ we define,

ξ = ξ − 1

2
E(ξ2).

Further we define the measure P̃ by

dP̃

dP
= eγX

H(x). (3.9)

Lemma 3.3. Let α > γ. For any ε ∈ (0, α/γ − 1) there exists H > 0 sufficiently
small such that

E
[
eγX

H(x)1
GH,Hα (x)

]
≥ 1− pHα−γ(1+ε), for all x ∈ D, 0 < H ≤ 1

2
H,

where pHα−γ(1+ε) is given in Lemma 3.2.

Proof. By Cameron-Martin-Girsanov theorem under the measure P̃ , the Gaussian
process (Xh(x))h∈(0,1) has similar variance as under P and a shifted mean which is
bounded by

γE
[
Xh(x)XH(x)

]
≤ γCH,h

(
1

H + h
+ c

)
, for all x ∈ D, (3.10)

where c > 0 is a constant independent of x and H. Note that we have used (2.1) and
(2.3) in the above inequality.

Let 0 < ε < α/γ − 1. Recall that for h ∈ SH,H we have 2H ≤ h ≤ H, then using
(2.2) we get that for H small enough that

γE
[
Xh(x)XH(x)

]
≤ γ(1 + ε)

1

h+H
, for all x ∈ D, h ∈ SH,H .

Using the above inequality, (3.1) and (3.9) we get that

E
[
eγX

H(x)1{GH,Hα (x)}

]
= P̃

(
GH,H
α (x)

)
= P

(
Xh(x) ≤ α

h+H
− γE

(
Xh(x)XH(x)

)
, ∀h ∈ SH,H

)
≥ P

(
Xh(x) ≤ α

1

h+H
− γ(1 + ε)

1

h+H
, ∀h ∈ SH,H

)
= P

(
GH,H
α−γ(1+ε)(x)

)
.

We can thus conclude the result from Lemma 3.2.
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Recall that A is the class measurable subsets of D. For any 0 < H < H0,
H ∈ (0, H/2) and α > γ we define the random measure IH,Hα,γ (·) as follows

IH,Hα,γ (A) =

∫
A

eγX
H(x)− γ

2

2
E[XH(x)2]1

GH,Hα (x)
dx, A ∈ A. (3.11)

Note that IH,Hα,γ (·) is the approximating measureMH
γ in (2.5), restricted to good points.

In the following proposition we derive a uniform bound on the second moment of IH,Hα,γ .

Proposition 3.4. There exists γ∗(d) >
√

7
4
d such that for any γ ∈ (0, γ∗(d)) and

α > γ sufficiently close to γ, there exists H > 0 sufficiently small such that

sup
0<H≤H/2

sup
A∈A

E
[
IH,Hα,γ (A)2

]
<∞.

Proof. Let A ∈ A. For any H ∈ (0, H0) define the probability measure P by

dP

dP
= eγX

H(x)+γXH(y)− γ
2

2
E[XH(x)+XH(y)]2 . (3.12)

From (2.1), (2.3), (3.12) and Fubini’s theorem we get

E
[
IH,Hα,γ (A)2

]
=

∫
A

∫
A

E

[
eγX

H(x)+γXH(y)− γ
2

2
E[XH(x)2]− γ

2

2
E[XH(y)2]1{GHα (x)∩GHα (y)}

]
dxdy

=

∫
A

∫
A

eγ
2E[XH(x)XH(y)] P (GH

α (x) ∩GH
α (y))dxdy

=

∫
A

∫
A

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H
+ g2H(x, y)

)
P (GH

α (x) ∩GH
α (y))dxdy

≤ K

∫
A

∫
A

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy.

(3.13)

Our goal is to bound E
[
IH,Hα,γ (A)2

]
uniformly in H and A. In order to do that, we

split the integral on the right-hand side of (3.13) to four regions. Let κ∗ ≥ 1 be a
constant that will be fixed later.

Define:
R1 :={(x, y) ∈ D ×D : ‖x− y‖ < e−κ

∗/H};

R2 :={(x, y) ∈ D ×D : e−κ
∗/H ≤ ‖x− y‖ < e−2/H};

R3 :={(x, y) ∈ D ×D : e−2/H ≤ ‖x− y‖ < 1};
R4 :={(x, y) ∈ D ×D : 1 ≤ ‖x− y‖

}
.

(3.14)
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Note that since H/H ∈ (0, 1/2) and κ∗ ≥ 1, Ri, i = 0, 1, 2, 3 are disjoint and non-
empty.

We further define

Ji(H,H,A) =

∫∫
Ri

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy. (3.15)

Note that Ji(H,H,A) depend also on γ and α. We suppress this dependence in order
to simplify the notation.

From (3.13) it follows that

E
[
IH,Hα,γ (A)2

]
≤ K

4∑
i=1

Ji(H,H,A). (3.16)

Our next goal will be to bound Ji, i = 1, ..., 4.
Using (2.2) we notice that for any for arbitrarily small δ > 0 we can choose H

small enough, such that for all H ∈ (0, H),

J1(H,H,A) ≤
∫∫

R1

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
dxdy

≤
∫∫

R1

exp
(

(1 + δ)γ2 1

2H

)
dxdy

≤ exp
(

(1 + δ)γ2 1

2H

)
|R1|

≤ C exp
(

(1 + δ)γ2 1

2H
− κ∗d

H

)
.

(3.17)

Since κ∗ ≥ 1 and δ is arbitrarily close to 1, it follows that for H sufficiently small,

sup
H≤H/2

sup
A∈A

J1(H,H,A) <∞, for all γ2 < 2d, (3.18)

as needed.
Since A ⊂ D and D is a bounded domain, the following bound on J4 follows

trivially,
sup

0<H≤H/2
sup
A∈A

J4(H,H,A) <∞. (3.19)

Next, we use the inequality

1− ‖x− y‖2H

2H
≤ − log ‖x− y‖ , for ‖x− y‖ < 1, H ∈ (0, 1/2),
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together with (3.14) and (3.15) we get,

J3(H,H,A) ≤
∫∫

R3

exp
(
γ2 1− ‖x− y‖2H

2H

)
dxdy

≤
∫∫

R3

exp
(
γ2(− log ‖x− y‖)

)
dxdy

≤
∫
D

∫
D

eγ
22H

−1

dxdy

≤ e2γ2H
−1

|D|2.

It follows that
sup

0<H≤H/2
sup
A∈A

J3(H,H,A) <∞. (3.20)

The derivation of a uniform bound on J2(H,H,A) is long and involved. Therefore,
we summarise the result in the following Proposition, which will be proved in Section
4.

Proposition 3.5. There exists κ∗ > 1, γ∗(d) >
√

7
4
d and H ∈ (0, H0), such that for

all γ ≤ γ∗(d) we have
sup

0<H≤H/2
sup
A∈A

J2(H,H, a) <∞.

From (3.16), (3.18) (3.19), (3.20) and Proposition 3.5 we get the result of Propo-
sition 3.4.

The result of Proposition 3.4 is the main ingredient in the proof of uniform inte-
grability of

{
MH

γ (S)
}
H∈(0,H/2)

, as shown later in the proof of Proposition 3.1.

Before we present the proof of Proposition 3.1 we will state the following useful
corollary.

For any α > γ, H ∈ (0, H0), and H ∈ (0, H/2) we define

LH,Hα,γ (A) =

∫
A

eγX
H(x)− γ

2

2
E[XH(x)2]1(

GH,Hα (x)
)cdx, A ∈ A. (3.21)

Corollary 3.6. Let A ∈ A and α > γ. Then for every ε > 0, there exists H > 0
sufficiently small such that

sup
0<H≤H/2

E
[
LH,Hα,γ (A)

]
≤ ε.

Proof. Fix A ∈ A and α > γ. Let ε > 0. From Lemma 3.3 we can choose ε̄ ∈
(0, α/γ − 1) and H small enough such that

sup
0<H≤H/2

E
[
LHα,γ(A)

]
≤ |A|pHα−γ(1+ε̄)

≤ ε.
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Remark 3.7. Note that Corollary 3.6 provides some valuable information on the
support of the measureMH

γ (·), which were defined in (2.5). Indeed we show that for H
small enough, MH

γ (·) is arbitrarily small outside the set of good points ∪x∈DGH,H
α (x),

with probability close to 1.

Now we have all the ingredients for the proof of Proposition 3.1.

Proof of Proposition 3.1. Recall thatMH
γ , IH,Hα,γ and LH,Hα,γ were defined in (2.5), (3.11)

and (3.21), receptively. We therefore have,

MH
γ (A) = IH,Hα,γ (A) + LH,Hα,γ (A). (3.22)

for any H ∈ (0, H0). From Proposition 3.4, we get that there exists α > γ sufficiently
close to γ, such that for all H > 0 sufficiently small we have

sup
0<H≤H/2

sup
A∈A

E
[
IH,Hα,γ (A)2

]
<∞. (3.23)

It follows that {IH,Hα,γ (A)}0<H≤H/2 are uniformly integrable.
Let ε > 0 be arbitrarily small and choose B ∈ F such that

sup
0<H≤H/2

E
[
IH,Hα,γ (A)1B

]
<
ε

2
. (3.24)

From Corollary 3.6 with α which was fixed in (3.23), we have for H small enough

sup
0<H≤H/2

E
[
LH,Hα,γ (A)

]
≤ ε

2
. (3.25)

From (3.22), (3.24) and (3.25) it follows that there exists H small enough such
that

sup
0<H<H/2

E
[
MH

γ (A)1B
]
≤ ε,

and the uniform integrability of
{
MH

γ (A)
}
H∈(0,H)

follows.

Next we will show that
{
MH

γ (A)
}
H∈[H,H0)

is abounded in L2, this will conclude
the proof. Repeating the same steps as in (3.13) and then using (2.2) and (2.3) we
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get that there exist constants C1, C2 > 0 such that

E
[
MH

γ (A)2
]

=

∫
A

∫
A

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H
+ g2H(x, y)

)
dxdy

≤
∫
A

∫
A

exp
(

(1 + C1)γ2 1− ‖x− y‖2H

2H
+ C2

)
dxdy

≤
∫ ∫

‖x−y‖<1

exp
(

(1 + C1)γ2 1− ‖x− y‖2H

2H
+ C2

)
dxdy

+

∫ ∫
‖x−y‖≥1

exp
(

(1 + C1)γ2 1− ‖x− y‖2H

2H
+ C2

)
dxdy

≤ C̃1(H) + C̃2|A|2, for all H ≤ H ≤ H0.

It follows that
sup

H≤H<H0

E
[
MH

γ (A)2
]
<∞.

4 Proof of Proposition 3.5

In order to get a uniform bound on J2 in (3.15) we first need to bound P
(
GH
α (x) ∩GH

α (y)
)
.

Using (2.1) it follows that the Cameron-Martin shift due to the change of measure
(3.12) is given by

γE
[
Xh(x)

(
XH(x) +XH(y)

) ]
= γCh,H

(
1

H + h
+

1− ‖x− y‖H+h

H + h
+ gH,h(x, x) + gH,h(x, y)

)
.

Let δ > 0 be arbitrarily small. From (2.2) we get that for all sufficiently small H we
have

sup
0<h,H<H

|Ch,H | ≥ 1− δ. (4.1)

From (2.3) it follows that there exists a constant C1 > 0 such that for all sufficiently
small H we have

sup
0<h,H<H

sup
x,y∈D

|gh,H(x, y)| ≤ C1.

Together with (3.1) it follows that by choosing H small enough, for all 0 < H < H/2,
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h ∈ SH,H and x, y ∈ D we have

γE
[
Xh(x)

(
XH(x) +XH(y)

) ]
≥ γ(1− δ)

(
1

H + h
+

1− ‖x− y‖H+h

H + h
− 2C1

)

≥ γ(1− 2δ)

(
1

H + h
+

1− ‖x− y‖H+h

H + h

)
.

(4.2)
Recall that GH

α (·) was defined in (3.1). Using (4.2) we get for all h ∈ SH,H ,

P
(
GH
α (x) ∩GH

α (y)
)

≤ P

(
Xh(x) ≤ α

h+H
− (1− 2δ)γ

( 1

H + h
+

1− ‖x− y‖H+h

H + h

)
,

Xh(y) ≤ α

h+H
− (1− 2δ)γ

( 1

H + h
+

1− ‖x− y‖H+h

H + h

))
= P

(
Xh(x) ≤ (α− γ(1− 2δ))

1

h+H
− (1− 2δ)γ

1− ‖x− y‖H+h

H + h
,

Xh(y) ≤ (α− γ(1− 2δ))
1

h+H
− (1− 2δ)γ

1− ‖x− y‖H+h

H + h

)
.

(4.3)

In order to bound the right hand side of (4.3), we need to choose a specific h∗ from
SH,H . Define

h∗ :=

[
− κ∗

log ‖x− y‖

]
S

, (4.4)

where the constant κ∗ ≥ 1 will be specified later, and for any x > 0, [x]S is the
largest object in SH,H that is smaller than x. Using (3.2) one can observe that for
any arbitrary small δ > 0 we have for all H small enough and (x, y) ∈ R2 that

− κ∗

log ‖x− y‖
− C

(
κ∗

log ‖x− y‖

)2

≤ h∗ ≤ − κ∗

log ‖x− y‖
, (4.5)

where C > 0 is a constant independent from x, y ∈ R2.
It follows that for all H small enough

e−κ
∗ ≤ ‖x− y‖h∗ ≤ e−

1
2
κ∗ , for all x, y ∈ R2. (4.6)

Let α > γ where γ < γ∗(d). Define

ε = α− γ. (4.7)

Then we have
(α− γ(1− 2δ)) = ε+ 2γδ. (4.8)
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Using (4.6) and (4.8) we get that

(α− γ(1− 2δ))
1

h∗ +H
=

(α− γ(1− 2δ))

1− e−κ∗/2
1− e−κ∗/2

h∗ +H

≤ (α− γ(1− 2δ))

1− e−κ∗/2
1− ‖x− y‖h∗

h∗ +H

≤ (α− γ(1− 2δ))

1− e−κ∗/2
1− ‖x− y‖h∗+H

h∗ +H

≤ ε+ 2γδ

1− e−κ∗/2
1− ‖x− y‖h∗+H

h∗ +H
.

(4.9)

From (4.3) and (4.9) we get

P
(
GH
α (x) ∩GH

α (y)
)
≤ P

(
Xh(x) ≤ −β(δ, ε)γ

1− ‖x− y‖H+h∗

H + h∗
,

Xh(y) ≤ −β(δ, ε)γ
1− ‖x− y‖H+h∗

H + h∗

)
=: P ∗(x, y;H),

(4.10)

where
β(δ, ε) := 1− 2δ

(
1 +

1

1− e−κ∗/2

)
− ε

γ(1− e−κ∗/2)
. (4.11)

We would like to derive an upper bound on P ∗.

Lemma 4.1. Let ε = α − γ. Then, for any δ > 0 arbitrarily small there exists H
small enough such that

P ∗(x, y,H) ≤ C

γ2
exp

(
− (1− δ)β(δ, ε)2γ2h∗

(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗

)
.

Here C > 0 is a constant not depending on (γ, ε,H, h∗, H, δ).

The proof of Lemma 4.1 is postponed to Section 5.

Proof of Proposition 3.5. Let δ > 0. From (3.15), (4.10) and Lemma (4.1) we get for
H sufficiently small

J2(H,H, S)

≤ K

∫ ∫
R2

exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P ∗(x, y,H)dxdy

≤ C

γ2

∫ ∫
R2

exp
(

(1 + δ)γ2 1− ‖x− y‖2H

2H

)
× exp

(
− (1− δ)β(δ, ε)2γ2h∗

(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗

)
dxdy,

(4.12)
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where we have also used (2.2) in the last inequality.
Assume now that for some δ ∈ (0, 1), ξ ∈ (0, 1/2) and H1 ∈ (0, H0), we have for

all x, y ∈ R2 and H ≤ H1

γ2h∗
(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗
> (ξ + δ)γ2 1− ‖x− y‖2H

2H
. (4.13)

Then by choosing α close enough to γ, ε in (4.7) now becomes arbitrarily small, and
we get

ε

γ(1− e−κ∗/2)
≤ δ

16
.

By taking δ sufficiently small we have

2δ

(
1 +

1

1− e−κ∗/2

)
≤ δ

16
. (4.14)

It follows that β(δ, ε) in (4.11) is bounded from below by

1− δ

8
≤ β(δ, ε). (4.15)

From (4.14) we have δ ≤ δ/64. Together with (4.13) and (4.15) we get

(1 + δ)γ2 1− ‖x− y‖2H

2H
− (1− δ)β(δ, ε)2γ2h∗

(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗

≤ (1 + δ)γ2 1− ‖x− y‖2H

2H
− (1− δ)

(
1− δ

8

)2
(ξ + δ)γ2 1− ‖x− y‖2H

2H

≤ γ2 1− ‖x− y‖2H

2H

(
1 + δ − (1− δ)

(
1− δ

8

)2
(ξ + δ)

)
≤ γ2 1− ‖x− y‖2H

2H
(1− ξ).

(4.16)
Therefore from (4.12) and (4.16) for H small enough, which is depending on δ but

not on ε, we have

sup
H≤H

J2(H,H, S) ≤ C(γ)

∫ ∫
R2

exp
(

(1− ξ)γ2 1− ‖x− y‖2H

2H

)
dxdy

≤ C(γ)

∫ ∫
R2

exp
(
− (1− ξ)γ2 log ‖x− y‖

)
dxdy

≤ C(γ)

∫ ∫
‖x−y‖≤1

‖x− y‖−(1−ξ)γ2 dxdy

<∞,

(4.17)
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if (1− ξ)γ2 < d. Hence by assuming (4.13) we get

sup
H≤H

sup
S∈S

J2(H,H, S) <∞, for all γ2 <
d

1− ξ
, (4.18)

and the proof is complete.
Therefore our goal is to show that (4.13) holds and to specify ξ. Define ξ = ξ+ δ.

Since δ ∈ (0, 1) is arbitrarily small and ξ ∈ (0, 1/2), (4.13) equivalent to

2 h
H

1− e2 log‖x−y‖H
1

(1 + h
H

)2
(1− elog‖x−y‖H(1+H

h
))2 2

2− e2H log |x−y| h
H

≥ ξ, (4.19)

for some ξ ∈ (0, 1/2).
Substituting

u =
h

H
, λ = − log ‖x− y‖H, (4.20)

the left hand side of (4.19) becomes

g(u, λ) :=
2u

1− e−2λ

1

(1 + u)2

(
1− e−λ(1+u)

)2 2

2− e−2λu
. (4.21)

From the definition of R2 in (3.14) and from (4.5) it follows that for any arbitrarily
small δ > 0 we have for all H small enough and x, y ∈ R2 that

− κ∗

H log ‖x− y‖
− δ ≤ h∗

H
≤ − κ∗

H log ‖x− y‖
.

Together with (4.20) we get that

κ∗

λ
− δ ≤ u ≤ κ∗

λ
. (4.22)

Now we fix κ∗. For any κ > 0 let

g(
κ

λ
, λ) =

2κ

λ(1− e−2λ)

λ2

(λ+ κ)2

(
1− e−(κ+λ)

)2 2

2− e−2κ

=
2κλ

(1− e−2λ)

1

(λ+ κ)2

(
1− e−(κ+λ)

)2 2

2− e−2κ
.

Define
f(κ) := lim

λ→0
g(
κ

λ
, λ) =

2

κ(2− e−2κ)
(1− e−κ)2.

We further define
κ∗ = argmax

κ
f(κ) ≈ 1.0370,
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and
ξ̄ = f(κ∗) ≈ 0.42872. (4.23)

Note that
g(
κ∗

λ
, λ) ≥ f(κ∗), for all 0 < λ ≤ κ∗.

So from (4.22) and the continuity of g we get that (4.19) holds for ξ in (4.23). Note
that (4.22) with ξ in (4.23) holds any x, y ∈ R2, since for such x, y we have λ =
−H log ‖x− y‖ ≤ κ∗ (see (3.14)). Therefore, for all H sufficiently small we get (4.18)
where

γ∗(d) =

√
d

1− ξ
>
√

1.75d. (4.24)

5 Proof of Lemma 4.1

Proof of Lemma 4.1. Recall that h∗ was defined in (4.4). From (2.1) it follows that(
Xh∗(x), Xh∗(y)

)
∼ N(0,Σ),

where

Σ =

[
Ch∗,h∗

(
1

2h∗
+ gh

∗,h∗(x, x)
)

Ch∗,h∗
(

1−‖x−y‖2h
∗

2h∗
+ gh

∗,h∗(x, y)
)

Ch∗,h∗
(1−‖x−y‖2h

∗

2h∗
+ gh

∗,h∗(y, x)
)

Ch∗,h∗
(

1
2h∗

+ gh
∗,h∗(y, y)

) ]
. (5.1)

By inverting Σ we get

(Σ)−1

=
1

det Σ

[
Ch∗,h∗

(
1

2h∗
+ gh

∗,h∗(y, y)
)

−Ch∗,h∗
(1−‖x−y‖2h

∗

2h∗
+ gh

∗,h∗(x, y)
)

−Ch∗,h∗
(1−‖x−y‖2h

∗

2h∗
+ gh

∗,h∗(y, x)
)

Ch∗,h∗
(

1
2h∗

+ gh
∗,h∗(x, x)

) ]
.

(5.2)
From (2.2), (2.3) and (4.6) we get that for any arbitrarily small δ1 > 0 there exists
H small enough (and hence h∗ ≤ H small) such that

det Σ ≤ C2
h∗,h∗

1

4(h∗)2

(
1− (1− ‖x− y‖2h∗)2

)
+
C

h∗

≤ (1 + δ1)
1

4(h∗)2

(
1− (1− ‖x− y‖2h∗)2

)
,

(5.3)

and similarly

det Σ ≥ (1− δ1)
1

4(h∗)2

(
1− (1− ‖x− y‖2h∗)2

)
. (5.4)

We will use the following bound which was derived by Savage in [50].
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Theorem 5.1. Let M = Σ−1 with M = (mij)d×d and C = (c1, ..., cd) ∈ Rd. If for all
1 ≤ i ≤ d, we have ∆i :=

∑d
j=1 Cjmij > 0 then

P (X1 ≥ c1, ...., Xn ≥ cn) ≤
( d∏
i=1

∆i

)−1
√

detM

(2π)d/2
e−

1
2
CTMC .

Since {Xh(x)}x∈Rd is a centred Gaussian field we get from (4.10) that,

P ∗ := P
(
Xh∗(x) > γβ(δ, ε)

1− ‖x− y‖H+h∗

H + h∗
, Xh∗(y) > γβ(δ, ε)

1− ‖x− y‖H+h∗

H + h∗

)
.

Using the notation of Theorem 5.1 we have

C = (c, c) :=
(
β(δ, ε)γ

1− ‖x− y‖H+h∗

H + h∗
, β(δ, ε)γ

1− ‖x− y‖H+h∗

H + h∗

)
. (5.5)

Next we derive a lower bound to 1
2
CTMC. Using (2.3), (4.1), (4.6) and (5.2), we get

for any δ > 0 arbitrarily small we have for all H small enough,

1

2
CTMC =

1

2
c2
∑
i,j=1,2

Mij

≥ c2(1− δ) 1

det Σ

( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗
− C1

)
≥ c2(1− 2δ)

1

det Σ

( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗

)
≥ c2 (1− 2δ)

(1 + δ1)

4(h∗)2(
1− (1− ‖x− y‖2h∗)2

)( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗

)
,

where we have used (5.3) in the last inequity.
Together with (5.5) we have

1

2
CTMC ≥ γ2β(δ, ε)2(1− 2δ)

(1 + δ1)

(1− ‖x− y‖H+h∗)2

(H + h∗)2

× 4(h∗)2(
1− (1− ‖x− y‖2h∗)2

)( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗

)
≥ γ2β(δ, ε)2(1− δ̃) 2h∗

2 + ‖x− y‖2h∗

(
1− ‖x− y‖H+h∗

H + h∗

)2

,

(5.6)

where δ̃ > 0 is arbitrarily small and depends on the choice of H.
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Let δ2 ∈ (0, 1). Recall that M = Σ−1. Using (5.2) and (5.5) and repeating similar
steps as in the derivation of (5.6), have for all H small enough

∆1 = c(m11 +m12) ≥ (1− δ2)β(δ, ε)γ
1− ‖x− y‖H+h∗

H + h∗
1

det Σ

( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗

)
,

∆2 = c(m21 +m22) ≥ (1− δ2)β(δ, ε)γ
1− ‖x− y‖H+h∗

H + h∗
1

det Σ

( 1

2h∗
− 1− ‖x− y‖2h∗

2h∗

)
.

(5.7)
Note that by (4.6), (5.4) and (5.7), ∆1,∆2 > 0 for x 6= y.

Using (5.3) and (5.7) and repeating the same lines as before, we get for arbitrarily
small δ > 0,

∆i ≥ 2γ(1− δ̄)β(δ, ε)h∗‖x− y‖2h∗ 1− ‖x− y‖H+h∗

H + h∗
1

1− (1− ‖x− y‖2h∗)2

≥ 2γ(1− δ̄)β(δ, ε)h∗
1− ‖x− y‖H+h∗

H + h∗
1

2− ‖x− y‖2h∗
, i = 1, 2.

We therefore have

(∆1∆2)−1 ≤
(

4(1− δ̄)2β(δ, ε)2γ2(h∗)2 (1− ‖x− y‖H+h∗)2

(H + h∗)2

1

(2− ‖x− y‖2h∗)2

)−1

≤ 1

4(1− δ̄)2β(δ, ε)2γ2(h∗)2

(H + h∗)2

(1− ‖x− y‖H+h∗)2
(2− ‖x− y‖2h∗)2.

Note that from (5.4) we get

√
detM =

1√
det Σ

≤ C
2h∗√

1− (1− ‖x− y‖2h∗)2
.

We then have( 2∏
i=1

∆i

)−1
√

detM

2π
≤ C

1

h∗γ2

(H + h∗)2

(1− ‖x− y‖H+h∗)2

(2− ‖x− y‖2h∗)2√
1− (1− ‖x− y‖2h∗)2

. (5.8)

From (5.6) and (5.8) it follows that for H small enough we have

P ∗ ≤ C
1

h∗γ2

(H + h∗)2

(1− ‖x− y‖H+h∗)2

(2− ‖x− y‖2h∗)2√
1− (1− ‖x− y‖2h∗)2

× exp
(
− β(δ, ε)2(1− δ̃)h∗γ2

(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗

)
.

By using the following lemma we get the desired bound on P ∗.
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Lemma 5.2. There exists C > 0 such that

sup
H≤h∗

sup
(x,y)∈R2

1

h∗
(H + h∗)2

(1− ‖x− y‖H+h∗)2

(2− ‖x− y‖2h∗)2√
1− (1− ‖x− y‖2h∗)2

< Ch∗.

Proof of Lemma 5.2. From (4.6) and since H ≤ h∗ we get

‖x− y‖H+h∗ ≥ e−κ
∗(H+h∗)/h∗ ≥ e−2κ∗ ,

and similarly
‖x− y‖2h∗ ≥ e−2κ∗ .

Therefore there exists C > 0 independent from h,H and x, y such that

1

h∗
(H + h∗)2

(1− ‖x− y‖H+h∗)2

(2− ‖x− y‖2h∗)2√
1− (1− ‖x− y‖2h∗)2

≤ C
1

h∗
(H + h∗)2

= 4Ch∗.

6 Convergence

In this section we prove the convergence of {MH
γ }H∈(0,H0) as H ↓ 0. In order to do

so, we will first show that for any A ∈ A, {MH
γ (A)}H∈(0,H0) converges in L1. We first

describe our method of proof which uses ideas from [11].

Recall that MH
γ , IH,Hα,γ and LH,Hα,γ were defined in (2.5), (3.11) and (3.21), recep-

tively. Recall that by (3.22) for any H ∈ (0, H0) we have

MH
γ (A) = IH,Hα,γ (A) + LH,Hα,γ (A). (6.1)

Let ε > 0 be arbitrarily small, then by Corollary 3.6 we can choose H small enough
such that

sup
0<H≤H/2

E
[
LH,Hα,γ (A)

]
≤ ε

2
. (6.2)

We will show that {IH,Hα,γ (A)}H∈(0,H0) is a Cauchy sequence in L2, so we can choose
H1 ∈ (0, H) such that

E

[(
IH,Hα,γ (A)− IH′,Hα,γ (A)

)2
]
<
ε

2
, for all 0 ≤ H,H ′ ≤ H1. (6.3)
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From (6.1)–(6.3) we get

E
[∣∣∣MH,H

α,γ (A)−MH′,H
α,γ (A)

∣∣∣]
≤ E

[∣∣∣IH,Hα,γ (A)− IH′,Hα,γ (A)
∣∣∣]+ E

[∣∣∣LH,Hα,γ (A)− LH′,Hα,γ (A)
∣∣∣]

≤ ε,

(6.4)

for all 0 ≤ H,H ′ ≤ H1. Hence {MH
γ (A)}H∈(0,H0) is a Cauchy sequence in L1, and this

gives the convergence result.
The remainder of this section is dedicated to showing that {IH,Hα,γ (A)}H∈(0,H) con-

verges in L2 as H ↓ 0. We summarise this result in the following proposition.

Proposition 6.1. For any γ < γ∗(d) and α > γ sufficiently close to γ, the set
{IH,H0

α,γ (A)}H∈(0,H) converges in L2 as H → 0, for all A ∈ A.

We will show that {IH,Hα,γ (A)}H∈(0,H) is a Cauchy sequence in L2, this will imply
the convergence in Proposition 6.1.

We first observe that for any H, Ĥ ∈ (0, H) we have

E
[(
IH,Hα,γ (A)− IĤ,Hα,γ (A)

)2
]

= E
[
IH,Hα,γ (A)2

]
− 2E

[
IH,Hα,γ (A)IĤ,Hα,γ (A)

]
+ E

[
IĤ,Hα,γ (A)2

]
.

(6.5)

In the following two lemmas we derive a sharp upper on E
[
IH,Hα,γ (A)2

]
and a sharp

lower bound on E
[
IH,Hα,γ (A)IĤ,Hα,γ (A)

]
. These lemmas will help us to bound the right-

hand side of (6.5).

Lemma 6.2. We have

lim sup
H→0

E
[
IH,Hα,γ (A)2

]
≤
∫
A

∫
A

eγ
2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy,

where gα is a nonnegative function depending on α,H and γ.

Proof. We fix η ∈ (0, e−2/H). Note that from (3.13) we have

E
[
IH,Hα,γ (A)2

]
≤ K

∫
A

∫
A

1‖x−y‖≤η exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy

+K

∫
A

∫
A

1‖x−y‖≥η exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy

=: K
(
I1(η,H) + I2(η,H)

)
.

(6.6)
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Since η < e−2/H from (3.14) it follows that

I1(η,H) ≤
∫∫

R1∪R2

1‖x−y‖≤η exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy

=

∫∫
R1

1‖x−y‖≤η exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy

+

∫∫
R2

1‖x−y‖≤η exp
(
CH,Hγ

2 1− ‖x− y‖2H

2H

)
P (GH

α (x) ∩GH
α (y))dxdy

=: I1,1(η,H) + I1,2(η,H).
(6.7)

Using (3.15) and (3.17) we get

I1,1(η,H) ≤ C

∫ ∫
{‖x−y‖≤η∧e−κ∗/H}

exp
(

(1 + δ)γ2 1

2H

)
dxdy. (6.8)

From (3.15) and (4.17) we have

I1,2(η,H) ≤ C

∫ ∫
‖x−y‖≤η

‖x− y‖−(1−ξ)γ2 dxdy, (6.9)

where ξ is given by (4.23) and is chosen so that the right-hand side of (6.9) is finite
for any η ≤ 1 and for γ ≤ γ∗(d).

By plugging in (6.8) and (6.9) to (6.7), it follows that there exists a function `(η)
such that for all γ < γ∗(d) we have

sup
H≤H

I1(η,H) ≤ `(η), where `(η)→ 0 as η → 0. (6.10)

Next we bound I2(η,H). We will need the following lemma, that follows immedi-
ately from (2.1) and (2.2).

Lemma 6.3. For any fixed H1 ∈ (0, H/2) we have

1.
lim
H→0

sup
x∈A, h≥H1

∣∣∣∣E[Xh(x)XH(x)
]
− Ch,0

(
1

h
+ gh(x, x)

)∣∣∣∣ ,
2.

lim
H→0

sup
‖x−y‖≥η, h≥H1

∣∣∣∣E[Xh(x)XH(y)
]
− Ch,0

(
1− ‖x− y‖h

h
+ gh(x, y)

)∣∣∣∣ .
Recall that P (which depends on H) was defined in (3.12). By Lemma 6.3 and the

Cameron-Martin-Girsanov theorem the joint law of (Xh(x), Xh(y))h∈(0,H] converges as
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H ↓ 0 under P to a joint distribution (X̃h(x), X̃h(y))h∈(0,H] with the same covariance
structure, but with drifts which are given by

E
[
Xh(x)

]
= γCh,0

(
2− ‖x− y‖h

h
+ gh(x, x) + gh(x, y)

)
,

E
[
Xh(y)

]
= γCh,0

(
2− ‖x− y‖h

h
+ gh(y, y) + gh(x, y)

)
.

(6.11)

This weak convergence holds uniformly on compacts of (0, H] and on ‖x− y‖ ≥ η.
Let

G̃H(x) =

{
X̃h(x) ≤ α

h
+ γCh,0

(
2− ‖x− y‖h

h
+ gh(x, x) + gh(x, y)

)
, ∀ 0 < h ≤ H

}
.

(6.12)
Then from (3.1), (6.11) and (6.12), we get uniformly on ‖x− y‖ > η we have

lim
H→0

P
(
GH,H(x) ∩GH,H(y)

)
= P (G̃H(x) ∩ G̃H(y)) := gα(x, y). (6.13)

Using (2.1)–(2.2) we get uniformly in ‖x− y‖ ≥ η

lim
H→0

E[XH(x)XH(y)] = − log ‖x− y‖+ g(x, y). (6.14)

Then from (6.13) and (6.14) and since g is bounded, we can use dominated conver-
gence to get

lim
H→0

∫
A

∫
A

1‖x−y‖≥ηe
γ2E[XH(x)XH(y)]P

(
GH,H(x) ∩GH,H(y)

)
dxdy

=

∫
A

∫
A

1‖x−y‖≥ηe
γ2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy.

(6.15)

To finish the proof we need to show that the right hand side of (6.15) is finite when
η → 0.

Note that from (4.10) any Lemma 4.1, for and δ > 0 there exists H sufficiently
small, such that for all H ≤ H we have

P
(
GH,H(x) ∩GH,H(y)

)
≤ C

γ2
exp

(
− (1− δ)β(δ, ε)2γ2h∗

(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗

)
.

where h∗ was defined in (4.4) and ε = α − γ. From (4.13), (4.23) and by choosing δ
small enough and α close to γ, we have we have for all H ≤ H,

(1− δ)β(δ, ε)2γ2h∗
(1− ‖x− y‖H+h∗

H + h∗

)2 2

2− ‖x− y‖2h∗
> γ2f(κ∗)

1− ‖x− y‖2H

2H
.
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It follows that

lim
H→0

P
(
GH,H(x) ∩GH,H(y)

)
≤ lim

H→0

C

γ2
exp

(
− f(κ∗)

1− ‖x− y‖2H

2H

)
=
C

γ2
exp

(
γ2f(κ∗) log ‖x− y‖

)
.

(6.16)

Therefore using (6.13), (6.16), (4.17) and (4.23), we get for all γ < γ∗(d),

sup
η∈(0,e−2/H)

∫
A

∫
A

1‖x−y‖≥ηe
γ2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy

≤ sup
η∈(0,e−2/H)

C(γ)

∫
A

∫
A

1‖x−y‖≥η
1

‖x− y‖γ2
exp

(
γ2f(κ∗) log ‖x− y‖

)
dxdy

≤ C(γ)

∫
A

∫
A

1

‖x− y‖γ2(1−f(κ∗))
dxdy

<∞.

This proves that the right hand side of (6.15) is finite when η → 0, and therefore the
conditions of dominated convergence apply. It follows from (6.15) and (6.6) that

lim
η→0

lim
H→0

I2(η,H) ≤
∫
A

∫
A

eγ
2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy.

Together with (6.6) and (6.10) this completes the proof.

Lemma 6.4. We have

lim inf
H,Ĥ→0

E
[
IH,Hα,γ (A)IĤ,Hα,γ (A)

]
≥
∫
A

∫
A

eγ
2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy.

Proof. The proof is almost identical to the proof of Lemma 6.2. Repeating the same
steps leading to (3.13) we get tor any H, Ĥ ∈ (0, H)

E
[
IH,Hα,γ (S)IĤ,Hα,γ (A)

]
≥
∫
A

∫
A

1‖x−y‖≥ηe
γ2E[XH(x)XĤ(y)]P̂

(
GH,H(x) ∩GĤ,H(y)

)
dxdy

where
dP̂

dP
= eγX

H(x)+γXĤ(y)− γ
2

2
E[XH(x)+XĤ(y)]2 . (6.17)

Again, the joint law of (Xh(x), Xh(y))h≤H/2 converges when H and Ĥ tend to 0 under
P̂ to a joint distribution (X̃h(x), X̃h(y))h≤H/2 that has the same covariance structure
but with drift which is given by (6.11). This weak convergence is uniform on compacts
of (0, H]2 and on ‖x− y‖ ≥ η.
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Recall that G̃H(x) was defined in (6.12). Then uniformly in ‖x− y‖ > η

lim
H̄,H→0

P̂
(
GH,H(x) ∩GĤ,H(y)

)
= P (G̃H(x) ∩ G̃H(y)) := gα(x, y). (6.18)

Using (2.1)–(2.2) we get uniformly in ‖x− y‖ ≥ η

lim
H,Ĥ→0

E[XH(x)XĤ(y)] = − log ‖x− y‖+ g(x, y). (6.19)

Since g is bounded on D ×D and from (6.18), (6.19), we can use dominated conver-
gence to get

lim inf
H,Ĥ→0

∫
A

∫
A

1‖x−y‖≥ηe
γ2E[XH(x)XĤ(y)]P̂

(
GH,H(x) ∩GĤ,H(y)

)
dxdy

≥
∫
A

∫
A

1‖x−y‖≥ηe
γ2g(x,y) 1

‖x− y‖γ2
gα(x, y)dxdy.

Since η is arbitrarily small, the result follows.

Now we are ready to prove Proposition 6.1.

Proof of Proposition 6.1. Let A ∈ A. From (6.5) and Lemmas 6.2 and 6.4 it follows
that {IH,H0

α,γ (A)}H∈(0,H) is a Cauchy sequence in L2.

Next we show that Proposition 6.1 implies the convergence of {MH
α,γ(A)}H∈(0,H)

as H ↓ 0 in L1.

Proof of convergence in Theorem 2.4. Let A ∈ A. From Proposition 6.1 it follows
that {IH,H0

α,γ (A)}H∈(0,H) is a Cauchy sequence in L2. From the explanation at the
beginning of this section (see (6.1)–(6.4)) it follows that {MH

γ (A)}H∈(0,H0) converges
in L1, and therefore it converges in probability to a limit Mγ(A), when γ < γ∗(d).
The next step is to show that the sequence of measures {MH

γ }H∈(0,H) converges in
probability with the weak topology towards a measure Mγ, for γ < γ∗(d). This
procedure is identical to the corresponding argument in Section 6 of [11], hence it is
omitted.

7 Proof of Lemma 2.8

The values of the constants hh,H , oh,H , mH , kdH , Cd
H,h that appear in the section are

given in Appendix A.
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Proof of Lemma 2.8. It was already shown in [36, Lemma 1] that the integral in (2.11)
is well defined.

We therefore only need to prove the explicit form of the covariance structure. The
proof uses ideas from the proof of [36, Lemma 3]. Let x, y ∈ Rd and H, h ∈ (0, 1).
Then Itô-isometry we have

E
[(
BH(x)−BH(y)

)(
Bh(x)−Bh(y)

)]
=kdHk

d
h

∫
Rd

(
‖x− u‖H−

d
2 − ‖y − u‖H−

d
2
)(
‖x− u‖h−

d
2 − ‖y − u‖h−

d
2
)
du.

Now consider the following substitution

w =
u− y
‖x− y‖

and ‖x− u‖ = ‖x− y‖ ‖e− w‖ ,

where e := (x− y)/ ‖x− y‖ is a unit vector. Note that

‖y − u‖ = ‖x− y‖ ‖w‖ .

We therefore get that

E
[(
BH(x)−BH(y)

)(
Bh(x)−Bh(y)

)]
= c̃dH,h ‖x− y‖

H+h ,

where,

c̃dH,h := kdHk
d
h

∫
Rd

(
‖e− w‖H−

d
2 − ‖w‖H−

d
2
)(
‖e− w‖h−

d
2 − ‖w‖h−

d
2
)
dw. (7.1)

Due to the rotational invariance of the integral, c̃dH,h is indeed independent of the
orientation of the unit vector e. In the following we fix e = e1 = (1, 0, ..., 0). Therefore,
in order to complete the proof we need to show that c̃dH,h = cdH,h.

We first recall the definition of the Riesz-kernel rαd : Rd → R (see [34, Chapter
1.1]).

rαd (x) = Ad(α) ‖x‖α−d with Ad(α) =
2
d
2
−αΓ(d−α

2
)

Γ(α
2
)

,

and the Riesz-potential Iαd

(Iαd φ)(x) =

∫
Rd

rαd (x− u)φ(u)du, φ ∈ S,

for any 0 < α < d and for any α ∈ C with α 6= d + 2k,−2k, k ∈ N, by analytic
continuation (see [34, Chapter 1.1.2]). The Fourier-transform of Riesz-Potential in
the sense of distributions is given by∫

Rd
rαd (x)φ̂(x)dx =

∫
Rd
‖ξ‖−α φ(ξ)dξ, for all φ ∈ S,
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where
φ̂(ξ) = F [φ](ξ) := (2π)−

d
2

∫
Rd
e−ixξφ(x)dx.

We then have by the linearity of the Fourier-transform that∫
Rd

(rαd (x− e1)− rαd (x))φ̂(x)dx =

∫
Rd

1− e−iξe1
‖ξ‖α

φ(ξ)dξ, φ ∈ S.

However, as we have discussed earlier, the function x 7→ (rαd (x − e1) − rαd (x)) with
α = H+ d

2
is in L2(Rd) and therefore its Fourier-transform in the sense of distributions

coincides with its Fourier-transform in the sense of L2-functions. We therefore have

(2π)−
d
2

∫
Rd

(
‖e1 − w‖H−

d
2 − ‖w‖H−

d
2
)
e−iξwdu =

1

Ad(H + d
2
)

1− e−iξe1

‖ξ‖H+ d
2

,

for all ξ ∈ Rd, ξ 6= 0 and it follows from the Plancherel theorem that

c̃dh,H =
kdHk

d
h

Ad(H + d
2
)Ad(h+ d

2
)

∫
Rd

∣∣1− e−iξe1∣∣2
‖ξ‖H+h+d

dξ.

Finally, from the evaluation above integral which is given in Lemma 7.1 below, we
obtain

c̃dH,h =2π
d+1
2

kdHk
d
h

Ad(H + d
2
)Ad(h+ d

2
)

Γ(H+h+1
2

)

Γ(H+h+d
2

)

1

(H + h)Γ(H + h) sin(H+h
2
π)

=2π
d+1
2

kdHk
d
h

Γ(d
4
− H

2
)Γ(d

4
− h

2
)

Γ(H+h+1
2

)

Γ(H+h+d
2

)

2H+hΓ(d
4

+ H
2

)Γ(d
4

+ h
2
)

(H + h)Γ(H + h) sin(H+h
2
π)

=cdh,H .

Lemma 7.1. For any h ∈ (0, 1
2
) we have∫

Rd

∣∣1− e−iξe1∣∣2
‖ξ‖2h+d

dξ = π
d+1
2

Γ(h+ 1
2
)

Γ(h+ d
2
)hΓ(2h) sin(hπ)

.

Proof. The case where d = 1 was proved in [49, Chapter 7.2, Proposition 7.28] and
the case where d ≥ 2 was proved in [33, Section 3.6].

8 Proof of Theorem 2.10

In order to prove Theorem 2.10, we will show that the integral (2.17), that is

IH(x) =

∫
Rd
BH(u)ψ(u, x)du, x ∈ Rd,
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is well defined, almost surely finite and Gaussian and that the normalized filed has
the covariance structure as in (2.1). Then will prove that the Gaussian fields in (2.6)
and (2.11) after normalization, satisfy Assumption 2.1.

Note that {B̃H}H∈(0,1) in (2.6) and {BH}H∈(0,1/2) in (2.9) and (2.11) satisfy the
covariance relation (2.10) and (2.12), respectively. In what follows we will take the
interval of H in the construction above to be 0 ≤ H < H0, where H0 = 1 for (2.6)
and H0 = 1/2 for (2.9) and (2.11).

Step 1: Properties of IH. It is well known that fractional Brownian fields are
almost surely Hölder continuous and in particular measurable on Rd [1, Chapter 8.3,
Theorem 8.3.2]. Moreover, for any ε > 0 there exists an almost surely finite random
variable Kε such that∣∣BH(x)

∣∣ ≤ Kε(1 + ‖x‖H+ε) for all x ∈ Rd, a.s., (8.1)

(see [32, Lemma 5 and Remark 5]).
Recall that the class of normalizing functions NH0(D) was defined in Definition

2.9. Let ψ ∈ NH0(D). From (2.13), (2.14) and (8.1) it follows that∫
Rd

∣∣BH(u)
∣∣ψ(u, y)du <∞, for all x ∈ D, 0 < H < H0. a.s.

Hence the integral in (2.17) is well defined and almost surely finite. In order to
show that it is also Gaussian, we use a standard a Riemann-sums approximation,
which are clearly Gaussian.

Step 2: Covariance structure. We first prove that the normalized field XH

in (2.17) has the covariance structure (2.1) for {BH}H∈(0,H0) in (2.9) and (2.11).
Recall that in both these cases we have

E
[
BH(x)Bh(y)

]
= cdH,h

(
‖x‖H+h + ‖y‖H+h − ‖x− y‖H+h ). (8.2)

In order to calculate the covariance of XH we use of Fubini’s theorem, so that ex-
pectation and the integral in (2.17) can be interchanged. We first verify the essential
integrability condition. By Young’s inequality we have

E
[ ∣∣BH(x)Bh(y)

∣∣ ] ≤ 1

2
E
[
BH(x)2 +Bh(y)2

]
= C(H, h)

(
‖x‖2H +

1

2
‖y‖2h

)
.

Then from (2.13) and (2.14) and (8.2) we get for all 0 < H, h < H0 and x, y ∈ D,∫
Rd
E
[ ∣∣BH(x)Bh(u)

∣∣ ]ψ(u, y)du <∞,∫
Rd

∫
Rd
E
[ ∣∣BH(v)Bh(u)

∣∣ ]ψ(u, y)ψ(v, x)du <∞.

38



Using (2.17) and Fubini’s theorem we get

1

(Γ(H)Γ(h))
1
2

E
[
XH(x)Xh(y)

]
= E

[
BH(x)Bh(y)

]
−
∫
Rd
E
[
BH(x)Bh(u)

]
ψ(u, y)du

−
∫
Rd
E
[
BH(y)Bh(u)

]
ψ(u, x)du+

∫
Rd

∫
Rd
E
[
BH(u)Bh(v)

]
ψ(u, y)ψ(v, x)dudv

:=
4∑
i=1

Li(x, y).

(8.3)
Using (8.2) and then (2.13) we get

L2(x, y)

cdH,h
=−

∫
Rd

(
‖x‖H+h + ‖u‖H+h − ‖x− u‖H+h )ψ(u, y)du

=− ‖x‖H+h −
∫
Rd
‖u‖H+h ψ(u, y)du+

∫
Rd
‖x− u‖H+h ψ(u, y)du

and by symmetry we have

L3(x, y)

cdH,h
=
L2(y, x)

cdH,h
.

By the same argument we have

L4(x, y)

cdH,h
=

∫
Rd

‖u‖H+h ψ(u, y)du+

∫
Rd

‖v‖H+h ψ(v, x)dv

−
∫∫
Rd×Rd

‖v − u‖H+h ψ(u, y)ψ(v, x)dudv.

Plugging in the expressions for Li, i = 1, ..., 4, to (8.3), we get for all x, y ∈ D that

E
[
XH(x)Xh(y)

]
cdH,h

√
Γ(H)Γ(h)

= ‖x− y‖H+h +

∫
Rd
‖x− u‖H+h ψ(u, y)du

+

∫
Rd
‖y − v‖H+h ψ(v, x)dv

−
∫∫
Rd×Rd

‖v − u‖H+h ψ(u, y)ψ(v, x)dudv.

(8.4)

Define
CH,h = cdH,h

√
Γ(H)Γ(h)(H + h), (8.5)
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and

gH,h(x, y) =

∫
Rd

1− ‖x− u‖H+h

H + h
ψ(u, y)du+

∫
Rd

1− ‖y − v‖H+h

H + h
ψ(v, x)dv

−
∫
Rd

∫
Rd

1− ‖u− v‖H+h

H + h
ψ(u, y)ψ(v, x)dudv.

(8.6)

Then using (2.13) along with (8.4)–(8.6) we get that

E(XH(x)Xh(y)) = CH,h

(
1− ‖x− y‖H+h

H + h
+ gH,h(x, y)

)
,

as needed.
The boundedness of gH,h on D ×D is a direct consequence of condition (2.14).
In order to simplify the notation in what follows, we define

lh(x) = (1− ‖x‖h)h−1

and denote by ? the convolution operation.
From (8.6) we get

gH,h(x, y) = (lH+h ? ψ(·, y))(x) + (lH+h ? ψ(·, x))(y) + (lH+h ? ψ(·, x) ? ψ(·, y))(0).
(8.7)

Next we deal with the family of fractional Brownian motions {B̃H}H∈(0,H0) in
(2.6). The proof in this case follows the same lines. The only difference appears in
CH,h and gH,h as we get that

CH,h = bh,H
√

Γ(H)Γ(h)(H + h),

and

gH,h(x, y) =(lH+h ? ψ(·, y))(x) + (lH+h ? ψ(·, x))(y) + (lH+h ? ψ(·, x) ? ψ(·, y))(0)

+
oH,h

bH,h(H + h)

(∫
R

sgn(u) |x− u|H+h ψ(u, y)du

+

∫
R

sgn(v) |y − v|H+h ψ(v, x)dv

−
∫
R

∫
R

sgn(v − u) |u− v|H+h ψ(u, y)ψ(v, x)dudv

)
.

(8.8)
Again the boundedness of gH,h on D ×D is a direct consequence of (2.14).

Step 3: Property (2.2) for CH,h. We first prove (2.2) for {BH}H∈(0,H0) in (2.9)
and (2.11).
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From the definition of cdH,h in Appendix A and the definition of CH,h in (8.5) we
get

CH,h =
√

Γ(H)Γ(h)
Γ(H+h+1

2
)
√

Γ(H+d
2

)HΓ(2H) sin(πH)Γ(h+d
2

)hΓ(2h) sin(πh)

Γ(H+h+d
2

)Γ(H + h) sin(H+h
2
π)
√

Γ(H + 1
2
)Γ(h+ 1

2
)

=

√
π2h+HΓ(1− H+h

2
)Γ(H+d

2
)Γ(h+d

2
)
√

Γ(2H + 1)Γ(2h+ 1)√
Γ(H + 1

2
)Γ(h+ 1

2
)Γ(H+h+d

2
)
√

Γ(1−H)Γ(1− h)
,

where we used the duplication and reflection formula for the gamma function in the
last quality.

Since the gamma function is smooth on the positive half-line away from zero, it
follows that CH,h is smooth in h,H ∈ [0, 1

2
). Since Γ(1

2
) =
√
π, we get that C0,0 = 1,

and the statement about the convergence of CH,h in (2.2) follows.

The proof of (2.2) for the family of fractional Brownian motions {B̃H}H∈(0,H0) in
(2.6) follows by a similar argument.

Step 4: property (2.3) for gH,h. We first prove (2.3) for {BH}H∈(0,H0) in (2.9)
and (2.11).

We will first identify the limiting function g by using dominated convergence

g(x, y) := lim
H→0

gH,H(x, y)

=

∫
Rd

log ‖x− u‖ψ(u, y)du+

∫
Rd

log ‖x− u‖ψ(v, x)dv

−
∫
Rd

∫
Rd

log ‖u− v‖ψ(u, y)ψ(v, x)dudv

(8.9)

Note that the conditions of the dominated convergence theorem are satisfied since,∣∣∣∣∣1− ‖x− y‖2H

2H

∣∣∣∣∣ ≤ log
1

‖x− y‖
1{‖x−y‖<1} + |1− ‖x− y‖|1{‖x−y‖≥1}

≤(log− ‖x− y‖)2 + 1 + ‖x‖+ ‖y‖ =: f(x, y).

Then by the conditions (2.13) – (2.16) it holds for all y, x ∈ D∫
Rd
f(x, u)ψ(u, y)du <∞,∫

Rd

∫
Rd
f(v, u)ψ(u, y)ψ(v, x)dudv <∞.

This justifies the use of dominated convergence and also proves the boundedness of
g on D ×D.

In order to show (2.3) we will use the following lemma, which is proved in the end
of the section.
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Lemma 8.1. For any 0 ≤ h ≤ 1 we have

0 ≤ log
1

r
− 1− rh

h
≤
{

h
2

log2(r) 0 < r ≤ 1,
h(r − 1− log(r)) r > 1.

For r > 0 and h ∈ [0, 1] define

η(h, r) = log
1

r
− 1− rh

h
. (8.10)

Then from the definitions of gH,h and g in in (8.6) and (8.9), respectively, we have

g(x, y)− gH,h(x, y)

= −
∫
Rd
η(H + h, ‖u− x‖)ψ(u, y)du−

∫
Rd
η(H + h, ‖v − y‖)ψ(v, x)dv

+

∫
Rd

∫
Rd
η(H + h, ‖u− v‖)ψ(u, y)ψ(v, x)dudv.

From Lemma 8.1 we have for all x, y ∈ D and h,H ∈ (0, 1
2
),

0 ≤ η(H + h, ‖x− y‖) ≤ C(H + h)
((

log− ‖x− y‖
)2

+ ‖x‖+ ‖y‖
)
.

Hence we have from (2.14)–(2.16) we get that

sup
x,y∈D

|g(x, y)− gH,h(x, y)| ≤ C(H + h),

and we proved (2.3) for {BH}H∈(0,H0) in (2.9) and (2.11).

Finally we prove (2.3) for {B̃H}H∈(0,H0) in (2.6).
First we notice that the function g in this case is similar to g in (8.9). Indeed

oH,H = 0 in (8.8) for all 0 < H < H0, therefore gH,H in (8.8) is identical to (8.6),
which convergence towards the function g

Note that the first part of gH,h in (8.8) is identical to gH,h in (8.7), for which we
have proved (2.3). It follows that we only need to show that

TH,h(x, y) :=
oH,h

bH,h(H + h)

(∫
R

sgn(u) |x− u|H+h ψ(u, y)du

+

∫
R

sgn(v) |y − v|H+h ψ(v, x)dv

−
∫
R

∫
R

sgn(v − u) |u− v|H+h ψ(u, y)ψ(v, x)dudv

)
,

converges to zero uniformly in the same sense.
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Note from (2.14) we get

sup
x,y∈D

|TH,h(x, y)| ≤ C

∣∣∣∣ oH,h
bH,h(H + h)

∣∣∣∣ .
Them statement then follows by estimating the multiplicative factor∣∣∣∣ oH,h

bH,h(H + h)

∣∣∣∣ =

∣∣∣∣ sin((h−H)π
2
) sin((h+H)π

2
)

cos((h−H)π
2
) cos((h+H)π

2
)(H + h)

∣∣∣∣ ≤ C(H + h),

for all 0 < h,H < H0.

Proof of Lemma 8.1. Let η(h, r) as in (8.10). Note that the lower bound η(h, r) ≥ 0
is equivalent to eh log(r) − 1 ≥ h log(r), which is obviously true.

Next, we prove the upper bound on η(h, r). Taylor’s theorem applied to the
function h 7→ 1− rh at h = 0 yields

lim
h→0

η(h, r)

h
=

1

2
log2(r). (8.11)

We further analyse the behaviour of η(h,r)
h

. Differentiation in h yields

γ(h, r) :=
∂

∂h

(η(h, r)

h

)
=

∂

∂h

(−h log(r)− (1− rh)
h2

)
=
h log(r)

(
eh log(r) + 1

)
+ 2
(
1− eh log(r)

)
h3

.

We observe that for any h > 0 and 0 < r ≤ 1 we have

γ(h, r) ≤ h log(r)2 + 2(−h log(r))

h3
≤ 0.

Hence the convergence in (8.11) is monotone when 0 < r ≤ 1, and in particular

0 ≤ η(h, r)

h
≤ 1

2
log2(r), for 0 < r ≤ 1. (8.12)

Also for any h > 0 and r > 1

γ(h, r) = −eh log(r)γ(h, r−1) ≥ 0.

We obtain the bound for h > 0

0 ≤ η(h, r)

h
≤ η(1, r)

1
≤ − log(r) + r − 1, for r > 1.
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A List of Constants

In order to ease the notation, we summarized the constants that appear in Sections
7 and 8 in the following list

mH =

√
Γ(2H + 1) sin(πH)

Γ(H + 1
2
)

ah,H =
1

π

√
Γ(2h+ 1) sin(πh)

√
Γ(2H + 1) sin(πH)Γ(−(h+H))

bh,H = ah,H · cos
(

(h−H)
π

2

)
cos
(

(h+H)
π

2

)
oh,H = ah,H · sin

(
(h−H)

π

2

)
sin
(

(h+H)
π

2

)
kdH =

√√√√Γ(d
4
− H

2
)2Γ(H + d

2
)HΓ(2H) sin(πH)

22H+1π
d+1
2 Γ(d

4
+ H

2
)2Γ(H + 1

2
)

cdH,h = 2π
d+1
2

kdHk
d
h

Γ(d
4
− H

2
)Γ(d

4
− h

2
)

Γ(H+h+1
2

)

Γ(H+h+d
2

)

2H+hΓ(d
4

+ H
2

)Γ(d
4

+ h
2
)

(H + h)Γ(H + h) sin(H+h
2
π)

=
Γ(H+h+1

2
)
√

Γ(H+d
2

)HΓ(2H) sin(πH)Γ(h+d
2

)hΓ(2h) sin(πh)

Γ(H+h+d
2

)(H + h)Γ(H + h) sin(H+h
2
π)
√

Γ(H + 1
2
)Γ(h+ 1

2
)

Acknowledgments

We are very grateful to Nathanael Berestycki whose numerous useful comments en-
abled us to significantly improve this paper.

References

[1] R. J. Adler, The Geometry of Random Fields, Society for Industrial and Ap-
plied Mathematics, 2010.

[2] E. Bacry, J. Delour, and J. Muzy, Multifractal random walk, Physical
Review E, 64 (2001), p. 026103.

[3] E. Bacry, A. Kozhemyak, and J. F. Muzy, Log-normal continuous cas-
cade model of asset returns: aggregation properties and estimation, Quantitative
Finance, 13 (2013), pp. 795–818.

[4] E. Bacry and J. Muzy, Log-infinitely divisible multifractal processes, Commu-
nications in Mathematical Physics, 236 (2003), pp. 449–475.

44



[5] J. Barral and B. Mandelbrot, Multifractal products of cylindrical pulses,
Probability Theory and Related Fields, 124 (2002), pp. 409–430.

[6] C. Bayer, P. Friz, P. Gassiat, J. Martin, and B. Stemper, A regularity
structure for rough volatility, arXiv preprint arXiv:1710.07481, (2017).

[7] C. Bayer, P. Friz, and J. Gatheral, Pricing under rough volatility, Quan-
titative Finance, 16 (2016), pp. 887–904.

[8] C. Bayer, P. K. Friz, A. Gulisashvili, B. Horvath, and B. Stemper,
Short-time near-the-money skew in rough fractional volatility models, Quantita-
tive Finance, 19 (2019), pp. 779–798.

[9] M. Bennedsen, A. Lunde, and M. Pakkanen, Hybrid scheme for Brownian
semistationary processes, Finance and Stochastics, 21 (2017), pp. 931–965.

[10] M. Bennedsen, A. Lunde, and M. S. Pakkanen, Decoupling the short- and
long-term behavior of stochastic volatility, ArXiv e-prints, (2016).

[11] N. Berestycki, An elementary approach to Gaussian multiplicative chaos,
Electron. Commun. Probab., 22 (2017), pp. 1–12.

[12] H. Biermé, O. Durieu, and Y. Wang, Generalized random fields and Lévy’s
continuity theorem on the space of tempered distributions, arXiv e-prints, (2017),
p. arXiv:1706.09326.

[13] L. E. Calvet and A. Fisher, How to forecast long-run volatility: Regime
switching and the estimation of multifractal processes, Journal of Financial
Econometrics, 2 (2004), pp. 49–83.

[14] L. Chevillard, R. Robert, and V. Vargas, A stochastic representation of
the local structure of turbulence, EPL (Europhysics Letters), 89 (2010), p. 54002.

[15] S. Cohen and J. Istas, Fractional Fields and Applications, vol. 73 of Mathé-
matiques et Applications, Springer-Verlag Berlin Heidelberg, 2013.

[16] F. Comte and E. Renault, Long memory in continuous-time stochastic
volatility models, Mathematical Finance, 8 (1998), pp. 291–323.

[17] V. Dobrić and F. M. Ojeda, Fractional Brownian fields, duality, and mar-
tingales, vol. Number 51 of Lecture Notes–Monograph Series, Institute of Math-
ematical Statistics, Beachwood, Ohio, USA, 2006, pp. 77–95.

[18] J. Duchon, R. Robert, and V. Vargas, Forecasting volatility with the mul-
tifractal random walk model, Mathematical Finance, 22 (2012), pp. 83–108.

45

http://arxiv.org/abs/1710.07481
http://arxiv.org/abs/1706.09326


[19] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Log-correlated
Gaussian Fields: An Overview, Springer International Publishing, Cham, 2017,
pp. 191–216.

[20] O. El Euch and M. Rosenbaum, The characteristic function of rough Heston
models, Mathematical Finance, 29 (2019), pp. 3–38.

[21] M. Forde and H. Zhang, Asymptotics for rough stochastic volatility and Lévy
models, preprint available at http://www. mth. kcl. ac. uk/fordem, (2015).

[22] M. Fukasawa, Short-time at-the-money skew and rough fractional volatility,
Quantitative Finance, 17 (2017), pp. 189–198.

[23] M. Fukasawa, T. Takabatake, and R. Westphal, Is volatility rough ?,
arXiv:1905.04852, (2019).

[24] Y. V. Fyodorov and J. Bouchaud, Freezing and extreme-value statistics
in a random energy model with logarithmically correlated potential, Journal of
Physics A: Mathematical and Theoretical, 41 (2008), p. 372001.

[25] Y. V. Fyodorov, P. L. Doussal, and A. Rosso, Freezing transition in de-
caying burgers turbulence and random matrix dualities, EPL (Europhysics Let-
ters), 90 (2010), p. 60004.

[26] Y. V. Fyodorov, B. A. Khoruzhenko, and N. J. Simm, Fractional Brow-
nian motion with hurst index H = 0 and the Gaussian unitary ensemble, The
Annals of Probability, 44 (2016), pp. 2980–3031.

[27] R. Gangolli, Positive definite kernels on homogeneous spaces and certain
stochastic processes related to Levy’s Brownian motion of several parameters,
Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. B, 3 (1967), pp. 121–226.

[28] J. Gatheral, T. Jaisson, and M. Rosenbaum, Volatility is rough, Quanti-
tative Finance, 18 (2018), pp. 933–949.

[29] E. Herbin, From n parameter fractional brownian motions to n parameter mul-
tifractional brownian motions, Rocky Mountain J. Math., 36 (2006), pp. 1249–
1284.

[30] A. Jacquier, M. Pakkanen, and H. Stone, Pathwise large deviations for the
rough Bergomi model, Journal of Applied Probability, 55 (2018), pp. 1078–1092.

[31] J. Kahane, Sur le chaos multiplicatif, Prépublications mathématiques d’Orsay,
Département de mathématique, 1985.

46

http://www
http://arxiv.org/abs/1905.04852


[32] Y. Kozachenko, A. Melnikov, and Y. Mishura, On drift parameter es-
timation in models with fractional Brownian motion, A Journal of Theoretical
and Applied Statistics, 49 (2015), pp. 35–62.

[33] C. Lacaux, Multifractional Lévy Motions, theses, Université Paul Sabatier -
Toulouse III, May 2004.

[34] N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der
mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg, 1972.

[35] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, On the self-similar
nature of ethernet traffic (extended version), IEEE/ACM Transactions on net-
working, 2 (1994), pp. 1–15.

[36] T. Lindstrøm, Fractional Brownian fields as integrals of white noise, Bulletin
of the London Mathematical Society, 25 (1993), pp. 83–88.

[37] A. Lodhia, S. Sheffield, X. Sun, and S. S. Watson, Fractional Gaussian
fields: a survey, Probability Surveys, 13 (2016), pp. 1–56.

[38] T. Madaule, R. Rhodes, and V. Vargas, Glassy phase and freezing of log-
correlated Gaussian potentials, The Annals of Applied Probability, 26 (2016),
pp. 643–690.

[39] A. Malyarenko, Invariant Random Fields on Spaces with a Group Action,
Springer, Berlin, 2013.

[40] B. Mandelbrot, A. Fisher, and L. Calvet, A multifractal model of as-
set returns, Cowles Foundation Discussion Papers 1164, Cowles Foundation for
Research in Economics, Yale University, Sept. 1997.

[41] B. B. Mandelbrot and J. W. V. Ness, Fractional brownian motions, frac-
tional noises and applications, SIAM Rev., 10 (1968), pp. 422–437.

[42] T. Mikosch, S. Resnick, H. Rootzén, and A. Stegeman, Is network
traffic approximated by stable Lévy motion or fractional Brownian motion?, The
Annals of Applied Probability, 12 (2002), pp. 23–68.

[43] F. Molz, H. Liu, and J. Szulga, Fractional Brownian motion and fractional
Gaussian noise in subsurface hydrology: A review, presentation of fundamental
properties, and extensions, Water Resources Research, 33 (1997), pp. 2273–2286.

[44] E. Neuman and M. Rosenbaum, Fractional brownian motion with zero hurst
parameter: a rough volatility viewpoint, Electron. Commun. Probab., 23 (2018),
pp. 1–12.

47



[45] M. Ossiander and E. Waymire, Certain positive-definite kernels, Proc. Amer.
Math. Soc., 107 (1989), pp. 487–492.

[46] R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications:
a review, Probability Surveys, 11 (2014), pp. 315–392.

[47] R. Rhodes and V. Vargas, Lecture notes on Gaussian multiplicative chaos
and Liouville quantum gravity, arXiv:1602.0732, (2016).

[48] R. Robert and V. Vargas, Gaussian multiplicative chaos revisited, The An-
nals of Probability, 38 (2010), pp. 605–631.

[49] G. Samoradnitsky and M. S. Taqqu, Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance, Chapman & Hall/CRC, 1994.

[50] I. R. Savage, Mill’s ratio for multivariate normal distributions, J. Res. Nat.
Bur. Standards Sect. B, 66B (1962), pp. 93–96.

[51] A. Shamov, On Gaussian multiplicative chaos, Journal of Functional Analysis,
270 (2016), pp. 3224 – 3261.

[52] A. Yaglom, Some classes of random fields in n-dimensional space, related to
stationary random processes, Theory Probab. Appl., 2 (1957), pp. 292–338.

48

http://arxiv.org/abs/1602.0732

	1 Introduction
	1.1 Financial Motivation

	2 Main results
	2.1 Convergence of the Multiplicative Chaos of FBFs
	2.2 Normalization of fractional Brownian fields

	3 Uniform Integrability
	4 Proof of Proposition 3.5
	5 Proof of Lemma 4.1
	6 Convergence
	7 Proof of Lemma 2.8
	8 Proof of Theorem 2.10
	A List of Constants

