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Abstract

We introduce a novel non-parametric methodology to test for the dynamical time evolution of the
lag–lead structure between two arbitrary time series. The method consists in constructing a distance
matrix based on the matching of all sample data pairs between the two time series. Then, the lag–lead
structure is searched as the optimal path in the distance matrix landscape that minimizes the total
mismatch between the two time series, and that obeys a one-to-one causal matching condition.
We apply our method to the question of the causality between the US stock market and the treasury
bond yields and confirm earlier results on a causal arrow of the stock markets preceding the Federal
Reserve Funds adjustments as well as the yield rates at short maturities in the period 2000–2003.
The application to inflation, inflation change, GDP growth rate and unemployment rate unearths
non-trivial causal relationships: the GDP changes lead inflation especially since the 1980s, inflation
changes lead GDP only in the 1980 decade, and inflation leads unemployment rates since the 1970s.
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In addition, we detect multiple competing causality paths in which one can have inflation leading
GDP with a certain lag time and GDP feeding back/leading inflation with another lag time.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Determining the arrow of causality between two time series X(t) and Y(t) has a long
history, especially in economics, econometrics and finance, as it is often asked which eco-
nomic variable might influence other economic phenomena (see e.g. Chamberlain, 1982;
Geweke, 1984). This question is raised in particular for the relationships between respec-
tively inflation and GDP, inflation and growth rate, interest rate and stock market returns,
exchange rate and stock prices, bond yields and stock prices, returns and volatility (Chan
et al., 2001), advertising and consumption and so on. One simple naive measure is the
lagged cross-correlation function CX ;Y ðsÞ ¼ hX ðtÞY ðt þ sÞi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X �Var½Y �

p
, where the

brackets hxi denotes the statistical expectation of the random variable x. Then, a maxi-
mum of CX,Y(s) at some non-zero positive time lag s implies that the knowledge of X at
time t gives some information on the future realization of Y at the later time t + s. How-
ever, such correlations do not imply necessarily causality in a strict sense as a correlation
may be mediated by a common source influencing the two time series at different times.
The concept of Granger causality bypasses this problem by taking a pragmatic approach
based on predictability: if the knowledge of X(t) and of its past values improves the pre-
diction of Y(t + s) for some s > 0, then it is said that X Granger causes Y (Ashley et al.,
1980; Geweke, 1984, see also Chen et al. (2004) for a recent extension to nonlinear time
series). Such a definition does not address the fundamental philosophical and epistemolog-
ical question of the real causality links between X and Y but has been found useful in prac-
tice. Our approach is similar in that it does not address the question of the existence of a
genuine causality but attempts to detect a dependence structure between two time series at
non-zero lags. We thus use the term ‘‘causality’’ in a loose sense embodying the notion of a
dependence between two time series with a non-zero lag time.

However, most economic and financial time series are not strictly stationary and the
lagged correlation and/or causality between two time series may be changing as a function
time, for instance reflecting regime switches and/or changing agent expectations. It is thus
important to define tests of causality or of lagged dependence which are sufficiently reac-
tive to such regime switches, allowing to follow almost in real time the evolving structure
of the causality. Cross-correlation methods and Granger causality tests require rather sub-
stantial amount of data in order to obtain reliable conclusions. In addition, cross-correla-
tion techniques are fundamentally linear measures of dependence and may miss important
nonlinear dependence properties. Granger causality tests are most often formulated using
linear parametric auto-regressive models. The new technique introduced in this paper,
called the ‘‘optimal thermal causal path,’’ is both non-parametric and sufficiently general
so as to detect a priori arbitrary nonlinear dependence structures. Moreover, it is specif-
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ically conceived so as to adapt to the time evolution of the causality structure. The
‘‘optimal thermal causal path’’ can be viewed as an extension of the ‘‘time distance’’ mea-
sure which amounts to comparing trend lines in horizontal differences of two time series
(Granger and Jeon, 1997).

The organization of the paper is as follows. Section 2 introduces the concept of a time-
dependent time lag and sets the general framework that we propose to determine it. Sec-
tion 3 presents a first implementation for the determination of optimal paths and local
time lags, that we refer to as the multi-layer algorithms. Section 4 presents our second
implementation, that we refer to as the ‘‘optimal thermal causal path’’ method. While
the first implementation of Section 3 seemed a priori more general, it turns out to be
too sensitive and leads to over-fitting. As a consequence, the second method of Section
4 shows much better performance as demonstrated in synthetic tests presented in Section
5 on auto-regressive models. Section 6 then presents an application of the optimal thermal
causal path method on two important economic problems: the causal relationship between
the US treasury bond yields and the stock market in the aftermath of the Internet bubble
collapse and between inflation, inflation change, gross domestic product rate and unem-
ployment rate in the United States. Section 7 concludes.

2. The concept of an optimal lag function

2.1. Distance matrix

We consider time series updated in discrete time, in units of some elementary discreti-
zation step, taken unity without loss of generality. Let us denote {X(t1) : t1 = 1, . . . ,N1}
and {Y(t2) : t2 = 1, . . . ,N2} the two time series that we would like to test for causality. Note
that the lengths N1 and N2 of the two series can in principle be different as our method
generalizes straightforwardly to this case, but for the sake of pedagogy, we restrict here
to the case N1 = N2 = N. These time series {X(t1)} and {Y(t2)} can be very different in nat-
ure with largely different units and meanings. To make them comparable, we normalize
them by their respective standard deviations, so that both normalized time series have
comparable typical values. From now on, the two time series {X(t1)} and {Y(t2)} denote
these normalized time series.

We introduce a distance matrix EX,Y between X to Y with elements defined as

�ðt1; t2Þ ¼ jX ðt1Þ � Y ðt2Þj. ð1Þ
The value jX(t1) � Y(t2)j defines the distance between the realization of the first time series
at time t1 and the realization of the second time series at time t2. Other distances can be
considered and our method described below applies without modifications for any possible
choice of distances. Depending on the nature of the time series, it may be interesting to use
other distances, which for instance put more weight on large discrepancies jX(t1) � Y(t2)j
such as by using distances of the form jX(t1) � Y(t2)jq with q > 1.

When Y(t) is the same time series as X(t), a matrix deduced from (1) by introducing a
threshold so that entries of the matrix (1) smaller (respectively larger) than the threshold
are set to 0 (respectively 1) has been introduced by Eckmann et al. (1987) under the name
‘‘recurrence plot’’ to analyze complex chaotic time series. In the physical literature, the
binary matrix deduced from (1) with the use of a threshold for two different time series
is called a cross-recurrence plot. This matrix and several of its statistical properties have
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been used to characterize the cross-correlation structure between pairs of time series by
Strozzia et al. (2002), Quiroga et al. (2002), Marwan and Kurths (2002) and Marwan
et al. (2002).

Consider the simple example in which Y(t) = X(t � k) with k > 0 fixed. Then,
�(t1, t2) = 0 for t2 = t1 + k and is typically non-zero otherwise. The detection of this causal
relationship then amounts in this case to find the line with zero values which is parallel to
the main diagonal of the distance matrix. This line defines the affine mapping t2 = /
(t1) = t1 + k, corresponding to a constant translation. More generally, we would like to
determine a sequence of elements of this distance matrix along which the elements are
the smallest, as we describe next.

As this last example makes clear, the distance matrix (1) tracks the co-monotonic rela-
tionship between X and Y. But, two time series can be more anti-monotonic than mono-
tonic, i.e., they tend to take opposite signs. Then, to diagnose such occurrence, we need to
consider the ‘‘anti-monotonic’’ distance

�antiðt1; t2Þ ¼ jX ðt1Þ þ Y ðt2Þj. ð2Þ

The + sign makes the distance minimum when X and Y have opposite signs. In the follow-
ing, we do not explore this and other possibilities and only use (1). This implies that we
bias our search for lagged dependence between two time series towards lagged co-
monotonic behaviors.

2.2. Optimal path at zero temperature

When the relationship between X(t1) and Y(t2) is more complex than a simple constant
lead–lag of the form Y(t) = X(t � k), the determination of the correspondence between the
two time series is less obvious. A first approach would correspond to associate to each
entry X(t1) of the first time series the value Y(t2) of the second time series which makes
the distance (1) minimum over all possible t2 for a fixed t1. This defines the mapping
t1 ! t2 = /(t1) from the t1-variable to the t2-variable as

/ðt1Þ ¼ Mint2 jX ðt1Þ � Y ðt2Þj. ð3Þ
Note that this procedure analyzes each time t1 independently of the others. The problem
with this approach is that it produces mappings t2 = /(t1) with two undesirable properties:
(i) numerous large jumps and (ii) absence of one-to-one matching (/ is no more a function
since the curve can have overhangs and ‘‘cliffs’’) which can also be viewed as a backward
(non-causal) time propagation. Property (i) means that, in the presence of noise in two
time series, with large probability, there will be quite a few values of t1 such that /
(t1 + 1) � /(t1) is large and of the order of the total duration N of the time series. Most
of the time, we can expect lags to be slowly varying function of time and large jumps in
the function / are not reasonable. The second property means that, with large probability,
a given t1 could be associated with several t2, and therefore there will be pairs of times
t1 < t01 such that /ðt1Þ > /ðt01Þ: an occurrence in the future in the first time series is asso-
ciated with an event in the past in the second time series. This is not excluded as lags be-
tween two time series can shift from positive to negative as a function of time, as in our
example (17) below. But such occurrences should be relatively rare in real-time series
which are not dominated by noise. Obviously, these two properties disqualify the method
(3) as a suitable construction of a time correspondence between the two time series. This
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reflects the fact that the obtained description of the lag structure between the two time ser-
ies is erratic, noisy and unreliable.

To address these two problems, a first natural idea is to search for a smooth mapping
t1 ! t2 = /(t1):

0 6 /ðt1 þ 1Þ � /ðt1Þ 6 1. ð4Þ

In the continuous time limit, this amounts to imposing that the mapping / should be con-
tinuous. Then, the correspondence t1 ! t2 = /(t1) can be interpreted as a reasonable time-
lag or time-lead structure of the two time series. For some applications, it may be desirable
to constraint even further by ensuring the differentiability (and not only the continuity) of
the mapping (in the continuous limit). This can be done by a generalization of the global
optimization problem (5) defined below by adding a path ‘‘curvature’’ energy term. Here,
we do not pursue this idea further. Then, the causal relationship between the two time ser-
ies is searched in the form of a mapping t2 = /(t1) between the times {t1} of the first time
series and the times {t2} of the second time series such that the two times series are the
closest in a certain sense, i.e., X(t1) and Y(/(t1)) match best, in the presence of these
two constraints.

To implement these ideas, our first proposal is to replace the mapping (3) determined by
a local minimization by a mapping obtained by the following global minimization:

Minf/ðt1Þ;t1¼1;2;...;Ng
XN
t1¼1

jX ðt1Þ � Y ð/ðt1ÞÞj; ð5Þ

under the constraint (4). Note that, without the constraint (4), the solution for the map-
ping of the minimization (5) would recover the mapping obtained from the local minimi-
zation (3), as the minimum of the unconstrained sum is equal to the sum of the minima. In
contrast, the presence of the continuity constraint changes the problem into a global opti-
mization problem.

This problem has actually a long history and has been extensively studied, in particular
in statistical physics (see Halpin-Healy and Zhang (1995) for a review and references
therein), under the name of the ‘‘random directed polymer at zero temperature.’’ Indeed,
the distance matrix EX,Y given by (1) can be interpreted as an energy landscape in the plane
(t1, t2) in which the local distance �(t1, t2) is the energy associated with the node (t1, t2). The
continuity constraint means that the mapping defines a path or line or ‘‘polymer’’ of equa-
tion (t1, t2 = /(t1)) with a ‘‘surface tension’’ preventing discontinuities. The condition that
/(t1) is non-decreasing translates in the fact that the polymer should be directed (it does
not turn backward and there are no overhangs). The global minimization problem (5)
translates into searching for the polymer configuration with minimum energy. In the case
where the two time series are random, the distance matrix (and thus energy landscape) is
random, and the optimal path is then called a random directed polymer at zero tempera-
ture (this last adjective ‘‘at zero temperature’’ will become clear in Sections 3.3 and 4.2; it
suffices to say here that it corresponds to searching for the absolute minimum). Of course,
we are interested in non-random time series, or at least in time series with some non-
random components: this amounts to having the distance matrix and the energy landscape
to have hopefully coherent structures (i.e., non-white noise) that we can detect. Intuitively,
the lag–lead structure of the two time series will reveal itself through the organization and
structure of the optimal path.
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It is important to stress the non-local nature of the optimization problem (5), as the best
path from an origin to an end point requires the knowledge of the distance matrix (energy
landscape) EX,Y both to the left as well as to the right of any point in the plane (t1, t2).
There is a general and powerful method invented by Derrida et al. (1978) and Derrida
and Vannimenus (1983) to solve this problem in polynomial time using the transfer matrix
method. Fig. 1 shows a realization of the distance (or energy) landscape EX,Y given by (1)
and the corresponding optimal path.

The two next sections describe two different implementations of the search for the opti-
mal lag path between two time series. In the next Section 3, we relax the condition (4) by
allowing larger jumps on no more that one time series. This natural approach, as we
explain, turns out to be sub-performing when compared with the approach of the subse-
quent Section 4 implementing the condition (4).

3. Optimal paths with vertical and horizontal moves forbidden: Multi-layer algorithms

3.1. The matching of two time series with vertical and horizontal moves forbidden

For the sake of illustration, let us consider two time series of stock prices P1(t1) and
P2(t2). We are interested in testing their possible lagged dependence. For this, we need
to compare their returns because they are more stationary than the prices themselves.
We first need to construct a two-dimensional landscape in the coordinates (t1, t2). Consider
a pair (t1, t2) and its price pair (P1(t1),P2(t2)). This pair of prices can be viewed from the
view point of many previous price pairs (P1(t1 � i),P2(t2 � j)), leading to the formation

of the return pairs ln P1ðt1Þ
P1ðt1�iÞ

h i
; ln P2ðt2Þ

P2ðt2�jÞ

h i� �
. It is the return pairs that we would like to

match along some lag trajectory to define the optimal lagged-dependence structure
between to the price time series.
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Fig. 1. An example of energy landscape EX,Y given by (1) for two noisy time series and the corresponding optimal
path wandering at the bottom of the valley similarly to a river. This optimal path defines the mapping t1 ! t2 =
/(t1).
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It is easy to realize that, in order to break down the path into its most elementary con-
stituents, we need to impose that at least one of the time increments i, j is unity. For i = 1
and j P 1, this means that the first time series has its price changing from P(t1 � 1) to P(t1)
with a return ln[P1(t1)/P1(t1 � 1)]. Meanwhile, the second time series has its price changing
from P(t2 � j) to P(t2) with a return ln[P2(t2)/P2(t2 � j)]. Comparing the return ln[P1(t1)/
P1(t1 � 1)] with the return ln[P2(t2)/P2(t2 � j)] means that the time t2 of P2 is accelerating
or flowing faster (or contracting) with respect to the time t1 of P1 and thus the full total
return from t2 � j to t2 must be compared with the return of the first time series from
t1 � 1 to t1. This leads to defining a distance (or ‘‘energy’’)

�½ðt1 � 1; t2 � jÞ ! ðt1; t2Þ� ¼ ln
P 1ðt1Þ

P 1ðt1 � 1Þ

� �
� ln

P 2ðt2Þ
P 2ðt2 � jÞ

� �����
����; ð6aÞ

associated with the transition (or link) from (t1 � 1, t2 � j) to (t1, t2). Symmetrically, each
link from (t1 � i, t2 � 1) to (t1, t2) is assigned the distance

�½ðt1 � i; t2 � 1Þ ! ðt1; t2Þ� ¼ ln
P 1ðt1Þ

P 1ðt1 � iÞ

� �
� ln

P 2ðt2Þ
P 2ðt2 � 1Þ

� �����
����. ð6bÞ

For each of the remaining bands, the energy is infinite. In other words, paths along these
links are forbidden. In the present implementation, only these links are allowed and all
others are forbidden, corresponding to an infinite distance (or energy).

In this algorithm, we forbid paths that have segments which are vertical or horizontal,
because a vertical segment in the (t1, t2) plane means that the time t1 of the first time series
stops while the time t2 of the second time series continues to flow. This situation seems
implausible from an intuitive point of view. The formulation which takes into account
the discreteness of the time steps is the following (all this discussion pertains to issues
raised by the discreteness of time in the recorded the time series) : either (a) t1 increases
by one time step and t2 increases by at least one time step (This situation corresponds
to an acceleration of the time flow for the second time series compared with the first time
series); or (b) t1 increases by at least one time step and t2 increases by one time step (this
situation corresponds to an acceleration of the time flow of the first time series compared
with the second time series).

This specification ensures that both time series have their time flowing at each incre-
ment along the optimal path of lags that matches the two time series. Recall that, along
the optimal path, the lag between the two time series may vary, which implies a transient
time contraction or dilation of one time series with respect to the other. But, of course, if
one time series has its time slowing down (as in Einstein’s special relativity) compared with
the other time series, it does not stop completely. This implies in the discrete time formu-
lation that, from one node of the path to the next, both time series must have their time
increase by at least one time step at least. This thus automatically disqualifies optimal
paths which would contain vertical and horizontal links. Such vertical and horizontal links
are forbidden in the present implementation.

For each node (t1, t2) on the optimal path, there must exist an ancestor node at
(t1 � 1, t2 � j) where j = 1,2, . . . ,J or at (t1 � i, t2 � 1) where i = 1,2, . . . , I. The values I

and J are the maximum time contraction factors between the two time series. For instance,
values I = J = 3 mean that one time series cannot exhibit a transient time flow more than
three times faster that the other one. Fig. 2 shows the topology of all the elementary
links ending at a given node for I = J = 3, I = J = 5, I = J = 7, and I = J = 10, from
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Fig. 2. Topology of all the elementary links ending at a given node for I = J = 3, I = J = 5, I = J = 7, and
I = J = 10, from bottom-left to top-right.
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bottom-left to top-right. All nodes that are possible ancestors to a given node (t1, t2) are
shown in Fig. 2. The best path reaching (t1, t2) is thus carried by one of these segments.

3.2. Optimal path at zero temperature

At zero temperature, we can construct the optimal path with the help of transfer matrix
method (Derrida et al., 1978; Derrida and Vannimenus, 1983). To each node (t1, t2), we
associate the energy (or total distance) E(t1, t2) defined as the minimal energy over all pos-
sible paths from the origin to (t1, t2). The energy of a given path from the origin to (t1, t2) is
simply the sum of the energies of all links of this path. The path corresponding to the min-
imum energy (minimum matching distance) is called the optimal path. The key remark is
that the energy value E(t1, t2) can be obtained by the following recursion relationship

Eðt1; t2Þ ¼ Min½fEðt1 � i; t2 � 1Þ þ �½ðt1 � i; t2 � 1Þ ! ðt1; t2Þ�; i ¼ 1; 2; . . . ; Ig
[ fEðt1 � 1; t2 � jÞ þ �½ðt1 � 1; t2 � jÞ ! ðt1; t2Þ�; j ¼ 1; 2; . . . ; Jg� ð7Þ

In words, the minimum energy of the path reaching (t1, t2) is obtained from the energy of
one of the optimal paths reaching all the possible ancestors of (t1, t2) by adding the energy
of the link from that ancestor to (t1, t2). Taking the minimum over all possible ancestors of
this sum gives E(t1, t2) and determines the corresponding optimal path from the origin to
(t1, t2).

To see what is the outcome of the aforementioned procedure, let us consider two price
series P1 and P2 constructed as the cumulative sums of two stationary time series X(t1) and
Y(t2) respectively (which are the one-time-step returns). Let us construct Y(t2) from X(t1)
as follows:

Y ðt2Þ ¼ aX ðt2 � sÞ þ g; ð8aÞ
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where a is a constant, s is the time lag, and the noise g � N(0,rg) is serially uncorrelated.
The time series X(t1) itself is generated from an AR process:

X ðt1Þ ¼ bX ðt1 � 1Þ þ n; ð8bÞ
where b < 1 and the noise n � N(0,rn) is serially uncorrelated. The factor f = rg/rn quan-
tifies the amount of noise degrading the causal relationship between X(t1) and Y(t2). A
small f corresponds to a strong causal relationship. A large f implies that Y(t2) is mostly
noise and becomes unrelated to X(t1) in the limit f ! 1. Specifically, Var½X � ¼ r2

n=ð1� b2Þ
and

Var½Y � ¼ a2Var½X � þ r2
g ¼ r2

n

a2

1� b2
þ f 2

� �
¼ r2

n

a2Var½X �
r2
n

þ f 2

 !
. ð9Þ

In our simulations, we generate X and Y of size 50 with parameters a = 1, b = 0.7,
s = �10, and f = 0. From the definition of this model, the true path expressing the lag be-
tween X and Y should be characterized by a fixed time lag s = 10. One thus expects that
the optimal path reconstructed by our algorithm should be close to this true path at time
lag s = 10. We have performed extensive simulations of the model (8) using different val-
ues of I = J. Fig. 3 finds that the obtained optimal paths tend to track the true solution
(which is parallel to the diagonal but translated by 10 time steps). Some departures at
the beginning and at the end of the path are expected since the search of the optimal path
imposes that it starts at the origin and ends on the main diagonal. However, we can ob-
serve in Fig. 3 the existence of deviations from the true path in the last third of the path,
which are larger than expected.

This comes from the fact that our search algorithm has too much choice, by allowing
paths to jump along so many possible links. Because we allow paths to compare the return
of one day in one time series with the return of up to 10 days in the other time series (for
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Fig. 3. Optimal paths of a typical realization of model (8) obtained with the algorithm described in Section 3.2
with I = J = 3, I = J = 5, I = J = 7, and I = J = 10. In addition, the optimal path obtained by the different
algorithm described in Section 4 is also shown for comparison.
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I = J = 10), we find spuriously very good matching due to this very large choice offered for
I = J = 10. This suggests that we should reduce the number of available links, that is,
decrease I = J.

We have thus tried the different values I = J = 3, I = J = 5, I = J = 7, and I = J = 10,
associated with the links shown in Fig. 2. For each realization of a pair (X,Y), we obtain
the four optimal paths associated with the four values I = J = 3, 5, 7, 10. In the example of
Fig. 3, decreasing I = J tends to bring the optimal path towards the true solution, albeit
not much. In comparison, the optimal path recovered with the algorithm developed in Sec-
tion 4 behaves significantly better by approaching much more the true solution. This result
is general: we find systematically in all our simulations that the smaller values I = J give
optimal paths closer to the true one. Moreover, the algorithm of the next Section 4 is
found systematically superior to the present one. Before turning to it, we investigate the
effect of an improvement which will also be used in Section 4.

3.3. Optimal path at finite temperature

While appealing, the optimization program (5) has an important potential drawback: it
assumes that the distance matrix EX,Y between the time series X to Y defined by (1) is made
only of useful information. But, in reality, the time series X(t1) and Y(t2) can be expected
to contain significant amount of noise or more generally of irrelevant structures stemming
from random realizations. Then, the distance matrix EX,Y contains a possibly significant
amount of noise, or in other words of irrelevant patterns. Therefore, the global optimal
path obtained from the procedure of the previous Section 3.2 is bound to be delicately sen-
sitive in its conformation to the specific realizations of the noises of the two time series.
Other realizations of the noises decorating the two time series would lead to different dis-
tance matrices and thus different optimal paths. In the case where the noises dominates,
this question amounts to investigating the sensitivity of the optimal path with respect to
changes in the distance matrix. This problem has actually be studied extensively in the sta-
tistical physics literature (see Halpin-Healy and Zhang (1995) and references therein). It
has been shown that small changes in the distance matrix may lead to very large jumps
in the optimal path, when the distance matrix is dominated by noise. Clearly, these statis-
tical properties would led to spurious interpretation of any causal relationship between the
two time series. We thus need a method which is able to distinguish between truly infor-
mative structure and spurious patterns due to noise.

In a realistic situation, we can hope for the existence of coherent patterns in addition to
noise, so that the optimal path can be ‘‘trapped’’ by these coherent structures in the energy
landscape. Nevertheless, the sensitivity to specific realizations of the noise of the two time
series may lead to spurious wandering of the optimal path, that do not reflect any genuine
lag–lead structure. We thus propose a modification of the previous global optimization
problem to address this question and make the determination of the mapping more robust
and less sensitive to the existence of noise decorating the two time series. Of course, it is in
general very difficult to separate the noise from the genuine signal, in absence of a para-
metric model. The advantage of the method that we now propose is that it does not require
any a priori knowledge of the underlying dynamics.

The idea of the ‘‘optimal thermal causal path’’ method is the following. Building on the
picture of the optimal path as being the conformation of a polymer or of a line minimizing
its energy E in a frozen energy landscape determined by the distance matrix, we now pro-
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pose to allow from ‘‘thermal’’ excitations or fluctuations around this path, so that path
configurations with slightly larger global energies are allowed with probabilities decreasing
with their energy. We specify the probability of a given path configuration with energy DE
above the absolute minimum energy path by a multivariate logit model or equivalently by
a so-called Boltzmann weight proportional to exp [�DE/T], where the ‘‘temperature’’ T
quantifies how much deviations from the minimum energy are allowed. For T ! 0, the
probability for selecting a path configuration of incremental energy DE above the absolute
minimum energy path goes to zero, so that we recover the previous optimization problem
‘‘at zero temperature.’’ Increasing T allows to sample more and more paths around the
minimum energy path. Increasing T thus allows us to wash out possible idiosyncratic
dependencies of the path conformation on the specific realizations of the noises decorating
the two time series. Of course, for too large temperatures, the energy landscape or distance
matrix becomes irrelevant and one looses all information in the lag–lead relationship
between the two time series. There is thus a compromise as usual between not extracting
too much from the spurious noise (not too small T) and washing out too much the relevant
signal (too high T). Increasing T allows one to obtain an average ‘‘optimal thermal path’’
over a larger and larger number of path conformations, leading to more robust estimates
of the lag–lead structure between the two time series. The optimal thermal path for a given
T is determined by a compromise between low energy (associated with paths with high
Boltzmann probability weight) and large density (large number of contributing paths of
similar energies as larger energies are sampled). This density of paths contributing to
the definition of the optimal thermal path can be interpreted as an entropic contribution
added to the pure energy contribution of the optimization problem of the previous Section
3.2. In a sense, the averaging over the thermally selected path configurations provides an
effective way of averaging over the noise realizations of the two time series, without actu-
ally having to resampling the two times series. This intuition is confirmed by our tests
below which show that the signal-over-noise ratio is indeed increased significantly by this
‘‘thermal’’ procedure.

Let us now describe how to implement this idea. It is convenient to use the rotated coor-
dinate system (x, t) where t is in the main diagonal direction of the (t1, t2) system and x is
perpendicular to t. The transformation from the coordinates (t1, t2) to (x, t) is given by

t1 ¼ 1þ ðt � xÞ=2;
t2 ¼ 1þ ðt þ xÞ=2.

	
ð10Þ

We stress that the origin is (t1 = 1, t2 = 1) and (x = 0, t = 0).
The present framework aims at calculating different thermal averages over all possible

path fluctuations at a given temperature. Of interest are the average path hx(t)i and its
standard deviation. Actually, any such average can be calculated once the so-called parti-
tion functions G(x, t) at time t is known.

The local time lag hx(t)i at time t is given by

hxðtÞi ¼
X
x

xGðx; tÞ=GðtÞ; ð11Þ

where GðtÞ ¼
P

xGðx; tÞ. In statistical physics, G(x, t) is called the partition function con-
strained to x while G(t) is the total partition function at t. Then, G(x, t)/G(t) is nothing
but the probability for a path be at x from the diagonal for a distance t along the diagonal.
Expression (11) indeed defines hxi as the (thermal) average of the local time lag X at t.
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It is standard to call it ‘‘thermal average’’ because G is made of the Boltzmann factors that
weight each path configuration.

The partition function can be determined recursively according to the following
formula, which uses the specific topology of the links described in Fig. 2:

Gðx; tÞ ¼ Gðx; t � 2Þe��½ðx;t�2Þ!ðx;tÞ�=T þ
XJ
j¼1

Gðx� j; t � 2� jÞe��½ðx�j;t�2�jÞ!ðx;tÞ�=T

þ
XI
i¼1

Gðxþ i; t � 2� iÞe��½ðxþi;t�2�iÞ!ðx;tÞ�=T ; ð12Þ

where �[(t0,x0) ! (t1,x1)] is determined by Eq. (6) and T is the temperature.
To calculate G(x, t) at the tth layer, we need to know and bookkeep the previous

max(I,J) + 1 layers from G(Æ, t � 11) to G(Æ, t � 1). Of course, the layer G(Æ, t � 1) is not
used for the calculation of G(Æ, t) but for G(Æ, t + 1). After G(Æ, t) is determined, the G’s at
the max(I,J) + 1 layers are normalized by G(t) so that G(x, t) does not diverge at large
t. We stress that the boundary condition of G(x, t) plays an crucial role. For t = 0 and
t = 1, G(x, t) = 1 so that Eq. (11) holds. For t > 1, the boundary condition is taken to
be G(x = ±t, t) = 0, in order to prevent paths to stay on the boundaries.

Let us test this algorithm on the autoregressive model (8). For this, we generate two
time series X and Y of size 50 with parameters a = 1, b = 0.7, s = �10, and f = 0 as in Sec-
tion 3.2. We have performed extensive simulations of the model (8) using the multi-layer
algorithms for different I = J values and for different noise levels. For each realization (a
pair of X and Y), we calculate the local time lag hxi using Eq. (11) at temperature T = 1
(since the time series are normalized by their own standard deviations, this value T = 1
corresponds approximately to an equal weight given to the energy and to the entropy con-
tributions in the determination of the optimal path). The resulting time lags from different
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Fig. 4. Average thermal paths at temperature T = 1 for a realization of model (8) obtained with the algorithm
described in Section 3.3 with I = J = 3, I = J = 5, I = J = 7, and I = J = 10. In addition, the optimal path
obtained by the different algorithm described in Section 4.2 is also shown for comparison.
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multi-layer algorithms are compared with those obtained from the two-layer algorithm
described below in detail in Section 4.2. In general, the local time lag hxi of the two-layer
algorithm is closer to the theoretical value s = �10 than those of the multi-layer algo-
rithms. At high temperatures (T > 5), all the algorithms fail to extract the correct hxi.
For lower temperatures, the results are similar to the case T = 1. A typical example is illus-
trated in Fig. 4. Since the two time series are lagged and have finite size and the optimal
path starts and ends at x = 0, there is a transient at the two extremities of the paths char-
acterized by the function hx(t)i.

We have also tested these algorithms using two time series independently generated
from a Gaussian distribution, which corresponds to model (8) with a = 1, b = 0,
s = �10. We find that the multi-layer algorithms fail to find the correct hxi in the majority
of the realizations, while the two-layer method that we now describe does a very good job.

4. Optimal paths with vertical and horizontal moves allowed:

The ‘‘optimal thermal causal path’’ or two-layer algorithm

The previous tests have been very disappointing. We have shown only an example with
a fixed time lag for a simple auto-regressive model. There, the algorithm has not been very
convincing. We explain these results, as already mentioned, by the too large choices given
in the search of the optimal lag path. By allowing paths to jump over up to I or J time
series in one time series while the other is updated by a single time steps gives so many
configurations that the optimal path does not bring much information on the real lag
structure but only tries by combinatorial force to minimize its mismatch (energy).

The algorithm we present now is much more restrictive in the configurations that the
path is allowed to sample. It turns out to provide very good results, as we will show by
testing the method on different synthetic time series before applying it to concrete eco-
nomic questions.

4.1. Optimal path at zero temperature

The algorithm we consider comes back to the condition (4) discussed at the beginning.
This condition is shown in Fig. 5, which also defines the notations. The topology of the
connecting bonds is very different from that of Fig. 2. The optimal path (and thus map-
ping) is constructed such that it can either go horizontally by one step from (t1, t2) to
(t1 + 1, t2), vertically by one step from (t1, t2) to (t1, t2 + 1) or along the diagonal from
(t1, t2) to (t1 + 1, t2 + 1), as shown by the three arrows. The restriction to these three pos-
sibilities embodies the continuity condition (4) and the one-to-one mapping (for vertical
segments the one-to-one correspondence is ensured by the convention to map t1 to the
largest value t2 of the segment) between to the two time series. However, this comes at
the cost that one time series may appear to ‘‘freeze’’ along the vertical or horizontal bonds
while the other has its time still flowing.

As before, the optimal path for two identical time series is the main diagonal, so devi-
ations from the diagonal quantify lag or lead times between the two time series. It is thus
convenient to use a rotated frame (t,x) as shown in Fig. 5 such that the second coordinate
x quantifies the deviation from the main diagonal, hence the lead or lag time between the
two time series. In general, the optimal path is expected to wander around, above or below
the main diagonal of equation x(t) = 0.



t1

(τ
1
+1, τ

2
+1)

(τ
1
+1, τ

2
)

(τ
1
, τ

2
+1)

t

t2

x

t = 0 t = 1 t = 2

(τ
1
, τ

2
)

Fig. 5. Representation of the two-layer approach in the lattice (t1, t2) and of the rotated frame (t,x) as defined in
the text. The three arrows depict the three moves that are allowed to reach any node in one step, in accordance
with the continuity and monotonicity conditions (4).
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A given node (t1, t2) in the two-dimensional lattice carries the ‘‘potential energy’’ or dis-
tance �(t1, t2). Let us now denote E(t1, t2) as the energy (cumulative distance (5)) of the
optimal path starting from some origin (t1,0, t2,0) and ending at (t1, t2). Using the present
topology of Fig. 5, the transfer matrix method providing the determination of the optimal
lag path is based on the following fundamental relation:

Eðt1; t2Þ ¼ �ðt1; t2Þ þMin½Eðt1 � 1; t2Þ;Eðt1; t2 � 1Þ;Eðt1 � 1; t2 � 1Þ�. ð13Þ
The key insight captured by this equation is that the minimum energy path that reaches
point (t1, t2) can only come from one of the three points (t1 � 1, t2), (t1, t2 � 1) and
(t1 � 1, t2 � 1) preceding it. Then, the minimum energy path reaching (t1, t2) is nothing
but an extension of the minimum energy path reaching one of these three preceding points,
determined from the minimization condition (13). Then, the global optimal path is deter-
mined as follows. One needs to consider only the sub-lattice (t1,0, t2,0) · (t1, t2) as the path is
directed. The determination of the optimal path now amounts to determining the forenode
of each node in the sub-lattice (t1,0, t2,0) · (t1, t2). Without loss of generality, assume that
(t1,0, t2,0) is the origin (1,1). Firstly, one performs a left-to-right and bottom-to-up scan-
ning. The forenode of the bottom nodes (s1,1) is (s1 � 1,1), where s1 = 2, . . . , t1. Then,
one determines the forenodes of the nodes in the second-layer at t2 = 2, based on the
results of the first (or bottom) layer. This procedure is performed for t2 = 3, then for
t2 = 4, . . . , and so on.

The global minimization procedure is fully determined once the starting and ending
points of the paths are defined. In some of our tests, it is simpler to impose the start
and end points to be on the diagonal, i.e., x = 0. But more generally, since the lag–leads
between two time series can be anything at any time, we should allow in general the start-
ing point to lie anywhere on the horizontal axis t2 = 1 or on the vertical axis t1 = 1.
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Similarly, we should allow the ending point to lie anywhere on the horizontal axis t2 = N or
on the vertical axis t1 = N. This allows for the fact that one of the two time series may pre-
cede the other one. For each given pair of starting and ending points, we obtain a minimum
path (the ‘‘optimal directed polymer’’ with fixed end-points). The minimum energy path
over all possible starting and ending points is then the solution of our global optimization
problem (5) under the constraint (4). This equation of this global optimal path defines the
mapping t1 ! t2 = /(t1) defining the causal relationship between the two time series.

As an example, we construct the distance matrix of the normalized returns of IBM and
MSFT stocks from 2001/05/16 to 2001/06/20, as shown in Fig. 6. The normalized returns
are in the first row (bottom) and first column (left). The corresponding distance matrix is
with the optimal path in bold. The straight line characterizes the diagonal (no time lag).

4.2. Optimal path at finite temperature

Similarly to our discussion in Section 3.3, it is natural to define thermally average paths
in the hope of obtaining more reliable lag recoveries. Here, we describe how we implement
the idea of thermal path fluctuations in the context of the present algorithm.
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Fig. 6. Distance matrix of the normalized returns of IBM and MSFT stocks from 2001/05/16 to 2001/06/20. The
normalized returns are in the first row (bottom) and first column (left). The corresponding distance matrix is with
the optimal path in bold. The straight line characterizes the diagonal (no time lag).



210 W.-X. Zhou, D. Sornette / Journal of Macroeconomics 28 (2006) 195–224
It is again convenient to use the rotated frame (t,x) as defined in Fig. 5, in which t gives
the coordinate along the main diagonal of the (t1, t2) lattice and x gives the coordinate in
the transverse direction from the main diagonal. The transformation between the two
coordinates systems was given in Eq. (10). Note that the constraint that the path is direc-
ted allows us to interpret t as an effective time and x as the position of a path at that
‘‘time’’ t. The local time lag hx(t)i is given by Eq. (11). Similarly to expression (11), the
variance of the trajectory of the optimal thermal path reads

r2
x ¼

X
x

ðx� hxiÞ2Gðx; tÞ=GðtÞ. ð14Þ

The variance r2
x gives a measure of the uncertainty in the determination of the thermal

optimal path and thus an estimate of the error in the lag–lead structure of the two time
series as seen from this method.

If two time series are perfectly causally related (they are the same up to a factor), then
the optimal path is the diagonal, that is, made of the diagonal bonds of the square lattice,
or alternatively the nodes on the diagonals. Since the ‘‘energy’’ (i.e., local mismatch
defined by expression (1)) is defined only on the nodes, a path has a Boltzmann weight
contributed only by the nodes and there is no contribution from bonds. We should thus
allow path not only along the horizontal and vertical segments of each square of the lattice
but also along the main diagonal of each square. The directedness means that a given path
is not allowed to go backward on any of the three allowed moves. As illustrated in Fig. 5,
in order to arrive at (t1 + 1, t2 + 1), the path can come from (t1 + 1, t2) vertically, (t1, t2 + 1)
horizontally, or (t1, t2) diagonally. The recursive equation on the Boltzmann weight factor
is thus

Gðx; t þ 1Þ ¼ ½Gðx� 1; tÞ þ Gðxþ 1; tÞ þ Gðx; t � 2Þ�e��ðx;tÞ=T . ð15Þ
The intuition is to imagine the polymer/path as fluctuating randomly due to random
‘‘thermal kicks’’ in the quenched random energy landscape. In the limit where the temper-
ature T goes to zero, G(x, t)/G(t) becomes the Dirac function d[x � xDP(t)] where xDP(t) is
the position of the global optimal path determined previously in Section 2.2. Thus, for
T ! 0, expression (11) leads to hxi = xDP(t), showing that this thermal procedure gener-
alizes the previous global optimization method. For non-vanishing T, the optimal thermal
average hx(t)i given by (11) takes into account the set of the neighboring (in energy) paths
which allows one to average out the noise contribution to the distance matrix. This recur-
sion relation uses the same principle and has thus the same structure as expression (13)
(Wang et al., 2000).

As we have learned in Section 4.2, this two-layer approach outperforms the multi-layer
algorithms. In the next section, we shall determine the impact of temperature and show the
potential power of the method for multi-lag time series.
5. Comprehensive numerical tests of the ‘‘optimal thermal causal path’’ approach

5.1. First synthetic test

Consider two stationary time series X(t1) and Y(t2) given by model (8). In our simula-
tions, we take s = 5, a = 0.8, b = 0.7, and rn = 1 and consider time series of duration
N = 100. For a given f, we obtain the optimal zero-temperature path by using the trans-
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fer-matrix method (13) explained in Section 2.2 for 19 different starting positions around
the origin and similarly 19 different ending positions around the upper-right corner at
coordinate (100,100). This corresponds to solve 19 · 19 transfer matrix optimization prob-
lems. The absolute optimal path is then determined as the path which has the smallest
energy over all these possible starting and ending points. We also determine the optimal
local time lag hx(t)i, for different temperatures, typically from T = 1/5 to 10, using the
relation (15) for the partition function.

Fig. 7(a) shows that transverse trajectory x(t) as a function of the coordinate t along the
main diagonal for f = 1/10 and for temperatures T = 0, 1/5, 1, and 10. This graph corre-
sponds to the case where we restrict our attention to paths with fixed imposed starting (ori-
gin) and ending (coordinates (100,100) on the main diagonal) points. This restriction is
relaxed as we explain above and apply below to prevent the boundary effects clearly visible
in Fig. 7(a). Fig. 7(b) shows the corresponding standard deviation defined by (14) of the
thermal average paths.

The impact of the temperature is nicely illustrated by plotting how the energy of an
optimal thermal path depends on its initial starting point x(t = 0) = x0 (and ending point
taken with the same value x(t = 198) = x(0)). For a given x0 and temperature T, we deter-
mine the thermal optimal path and then calculate its energy eT(x0) by the formula

eTðx0Þ ¼
1

2ðN � jx0jÞ � 1

X2N�1�jx0j

t¼jx0j

X
x

�ðx; tÞGðx; tÞ=GðtÞ. ð16Þ

By construction, the time lag between the two time series is s = 5 so that we should expect
eT(x0) to be minimum for x0 = s = 5. Fig. 8 plots eT(x0) as a function of the average of the
path hx(x0)i with different starting points x0 for different temperatures T respectively equal
to 1/50, 1/5, 1/2, 1, 2, 5, and 10 and for f = 1/2. One can observe a large quasi-degeneracy
for small temperatures, so that it is difficult to identify what is the value of the lag between
the two time series. The narrow trough at hx(x0)i = 5 for the smallest temperatures, while
at the correct value, is not clearly better than negative values of hx(x0)i. In contrast,
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increasing the temperature produces a well-defined quadratic minimum bottoming at the
correct value hx(x0)i = s = 5 and removes the degeneracies observed for the smallest tem-
peratures. This numerical experiment illustrates the key idea underlying the introduction
of the thermal averaging in Section 4.2: too small temperatures lead to optimal paths
which are exceedingly sensitive to details of the distance matrix, these details being con-
trolled by the specific irrelevant realizations of the noise g in expression (8). The theoretical
underpinning of the transformation from many small competing minima to well-defined
large scale minima as the temperature increases, as observed in Fig. 8, is well understood
from studies using renormalization group methods (Bouchaud et al., 1991).

Fig. 9 further demonstrates the role of the temperature for different amplitudes of the
noise g. It shows the position hxi as a function of T for different relative noise level f.
Recall that hx(t)i is the optimal thermal position of the path for a fixed coordinate t along
the main diagonal, as defined in (11). The symbol hxi expresses an additional average of
hxi over all the possible values of the coordinate t: in other words, hxi is the average ele-
vation (or translation) of the optimal thermal path above (or below) the diagonal. This
average position is an average measure (along the time series) of the lag/lead time between
the two time series, assuming that this lag–lead time is the same for all times. In our
numerical example, we should obtain hxi close to or equal to s = 5. Fig. 9 shows the depen-
dence of hxi as a function of T for different values of f.

Obviously, with the increase of the signal-to-noise ratio of the realizations which is pro-
portional to 1/f, the accuracy of the determination of s improves. For a noise level f, hxi
approaches the correct value s = 5 with increasing T. The beneficial impact of the temper-
ature is clearer for more noisy signals (larger f). It is interesting to notice that an ‘‘optimal
range’’ of temperature appears for large noise level.
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5.2. Test on the detection of jumps or change-of-regime in time lag

We now present synthetic tests of the efficiency of the optimal thermal causal path
method to detect multiple changes of regime and compare the results with a standard cor-
relation analysis performed in moving windows of different sizes. Consider the following
model:

Y ðiÞ ¼

0:8X ðiÞ þ g; 1 6 i 6 50;

0:8X ði� 10Þ þ g; 51 6 i 6 100;

0:8X ði� 5Þ þ g; 101 6 i 6 150;

0:8X ðiþ 5Þ þ g; 151 6 i 6 200;

0:8X ðiÞ þ g; 201 6 i 6 250.

8>>>>>><
>>>>>>:

ð17Þ

In the sense of definition (8), the time series Y is lagging behind X with s = 0, 10, 5, � 5
(this negative lag time corresponds to X(t) lagging behind Y(t)), and 0 in five successive
time periods of 50 time steps each. The time series X is assumed to be the first-order
AR process (8b) and g is a Gaussian white noise. Our results are essentially the same when
X is itself a white Gaussian random variable. We use f = 1/5 in the simulations presented
below.

Fig. 10 shows the standard cross-correlation function calculated over the whole time
interval 1 6 i 6 250 of the two time series X and Y given by (17), so as to compare with
our method. Without further information, it would be difficult to conclude more than
to say that the two time series are rather strongly correlated at zero time lag. It would
be farfetched to associate the tiny secondary peaks of the correlation function at s = ±5
and 10 to genuine lags or lead times between the two time series. And since, the correlation
function is estimated over the whole time interval, the time localization of possible shifts of
lag/leads is impossible.
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Before presenting the results of our method, it is instructive to consider a natural exten-
sion of the correlation analysis, which consists in estimating the correlation function in a
moving window [i + 1 � D, i] of length D, where i runs from D to 250. We then estimate
the lag–lead time sD(i) as the value that maximizes the correlation function in each window
[i + 1 � D, i]. We have used D = 10, 20, 50, and 100 to investigate different compromises
(D = 10 is reactive but does not give statistically robust estimates while D = 100 gives sta-
tistically more robust estimates but is less reactive to abrupt changes of lag). The local lags
sD(i) thus obtained are shown in Fig. 11 as a function of the running time i. For D = 10,
this method identifies successfully the correct time lags in the first, third, fourth, and fifth
time periods, while sD(i) in the second time period is very noisy and fails to unveil the cor-
rect value s = 10. For D = 20, the correct time lags in the five time periods are identified
with large fluctuations at the boundaries between two successive time periods. For D = 50,
five successive time lags are detected but with significant delays compared to their actual
inception times, with in addition high interspersed fluctuations. For D = 100, the delays of
the detected inception times of each period reach about 50 time units, that is, comparable
to the width of each period, and the method fails completely for this case.

Let us now turn to our optimal thermal causal path method. We determine the average
thermal path (transverse trajectory x(i) as a function of the coordinate i along the main
diagonal) starting at the origin, for four different temperatures T = 2, 1, 1/2, and 1/5.
Fig. 12 plots x(i) as a function of i. The time lags in the five time periods are recovered
clearly. At the joint points between the successive time periods, there are short transient
crossovers from one time lag to the next. Our new method clearly outperforms the above
cross-correlation analysis.

The advantage of our new method compared with the moving cross-correlation method
for two time series with varying time lags can be further illustrated by a test of predictabil-
ity. It is convenient to use an example with unidirectional causal lags (only positive lags)
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and not with bidirectional jumps as exemplified by (17). We thus consider a case in which
X leads Y in general and use the following model:
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Y ðiÞ ¼

0:8X ðiÞ þ g; 1 6 i 6 50;

0:8X ði� 10Þ þ g; 51 6 i 6 100;

0:8X ði� 5Þ þ g; 101 6 i 6 150;

0:8X ði� 8Þ þ g; 151 6 i 6 200.

8>>><
>>>:

ð18Þ

At each instant i considered to be the ‘‘present,’’ we perform a prediction of Y(i + 1) for
‘‘tomorrow’’ at i + 1 as follows. We first estimate the instantaneous lag–lead time s(i). The
first estimation uses the running-time cross-correlation method which delivers s(i) = sD(i).
The second estimation is the average thermal position s(i) = max{[x(i)], 0} using the opti-
mal thermal causal path method where the operator [Æ] takes the integral part of a number.
We construct the prediction for Y(i + 1) as

Y ðiþ 1Þ ¼ 0:8X ðiþ 1� sðiÞÞ. ð19Þ
In this prediction set-up, we assume that we have full knowledge of the model and the
challenge is only to calibrate the lag. The standard deviations of the prediction errors
are found for the cross-correlation method respectively equal to 2.04 for D = 10, 0.41
for D = 20, and 1.00 for D = 50. Using the optimal thermal path, we find a standard devi-
ation of the prediction errors of 0.45 for T = 2, 0.39 for T = 1, 0.33 for T = 1/2, and 0.49
for T = 1/5. Our optimal causal thermal path method thus outperforms and is much more
stable than the classic cross-correlation approach.

6. Applications to economics

6.1. Revisiting the causality between the US treasury bond yield and

the stock market antibubble since August 2000

In a recent paper (Zhou and Sornette, 2004), we have found evidence for the following
causality in the time period from October 2000 to September 2003: stock market ! Fed
Reserve (Federal funds rate) ! short-term yields ! long-term yields (as well as a direct
and instantaneous influence of the stock market on the long-term yields). These conclu-
sions were based on (1) lagged cross-correlation analysis in running windows and (2)
the dependence of the parameters of a ‘‘log-periodic power law’’ calibration to the yield
time series at different maturities (see Sornette and Johansen (2001), Sornette and Zhou
(2002) and Sornette (2003) for recent exposition of the method and synthesis of the main
results on a variety of financial markets).

Let us now revisit this question by using the optimal thermal causal path method. The
data consist in the S&P 500 index, the Federal funds rate (FFR), and 10 treasury bond
yields spanning three years from 2000/09/09 to 2003/09/09. The optimal thermal paths
x(i)’s of the distance matrix between the monthly returns of the S&P 500 index with each
of the monthly relative variations of the eleven yields are determined for a given temper-
ature T, giving the corresponding lag–lead times s(i) = x(i)’s as a function of present time
i. Fig. 13 shows these s(i)’s for T = 1, where positive values correspond to the yields lag-
ging behind or being caused by the S&P 500 index returns. The same analysis was per-
formed also for T = 10, 5, 2, 1, 1/2 and 1/5, yielding a very consistent picture,
confirming indeed that s is positive for short-term yields and not significantly different
from zero for long-term yields, as shown in Fig. 13. One can also note that the lag s(i)
seems to have increased with time from September 2000 to peak in the last quarter of 2003.
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We also performed the same analysis with weakly and quarterly data of the returns and
yield changes. The results (not shown) confirm the results obtained at the monthly time
scale. This analysis seems to confirm the existence of a change of regime in the arrow of
causality between the S&P 500 index and the Federal Funds rate: it looks as if the Fed
(as well as the short term yields) started to be influenced by the stock market after a delay
following the crash in 2000, waiting until mid-2001 for the causality to be revealed. The
positivity of the time lag shows the causal ‘‘slaving’’ of the yields to the stock index. This
phenomenon is consistent with the evidence previously presented by Zhou and Sornette
(2004) and thus provides further evidence on the causal arrow flowing from the stock mar-
ket to the treasury yields. The instantaneous lag–lead functions s(t) provide actually much
clearer signatures of the causality than our previous analysis: compare for instance with
the cross-correlation coefficient shown in figure 10 of a paper by Zhou and Sornette
(2004). From an economic view point, we interpret these evidences, that the FRB is caus-
ally influenced by the stock market (at least for the studied period), as an indication that
the stock markets are considered as proxies of the present and are conditioning the future
health of the economy, according to the FRB model of the US economy. In a related
study, causality tests performed by Lamdin (2004) also confirm that stock market move-
ments precede changes in yield spread between corporate bonds and government bonds.
Abdulnasser and Manuchehr (2002) have also found that Granger causality is unidirec-
tionally running from stock prices to effective exchange rates in Sweden.

6.2. Are there any causal relationship between inflation and gross domestic product

(GDP) and inflation and unemployment in the USA?

The relationship between inflation and real economic output quantified by GDP has
been discussed many times in the last several decades. Different theories have suggested
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that the impact of inflation on the real economy activity could be either neutral, negative,
or positive. Based on Mundell’s (1963) story that higher inflation would lower real interest
rates, Tobin (1965) argued that higher inflation causes a shift from money to capital
investment and raise output per capita. On the contrary, Fischer (1974) suggested a neg-
ative effect, stating that higher inflation resulted in a shift from money to other assets and
reduced the efficiency of transactions in the economy due to higher search costs and lower
productivity. In the middle, Sidrauski (1967) proposed a neutral effect where exogenous
time preference fixed the long-run real interest rate and capital intensity. These arguments
are based on the rather restrictive assumption that the Phillips curve (inverse relationship
between inflation and unemployment), taken in addition to be linear, is valid.

To evaluate which model characterizes better real economic systems, numerous empir-
ical efforts have been performed. Fama (1982) applied the money demand theory and the
rational expectation quality theory of money to the study of inflation in the USA and
observed a negative relation during the post-1953 period. Barro (1995) used data for
around 100 countries from 1960 to 1990 to assess the effects of inflation on economic out-
put and found that an increase in average inflation led to a reduction of the growth rate of
real per capita GDP, conditioned on the fact that the inflation was high. Fountas et al.
(2002) used a bivariate GARCH model of inflation and output growth and found evidence
that higher inflation and more inflation uncertainty lead to lower output growth in the
Japanese economy. Apergis (2004) found that inflation affected causally output growth
using a univariate GARCH models to a panel set for the G7 countries.

Although cross-country regressions explain that output growth often obtains a negative
effect from inflation, Ericsson et al. (2001) argued that these results are not robust and
demonstrated that annual time series of inflation and the log-level of output for most
G7 countries are cointegrated, thus rejecting the existence of a long-run relation between
output growth and inflation. A causality analysis using annual data from 1944 to 1991 in
Mexico performed by Shelley and Wallace (2004) showed that it is important to separate
the changes in inflation into predictable and unpredictable components whose differences
respectively had a significant negative and positive effect on real GDP growth. Huh (2002)
and Huh and Lee (2002) utilized a vector autoregression (VAR) model to accommodate
the potentially important departure from linearity of the Phillips curve motivated by a
strand of theoretical and empirical evidence in the literature suggesting nonlinearity in
the output–inflation relationship. The empirical results indicated that their model captured
the nonlinear features present in the data in Australia and Canada. This study implies that
there might exists a nonlinear causality from inflation to economic output. It is therefore
natural to use our novel method to detect possible local nonlinear causality relationship.

Our optimal thermal causal path method is applied to the GDP quarterly growth rates
paired with the inflation rate updated every quarter on the one hand and with the quar-
terly changes of the inflation rates on the other hand, for the period from 1947 to 2003
in the USA. The GDP growth rate, the inflation rate and the inflation rate changes have
been normalized by their respective standard deviations. The inflation and inflation
changes are calculated from the monthly customer price index (CPI) obtained from the
Fed II database (federal reserve bank). Eight different temperatures T = 50, 20, 10, 5, 2,
1, 1/2, and 1/5 have been investigated.

Fig. 14 shows the data used for the analysis, that is, the normalized inflation rate,
its normalized quarterly change and the normalized GDP growth rate from 1947 to
2003.



0

2

4
Inflation

–2

0

2

T
im

e 
se

ri
es

Inflation change

1940 1950 1960 1970 1980 1990 2000 2010
–0.02

0

0.02

0.04

t

GDP growth

Fig. 14. Data used in our analysis, that is, the normalized inflation rate, its normalized quaterly change, and the
normalized GDP growth rate from 1947 to 2003.

W.-X. Zhou, D. Sornette / Journal of Macroeconomics 28 (2006) 195–224 219
Fig. 15 shows the lag–lead times s(t) = x(t)’s (units in year) for the pair (inflation, GDP
growth) as a function of present time t for T = 2 and for 19 different starting positions
(and their ending counterparts) in the (t1, t2) plane, where positive values of s(t) = x(t) cor-
respond to the GDP lagging behind or being caused by inflation. This figure is represen-
tative of the information at all the investigated temperatures. Overall, we find that s is
negative in the range �2 years 6 s 6 0 year, indicating that it is more the GPD which leads
inflation than the reverse. However, this broad-brush conclusion must be toned down
somewhat at a finer time resolution as two time periods can be identified in Fig. 15:

• From 1947 (and possibly earlier) to early 1980s, one can observe two clusters, one with
negative �2 years 6 s = x(t) 6 0 years implying that the GDP has a positive causal
effect on future inflation, and another with positive 0 years 6 s = x(t) 6 4 years imply-
ing that inflation has a causal effect on GDP with a longer lag.

• From the mid-1980s to the present, there is not doubt that it is GDP which has had the
dominating causal impact on future inflation lagged by about 1–2 years.

In summary, our analysis suggests that the interaction between GDP and inflation is
more subtle than previously discussed. Perhaps past controversies on which one causes
the other one may be due to the fact that, to a certain degree, each causes the other with
different time lags. Any measure of a causal relationship allowing for only one lag is bound
to miss such subtle interplay. It is interesting to find that GDP impacts on future inflation
with a relatively small delay of about one year while inflation has in the past influenced
future GDP with a longer delay of several years.

Fig. 16 shows the lag–lead times s(t) = x(t)’s (units in year) for the pair (inflation
change, GDP) as a function of present time t for T = 2 and for 19 different starting posi-
tions (and their ending counterparts) in the (t1, t2) plane, where positive values of
s(t) = x(t) correspond to the GDP lagging behind or being caused by inflation change.
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Fig. 15. (Colour online). Lag–lead times s(t) = x(t)’s (units in year) for the pair (inflation, GDP) as a function of
present time t for T = 2 and for 19 different starting positions (and their ending counterparts) in the (t1, t2) plane,
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dashed blue line is the optimal path with the minimal ‘‘energy.’’ (For interpretation of the references in color in
this figure legend, the reader is referred to the Web version of this article.)

1940 1950 1960 1970 1980 1990 2000 2010
–4

–2

0

2

4

6

8

10

t

τ
(t

)
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Due to the statistical fluctuations, we cannot conclude on the existence of a significant cau-
sal relationship between inflation change and GDP, except in the decade of the 1980s for
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which there is strong causal effect of a change of inflation on GDP. The beginning of this
decade was characterized by a strong decrease of the inflation rate from a two-digit value
in 1980, following a vigorous monetary policy implemented under the Fed’s chairman Paul
Volker. The end of the 1970s and the better half of the 1980s were characterized by an
almost stagnant GDP. In the mid-1980s, the GDP started to grow again at a strong pace.
It is probably this lag between the significant reduction of inflation in the first half of the
1980s and the raise of the GDP growth that we detect here. Our analysis may help in
improving our understanding in the intricate relationship between different economic vari-
ables and their impact on growth and on stability and in addressing the difficult problem
of model errors, that Cogley and Sargent (2005) have argued to be the cause for the lack of
significant action from the Fed in the 1970s.

Fig. 17 shows the lag–lead times s(t) = x(t)’s (units in year) for the pair (inflation,
unemployment rate) as a function of present time t for T = 2 and for 19 different starting
positions (and their ending counterparts) in the (t1, t2) plane, where positive values of
s(t) = x(t) correspond to the unemployment rate lagging behind or being caused by infla-
tion. We use quarterly data from 1948 to 2004 obtained from the Fed II database (federal
reserve bank). This figure is representative of the information at all the investigated
temperatures.

• From 1947 (and possibly earlier) to 1970, one can observe large fluctuations with two
clusters, suggesting a complex causal relationship between the two time series, similarly
to the situation discussed above for the (inflation, GDP) pair.

• From 1970 to the present, there is not doubt that inflation has predated and ‘‘caused’’
unemployment in the sense of the optimal thermal causal path method. It is also note-
worthy that the lag between unemployment and inflation has disappeared in recent
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Fig. 17. (Colour online). Same as Fig. 15 for the pair (inflation, unemployment rate). Positive values of s(t) = x(t)
correspond to the unemployment lagging behind or being caused by inflation. The dashed blue line is the optimal
path with the minimal ‘‘energy.’’ (For interpretation of the references in color in this figure legend, the reader is
referred to the Web version of this article.)
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years. From a visual examination of Fig. 17, we surmise that what is detected is prob-
ably related to the systematic lags between inflation and employment in the four large
peak pairs: (1970 for inflation; 1972 for employment), (1975 for inflation; 1976 for
unemployment), (1980 for inflation; 1983 for unemployment) and (1991 for inflation;
1993 for unemployment).

One standard explanation for a causal impact of inflation on unemployment is through
real wage: if inflation goes faster than the adjustment of salaries, this implies that real
wages are decreasing, which favors employment according to standard economic theory,
thus decreasing unemployment. Here, we find that surges of inflation ‘‘cause’’ increases
and not decreases of unemployment. Rather than an inverse relationship between synchro-
nous inflation and unemployment (Phillips curve), it seems that a better description of the
data is a direct lagged relationship, at least in the last thirty years. The combination of
increased inflation and unemployment has been known as ‘‘stagflation’’ and caused poli-
cymakers to abandon the notion of an exploitable Phillips curve trade-off (see for instance
Lansing (2000)). Our analysis suggests a more complex multivariate description which
requires taking into account inflation, inflation change, GDP, unemployment and their
expectations by the agents, coupled all together through a rather complex network of
lagged relationships. We leave this for a future work.
7. Concluding remarks

In summary, we have developed a novel method for the detection of causality between
two time series, based on the search for a robust optimal path in a distance matrix. We
have shown that the two-layer approach outperforms the multi-layer methods. Our opti-
mal thermal causal path method determines the thermal average paths emanating from
different starting lag–lead times in the distance matrix constructed from the two original
time series and choose the one with minimal average mismatch (‘‘energy’’). The main
advantage of our method is that it enables us to detect causality locally and is thus partic-
ularly useful when the causal relation is nonlinear and changes intermittently. An advan-
tage of the method is that it is robust with respect to noise, i.e., it does not attribute causal
relationships between two time series from patterns in the distance matrix that may arise
randomly. This robustness is acquired by using the ‘‘thermal’’ averaging procedure which
provides a compromise between optimizing the matching between the two time series and
maximizing the local density of optimal paths to ensure a strong relationship.

We have applied this method to the stock market and treasury bond yields and con-
firmed our earlier results in Zhou and Sornette (2004) on a causal arrow of the stock mar-
kets preceding the Federal Reserve Funds adjustments as well as the yield rates at short
maturities. Another application to the inflation and GDP growth rate and to unemploy-
ment have unearthed non-trivial ‘‘causal’’ relationships: the GDP changes lead inflation
especially since the 1980s, inflation changes leads GDP only in the 1980 decade, and infla-
tion leads unemployment rates since the 1970s.

Our approach seems to detect multiple competing causality paths with intertwined
arrows of causality in which one can have inflation leading GDP with a certain lag time
and GDP feeding back/leading inflation with another lag time. This suggests that the pre-
dictive skills of models with one-way causality are fundamentally limited and more elab-
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orate measurements as proposed here and models with complex feedbacks are necessary to
account for the multiple lagged feedback mechanisms present in the economy.
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