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We combine two existing estimators of the local Hurst exponent to improve both the goodness of

fit and the computational speed of the algorithm. An application with simulated time series is

implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.
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The estimation of the Hurst exponent of a time series is a

recurring problem of great interest in many fields:

finance, biology, hydrology, ecology, and signal process-

ing, to quote a few. Since most estimators are asymptotic,

large data samples are needed to obtain reliable esti-

mates, and when the exponent changes through time, the

estimates fail to capture the dynamics timely. In order to

overcome this limit, we combine two techniques built

using the quadratic variation estimators: the former is

unbiased but displays a large variance; the latter, with a

low variance, exhibits a bias which can be corrected at

the cost of a computationally intensive procedure that

slows down the estimation. Our simple and effective idea

is to shift the biased estimates of the average difference

between the unbiased and biased sequences. This removes

the bias and improves the speed of the algorithm since it

reduces the computations that must be carried out.

Monte Carlo simulations for different sequences of the

Hurst functional parameter show that (a) the estimates

improve in almost all the cases considered and (b) our

approach is computationally very efficient (the estimation

time reduces drastically).

I. INTRODUCTION

It is well-known that the fractional Brownian motion

BHðtÞ provides a powerful model for many natural as well as

artificial phenomena in economics, medicine, and geosci-

ence, to list a few. The fractional (or Hurst or H€older) index

H quantifies the smoothness of the sample paths of BHðtÞ,
and the problem of identifying this index is being widely

investigated for years (see, e.g., Refs. 1–6). However, BHðtÞ
has strong stationary increments, and this is too restrictive

for many applications. To account for the complex dynamics

exhibiting time-changing levels of magnitude, two general-

izations of BHðtÞ were proposed independently by P�eltier and

L�evy V�ehel7 and Benassi et al.;3 both these are called multi-

fractional Brownian motions and denoted in the following by

BHðtÞðtÞ. Multifractional processes have been widely used in

turbulence analysis,8–11 texture modeling, classification and

segmentation,12–14 medical image analysis (see Refs. 15–17

for a review of the literature), and finance modeling (see

Refs. 18–20 or 21 for a review).

The pliancy that multifractional Brownian motion

(mBm) exhibits in describing many complex dynamics has a

counterpart in the difficult estimation of its functional param-

eter H(t), a target that has attracted many contributions in the

last twenty years. In the same seminal paper introducing the

mBm, P�eltier and L�evy V�ehel discuss an estimator based on

the average variation of the sampled process. Using the

method defined by Benassi and Istas22 for filtered white

noise, Istas and Lang2 build a convergent estimator of the

local H€older index and prove a central limit theorem.

Benassi et al.23 introduce a semi-parametric estimator for a

piece-wise constant Hurst coefficient of a step fractional

Brownian motion (SFBM), with the aim of detecting abrupt

changes in the Hurst index for a Gaussian process with

almost surely continuous paths. Coeurjolly24 extends this

result by introducing a local estimator of the second-order

moment of a unique discretized filtered path and provides

limit theorems for this class of functional estimators. His

contribution allows us to manage H€olderian functions of

arbitrary positive order. In the context of financial applica-

tions, Bianchi25 and Bianchi et al.26 extend to the mBm a

class of estimators introduced for fBm by P�eltier and L�evy

V�ehel1 and study its Gaussian limiting distribution with affiffiffi
�
p

log n rate of convergence (here, � and n denote the length

of the estimation window and the number of sampling points,

respectively). To identify the functional parameter of an

even more general mBm (the generalized mBm), Ayache

and L�evy V�ehel27–29 use the generalized quadratic variation

and derived a central limit theorem for their estimator. More

recently, Loutridis30 proposed an algorithm based on the

scaled window variance method for estimating both global

and local scaling exponents and reported its simplicity and

computational efficiency with respect to other techniques.

Acting on convex combinations of sample quantiles of dis-

crete variations, Coeurjolly6 defines a class of consistent esti-

mators and derives their almost sure convergence and their

asymptotic normality. Finally, Garcin31 uses the variational

calculus to build a non-parametric smooth estimate for the

estimator in Refs. 3 and 22 and claims his approach to be

more accurate and easier than other existing non-parametric

estimation techniques.
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The literature recalled above testifies about the interest

towards the estimation of the functional Hurst exponent;

nonetheless, many estimators suffer from several drawbacks,

such as, e.g., their slow rate of convergence, their complex-

ity, or even the arbitrary choice of some running parameters.

As a consequence, some estimators can hardly be imple-

mented. In this paper, we suggest to minimize the quadratic

mean error of the sequence of differences between two esti-

mates that already have proved to be fitting and robust, as

well as rather simple to be implemented. We show that the

resulting estimator both overperforms the previous estimates

and increases the computational speed.

This paper is organized as follows: in Sec. II, the qua-

dratic variation estimator is discussed along with a correction

procedure used to reduce the bias of the estimator defined in

Ref. 26. In this section, the procedure to improve the estima-

tion is also introduced. Section III illustrates the Monte

Carlo simulation run to study the effectiveness of the correc-

tion procedure and discusses the results. Section IV con-

cludes this paper.

II. ESTIMATION OF THE HURST EXPONENT

Let us consider the multifractional Brownian motion

(mBm) of functional Hurst parameter H(t). It is well known

that its non-anticipative moving average representation reads

as

BHðtÞðtÞ ¼ KVHðtÞ

ð
R

ðt� sÞHðtÞ�
1
2

þ � ð�sÞHðtÞ�
1
2

þ

� �
dBðsÞ; (1)

where VHðtÞ ¼ ½Cð2HðtÞþ1Þsin ðpHðtÞÞ�1=2

CðHðtÞþ1
2
Þ is a normalizing factor, K

is a positive scaling parameter, and B is the Brownian

motion. Notice that when H(t)¼H, the fBm is recovered as

the special case of the mBm.

The estimators of H(t) described in Sec. II A are mostly

based on the following relevant property of the mBm. For

each u 2 Rþ

lim
�!0þ

BHðt0þ�uÞðt0 þ �uÞ � BHðt0Þðt0Þ
�2Hðt0Þ

¼d K BHðt0ÞðuÞ
� �

; (2)

where ¼d denotes the equality in distribution. Roughly speak-

ing, the property states that at any point t0, there exists an

fBm of parameter Hðt0Þ tangent to the mBm.3 Therefore,

recalling that the fBm is a Gaussian process, the infinitesimal

increment of the mBm at any time t0, normalized by �2Hðt0Þ,
is normally distributed with mean 0 and variance K2juj2Hðt0Þ.

A. Quadratic variation estimator

The idea of estimating the functional parameter of the

mBm by extending the methods available for the fBm is not

new, but only a few estimators display a good rate of conver-

gence, ensuring reliable estimates when H is allowed to

change (even abruptly) through time. Of the many estimators

that fit, more or less accurately, the fBm case32–34 we will

focus on the variation statistics,2,4,23,24,35 which have been

found to be more accurate than alternative techniques. For

example, Storer et al.34 conclude that the second order

moment estimator is superior to Whittle’s method, which in

its turn outperforms—together with Haslett-Raftery—the

estimators such as aggregated variance, boxed periodogram,

difference variance, Geweke-Porter-Hudak estimator, Higuchi,

Peng, periodogram, rescaled range, and wavelet.33 For the

above reason, in the following, we will analyze only the

second order moment statistics.

With regard to the discrete version X ¼ ðXði=nÞÞi¼1;::;n

of the mBm fBHðtÞðtÞ; t 2 ½0; 1�g, Coeurjolly24 introduces a

local version of the k-th order variation statistics that fits the

case of a H€olderian function H : t 2 ½0; 1� ! HðtÞ of order

0 < a � 1 such that supt HðtÞ < minð1; aÞ. Since the vari-

ance of the estimator is minimal for k¼ 2, in the following,

the discussion will be referred only to the case k¼ 2. Given

the two integers ‘ and p, a filter a :¼ ða0;…; a‘Þ of length

‘þ 1 and order p � 1 is built with the following properties:

X‘
q¼0

aqqr ¼ 0; for r ¼ 0;…; p� 1 and
X‘
q¼0

aqqp 6¼ 0:

The filter is a discrete differencing operator; for example,

a ¼ ð1;�1Þ returns the discrete differences of order 1 of X;

a ¼ ð1;�2; 1Þ returns the second order differences, and so

on. The filter also acts to make the sequence locally station-

ary and to weaken the dependence between the observations

of X and defines the new time series

Va j

n

� �
¼
X‘
q¼0

aqX
j� q

n

� �
for j ¼ ‘þ 1;…; n� 1:

Given the neighborhood of t, Vn;en
ðtÞ :¼ fj ¼ ‘þ 1; …; n :

jj=n� tj � eng for some en > 0 such that nen ! 0 as n!1
and denoted by � :¼ �nðtÞ, the number of observations in

Vn;en
ðtÞ, and the quadratic variation statistics associated with

the filter a is defined as

Vn;en
ðt; aÞ ¼ 1

�

X
j2Vn;en ðtÞ

Vaðj=nÞ2

EðVaðj=nÞ2Þ
� 1

( )
: (3)

Under some technical conditions on the form of the neigh-

borhood Vn;en
ðtÞ aiming at ensuring that it contains asymptot-

ically an infinite number of points and to be of length

asymptotically zero, it can be proved that Vn;en
ðt; aÞ ! 0 as

n!1. The asymptotic behavior of Vn;en
ðt; aÞ allows us to

define estimators of H(t) by acting in two directions:

(a) As the filter a is dilated m times, exploiting the

local H(t)-self-similarity of X, the linear regression of

log Eð1�
P

j2Vn;en ðtÞ Vamðj=nÞ2Þ versus log m for m ¼ 1;…;M

defines the class of unbiased estimators Ĥn;en
ðt; a;MÞ inde-

pendent of K whose variance is OððnenÞ�1Þ. In particular,

Coeurjolly24 proves that a filter of order p � 2 ensures

asymptotic normality for any value of H(t), whereas if

a ¼ ð1;�1Þ, the convergence holds if and only if

0 < supt HðtÞ < 3
4
. In this case, by taking en ¼ jn�alnðnÞb

with j > 0; 0 < a < 1, and b 2 R, it follows that

VarðĤn;en
ðt; a;MÞÞ ¼ Oð 1

jn1�alnðnÞbÞ;

031102-2 Pianese, Bianchi, and Palazzo Chaos 28, 031102 (2018)



(b) By setting p¼ 1 and a ¼ ð1;�1Þ, for j ¼ t� �;
…; t� 1 and t ¼ � þ 1;…; n, Eq. (3) becomes

Vn;en
ðt; aÞ ¼

1

�

X
j

jXjþ1 � Xjj2

K2 n� 1ð Þ�2HðtÞ � 1: (4)

From this Refs. 25, 26, and 19, define the estimator

Ĥ�;q;n;KðtÞ ¼
ln

P
j jXjþq � Xjj2

� � qþ 1

 !

2ln
q

n� 1

� � � lnK

ln
q

n� 1

� � (5)

for j ¼ t� �;…; t� q and q ¼ 1;…; �.

When actual data are considered, K is generally

unknown and—as it is evident from (5)—a misleading value

reflects in estimates which are shifted with respect to the true

values; the shift can be significant even for large n, with the

logarithm being slowly varying at infinity. In Ref. 26, a pre-

filtering procedure (named P1 hereafter) is proposed to esti-

mate K: once an estimate has been obtained using an arbi-

trary K�, because of the local normality of BHðtÞðtÞ stated by

(2), as q! 0þ, the conditional subsets

SqðH�; qÞ ¼ Xjþq � Xj : Ĥ�;q;n;K� ðtÞ 2 ðH� � q;H� þ qÞ
n o

(6)

are normally distributed with mean zero and variance equal

to K2ð q
n�1
Þ2H

, with

H ¼ H� þ lnðK�=KÞ
ln q=ðn� 1Þð Þ ; (7)

where the error term
lnðK�=KÞ

lnðq=ðn�1ÞÞ accounts for the shifting bias.

Recalling that for the Gaussian random variable Y, one has

EðjYjkÞ ¼ 2k=2C kþ1
2ð Þ

Cð1=2Þ rk, for each fixed H�, it follows:

ln

P
j jXjþq � Xjjk

� � qþ 1

 !
¼ ln

2k=2C
k þ 1

2

� �
K̂

k

C
1

2

� �
2
6664

3
7775

þ kĤln
q

n� 1

� �
:

Therefore, K can be estimated through the intercept of a sim-

ple linear fit in the plane ln q
n�1

� �
; ln

P
j
jXjþq�Xjjk

��qþ1

� �� �
for

increasing q values (and possibly different k values).

The algorithm is effective only when SqðH�; qÞ is large

enough to perform the log-linear regression in a reliable

way; thus, the filtering procedure requires a large amount of

data, and consequently, it is time-consuming. On the other

hand, the main advantage is that when HðtÞ ¼ 1
2

and q¼ 1,

VarðĤ�;1;n;KðtÞÞ ¼ ð2�ln2ðn� 1ÞÞ�1
(proof in Ref. 25, pp.

266–267); hence, the rate of convergence of estimator (5) is

Oð��1
2ðlnnÞ�1Þ, which ensures great accuracy even for small

estimation windows � and is also useful to preserve the ratio-

nality of the assumption of local Gaussianity.

Another way to get rid of the parameter K is described

in Refs. 2, 22, and 31, where the numerator of (4) is calcu-

lated using different resolutions (for example, by halving the

points into the estimation window), that is,

M2ðt; aÞ ¼
1

�

X��1

j¼0

jXjþ1 � Xjj2; and

M02ðt; aÞ ¼
2

�

X�=2�1

j¼0

jX2ðjþ1Þ � X2jj2

for a ¼ ð1;�1Þ, or

M2ðt; aÞ ¼
1

� � 1

X��2

j¼0

jXjþ1 � 2Xj þ Xj�1j2; and

M02ðt; aÞ ¼
2

� � 1

X�=2�2

j¼0

jX2ðjþ1Þ � 2X2j þ X2ðj�1Þj2

for a ¼ ð1;�2; 1Þ.
Since as n tends to 1; M2ðt; aÞ and M02ðt; aÞ tend to

K2ðn� 1Þ�2HðtÞ
and K2ðn�1

2
Þ�2HðtÞ

, respectively, their ratio

tends to 22HðtÞ, from which an estimate of the Hurst exponent

which converges almost surely to H(t) is

Ĥ�;nðt; aÞ ¼
1

2
log2

M02ðt; aÞ
M2ðt; aÞ

� �
: (8)

With the rate of convergence discussed in (a), this technique

leads to erratic estimates, to the point that recently Garcin31

proposed a non-parametric smoothing technique to reduce

the noise.

Remark 1. The two approaches cannot eliminate trends

in the data. If this is not a problem for the mBm, where the

asymptotic behavior in (2) holds, for more general processes,

the presence of trends could be identified by comparing the

estimates Ĥ�;nðt; aÞ for different filters a. For example, if

Ĥ�;nðt; ð1;�1ÞÞ and Ĥ�;nðt; ð1;�2; 1ÞÞ agree, trends are prob-

ably not significant since they usually affect first and second

order derivatives.

Remark 2. Comparing fluctuations only on very short

timescales could be misleading, as correlations on these

scales can be affected by additional short-term correlations.

Thus, a further analysis would be needed to evaluate the

effect on the estimator of possible short-term correlations as

well as the crossover in the scaling behavior of the data.

B. Improved estimator

As discussed above, estimator (8) is unbiased but

affected by a large variance. On the other hand, estimator (5)

exhibits a low variance, but the bias due to the unknown K
needs a computationally intensive correction that slows

down the estimation. Figure 1 displays an example of the

estimated values Ĥ�;q;n;K� ðtÞ (black), the unbiased Ĥ�;q;n;KðtÞ
(blue), and Ĥ�;nðtÞ (grey) for an mBm simulated with sinu-

soidal functional parameter H(t) (red). The toilsome proce-

dure P1 used to remove the bias of a wrong K� can be

031102-3 Pianese, Bianchi, and Palazzo Chaos 28, 031102 (2018)



avoided in a very simple and effective way. By exploiting

the unbiasedness of estimator (8), denoted by H(t) the func-

tional parameter to be estimated and by n a zero-mean ran-

dom variable, one can write

Ĥ�;nðt; aÞ ¼ HðtÞ þ nðtÞ: (9)

On the other side, from (7), it is also

Ĥ�;q;n;K� ðtÞ ¼ HðtÞ � lnðK�=KÞ
ln q=ðn� 1Þð Þ : (10)

Therefore

lnðK�=KÞ
ln q=ðn� 1Þð Þ ¼ Ĥ�;nðt; aÞ � nðtÞ � Ĥ�;q;n;K� ðtÞ;

from which, by averaging with respect to t, it immediately

follows:

h :¼ lnðK�=KÞ
ln q=ðn� 1Þð Þ ¼

1

n

Xn

t¼1

Ĥ�;nðt; aÞ � Ĥ�;q;n;K� ðtÞ
� �

:

Notice that since K� is chosen arbitrarily, the corrected

estimate

Ĥ�;q;nðt; aÞ ¼ Ĥ�;q;n;K� ðtÞ þ h (11)

does not depend on K any longer.

III. SIMULATIONS AND RESULTS

A. Simulations of mBm

The advantage of using the correction defined in (11)

can be proved by a Monte Carlo simulation of mBm with

different functional parameters and lengths, in order to stress

the estimation algorithms. In this regard, with respect to the

support ½0; 1�, we have considered three functional parame-

ters (linear (HL 2 ½0:2; 0:8�), sinusoidal (HS 2 ½0:2; 0:8�), and

a Brownian motion (HB 2 ½0:25; 0:75�)) and five lengths

(n ¼ 2p, for p ¼ 10; 11; 12; 13; 14). For each functional

parameter and length, 1,000 samples of mBm were simulated

using the Chan and Wood algorithm.36 All the computations

were run using Matlab 2017b under Windows 10 Pro, with

processor Intel Core i3-350M, (3 Mb Cache, 2.26 GHz).

If the linear and the sinusoidal functions appear as stan-

dard choices, assuming a rescaled Brownian motion deserves

a few comments: (a) the jaggedness of the parameter repre-

sents a stress test for the estimator as compared to the very

smooth linear or sinusoidal functions; (b) it allows us to

study the error of the estimator with respect to real-world sit-

uations, where the empirical estimates for several financial

time series display highly irregular and mean reverting Hurst

functions ranging from about 0.25 to 0.75.19,37–39

For each surrogated series, we have estimated

Ĥ�;q;n;K� ðtÞ and Ĥ�;nðt; aÞ with � ¼ 30; q ¼ 1;K� ¼ 2, and

a 2 fð1;�1Þ; ð1;�2; 1Þg (for the choice of these parameters,

see, e.g., Refs. 40 and 31). Finally, we have applied proce-

dure P1 to calculate Ĥ�;q;n;KðtÞ and procedure P2, with both

a ¼ ð1;�1Þ and a ¼ ð1;�2; 1Þ, to calculate Ĥ�;q;nðt; aÞ.

B. Discussion of results

The results of the Monte Carlo simulations are summa-

rized in Tables I and II, which display the averages over the

samples of the Root Mean Squared Error (RMSE) and the

Mean Absolute Percentage Error (MAPE) and the computa-

tional times, respectively. We observe the following:

(a) As shown in Table I, procedure P2 outperforms signifi-

cantly the estimates in almost all the cases when

TABLE I. Root mean squared error (RMSE) and mean absolute percentage

error (MAPE) of the simulations. Bold face denotes the best estimate with

respect to RMSE or MAPE

RMSE MAPE

P2 P2

p P1 ð1;�1Þ ð1;�2; 1Þ P1 ð1;�1Þ ð1;�2; 1Þ

HL 10 0.0511 0.0059 0.0239 11.7211 1.3362 5.4753

11 0.0220 0.0042 0.0246 5.0574 0.9316 5.6599

12 0.0068 0.0037 0.0254 1.5541 0.8274 5.8474

13 0.0035 0.0027 0.0257 0.7818 0.6025 5.9275

14 0.0148 0.0025 0.0261 3.4158 0.5008 5.9905

HS 10 0.0218 0.0074 0.0294 5.0884 1.8885 7.0354

11 0.0092 0.0067 0.0283 2.2006 1.6812 7.0118

12 0.0012 0.0079 0.0260 0.1943 1.9922 6.4694

13 0.0111 0.0074 0.0257 2.7618 1.8324 6.4389

14 0.0155 0.0079 0.0257 3.8681 1.9683 6.4224

HB 10 0.0596 0.0324 0.0625 10.7261 5.1473 11.3086

11 0.0328 0.0137 0.0285 6.6526 2.3564 5.7133

12 0.0151 0.0188 0.0364 2.2151 2.9367 6.9215

13 0.0215 0.0300 0.0416 2.6564 4.2071 6.9641

14 0.0161 0.0257 0.0391 2.6524 3.6956 6.8349

FIG. 1. Actual (red line) and estimated Hurst parameters.

TABLE II. Computational times (in seconds).

p ¼ 10 p ¼ 11 p ¼ 12 p ¼ 13 p ¼ 14

HL P1 1.6164 2.4637 4.7125 8.6164 23.4242

P2(1,�1) 0.0434 0.0648 0.1094 0.1976 0.3764

HS P1 1.2357 2.3985 4.2874 8.3943 15.7677

P2(1,�1) 0.0426 0.0686 0.1076 0.2102 0.3804

HB P1 1.2805 2.3418 4.3117 8.4367 30.4982

P2(1,�1) 0.0434 0.0651 0.1119 0.2013 0.3857
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a ¼ ð1;�1Þ. On the other hand, when a ¼ ð1;�2; 1Þ,
procedure P1 reveals higher performance. The improve-

ment of Ĥ�;q;nðt; ð1;�1ÞÞ with respect to Ĥ�;q;n;KðtÞ is

particularly effective for small lengths (when n¼ 1,024,

the MAPE reduces of almost 9 (HL), 2.7 (HS), and 2.1

(HB) times; when n¼ 2,048, the MAPE reduces of

almost 5.4 (HL), 1.3 (HS), and 2.8 (HB) times). As an

example, Fig. 2 displays the gain obtained by estimating

HBðtÞ through Ĥ�;q;nðt; ð1;�1ÞÞ (green line), which fits

the actual functional parameter (red line) much better

than Ĥ�;q;n;KðtÞ (blue line). Only for very large lengths

and mean reverting functional parameters, procedure P1

outperforms procedure P2. This is reasonable and can

be explained by considering that, in these cases, the

number of points needed to rebuild the conditional dis-

tributions of procedure P1 is large enough to ensure a

reliable estimation of the (constant) parameters;

(b) As shown in Table II, in all cases, the computational

times become essentially negligible when procedure

P2 with a ¼ ð1;�1Þ is considered. The reduction,

increasing with the length n, is very large even for

small samples: on average, the computational time is

about 32 times less when n¼ 1,024 and grows to about

61 times less when n¼ 16,384. Since the filter a
¼ ð1;�1Þ outperforms the filter a ¼ ð1;�2; 1Þ, only

the case P2ð1;�1Þ was chosen as the benchmark with

respect to P1 in the analysis of the time reduction.

IV. CONCLUDING REMARKS AND FUTURE
DEVELOPMENTS

In order to improve the estimation of the Hurst func-

tional exponent of an mBm, we have proposed to merge two

existing estimators, one unbiased, but with a large variance

and the other biased but with a low variance. The bias of the

latter estimator can be removed at the cost of a toilsome and

time-consuming procedure defined in Ref. 26. By minimiz-

ing the quadratic mean error of the sequence of differences

between the two estimates, in this paper, we have built a fast,

unbiased, and low-variance estimator. We have performed a

Monte Carlo simulation to test the improvement with differ-

ent sample sizes and functional parameters. As for the

computational speed, our algorithm significantly reduces the

times required by the previous correction procedure pro-

posed to remove the bias. As to the goodness of fit, the new

technique outperforms the previous estimates for short sam-

ple sizes and for any functional parameter, while it is essen-

tially equivalent to the low-variance estimator for long

sample sizes. Possible future developments concern:

• the reduction of the echo effect due to the size of the mov-

ing window used to estimate the functional parameter

“pointwise,” by properly weighting the observations to

reduce the impact of the most far data with respect to the

most recent ones;
• the elimination of possible trends in the data, which could

be identified by comparing the estimates Ĥ�;nðt; aÞ for dif-

ferent filters a;
• the exploration of possible short-term correlations or

crossover in the scaling behavior of the data which cannot

be accounted for by comparing fluctuations only on very

short timescales, as in (8).
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