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Abstract

Derivative contracts on multiple foreign exchange rates must be priced to
avoid arbitrage by contracts on the cross-rates. Given the triangle of smiles
for two underlyings and their cross, we provide an analytic formula for a
joint probability density such that all three vanilla markets are repriced. The
method extends to N dimensions and leads to simple necessary conditions
for a triangle of smiles to be arbitrage-free in the model.
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1 Introduction

When valuing a derivative contract whose payoff depends on two assets, the
correlation between the random processes followed by those two assets must
be taken into account. In most asset classes, there is no liquid instrument
to determine that correlation. This makes the exposure to correlation hard
to hedge, but straightforward from a modelling point of view since a single
number, perhaps calculated from a historic time series of spot returns, can
be used.

Foreign exchange is different. Lets consider the concrete case of a contract
involving the euro-dollar and sterling-dollar exchange rates at a given expiry,
T . We denote the spot rates S1 and S2 respectively. Then since the euro-
sterling exchange rate S3 = S1/S2 is also liquidly traded, any model we use
would need to correctly re-price euro-sterling vanilla options in order to avoid
arbitrage. This places a heavy constraint on the choice of correlation between
the two driving assets. We will call the currency pairs which, for the purpose
of our modelling, we use as a basis for exchange rates the driving pairs and
the other exchange rates which can be determined from them the crosses. In
this case, euro-dollar and sterling-dollar are the drivers, and euro-sterling is
the cross.

In the Black-Scholes model [1], the condition relating the correlation to the
volatilities is well known to all FX analysts. We assume that the drivers all
have a common domestic currency; dollars in our example. Then, choosing
the dollar bond as numeraire, the Black-Scholes processes are

S1 = F1e
− 1

2
σ2
1T+σ1

√
TX1 (1)

S2 = F2e
− 1

2
σ2
2T+σ2

√
TX2 (2)

E[X1X2] = ρ (3)

where Fi are the forwards, σi the volatilities, and Xi normal variables with
correlation ρ.

The risk-neutral process for the cross is given by the quotient S3 = S1/S2

which is log normal with volatility σ3 as long as

σ2
1 − 2ρσ1σ2 + σ2

2 = σ2
3. (4)

This formula is known as the triangle rule. As long as it holds, the two
asset Black-Scholes model (1)-(3) will give correct Black-Scholes prices for
European contracts that depend only on the cross rate S3.
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It is standard practice among market participants to back correlations out
from at-the-money volatilities using the triangle rule. As long as options on
the cross are traded liquidly, this allows us to replace exposure to correlation
risk with a vega that can be hedged easily.

Once we have a correlation, all of the standard multi-asset methods are
available to us. For example, we could simulate S1 and S2 with two correlated
local volatility [2] processes. Or, for a European payout, we could construct a
Gaussian copula. We can then do the experiment of using our chosen method
to value the contract

(S1/S2 −K)+S2 (5)

which is actually just a vanilla option on the cross, with the payout converted
into USD at expiry. We can do this for a number of strikes, and so plot the
smile implied for the cross by our model. It will not match the true market
smile for the cross, being typically too flat. Worse, there is no reason it would
re-price even the at-the-money option correctly.

Thus we have an arbitrage which is likely to lead to a bleed of money through
the life of the trade as we vega-hedge the cross. If some part of the trade,
perhaps hidden to us, amounts to a European payout on the cross alone, we
will be in danger of selling a trade that can be arbitraged at inception.

In order to address this issue, we would like to construct a joint probability
density with the property that vanillas on drivers and cross are correctly
repriced. This problem has been tackled by the authors of [3] by constructing
a copula that can be calibrated numerically to the cross smile (and see [4] for
a review of copula methods in FX). The purpose of the present article is to
construct such a density analytically. Our construction provides natural no-
arbitrage conditions on the triangle of smiles, and it extends to N dimensions
providing a joint probability distribution that matches all FX asset- and
cross-smiles. Certain contracts (best-ofs, worst-ofs and multi-asset digitals)
can be valued analytically in the model. Others can be priced with numerical
integration, including for example quanto options whose valuation can be
rather elusive [5].
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2 Special properties of best-of options

In order to construct the pdf, we are going to study best-of options. A best-of
has the property that, depending on spot movements, its value can converge
to that of a vanilla option on any of the assets in the triangle. We will be
able to postulate a valuation formula for best-ofs that respects the known
vanilla prices in its limits, and use this to construct our pdf.

The payoff of a best-of option is

P = max

{
(S1 −K1)+

K1

,
(S2 −K2)+

K2

}
. (6)

At expiry, we check which asset performed best, and pay a vanilla contract
on it.

If at any time S1 becomes strongly out-of-the-money while S2 does not, then
the contract reduces to a vanilla on S2 with strike K2. Likewise, in opposite
circumstances, it can become a vanilla on S1 with strike K1.

What, though, if both S1 and S2 become strongly in-the-money? Then the
optionality becomes a choice between S1 and S2. In that case, the payout
can be expressed as

max

{
(S1 −K1)+

K1

,
(S2 −K2)+

K2

}
= max

{
(S1 −K1)

K1

,
(S2 −K2)

K2

}
(7)

=
S2

K1

max

{
S1

S2

,
K1

K2

}
− 1 (8)

=
S2

K1

(
S1

S2

− K1

K2

)
+

+
S2

K2

− 1, (9)

which is a call option on the cross with strike K3 = K1/K2 together with a
forward contract.

Then depending on spot movements, a best-of option can become arbitrarily
close in value to a vanilla on either asset or on the cross. The conclusion
is that any model used to value a best-of option must correctly re-price
vanillas on the drivers and the cross, otherwise the valuation will be directly
arbitragable with a vanilla contract.

Suppose we know the value of best-of options for all possible strikes K1 and
K2. Does this also imply complete knowledge of the risk-neutral joint pdf?
As we will now see, it certainly does.
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By differentiating the best-of payoff P (6), we obtain the dual digital payoff[
1 +K1

∂

∂K1

+K2
∂

∂K2

]
P + 1 = 1{S1<K1,S2<K2}, (10)

whose undiscounted value is the bivariate cumulative distribution. Two more
differentiations give us the probability density. Then, if we denote the undis-
counted value of the best-of with strikes K1, K2 by B(K1, K2), and the joint
pdf by f , they are related by

∂2

∂K1∂K2

[
K1

∂

∂K1

+K2
∂

∂K2

+ 1

]
B(K1, K2) = f(K1, K2). (11)

In summary, there are two properties making best-of options special

1. A best-of with strikes K1, K2 can reduce into a vanilla on either of the
drivers, or on the cross with strike K3 = K1/K2.

2. The set of all possible best-of options completely defines the market for
European options.

3 Construction of a joint pdf

If we could find a smooth function B(K1, K2) which reproduces the market
values of the vanillas in the appropriate limits, then equation (11) tells us
this is equivalent to finding a candidate joint pdf f(K1, K2). As long as f
satisfies all the usual necessities of a probability density function, we will
have a mechanism for valuing multi-asset European contracts that cannot be
arbitraged against the vanilla market.

In order to write down an appropriate function B, we make use of the
fact that best-ofs can be valued analytically in Black-Scholes. The (un-
discounted) value is [6, 7]

B(K1, K2;σ1, σ2, σ3) =
F1

K1

N(d+
1 , d

+
3 ; ρ13)

+
F2

K2

N(d+
2 ,−d−3 ; ρ23)

+ N(−d−1 ,−d−2 ; ρ12)− 1 (12)
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where N is the bivariate normal function, and the correlations are given by

ρ12 =
σ2

1 + σ2
2 − σ2

3

2σ1σ2

(13)

and cyclic permutations. The parameters di are defined by

d±i =
log(Fi/Ki)± σ2

i T/2

σi
√
T

, i = 1, 2, 3, (14)

where K3 = K1/K2 is the cross strike. A compact derivation of equation
(12) is given in [8].

We can now set up our function B(K1, K2) that matches all three cross smiles
in the limits. We simply plug into equation (12) volatilities taken from the
smile curve of each asset

σi = σi(Ki). (15)

By choosing

B(K1, K2) = B(K1, K2;σ1(K1), σ2(K2), σ3(K3)), (16)

Black-Scholes ensures for us that B(K1, K2) correctly reprices vanillas on
all three assets. It is easy to check this by taking the appropriate limits of
equation (12) and using the no-arbitrage condition for individual smiles [9]

σi(Ki)
2 = o(| logKi/Fi|) as Ki → 0,∞ (17)

to ensure that the d±i behave.

Then our pdf is given by

f(K1, K2) =
∂2

∂K1∂K2

[
K1

∂

∂K1

+K2
∂

∂K2

+ 1

]
B(K1, K2) (18)

and, by construction, it correctly re-prices vanillas at all strikes on all three
assets.2

2One can also go the other way and check that integrating the payoff (6) against the pdf
(18) reproduces B(K1, K2). Those who wish to do so are recommended to begin instead
by integrating against the worst-of payout which makes handling boundary terms easier
when integrating by parts.
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4 Extension to N Dimensions

The construction extends readily to more than 2 dimensions. When there
are N driving assets, we consider the best-of payoff

PN = max
1≤i≤N

{
(Si −Ki)+

Ki

}
. (19)

For the method to work, we need to check that the two special properties of
best-ofs continue to apply: they must be reducible to a vanilla on any asset
or cross, and they must completely define the market for European options.

To check the first property, we can pick any two assets, say S1 and S2. The
N dimensional payoff (19) reduces to a best-of on those two assets by taking
the other strikes large. Then we are back to the 2 dimensional case, and
the payoff can be further reduced to a vanilla on either asset or the cross as
before. In this way we see that a vanilla on any asset or cross can be obtained
by taking appropriate limits.

For the second property, we need to check that knowledge of all N -asset
best-of values is equivalent to knowledge of the probability distribution. Dif-
ferentiating, [

1 +
N∑
i=1

Ki
∂

∂Ki

]
PN + 1 = 1{S1<K1} · · · 1{SN<KN} (20)

we obtain the N -asset digital payoff, whose expected value is equal to the
N -variate cumulative distribution function, giving the result.

Then, as before, we plug smile volatilities into the Black-Scholes formula for
the N -asset best-of3 at strikes Ki for the ith asset and Ki/Kj for the ij
cross. Black-Scholes ensures for us that in the limits all vanillas are correctly
repriced. Therefore when we differentiate we obtain a probability distribution
that reprices all vanillas correctly.

3The best-of formula (12) generalises naturally to N assets. In practice, a high quality
approximation for the trivariate cumulative normal function is known [10], but for N > 3,
numerical techniques may be needed.
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5 Example: Two-asset Basket

As an example, we will look at a call option on a basket of euros (EUR)
and Japanese yen (JPY) against dollars (USD). The basket is initially struck
at-the-money-forward on 14th April 2008 so that the payoff on expiry date
14th April 2009 is

P = NUSD(0.5S1/K1 + 0.5K2/S2 − 1)+ (21)

where S1 and S2 are respectively the EURUSD and USDJPY spots4 at expiry,
and the strikes K1 = 1.56 and K2 = 99.2 are set equal to the one year
forwards on the inception date in order to make the trade at-the-money.
NUSD is the notional of the trade, and has been set equal to 100,000,000
USD in this example.

We can simplify the valuation of a two-asset basket by integrating the payoff
(K − w1S1 − w2S2)+ against the density (18) by parts twice. The second
derivative of the payoff becomes a delta function, and so we can do one of
the integrals analytically giving undiscounted value

VBasket =

∫ K

0

dU C

(
U

w1

,
K − U
w2

)
(22)

where C(S1, S2) is the joint cumulative distribution.

It is market standard to quote foreign exchange smiles in delta space since
one can use the Black-Scholes formula to map between strike and delta for
a given volatility. Figure 1 shows the volatility smiles at inception plotted
against (absolute value of) put delta, and figure 2 shows the joint probability
density given by equation (18).

The proper test of a model is whether it works in practice. Figure 3 shows
the result of running the trade through a back-tester that simulates hedging
for the life of the trade. Each day, closing market data is loaded from the
Barclays Capital database, and vanilla options put into a portfolio at 10- and
25-delta call and put strikes and at-the-money, to eliminate smile and vega
risk. Then the residual delta is hedged with forward contracts which, since
the trade is European, also hedge the interest rate risk. Finally the cash is

4I have chosen to quote USDJPY in its market convention, rather than as JPYUSD
which would be more natural for this basket.
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Figure 1: 1Y smiles on 14th April 2008.

put in a bank account and earns interest over night. Then next day the old
hedges are unwound and new hedges put on and any profit or loss recorded.

The feint lines show what happened to the EURUSD and USDJPY spot rates
over the year, the right hand axis showing their percentage change. The three
bold lines show the value of the portfolio over the life of the trade. The aim
of a good model and perfect hedging is to keep these lines as close to zero
as possible. As a simple measure of the performance of each model, we can
look at the final value of the portfolio, indicating the amount of money lost
(or unintentionally made) during the life of the trade. Ignoring smile and
using Black-Scholes to model the basket caused the strategy to make around
870,000 USD (or 87 basis points) during its life. Using a Gaussian copula with
correlation calibrated to reprice the at-the-money cross-vanilla performed
better at around 37 basis points, but the implied probability density we have
constructed performed significantly better at 12 basis points.

By using a model that correctly reprices all three smiles, the risks from the
model tell us to put on hedges that are much closer to a replicating portfolio
than otherwise, and so we have been better protected from market moves
through the life of the trade.
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Figure 2: 1Y implied pdf on 14th April 2008.

6 Discussion

Given a triangle of foreign exchange assets, we have constructed an analytic
formula for a joint probability density with the property that the vanilla
markets on all three assets are repriced. The pdf has been constructed by
using special properties of best-of contracts.

While, since it reprices vanillas, the density is guaranteed to integrate to
1, it is not certain to be real and positive for all input smiles. This is not
surprising as the functional form of any two smiles in a triangle will impose
some constraints on the smile possible for the cross. The condition for f to
be real is that the correlation

ρ12(K1, K2) =
σ2

1(K1) + σ2
2(K2)− σ2

3(K3)

2σ1(K1)σ2(K2)
(23)

must satisfy
− 1 < ρ12(K1, K2) < 1 , for all K1, K2, (24)

and as long as this constraint is true then both ρ23 and ρ13 are also good. In
terms of volatilities, this constraint becomes

σ1(K1) + σ2(K2) > σ3(K3) (25)

σ2(K2) + σ3(K3) > σ1(K1) (26)

σ1(K1) + σ3(K3) > σ2(K2) (27)
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Figure 3: Hedging a one year call option on a basket of EUR and JPY versus
USD over the course of its lifetime

for all K1, K2 and K3 = K1/K2.

Equations (25)-(27) are a necessary condition for the model to be arbitrage
free, and provide a tool for vanilla traders to avoid arbitrage in a triangle of
currency pairs.

Certain two- and three-asset derivative contracts can be valued analytically
in the model. Best-of and worst-of options are examples, as are multi-asset
digitals since we have an analytic formula for the cumulative probability
distribution. Other contracts can be valued semi-analytically by integrating
against the pdf.

The model can be compared with a copula, since it joins two probability dis-
tributions, defined by the two driver smiles. Unlike standard copulas, rather
than having a number of parameters that define the underlying distribution,
it can fit to an entire additional dimension, in our case the cross-smile.

The joint probability density (18) can be thought of as an extension of the
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Breeden-Litzenberger formula [11] to N dimensions. An important difference
is that with knowledge only of vanilla and cross vanilla smiles, the joint
density is not unique. It is, however, entirely analytical, i.e., without any
numerical calibration, and, by construction, consistent with both base smiles
as well as the cross-smile, which is a rare combination of features in exotic
derivatives models for multiple underlyings.
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